Modified finite elements method to investigate vibrations of the main cables in suspended bridges
•Vibrations of suspended bridges under moving vehicles.•Analytical and finite elements methods.•Coupled lateral and torsional vibrations of the deck.•The deck is considered as Euler-Bernoulli beam.•The suspended cable theory with sag ratio less than 10% is used to study main cables.•Using the finite...
Saved in:
Published in | Engineering structures Vol. 216; p. 110701 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0141-0296 1873-7323 |
DOI | 10.1016/j.engstruct.2020.110701 |
Cover
Abstract | •Vibrations of suspended bridges under moving vehicles.•Analytical and finite elements methods.•Coupled lateral and torsional vibrations of the deck.•The deck is considered as Euler-Bernoulli beam.•The suspended cable theory with sag ratio less than 10% is used to study main cables.•Using the finite elements method for vibration of the suspended cables.•The Newmark method is used to solve in the time domain.•The matrix equations of the cables are obtained.•The method of solving nonlinear matrix equations is discussed.
In this paper, a modified finite elements method is presented to study vibrations of a suspended bridge under moving vehicles. In this study, coupled lateral and torsional vibrations of the deck and lateral vibrations of the main cables are considered. The deck is considered as an Euler-Bernoulli beam. The suspended cable theory with the sag ratio less than 10% is used to study the vibrations of the main cables. In the finite elements method used in this study, the vibrational equations of the curved elements of the main cables are calculated in the Cartesian coordinates and change of tension is considered in the equations. Finally, the Newmark method is used to solve the vibrational equations in the time domain. To verify the finite elements method, it is compared with an analytical solution which is applied to a numerical example of the problem. |
---|---|
AbstractList | •Vibrations of suspended bridges under moving vehicles.•Analytical and finite elements methods.•Coupled lateral and torsional vibrations of the deck.•The deck is considered as Euler-Bernoulli beam.•The suspended cable theory with sag ratio less than 10% is used to study main cables.•Using the finite elements method for vibration of the suspended cables.•The Newmark method is used to solve in the time domain.•The matrix equations of the cables are obtained.•The method of solving nonlinear matrix equations is discussed.
In this paper, a modified finite elements method is presented to study vibrations of a suspended bridge under moving vehicles. In this study, coupled lateral and torsional vibrations of the deck and lateral vibrations of the main cables are considered. The deck is considered as an Euler-Bernoulli beam. The suspended cable theory with the sag ratio less than 10% is used to study the vibrations of the main cables. In the finite elements method used in this study, the vibrational equations of the curved elements of the main cables are calculated in the Cartesian coordinates and change of tension is considered in the equations. Finally, the Newmark method is used to solve the vibrational equations in the time domain. To verify the finite elements method, it is compared with an analytical solution which is applied to a numerical example of the problem. In this paper, a modified finite elements method is presented to study vibrations of a suspended bridge under moving vehicles. In this study, coupled lateral and torsional vibrations of the deck and lateral vibrations of the main cables are considered. The deck is considered as an Euler-Bernoulli beam. The suspended cable theory with the sag ratio less than 10% is used to study the vibrations of the main cables. In the finite elements method used in this study, the vibrational equations of the curved elements of the main cables are calculated in the Cartesian coordinates and change of tension is considered in the equations. Finally, the Newmark method is used to solve the vibrational equations in the time domain. To verify the finite elements method, it is compared with an analytical solution which is applied to a numerical example of the problem. |
ArticleNumber | 110701 |
Author | Saffari, Ramin Bakhtiari-Nejad, Firooz |
Author_xml | – sequence: 1 givenname: Firooz surname: Bakhtiari-Nejad fullname: Bakhtiari-Nejad, Firooz email: baktiari@aut.ac.ir organization: Faculty of Mechanical Engineering, University of Maryland at Baltimore County & Amirkabir University of Technology, Tehran, Iran – sequence: 2 givenname: Ramin surname: Saffari fullname: Saffari, Ramin email: r.saffari@aut.ac.ir organization: Master of Science, Faculty of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran |
BookMark | eNqNkEtLQzEQhYMoWB-_wYDrW_PqvbcLFyK-QHGj65CbTNopbVKTtOC_N1px4UZXAzPnnJn5jsh-iAEIOeNszBlvLxZjCLNc0saWsWCidjnrGN8jI953sumkkPtkxLjiDRPT9pAc5bxgjIm-ZyNinqJDj-Cox4AFKCxhBaFkuoIyj46WSDFsIRecmTre4pBMwRgyjZ6WOdCVwUCtGZaQq5LmTV5DcDVwSOhmkE_IgTfLDKff9Zi83t68XN83j893D9dXj42VSpZmkEL10npoHUDLhO986wcLE9V7MK3vLYCcmGlnFG-dMpZz54RzTAjOoJPymJzvctcpvm3qwXoRNynUlVoopdpu0iteVZc7lU0x5wReWyxfD5VkcKk5059U9UL_UNWfVPWOavV3v_zrhCuT3v_hvNo5oULYIiSdLUKw4DBB1bqIf2Z8APWrm74 |
CitedBy_id | crossref_primary_10_3390_ma16062276 crossref_primary_10_1061_JBENF2_BEENG_6021 |
Cites_doi | 10.1061/(ASCE)BE.1943-5592.0001282 10.1061/(ASCE)ST.1943-541X.0001078 10.1016/j.engstruct.2007.05.006 10.1142/S0219876217500335 10.1016/j.engstruct.2018.01.062 10.12989/sem.2015.56.6.939 10.1061/(ASCE)1084-0702(2003)8:1(46) 10.1016/j.jsv.2008.05.012 10.1016/j.jsv.2014.01.027 10.1061/(ASCE)EM.1943-7889.0001409 10.1016/j.apm.2010.07.005 10.1016/0045-7949(88)90326-4 10.1016/j.jsv.2009.04.013 10.1016/j.engstruct.2004.05.005 10.1016/j.mechrescom.2009.01.006 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Aug 1, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Aug 1, 2020 |
DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
DOI | 10.1016/j.engstruct.2020.110701 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7323 |
ExternalDocumentID | 10_1016_j_engstruct_2020_110701 S0141029619335011 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW VH1 WUQ ZY4 ~HD 7SR 7ST 8BQ 8FD AGCQF C1K FR3 JG9 KR7 SOI |
ID | FETCH-LOGICAL-c343t-b32483cfe6dee602f7f6fbce548fea6f8cee35a97a416d4ac11dd2dd02210e733 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Wed Aug 13 02:57:53 EDT 2025 Thu Apr 24 23:06:10 EDT 2025 Wed Oct 01 03:41:53 EDT 2025 Fri Feb 23 02:49:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Suspended Bridge Flexible hanging cables Suspended cable Analytical Method Finite Elements Method Coupled Lateral and Torsional Vibrations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-b32483cfe6dee602f7f6fbce548fea6f8cee35a97a416d4ac11dd2dd02210e733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2444675841 |
PQPubID | 2045481 |
ParticipantIDs | proquest_journals_2444675841 crossref_citationtrail_10_1016_j_engstruct_2020_110701 crossref_primary_10_1016_j_engstruct_2020_110701 elsevier_sciencedirect_doi_10_1016_j_engstruct_2020_110701 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering structures |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Bleich F, R.R., Vincent GS, Collough CB, The mathematical theory of vibration in suspension bridges. Washington: US Government Printing Office, 1950. Ubertini (b0050) 2014; 333 Y, R., Dynamic instability. New York: Frederick Ungar Publishing Company, 1957. Wang (b0055) 2015; 56 Newmark (b0100) 1959 Desai (b0085) 1988; 29 Irvine, H.M., Cable structures. 1992. Xu, Xia, Yan (b0070) 2003; 8 Liu, Chang, Zeng (b0045) 2011; 35 Xu, Zhang, Xia (b0075) 2004; 26 Eslami (b0125) 2014 YAU, J., L. Fryba, and S. Kuo, VEHICLE/BRIDGE INTERACTION DYNAMICS FOR HIGH SPEED RAIL SUSPENSION BRIDGES CONSIDERING MULTIPLE SUPPORT EXCITATIONS. 2014. Thai, Kim, Lee (b0095) 2017; 14 Rao, Yap (b0105) 2011 Chen (b0080) 2014; 141 Irvine, H.M. and T.K. Caughey, The linear theory of free vibrations of a suspended cable. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1974. 341(1626): p. 299-315. Yau, Yang (b0030) 2008; 30 Yang (b0130) 2004 Gwon, Choi (b0060) 2018; 23 Phanyasahachart, Athisakul, Chucheepsakul (b0090) 2017; 144 Frýba, Yau (b0025) 2009; 319 Gwon, Choi (b0065) 2018; 161 Abdel-Ghaffar (b0020) 1980 Vörös (b0110) 2009; 36 Yau (b0035) 2009; 325 A, P., The theory of suspension bridges. London (England): Edward Arnold Ltd., 1957. Newmark (10.1016/j.engstruct.2020.110701_b0100) 1959 Yau (10.1016/j.engstruct.2020.110701_b0030) 2008; 30 Xu (10.1016/j.engstruct.2020.110701_b0070) 2003; 8 Thai (10.1016/j.engstruct.2020.110701_b0095) 2017; 14 Rao (10.1016/j.engstruct.2020.110701_b0105) 2011 Frýba (10.1016/j.engstruct.2020.110701_b0025) 2009; 319 10.1016/j.engstruct.2020.110701_b0005 Abdel-Ghaffar (10.1016/j.engstruct.2020.110701_b0020) 1980 Desai (10.1016/j.engstruct.2020.110701_b0085) 1988; 29 10.1016/j.engstruct.2020.110701_b0120 Yau (10.1016/j.engstruct.2020.110701_b0035) 2009; 325 Liu (10.1016/j.engstruct.2020.110701_b0045) 2011; 35 Yang (10.1016/j.engstruct.2020.110701_b0130) 2004 Gwon (10.1016/j.engstruct.2020.110701_b0065) 2018; 161 Wang (10.1016/j.engstruct.2020.110701_b0055) 2015; 56 Chen (10.1016/j.engstruct.2020.110701_b0080) 2014; 141 Ubertini (10.1016/j.engstruct.2020.110701_b0050) 2014; 333 10.1016/j.engstruct.2020.110701_b0040 10.1016/j.engstruct.2020.110701_b0115 10.1016/j.engstruct.2020.110701_b0015 10.1016/j.engstruct.2020.110701_b0010 Phanyasahachart (10.1016/j.engstruct.2020.110701_b0090) 2017; 144 Eslami (10.1016/j.engstruct.2020.110701_b0125) 2014 Vörös (10.1016/j.engstruct.2020.110701_b0110) 2009; 36 Xu (10.1016/j.engstruct.2020.110701_b0075) 2004; 26 Gwon (10.1016/j.engstruct.2020.110701_b0060) 2018; 23 |
References_xml | – volume: 36 start-page: 603 year: 2009 end-page: 611 ident: b0110 article-title: On coupled bending–torsional vibrations of beams with initial loads publication-title: Mech Res Commun – year: 2004 ident: b0130 article-title: Vehicle-bridge interaction dynamics: with applications to high-speed railways – reference: Bleich F, R.R., Vincent GS, Collough CB, The mathematical theory of vibration in suspension bridges. Washington: US Government Printing Office, 1950. – volume: 144 start-page: 06017020 year: 2017 ident: b0090 article-title: Natural Frequencies of a Very Large-Sag Extensible Cable publication-title: J Eng Mech – volume: 29 start-page: 1001 year: 1988 end-page: 1009 ident: b0085 article-title: Geometric nonlinear static analysis of cable supported structures publication-title: Comput Struct – year: 2011 ident: b0105 article-title: Mechanical vibrations, 5th Edittion – volume: 56 start-page: 939 year: 2015 end-page: 957 ident: b0055 article-title: Estimation of main cable tension force of suspension bridges based on ambient vibration frequency measurements publication-title: Struct. Eng. Mech – reference: YAU, J., L. Fryba, and S. Kuo, VEHICLE/BRIDGE INTERACTION DYNAMICS FOR HIGH SPEED RAIL SUSPENSION BRIDGES CONSIDERING MULTIPLE SUPPORT EXCITATIONS. 2014. – volume: 30 start-page: 632 year: 2008 end-page: 642 ident: b0030 article-title: Vibration of a suspension bridge installed with a water pipeline and subjected to moving trains publication-title: Eng Struct – reference: Y, R., Dynamic instability. New York: Frederick Ungar Publishing Company, 1957. – volume: 325 start-page: 907 year: 2009 end-page: 922 ident: b0035 article-title: Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations publication-title: J Sound Vib – volume: 8 start-page: 46 year: 2003 end-page: 55 ident: b0070 article-title: Dynamic response of suspension bridge to high wind and running train publication-title: J Bridge Eng – reference: A, P., The theory of suspension bridges. London (England): Edward Arnold Ltd., 1957. – start-page: 106(10) year: 1980 ident: b0020 article-title: Vertical vibration analysis of suspension bridges publication-title: J. Struct. Div. – volume: 35 start-page: 398 year: 2011 end-page: 411 ident: b0045 article-title: The interactive vibration behavior in a suspension bridge system under moving vehicle loads and vertical seismic excitations publication-title: Appl Math Model – volume: 26 start-page: 1389 year: 2004 end-page: 1406 ident: b0075 article-title: Vibration of coupled train and cable-stayed bridge systems in cross winds publication-title: Eng Struct – volume: 23 start-page: 04018079 year: 2018 ident: b0060 article-title: Continuum Model for Static and Dynamic Analysis of Suspension Bridges with a Floating Girder publication-title: J Bridge Eng – volume: 319 start-page: 218 year: 2009 end-page: 227 ident: b0025 article-title: Suspended bridges subjected to moving loads and support motions due to earthquake publication-title: J Sound Vib – volume: 333 start-page: 2404 year: 2014 end-page: 2421 ident: b0050 article-title: Effects of cables damage on vertical and torsional eigenproperties of suspension bridges publication-title: J Sound Vib – reference: Irvine, H.M., Cable structures. 1992. – reference: Irvine, H.M. and T.K. Caughey, The linear theory of free vibrations of a suspended cable. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1974. 341(1626): p. 299-315. – volume: 141 start-page: 04014131 year: 2014 ident: b0080 article-title: Analysis of multimode coupled buffeting response of long-span bridges to nonstationary winds with force parameters from stationary wind publication-title: J Struct Eng – volume: 161 start-page: 250 year: 2018 end-page: 264 ident: b0065 article-title: Static and dynamic analyses of a suspension bridge with three-dimensionally curved main cables using a continuum model publication-title: Eng Struct – volume: 14 start-page: 1750033 year: 2017 ident: b0095 article-title: Free vibration analysis of cable structures using isogeometric approach publication-title: Int J Comput Methods – year: 1959 ident: b0100 article-title: A method of computation for structural dynamics – year: 2014 ident: b0125 article-title: Finite elements methods in mechanics – volume: 23 start-page: 04018079 issue: 10 year: 2018 ident: 10.1016/j.engstruct.2020.110701_b0060 article-title: Continuum Model for Static and Dynamic Analysis of Suspension Bridges with a Floating Girder publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0001282 – volume: 141 start-page: 04014131 issue: 4 year: 2014 ident: 10.1016/j.engstruct.2020.110701_b0080 article-title: Analysis of multimode coupled buffeting response of long-span bridges to nonstationary winds with force parameters from stationary wind publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0001078 – start-page: 106(10) year: 1980 ident: 10.1016/j.engstruct.2020.110701_b0020 article-title: Vertical vibration analysis of suspension bridges publication-title: J. Struct. Div. – volume: 30 start-page: 632 issue: 3 year: 2008 ident: 10.1016/j.engstruct.2020.110701_b0030 article-title: Vibration of a suspension bridge installed with a water pipeline and subjected to moving trains publication-title: Eng Struct doi: 10.1016/j.engstruct.2007.05.006 – volume: 14 start-page: 1750033 issue: 03 year: 2017 ident: 10.1016/j.engstruct.2020.110701_b0095 article-title: Free vibration analysis of cable structures using isogeometric approach publication-title: Int J Comput Methods doi: 10.1142/S0219876217500335 – year: 2014 ident: 10.1016/j.engstruct.2020.110701_b0125 – volume: 161 start-page: 250 year: 2018 ident: 10.1016/j.engstruct.2020.110701_b0065 article-title: Static and dynamic analyses of a suspension bridge with three-dimensionally curved main cables using a continuum model publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.01.062 – ident: 10.1016/j.engstruct.2020.110701_b0010 – volume: 56 start-page: 939 year: 2015 ident: 10.1016/j.engstruct.2020.110701_b0055 article-title: Estimation of main cable tension force of suspension bridges based on ambient vibration frequency measurements publication-title: Struct. Eng. Mech doi: 10.12989/sem.2015.56.6.939 – ident: 10.1016/j.engstruct.2020.110701_b0005 – year: 1959 ident: 10.1016/j.engstruct.2020.110701_b0100 – volume: 8 start-page: 46 issue: 1 year: 2003 ident: 10.1016/j.engstruct.2020.110701_b0070 article-title: Dynamic response of suspension bridge to high wind and running train publication-title: J Bridge Eng doi: 10.1061/(ASCE)1084-0702(2003)8:1(46) – volume: 319 start-page: 218 issue: 1–2 year: 2009 ident: 10.1016/j.engstruct.2020.110701_b0025 article-title: Suspended bridges subjected to moving loads and support motions due to earthquake publication-title: J Sound Vib doi: 10.1016/j.jsv.2008.05.012 – volume: 333 start-page: 2404 issue: 11 year: 2014 ident: 10.1016/j.engstruct.2020.110701_b0050 article-title: Effects of cables damage on vertical and torsional eigenproperties of suspension bridges publication-title: J Sound Vib doi: 10.1016/j.jsv.2014.01.027 – year: 2004 ident: 10.1016/j.engstruct.2020.110701_b0130 – volume: 144 start-page: 06017020 issue: 2 year: 2017 ident: 10.1016/j.engstruct.2020.110701_b0090 article-title: Natural Frequencies of a Very Large-Sag Extensible Cable publication-title: J Eng Mech doi: 10.1061/(ASCE)EM.1943-7889.0001409 – ident: 10.1016/j.engstruct.2020.110701_b0015 – volume: 35 start-page: 398 issue: 1 year: 2011 ident: 10.1016/j.engstruct.2020.110701_b0045 article-title: The interactive vibration behavior in a suspension bridge system under moving vehicle loads and vertical seismic excitations publication-title: Appl Math Model doi: 10.1016/j.apm.2010.07.005 – ident: 10.1016/j.engstruct.2020.110701_b0120 – volume: 29 start-page: 1001 issue: 6 year: 1988 ident: 10.1016/j.engstruct.2020.110701_b0085 article-title: Geometric nonlinear static analysis of cable supported structures publication-title: Comput Struct doi: 10.1016/0045-7949(88)90326-4 – ident: 10.1016/j.engstruct.2020.110701_b0115 – year: 2011 ident: 10.1016/j.engstruct.2020.110701_b0105 – volume: 325 start-page: 907 issue: 4–5 year: 2009 ident: 10.1016/j.engstruct.2020.110701_b0035 article-title: Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations publication-title: J Sound Vib doi: 10.1016/j.jsv.2009.04.013 – ident: 10.1016/j.engstruct.2020.110701_b0040 – volume: 26 start-page: 1389 issue: 10 year: 2004 ident: 10.1016/j.engstruct.2020.110701_b0075 article-title: Vibration of coupled train and cable-stayed bridge systems in cross winds publication-title: Eng Struct doi: 10.1016/j.engstruct.2004.05.005 – volume: 36 start-page: 603 issue: 5 year: 2009 ident: 10.1016/j.engstruct.2020.110701_b0110 article-title: On coupled bending–torsional vibrations of beams with initial loads publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2009.01.006 |
SSID | ssj0002880 |
Score | 2.3083835 |
Snippet | •Vibrations of suspended bridges under moving vehicles.•Analytical and finite elements methods.•Coupled lateral and torsional vibrations of the deck.•The deck... In this paper, a modified finite elements method is presented to study vibrations of a suspended bridge under moving vehicles. In this study, coupled lateral... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110701 |
SubjectTerms | Analytical Method Cables Cartesian coordinates Coupled Lateral and Torsional Vibrations Decks Euler-Bernoulli beams Exact solutions Finite element method Finite Elements Method Flexible hanging cables Mathematical analysis Suspended Bridge Suspended cable Vibrations |
Title | Modified finite elements method to investigate vibrations of the main cables in suspended bridges |
URI | https://dx.doi.org/10.1016/j.engstruct.2020.110701 https://www.proquest.com/docview/2444675841 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: AKRWK dateStart: 19781001 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCqTywhia2mzhsVUVVQO0ClbpZjh8oCJJKKYz8dmzHKRQhdWBMdBdF58vdd8p3dwBcSSUyTZEKZCaTgKSZDqhANKApMbEQiySktjl5Oosnc3K_GCxaYNT0wlhapY_9dUx30drf6Xtr9pd53n90FEWUmgoA279jroOdxJbWd_35TfNA1G1Ps8KBld7geKniuR7TagpF5Cjxid8O80eG-hWrXQIaH4B9jxzhsH65Q9BSxRHY-zFP8BjwaSlzbUAl1LnFklDV5PAK1oui4aqE-XqwhoIftlZ2jgdLDQ0UhG88L6Cw7VSVkYTVe-V25Erox0GcgPn49mk0CfwOhUBggldBZgATxUKrWCoVh0gnOtaZUKZQ0YrHmpokiQc8TbhBZpJwEUVSIilNao9ClWB8CtpFWagzADEnWuAMYxJSIizUTDSSBt8gjrIolB0QN3Zjwg8Yt3suXlnDJHtha4Mza3BWG7wDwrXisp6xsV3lpjkYtuEuzGSC7crd5iiZ_2IrZmAOscUTic7_8-wLsGuvaopgF7SNgLo0sGWV9Zxf9sDO8O5hMvsC-JPvvw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QOKgH4zOiqHvw2tDuLu3ijRAJyOMiJNw27T5MjRaSor_f2XZLxJhw8NruNM3s9ptv0m9mEHpQWiaGE-2pREUe6ybG45Jwj3cZYCGVkc9tcfJ0Fg4X7HnZWdZQv6qFsbJKh_0lphdo7a60nTfb6zRtvxQSRdKFDIDav2OQAjVYBzC5jhq90Xg42wIy4cUANbveswY7Mi-dvZadWiFXJIUqPnIDYv4IUr_guohBgxN07Mgj7pXvd4pqOjtDRz9aCp6jeLpSqQFeiU1q6STWpT48x-WsaLxZ4XTbW0PjL5suF2cPrwwGNog_4jTD0lZU5bAS5595MSZXYdcR4gItBk_z_tBzYxQ8SRndeAlwJk6l0aHSOvSJiUxoEqkhVzE6Dg2HOEk7cTeKgZwpFssgUIooBdE98HVE6SWqZ6tMXyFMY2YkTShlPmfSss3IEAUUh8QkCXzVRGHlNyFdj3E76uJdVGKyN7F1uLAOF6XDm8jfGq7LNhv7TR6rjRE7J0ZAMNhv3Kq2UriPNhfAdJjNn1hw_Z9n36OD4Xw6EZPRbHyDDu2dUjHYQnVYrG-BxWySO3dKvwEb5PJq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+finite+elements+method+to+investigate+vibrations+of+the+main+cables+in+suspended+bridges&rft.jtitle=Engineering+structures&rft.au=Bakhtiari-Nejad%2C+Firooz&rft.au=Saffari%2C+Ramin&rft.date=2020-08-01&rft.issn=0141-0296&rft.volume=216&rft.spage=110701&rft_id=info:doi/10.1016%2Fj.engstruct.2020.110701&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2020_110701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |