Modified finite elements method to investigate vibrations of the main cables in suspended bridges

•Vibrations of suspended bridges under moving vehicles.•Analytical and finite elements methods.•Coupled lateral and torsional vibrations of the deck.•The deck is considered as Euler-Bernoulli beam.•The suspended cable theory with sag ratio less than 10% is used to study main cables.•Using the finite...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 216; p. 110701
Main Authors Bakhtiari-Nejad, Firooz, Saffari, Ramin
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0141-0296
1873-7323
DOI10.1016/j.engstruct.2020.110701

Cover

Abstract •Vibrations of suspended bridges under moving vehicles.•Analytical and finite elements methods.•Coupled lateral and torsional vibrations of the deck.•The deck is considered as Euler-Bernoulli beam.•The suspended cable theory with sag ratio less than 10% is used to study main cables.•Using the finite elements method for vibration of the suspended cables.•The Newmark method is used to solve in the time domain.•The matrix equations of the cables are obtained.•The method of solving nonlinear matrix equations is discussed. In this paper, a modified finite elements method is presented to study vibrations of a suspended bridge under moving vehicles. In this study, coupled lateral and torsional vibrations of the deck and lateral vibrations of the main cables are considered. The deck is considered as an Euler-Bernoulli beam. The suspended cable theory with the sag ratio less than 10% is used to study the vibrations of the main cables. In the finite elements method used in this study, the vibrational equations of the curved elements of the main cables are calculated in the Cartesian coordinates and change of tension is considered in the equations. Finally, the Newmark method is used to solve the vibrational equations in the time domain. To verify the finite elements method, it is compared with an analytical solution which is applied to a numerical example of the problem.
AbstractList •Vibrations of suspended bridges under moving vehicles.•Analytical and finite elements methods.•Coupled lateral and torsional vibrations of the deck.•The deck is considered as Euler-Bernoulli beam.•The suspended cable theory with sag ratio less than 10% is used to study main cables.•Using the finite elements method for vibration of the suspended cables.•The Newmark method is used to solve in the time domain.•The matrix equations of the cables are obtained.•The method of solving nonlinear matrix equations is discussed. In this paper, a modified finite elements method is presented to study vibrations of a suspended bridge under moving vehicles. In this study, coupled lateral and torsional vibrations of the deck and lateral vibrations of the main cables are considered. The deck is considered as an Euler-Bernoulli beam. The suspended cable theory with the sag ratio less than 10% is used to study the vibrations of the main cables. In the finite elements method used in this study, the vibrational equations of the curved elements of the main cables are calculated in the Cartesian coordinates and change of tension is considered in the equations. Finally, the Newmark method is used to solve the vibrational equations in the time domain. To verify the finite elements method, it is compared with an analytical solution which is applied to a numerical example of the problem.
In this paper, a modified finite elements method is presented to study vibrations of a suspended bridge under moving vehicles. In this study, coupled lateral and torsional vibrations of the deck and lateral vibrations of the main cables are considered. The deck is considered as an Euler-Bernoulli beam. The suspended cable theory with the sag ratio less than 10% is used to study the vibrations of the main cables. In the finite elements method used in this study, the vibrational equations of the curved elements of the main cables are calculated in the Cartesian coordinates and change of tension is considered in the equations. Finally, the Newmark method is used to solve the vibrational equations in the time domain. To verify the finite elements method, it is compared with an analytical solution which is applied to a numerical example of the problem.
ArticleNumber 110701
Author Saffari, Ramin
Bakhtiari-Nejad, Firooz
Author_xml – sequence: 1
  givenname: Firooz
  surname: Bakhtiari-Nejad
  fullname: Bakhtiari-Nejad, Firooz
  email: baktiari@aut.ac.ir
  organization: Faculty of Mechanical Engineering, University of Maryland at Baltimore County & Amirkabir University of Technology, Tehran, Iran
– sequence: 2
  givenname: Ramin
  surname: Saffari
  fullname: Saffari, Ramin
  email: r.saffari@aut.ac.ir
  organization: Master of Science, Faculty of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
BookMark eNqNkEtLQzEQhYMoWB-_wYDrW_PqvbcLFyK-QHGj65CbTNopbVKTtOC_N1px4UZXAzPnnJn5jsh-iAEIOeNszBlvLxZjCLNc0saWsWCidjnrGN8jI953sumkkPtkxLjiDRPT9pAc5bxgjIm-ZyNinqJDj-Cox4AFKCxhBaFkuoIyj46WSDFsIRecmTre4pBMwRgyjZ6WOdCVwUCtGZaQq5LmTV5DcDVwSOhmkE_IgTfLDKff9Zi83t68XN83j893D9dXj42VSpZmkEL10npoHUDLhO986wcLE9V7MK3vLYCcmGlnFG-dMpZz54RzTAjOoJPymJzvctcpvm3qwXoRNynUlVoopdpu0iteVZc7lU0x5wReWyxfD5VkcKk5059U9UL_UNWfVPWOavV3v_zrhCuT3v_hvNo5oULYIiSdLUKw4DBB1bqIf2Z8APWrm74
CitedBy_id crossref_primary_10_3390_ma16062276
crossref_primary_10_1061_JBENF2_BEENG_6021
Cites_doi 10.1061/(ASCE)BE.1943-5592.0001282
10.1061/(ASCE)ST.1943-541X.0001078
10.1016/j.engstruct.2007.05.006
10.1142/S0219876217500335
10.1016/j.engstruct.2018.01.062
10.12989/sem.2015.56.6.939
10.1061/(ASCE)1084-0702(2003)8:1(46)
10.1016/j.jsv.2008.05.012
10.1016/j.jsv.2014.01.027
10.1061/(ASCE)EM.1943-7889.0001409
10.1016/j.apm.2010.07.005
10.1016/0045-7949(88)90326-4
10.1016/j.jsv.2009.04.013
10.1016/j.engstruct.2004.05.005
10.1016/j.mechrescom.2009.01.006
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Aug 1, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 1, 2020
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2020.110701
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2020_110701
S0141029619335011
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c343t-b32483cfe6dee602f7f6fbce548fea6f8cee35a97a416d4ac11dd2dd02210e733
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Wed Aug 13 02:57:53 EDT 2025
Thu Apr 24 23:06:10 EDT 2025
Wed Oct 01 03:41:53 EDT 2025
Fri Feb 23 02:49:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Suspended Bridge
Flexible hanging cables
Suspended cable
Analytical Method
Finite Elements Method
Coupled Lateral and Torsional Vibrations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-b32483cfe6dee602f7f6fbce548fea6f8cee35a97a416d4ac11dd2dd02210e733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2444675841
PQPubID 2045481
ParticipantIDs proquest_journals_2444675841
crossref_citationtrail_10_1016_j_engstruct_2020_110701
crossref_primary_10_1016_j_engstruct_2020_110701
elsevier_sciencedirect_doi_10_1016_j_engstruct_2020_110701
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Bleich F, R.R., Vincent GS, Collough CB, The mathematical theory of vibration in suspension bridges. Washington: US Government Printing Office, 1950.
Ubertini (b0050) 2014; 333
Y, R., Dynamic instability. New York: Frederick Ungar Publishing Company, 1957.
Wang (b0055) 2015; 56
Newmark (b0100) 1959
Desai (b0085) 1988; 29
Irvine, H.M., Cable structures. 1992.
Xu, Xia, Yan (b0070) 2003; 8
Liu, Chang, Zeng (b0045) 2011; 35
Xu, Zhang, Xia (b0075) 2004; 26
Eslami (b0125) 2014
YAU, J., L. Fryba, and S. Kuo, VEHICLE/BRIDGE INTERACTION DYNAMICS FOR HIGH SPEED RAIL SUSPENSION BRIDGES CONSIDERING MULTIPLE SUPPORT EXCITATIONS. 2014.
Thai, Kim, Lee (b0095) 2017; 14
Rao, Yap (b0105) 2011
Chen (b0080) 2014; 141
Irvine, H.M. and T.K. Caughey, The linear theory of free vibrations of a suspended cable. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1974. 341(1626): p. 299-315.
Yau, Yang (b0030) 2008; 30
Yang (b0130) 2004
Gwon, Choi (b0060) 2018; 23
Phanyasahachart, Athisakul, Chucheepsakul (b0090) 2017; 144
Frýba, Yau (b0025) 2009; 319
Gwon, Choi (b0065) 2018; 161
Abdel-Ghaffar (b0020) 1980
Vörös (b0110) 2009; 36
Yau (b0035) 2009; 325
A, P., The theory of suspension bridges. London (England): Edward Arnold Ltd., 1957.
Newmark (10.1016/j.engstruct.2020.110701_b0100) 1959
Yau (10.1016/j.engstruct.2020.110701_b0030) 2008; 30
Xu (10.1016/j.engstruct.2020.110701_b0070) 2003; 8
Thai (10.1016/j.engstruct.2020.110701_b0095) 2017; 14
Rao (10.1016/j.engstruct.2020.110701_b0105) 2011
Frýba (10.1016/j.engstruct.2020.110701_b0025) 2009; 319
10.1016/j.engstruct.2020.110701_b0005
Abdel-Ghaffar (10.1016/j.engstruct.2020.110701_b0020) 1980
Desai (10.1016/j.engstruct.2020.110701_b0085) 1988; 29
10.1016/j.engstruct.2020.110701_b0120
Yau (10.1016/j.engstruct.2020.110701_b0035) 2009; 325
Liu (10.1016/j.engstruct.2020.110701_b0045) 2011; 35
Yang (10.1016/j.engstruct.2020.110701_b0130) 2004
Gwon (10.1016/j.engstruct.2020.110701_b0065) 2018; 161
Wang (10.1016/j.engstruct.2020.110701_b0055) 2015; 56
Chen (10.1016/j.engstruct.2020.110701_b0080) 2014; 141
Ubertini (10.1016/j.engstruct.2020.110701_b0050) 2014; 333
10.1016/j.engstruct.2020.110701_b0040
10.1016/j.engstruct.2020.110701_b0115
10.1016/j.engstruct.2020.110701_b0015
10.1016/j.engstruct.2020.110701_b0010
Phanyasahachart (10.1016/j.engstruct.2020.110701_b0090) 2017; 144
Eslami (10.1016/j.engstruct.2020.110701_b0125) 2014
Vörös (10.1016/j.engstruct.2020.110701_b0110) 2009; 36
Xu (10.1016/j.engstruct.2020.110701_b0075) 2004; 26
Gwon (10.1016/j.engstruct.2020.110701_b0060) 2018; 23
References_xml – volume: 36
  start-page: 603
  year: 2009
  end-page: 611
  ident: b0110
  article-title: On coupled bending–torsional vibrations of beams with initial loads
  publication-title: Mech Res Commun
– year: 2004
  ident: b0130
  article-title: Vehicle-bridge interaction dynamics: with applications to high-speed railways
– reference: Bleich F, R.R., Vincent GS, Collough CB, The mathematical theory of vibration in suspension bridges. Washington: US Government Printing Office, 1950.
– volume: 144
  start-page: 06017020
  year: 2017
  ident: b0090
  article-title: Natural Frequencies of a Very Large-Sag Extensible Cable
  publication-title: J Eng Mech
– volume: 29
  start-page: 1001
  year: 1988
  end-page: 1009
  ident: b0085
  article-title: Geometric nonlinear static analysis of cable supported structures
  publication-title: Comput Struct
– year: 2011
  ident: b0105
  article-title: Mechanical vibrations, 5th Edittion
– volume: 56
  start-page: 939
  year: 2015
  end-page: 957
  ident: b0055
  article-title: Estimation of main cable tension force of suspension bridges based on ambient vibration frequency measurements
  publication-title: Struct. Eng. Mech
– reference: YAU, J., L. Fryba, and S. Kuo, VEHICLE/BRIDGE INTERACTION DYNAMICS FOR HIGH SPEED RAIL SUSPENSION BRIDGES CONSIDERING MULTIPLE SUPPORT EXCITATIONS. 2014.
– volume: 30
  start-page: 632
  year: 2008
  end-page: 642
  ident: b0030
  article-title: Vibration of a suspension bridge installed with a water pipeline and subjected to moving trains
  publication-title: Eng Struct
– reference: Y, R., Dynamic instability. New York: Frederick Ungar Publishing Company, 1957.
– volume: 325
  start-page: 907
  year: 2009
  end-page: 922
  ident: b0035
  article-title: Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations
  publication-title: J Sound Vib
– volume: 8
  start-page: 46
  year: 2003
  end-page: 55
  ident: b0070
  article-title: Dynamic response of suspension bridge to high wind and running train
  publication-title: J Bridge Eng
– reference: A, P., The theory of suspension bridges. London (England): Edward Arnold Ltd., 1957.
– start-page: 106(10)
  year: 1980
  ident: b0020
  article-title: Vertical vibration analysis of suspension bridges
  publication-title: J. Struct. Div.
– volume: 35
  start-page: 398
  year: 2011
  end-page: 411
  ident: b0045
  article-title: The interactive vibration behavior in a suspension bridge system under moving vehicle loads and vertical seismic excitations
  publication-title: Appl Math Model
– volume: 26
  start-page: 1389
  year: 2004
  end-page: 1406
  ident: b0075
  article-title: Vibration of coupled train and cable-stayed bridge systems in cross winds
  publication-title: Eng Struct
– volume: 23
  start-page: 04018079
  year: 2018
  ident: b0060
  article-title: Continuum Model for Static and Dynamic Analysis of Suspension Bridges with a Floating Girder
  publication-title: J Bridge Eng
– volume: 319
  start-page: 218
  year: 2009
  end-page: 227
  ident: b0025
  article-title: Suspended bridges subjected to moving loads and support motions due to earthquake
  publication-title: J Sound Vib
– volume: 333
  start-page: 2404
  year: 2014
  end-page: 2421
  ident: b0050
  article-title: Effects of cables damage on vertical and torsional eigenproperties of suspension bridges
  publication-title: J Sound Vib
– reference: Irvine, H.M., Cable structures. 1992.
– reference: Irvine, H.M. and T.K. Caughey, The linear theory of free vibrations of a suspended cable. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1974. 341(1626): p. 299-315.
– volume: 141
  start-page: 04014131
  year: 2014
  ident: b0080
  article-title: Analysis of multimode coupled buffeting response of long-span bridges to nonstationary winds with force parameters from stationary wind
  publication-title: J Struct Eng
– volume: 161
  start-page: 250
  year: 2018
  end-page: 264
  ident: b0065
  article-title: Static and dynamic analyses of a suspension bridge with three-dimensionally curved main cables using a continuum model
  publication-title: Eng Struct
– volume: 14
  start-page: 1750033
  year: 2017
  ident: b0095
  article-title: Free vibration analysis of cable structures using isogeometric approach
  publication-title: Int J Comput Methods
– year: 1959
  ident: b0100
  article-title: A method of computation for structural dynamics
– year: 2014
  ident: b0125
  article-title: Finite elements methods in mechanics
– volume: 23
  start-page: 04018079
  issue: 10
  year: 2018
  ident: 10.1016/j.engstruct.2020.110701_b0060
  article-title: Continuum Model for Static and Dynamic Analysis of Suspension Bridges with a Floating Girder
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001282
– volume: 141
  start-page: 04014131
  issue: 4
  year: 2014
  ident: 10.1016/j.engstruct.2020.110701_b0080
  article-title: Analysis of multimode coupled buffeting response of long-span bridges to nonstationary winds with force parameters from stationary wind
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001078
– start-page: 106(10)
  year: 1980
  ident: 10.1016/j.engstruct.2020.110701_b0020
  article-title: Vertical vibration analysis of suspension bridges
  publication-title: J. Struct. Div.
– volume: 30
  start-page: 632
  issue: 3
  year: 2008
  ident: 10.1016/j.engstruct.2020.110701_b0030
  article-title: Vibration of a suspension bridge installed with a water pipeline and subjected to moving trains
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2007.05.006
– volume: 14
  start-page: 1750033
  issue: 03
  year: 2017
  ident: 10.1016/j.engstruct.2020.110701_b0095
  article-title: Free vibration analysis of cable structures using isogeometric approach
  publication-title: Int J Comput Methods
  doi: 10.1142/S0219876217500335
– year: 2014
  ident: 10.1016/j.engstruct.2020.110701_b0125
– volume: 161
  start-page: 250
  year: 2018
  ident: 10.1016/j.engstruct.2020.110701_b0065
  article-title: Static and dynamic analyses of a suspension bridge with three-dimensionally curved main cables using a continuum model
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.01.062
– ident: 10.1016/j.engstruct.2020.110701_b0010
– volume: 56
  start-page: 939
  year: 2015
  ident: 10.1016/j.engstruct.2020.110701_b0055
  article-title: Estimation of main cable tension force of suspension bridges based on ambient vibration frequency measurements
  publication-title: Struct. Eng. Mech
  doi: 10.12989/sem.2015.56.6.939
– ident: 10.1016/j.engstruct.2020.110701_b0005
– year: 1959
  ident: 10.1016/j.engstruct.2020.110701_b0100
– volume: 8
  start-page: 46
  issue: 1
  year: 2003
  ident: 10.1016/j.engstruct.2020.110701_b0070
  article-title: Dynamic response of suspension bridge to high wind and running train
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)1084-0702(2003)8:1(46)
– volume: 319
  start-page: 218
  issue: 1–2
  year: 2009
  ident: 10.1016/j.engstruct.2020.110701_b0025
  article-title: Suspended bridges subjected to moving loads and support motions due to earthquake
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2008.05.012
– volume: 333
  start-page: 2404
  issue: 11
  year: 2014
  ident: 10.1016/j.engstruct.2020.110701_b0050
  article-title: Effects of cables damage on vertical and torsional eigenproperties of suspension bridges
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2014.01.027
– year: 2004
  ident: 10.1016/j.engstruct.2020.110701_b0130
– volume: 144
  start-page: 06017020
  issue: 2
  year: 2017
  ident: 10.1016/j.engstruct.2020.110701_b0090
  article-title: Natural Frequencies of a Very Large-Sag Extensible Cable
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)EM.1943-7889.0001409
– ident: 10.1016/j.engstruct.2020.110701_b0015
– volume: 35
  start-page: 398
  issue: 1
  year: 2011
  ident: 10.1016/j.engstruct.2020.110701_b0045
  article-title: The interactive vibration behavior in a suspension bridge system under moving vehicle loads and vertical seismic excitations
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2010.07.005
– ident: 10.1016/j.engstruct.2020.110701_b0120
– volume: 29
  start-page: 1001
  issue: 6
  year: 1988
  ident: 10.1016/j.engstruct.2020.110701_b0085
  article-title: Geometric nonlinear static analysis of cable supported structures
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(88)90326-4
– ident: 10.1016/j.engstruct.2020.110701_b0115
– year: 2011
  ident: 10.1016/j.engstruct.2020.110701_b0105
– volume: 325
  start-page: 907
  issue: 4–5
  year: 2009
  ident: 10.1016/j.engstruct.2020.110701_b0035
  article-title: Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2009.04.013
– ident: 10.1016/j.engstruct.2020.110701_b0040
– volume: 26
  start-page: 1389
  issue: 10
  year: 2004
  ident: 10.1016/j.engstruct.2020.110701_b0075
  article-title: Vibration of coupled train and cable-stayed bridge systems in cross winds
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2004.05.005
– volume: 36
  start-page: 603
  issue: 5
  year: 2009
  ident: 10.1016/j.engstruct.2020.110701_b0110
  article-title: On coupled bending–torsional vibrations of beams with initial loads
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2009.01.006
SSID ssj0002880
Score 2.3083835
Snippet •Vibrations of suspended bridges under moving vehicles.•Analytical and finite elements methods.•Coupled lateral and torsional vibrations of the deck.•The deck...
In this paper, a modified finite elements method is presented to study vibrations of a suspended bridge under moving vehicles. In this study, coupled lateral...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110701
SubjectTerms Analytical Method
Cables
Cartesian coordinates
Coupled Lateral and Torsional Vibrations
Decks
Euler-Bernoulli beams
Exact solutions
Finite element method
Finite Elements Method
Flexible hanging cables
Mathematical analysis
Suspended Bridge
Suspended cable
Vibrations
Title Modified finite elements method to investigate vibrations of the main cables in suspended bridges
URI https://dx.doi.org/10.1016/j.engstruct.2020.110701
https://www.proquest.com/docview/2444675841
Volume 216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AKRWK
  dateStart: 19781001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCqTywhia2mzhsVUVVQO0ClbpZjh8oCJJKKYz8dmzHKRQhdWBMdBdF58vdd8p3dwBcSSUyTZEKZCaTgKSZDqhANKApMbEQiySktjl5Oosnc3K_GCxaYNT0wlhapY_9dUx30drf6Xtr9pd53n90FEWUmgoA279jroOdxJbWd_35TfNA1G1Ps8KBld7geKniuR7TagpF5Cjxid8O80eG-hWrXQIaH4B9jxzhsH65Q9BSxRHY-zFP8BjwaSlzbUAl1LnFklDV5PAK1oui4aqE-XqwhoIftlZ2jgdLDQ0UhG88L6Cw7VSVkYTVe-V25Erox0GcgPn49mk0CfwOhUBggldBZgATxUKrWCoVh0gnOtaZUKZQ0YrHmpokiQc8TbhBZpJwEUVSIilNao9ClWB8CtpFWagzADEnWuAMYxJSIizUTDSSBt8gjrIolB0QN3Zjwg8Yt3suXlnDJHtha4Mza3BWG7wDwrXisp6xsV3lpjkYtuEuzGSC7crd5iiZ_2IrZmAOscUTic7_8-wLsGuvaopgF7SNgLo0sGWV9Zxf9sDO8O5hMvsC-JPvvw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QOKgH4zOiqHvw2tDuLu3ijRAJyOMiJNw27T5MjRaSor_f2XZLxJhw8NruNM3s9ptv0m9mEHpQWiaGE-2pREUe6ybG45Jwj3cZYCGVkc9tcfJ0Fg4X7HnZWdZQv6qFsbJKh_0lphdo7a60nTfb6zRtvxQSRdKFDIDav2OQAjVYBzC5jhq90Xg42wIy4cUANbveswY7Mi-dvZadWiFXJIUqPnIDYv4IUr_guohBgxN07Mgj7pXvd4pqOjtDRz9aCp6jeLpSqQFeiU1q6STWpT48x-WsaLxZ4XTbW0PjL5suF2cPrwwGNog_4jTD0lZU5bAS5595MSZXYdcR4gItBk_z_tBzYxQ8SRndeAlwJk6l0aHSOvSJiUxoEqkhVzE6Dg2HOEk7cTeKgZwpFssgUIooBdE98HVE6SWqZ6tMXyFMY2YkTShlPmfSss3IEAUUh8QkCXzVRGHlNyFdj3E76uJdVGKyN7F1uLAOF6XDm8jfGq7LNhv7TR6rjRE7J0ZAMNhv3Kq2UriPNhfAdJjNn1hw_Z9n36OD4Xw6EZPRbHyDDu2dUjHYQnVYrG-BxWySO3dKvwEb5PJq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+finite+elements+method+to+investigate+vibrations+of+the+main+cables+in+suspended+bridges&rft.jtitle=Engineering+structures&rft.au=Bakhtiari-Nejad%2C+Firooz&rft.au=Saffari%2C+Ramin&rft.date=2020-08-01&rft.issn=0141-0296&rft.volume=216&rft.spage=110701&rft_id=info:doi/10.1016%2Fj.engstruct.2020.110701&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2020_110701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon