Adaptive pass planning and optimization for robotic welding of complex joints

Current industrial robotic welding systems cannot achieve automated solutions for multi-layer multi-pass welding of complex joints due to the presence of non-uniform and irregular welding groove geometries. This paper presents an adaptive pass planning approach for robotic welding of such complex jo...

Full description

Saved in:
Bibliographic Details
Published inAdvances in manufacturing Vol. 5; no. 2; pp. 93 - 104
Main Authors Fang, H. C., Ong, S. K., Nee, A. Y. C.
Format Journal Article
LanguageEnglish
Published Shanghai Shanghai University 01.06.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-3127
2195-3597
DOI10.1007/s40436-017-0181-x

Cover

Abstract Current industrial robotic welding systems cannot achieve automated solutions for multi-layer multi-pass welding of complex joints due to the presence of non-uniform and irregular welding groove geometries. This paper presents an adaptive pass planning approach for robotic welding of such complex joints. The welding groove is first segmented considering both the variation in groove dimension and the reachability of the robot welding torch. For each welding segment, the welding passes are planned to be in accordance with welding practices, viz., keeping the same number of welding passes in each layer while maintaining consistent welding parameters. An adaptive pass adjustment scheme is developed to address the discrepancies between the simulated results and the actual welding deposition after finishing a few layers of welding. Corresponding robot paths are generated and optimized to ensure minimum joint movement subject to three constraints, viz., reachability, collision-free and singularity avoidance. The proposed approach has been simulated with the arc welding of a Y-type joint found typically in offshore structures.
AbstractList Current industrial robotic welding systems cannot achieve automated solutions for multi-layer multi-pass welding of complex joints due to the presence of non-uniform and irregular welding groove geometries. This paper presents an adaptive pass planning approach for robotic welding of such complex joints. The welding groove is first segmented considering both the variation in groove dimension and the reachability of the robot welding torch. For each welding segment, the welding passes are planned to be in accordance with welding practices, viz., keeping the same number of welding passes in each layer while maintaining consistent welding parameters. An adaptive pass adjustment scheme is developed to address the discrepancies between the simulated results and the actual welding deposition after finishing a few layers of welding. Corresponding robot paths are generated and optimized to ensure minimum joint movement subject to three constraints, viz., reachability, collision-free and singularity avoidance. The proposed approach has been simulated with the arc welding of a Y-type joint found typically in offshore structures.
Author Ong, S. K.
Nee, A. Y. C.
Fang, H. C.
Author_xml – sequence: 1
  givenname: H. C.
  surname: Fang
  fullname: Fang, H. C.
  organization: Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore
– sequence: 2
  givenname: S. K.
  surname: Ong
  fullname: Ong, S. K.
  organization: Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore
– sequence: 3
  givenname: A. Y. C.
  surname: Nee
  fullname: Nee, A. Y. C.
  email: mpeneeyc@nus.edu.sg
  organization: Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore
BookMark eNp9kMtOAyEUhompibX2AdyRuB4FhrmwbBpvSY0bXROGS0MzhRGoVp9exrowJrognOT8H-fwnYKJ804DcI7RJUaouYoU0bIuEG7yaXGxPwJTgllVlBVrJrlGY41JcwLmMdoOkXrs4HoKHhZKDMm-ajiIGOHQC-esW0PhFPS5sbUfIlnvoPEBBt_5ZCV8070aQ95A6bdDr_dw461L8QwcG9FHPf--Z-D55vppeVesHm_vl4tVIUtapkIgg0hHsCYlxaqRTJaMaqFb2RlhWmqoVLRCuqam6YyShhHSqk5VuKNMCVPOwMXh3SH4l52OiW_8Lrg8kmOG83cRZVVO4UNKBh9j0IYPwW5FeOcY8VEcP4jjWRwfxfF9ZppfjLTpy0AKwvb_kuRAxjzFrXX4sdOf0CfatoZ_
CitedBy_id crossref_primary_10_3390_s21144791
crossref_primary_10_1007_s40436_019_00283_0
crossref_primary_10_1016_j_mechatronics_2021_102657
crossref_primary_10_1109_ACCESS_2020_3021950
crossref_primary_10_1007_s13198_021_01473_5
crossref_primary_10_1007_s00170_019_04216_w
crossref_primary_10_1016_j_rcim_2021_102167
crossref_primary_10_1016_j_jmapro_2020_04_085
crossref_primary_10_1016_j_ifacol_2019_11_056
crossref_primary_10_1016_j_jmapro_2024_05_014
crossref_primary_10_1109_ACCESS_2020_2984694
crossref_primary_10_3390_app142310878
crossref_primary_10_3390_electronics9111917
crossref_primary_10_1007_s00170_021_07728_6
crossref_primary_10_1007_s00521_021_05939_2
crossref_primary_10_1007_s00170_018_2932_7
crossref_primary_10_1016_j_eswa_2021_115356
crossref_primary_10_1007_s00170_019_04344_3
crossref_primary_10_1109_ACCESS_2023_3317688
crossref_primary_10_1016_j_jmsy_2020_06_020
crossref_primary_10_1007_s00170_024_14430_w
crossref_primary_10_3390_machines9120368
crossref_primary_10_1016_j_jmapro_2019_04_014
crossref_primary_10_1007_s00170_022_08941_7
crossref_primary_10_1016_j_jmapro_2024_05_024
crossref_primary_10_1016_j_rcim_2020_101948
Cites_doi 10.1108/IR-03-2015-0053
10.1108/SR-04-2013-649
10.1016/j.robot.2013.02.005
10.1007/s40436-014-0087-9
10.1016/j.jmatprotec.2007.02.006
10.1016/S0924-0136(02)00803-8
10.1016/j.procir.2016.10.052
10.1016/j.cad.2011.01.006
10.1016/j.rcim.2010.08.004
10.1016/j.cirp.2008.03.120
10.1016/j.rcim.2010.11.002
10.1108/01439910810893626
10.1016/S0924-0136(02)00101-2
10.1016/j.rcim.2012.09.011
10.1016/j.rcim.2011.09.003
10.1016/S0924-0136(00)00736-6
10.1007/s00170-016-9684-z
ContentType Journal Article
Copyright Shanghai University and Springer-Verlag Berlin Heidelberg 2017
Advances in Manufacturing is a copyright of Springer, 2017.
Copyright_xml – notice: Shanghai University and Springer-Verlag Berlin Heidelberg 2017
– notice: Advances in Manufacturing is a copyright of Springer, 2017.
DBID AAYXX
CITATION
7TA
7TB
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
JG9
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s40436-017-0181-x
DatabaseName CrossRef
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Materials Business File
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2195-3597
EndPage 104
ExternalDocumentID 10_1007_s40436_017_0181_x
GrantInformation_xml – fundername: ASTAR
  grantid: Project No. 1225100006
GroupedDBID -03
-0C
-EM
-SC
-S~
0R~
4.4
406
5VR
8FE
8FG
92M
96X
9D9
9DC
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AVXWI
AXYYD
BENPR
BGLVJ
BGNMA
CAJEC
CCEZO
CCPQU
CEKLB
CHBEP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HCIFZ
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JUIAU
JZLTJ
KOV
L6V
LLZTM
M4Y
M7S
NB0
NPVJJ
NQJWS
NU0
O9-
O9J
PT4
PTHSS
Q--
Q-2
R-C
RLLFE
ROL
RSV
RT3
SCL
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T8S
TSG
U1F
U1G
U5C
U5M
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7R
Z7V
Z7X
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7TA
7TB
8FD
DWQXO
F28
FR3
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c343t-a0f02b21e2341d7c9c394eae8cbfaf84f4cd450e64f7bfdcf9228dbd51b49daf3
IEDL.DBID AGYKE
ISSN 2095-3127
IngestDate Thu Sep 25 20:06:20 EDT 2025
Wed Oct 01 02:47:31 EDT 2025
Thu Apr 24 22:56:45 EDT 2025
Fri Feb 21 02:31:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Robot path planning
Robotic welding
Pass adjustment
Multi-pass planning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-a0f02b21e2341d7c9c394eae8cbfaf84f4cd450e64f7bfdcf9228dbd51b49daf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1912090495
PQPubID 2034557
PageCount 12
ParticipantIDs proquest_journals_1912090495
crossref_primary_10_1007_s40436_017_0181_x
crossref_citationtrail_10_1007_s40436_017_0181_x
springer_journals_10_1007_s40436_017_0181_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Shanghai
PublicationPlace_xml – name: Shanghai
PublicationTitle Advances in manufacturing
PublicationTitleAbbrev Adv. Manuf
PublicationYear 2017
Publisher Shanghai University
Springer Nature B.V
Publisher_xml – name: Shanghai University
– name: Springer Nature B.V
References SuryakumarSKarunakaranKPBernardAWeld bead modeling and process optimization in hybrid layered manufacturingComput Aided Design201143433134410.1016/j.cad.2011.01.006
CaoYZhuSLiangXOverlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding processRobot Comput Integr Manuf201127364164510.1016/j.rcim.2010.11.002
KimISonJParkCA study on prediction of bead height in robotic arc welding using a neural networkJ Mater Process Tech2002130–13122923410.1016/S0924-0136(02)00803-8
Lorincz J (2015) Robotic welding fills skills gap with quality production. http://www.sme.org/MEMagazine/Article.aspx?id=8589936441. Accessed 26 Oct 2015
PiresJNLoureiroABölmsjoGWelding robots: technology, system issues and application2006LondonSpringer
Yan SJ, Ong SK, Nee AYC (2016) Optimal pass planning for robotic welding of large-dimension joints with deep grooves. In: Proceedings of 9th international conference on digital enterprise technology (det2016)—intelligent manufacturing in the knowledge economy era, 29–31 March 2016, Nanjing, China
NetoPMendesNDirect off-line robot programming via a common CAD packageRobot Auton Syst201361889691010.1016/j.robot.2013.02.005
HuoLBaronLThe self-adaptation of weights for joint-limits and singularity avoidances of functionally redundant robotic-taskRobot Comput Integr Manuf201127236737610.1016/j.rcim.2010.08.004
LinWLuoHNeeAYCRobotic weldingSpringer handbook of manufacturing engineering and technology: robotics and automation2015LondonSpringer24042444
GanjigattiJPPratiharDKChoudhuryRGlobal versus cluster-wise regression analyses for prediction of bead geometry in MIG welding processJ Mater Process Tech200718935236610.1016/j.jmatprotec.2007.02.006
LeeJIUmKWPrediction of welding process parameters by prediction of back-bead geometryJ Mater Process Tech200010810611310.1016/S0924-0136(00)00736-6
ReinhartGMunzertUVoglWA programming system for robot-based remote-laser-welding with conventional opticsAnnals of the CIRP2008571374010.1016/j.cirp.2008.03.120
XiongJZhangGGaoHModeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturingRobot Comput Integr Manuf201329241742310.1016/j.rcim.2012.09.011
YangCYeZChenYMulti-pass path planning for thick plate by DSAW based on vision sensorSensor Rev201434441642310.1108/SR-04-2013-649
FangHCOngSKNeeAYCNovel AR-based interface for human-robot interaction and visualizationAdv Manuf20142427528810.1007/s40436-014-0087-9
RampaulHPipe welding procedure20022New YorkIndustrial Press
FangHCOngSKNeeAYCInteractive robot trajectory planning and simulation using augmented realityRobot Comput Integr Manuf201228222723710.1016/j.rcim.2011.09.003
NageshDSDattaGLPrediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networksJ Mater Process Technol200212330331210.1016/S0924-0136(02)00101-2
HuoLBaronLThe joint-limits and singularity avoidance in robotic weldingInd Robot200835545646410.1108/01439910810893626
OgbemheJMpofuKTowards achieving a fully intelligent robotic arc welding: a reviewInd Robot201542547548410.1108/IR-03-2015-0053
Fang HC, Ong SK, Nee AYC (2016) Robot path planning optimization for welding complex joints. Int J Adv Manuf Technol. doi: 10.1007/s00170-016-9684-z
C Yang (181_CR8) 2014; 34
JP Ganjigatti (181_CR12) 2007; 189
L Huo (181_CR18) 2011; 27
HC Fang (181_CR7) 2014; 2
JI Lee (181_CR13) 2000; 108
W Lin (181_CR2) 2015
P Neto (181_CR4) 2013; 61
181_CR16
G Reinhart (181_CR5) 2008; 57
HC Fang (181_CR6) 2012; 28
J Xiong (181_CR10) 2013; 29
I Kim (181_CR14) 2002; 130–131
Y Cao (181_CR9) 2011; 27
181_CR20
J Ogbemhe (181_CR19) 2015; 42
L Huo (181_CR17) 2008; 35
181_CR1
S Suryakumar (181_CR11) 2011; 43
JN Pires (181_CR3) 2006
H Rampaul (181_CR21) 2002
DS Nagesh (181_CR15) 2002; 123
References_xml – reference: Fang HC, Ong SK, Nee AYC (2016) Robot path planning optimization for welding complex joints. Int J Adv Manuf Technol. doi: 10.1007/s00170-016-9684-z
– reference: PiresJNLoureiroABölmsjoGWelding robots: technology, system issues and application2006LondonSpringer
– reference: YangCYeZChenYMulti-pass path planning for thick plate by DSAW based on vision sensorSensor Rev201434441642310.1108/SR-04-2013-649
– reference: GanjigattiJPPratiharDKChoudhuryRGlobal versus cluster-wise regression analyses for prediction of bead geometry in MIG welding processJ Mater Process Tech200718935236610.1016/j.jmatprotec.2007.02.006
– reference: LeeJIUmKWPrediction of welding process parameters by prediction of back-bead geometryJ Mater Process Tech200010810611310.1016/S0924-0136(00)00736-6
– reference: XiongJZhangGGaoHModeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturingRobot Comput Integr Manuf201329241742310.1016/j.rcim.2012.09.011
– reference: CaoYZhuSLiangXOverlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding processRobot Comput Integr Manuf201127364164510.1016/j.rcim.2010.11.002
– reference: NageshDSDattaGLPrediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networksJ Mater Process Technol200212330331210.1016/S0924-0136(02)00101-2
– reference: OgbemheJMpofuKTowards achieving a fully intelligent robotic arc welding: a reviewInd Robot201542547548410.1108/IR-03-2015-0053
– reference: Lorincz J (2015) Robotic welding fills skills gap with quality production. http://www.sme.org/MEMagazine/Article.aspx?id=8589936441. Accessed 26 Oct 2015
– reference: NetoPMendesNDirect off-line robot programming via a common CAD packageRobot Auton Syst201361889691010.1016/j.robot.2013.02.005
– reference: LinWLuoHNeeAYCRobotic weldingSpringer handbook of manufacturing engineering and technology: robotics and automation2015LondonSpringer24042444
– reference: FangHCOngSKNeeAYCInteractive robot trajectory planning and simulation using augmented realityRobot Comput Integr Manuf201228222723710.1016/j.rcim.2011.09.003
– reference: FangHCOngSKNeeAYCNovel AR-based interface for human-robot interaction and visualizationAdv Manuf20142427528810.1007/s40436-014-0087-9
– reference: KimISonJParkCA study on prediction of bead height in robotic arc welding using a neural networkJ Mater Process Tech2002130–13122923410.1016/S0924-0136(02)00803-8
– reference: Yan SJ, Ong SK, Nee AYC (2016) Optimal pass planning for robotic welding of large-dimension joints with deep grooves. In: Proceedings of 9th international conference on digital enterprise technology (det2016)—intelligent manufacturing in the knowledge economy era, 29–31 March 2016, Nanjing, China
– reference: HuoLBaronLThe self-adaptation of weights for joint-limits and singularity avoidances of functionally redundant robotic-taskRobot Comput Integr Manuf201127236737610.1016/j.rcim.2010.08.004
– reference: HuoLBaronLThe joint-limits and singularity avoidance in robotic weldingInd Robot200835545646410.1108/01439910810893626
– reference: RampaulHPipe welding procedure20022New YorkIndustrial Press
– reference: ReinhartGMunzertUVoglWA programming system for robot-based remote-laser-welding with conventional opticsAnnals of the CIRP2008571374010.1016/j.cirp.2008.03.120
– reference: SuryakumarSKarunakaranKPBernardAWeld bead modeling and process optimization in hybrid layered manufacturingComput Aided Design201143433134410.1016/j.cad.2011.01.006
– volume: 42
  start-page: 475
  issue: 5
  year: 2015
  ident: 181_CR19
  publication-title: Ind Robot
  doi: 10.1108/IR-03-2015-0053
– volume: 34
  start-page: 416
  issue: 4
  year: 2014
  ident: 181_CR8
  publication-title: Sensor Rev
  doi: 10.1108/SR-04-2013-649
– volume: 61
  start-page: 896
  issue: 8
  year: 2013
  ident: 181_CR4
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2013.02.005
– volume: 2
  start-page: 275
  issue: 4
  year: 2014
  ident: 181_CR7
  publication-title: Adv Manuf
  doi: 10.1007/s40436-014-0087-9
– volume: 189
  start-page: 352
  year: 2007
  ident: 181_CR12
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2007.02.006
– volume: 130–131
  start-page: 229
  year: 2002
  ident: 181_CR14
  publication-title: J Mater Process Tech
  doi: 10.1016/S0924-0136(02)00803-8
– ident: 181_CR16
  doi: 10.1016/j.procir.2016.10.052
– ident: 181_CR1
– volume: 43
  start-page: 331
  issue: 4
  year: 2011
  ident: 181_CR11
  publication-title: Comput Aided Design
  doi: 10.1016/j.cad.2011.01.006
– volume: 27
  start-page: 367
  issue: 2
  year: 2011
  ident: 181_CR18
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2010.08.004
– volume: 57
  start-page: 37
  issue: 1
  year: 2008
  ident: 181_CR5
  publication-title: Annals of the CIRP
  doi: 10.1016/j.cirp.2008.03.120
– volume: 27
  start-page: 641
  issue: 3
  year: 2011
  ident: 181_CR9
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2010.11.002
– volume: 35
  start-page: 456
  issue: 5
  year: 2008
  ident: 181_CR17
  publication-title: Ind Robot
  doi: 10.1108/01439910810893626
– volume-title: Pipe welding procedure
  year: 2002
  ident: 181_CR21
– volume: 123
  start-page: 303
  year: 2002
  ident: 181_CR15
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(02)00101-2
– volume: 29
  start-page: 417
  issue: 2
  year: 2013
  ident: 181_CR10
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2012.09.011
– start-page: 2404
  volume-title: Springer handbook of manufacturing engineering and technology: robotics and automation
  year: 2015
  ident: 181_CR2
– volume: 28
  start-page: 227
  issue: 2
  year: 2012
  ident: 181_CR6
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2011.09.003
– volume: 108
  start-page: 106
  year: 2000
  ident: 181_CR13
  publication-title: J Mater Process Tech
  doi: 10.1016/S0924-0136(00)00736-6
– volume-title: Welding robots: technology, system issues and application
  year: 2006
  ident: 181_CR3
– ident: 181_CR20
  doi: 10.1007/s00170-016-9684-z
SSID ssib026359716
ssib012720733
ssj0002118395
ssib051367479
Score 2.1833746
Snippet Current industrial robotic welding systems cannot achieve automated solutions for multi-layer multi-pass welding of complex joints due to the presence of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms Arc welding
Automatic welding
Collision avoidance
Control
Deposition
Engineering
Finishing
Machines
Manufacturing
Mechatronics
Nanotechnology and Microengineering
Offshore engineering
Offshore structures
Processes
Robotics
Welded joints
Welding parameters
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS-UwEB70edGD6Kr41F1y2JMSbNOkaQ_Loosigg8RBW8lP8HFbbv6xPfnm6mJTxfWY0mbwmQ6-abf5BuA785Ip1juaUgeFOVOGlrlRUmFsyU3ogqwH_9DXkzKsxt-fituF2CSzsJgWWWKiUOgtp3Bf-SHIa9gWR3wrPjZ_6XYNQrZ1dRCQ8XWCvbHIDG2CEsMlbFGsHR8Mrm8Sh6WI-so5wAHlVhQQyldCxQw45G3wlge0qOAILAOMrwcKWMmEzWK5-9QmgYTcqzerHI6-7i5zRHrPyTrsHedrsFqBJ3k6NVL1mHBtV9g5Z0U4QZcHFnVY-gjfYDTpI-9jIhqLenCwJ94XpMEkEseOt2FqcizG6gr0nkylKa7Gfnd3bXTx024OT25_nVGY6sFagpeTKnKfMY0yx0Lu5qVpjZFzZ1yldFe-Yp7biwXmSu5l9pb42vGKqutyDWvrfLFFozarnXbQErnpBDCmEoV3BaFtpWVUivJMHawegxZslFjog45tsO4b94UlAezNsGsDZq1mY1h_-2R_lWE47Ob95Lhm_g9PjZz7xnDQVqMd8P_m2zn88l2YZkNq49OsAej6cOT-xpAylR_i573AuV33tY
  priority: 102
  providerName: ProQuest
Title Adaptive pass planning and optimization for robotic welding of complex joints
URI https://link.springer.com/article/10.1007/s40436-017-0181-x
https://www.proquest.com/docview/1912090495
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2195-3597
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118395
  issn: 2095-3127
  databaseCode: AFBBN
  dateStart: 20130301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2195-3597
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0002118395
  issn: 2095-3127
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2195-3597
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0002118395
  issn: 2095-3127
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2195-3597
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118395
  issn: 2095-3127
  databaseCode: AGYKE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y6U90LdYSpEPnFoFbRw7do4L2gWBQKgCiZ4iP6W-khUbBOLXM87ay0O0EqcosuPIM5PxN5nxZ4AtZ4RTNPcZBg8qY06YTOZFmXFnS2a4RNgf_kMeHZf7Z-zgnJ_HfdzzVO2eUpK9p15udgs8MCH6DaWSMs8QOK70dFsDWBnv_TicJDPKQ2pR3KGYQLcSiJLSPQ8sZSwmp4LDxhgIYUIodqQIONArUZHyn0-99-EKdgdLH2VS-wVq-gZO09QWdSm_ty87vW1uHrE-PnPub2E1AlYyXljYO3jhmvfw-h6N4Qc4Gls1C26TzBCKk1k8B4moxpIWG_7GvZ4EATK5aHWLQ5Er16e9SOtJX9bursmv9mfTzT_C2XRyurufxWMaMlOwosvUyI-oprmjuCJaYSpTVMwpJ432ykvmmbGMj1zJvNDeGl9RKq22PNesssoXn2DQtI1bA1I6JzjnxkhVMFsU2korhFaCBr9DqyGMkuhrEznMw1Eaf-ol-3IvqRolVQdJ1ddD-Lp8ZLYg8Phf542kzzp-y_MaI1q0C4yk-BC-JfXca_7XYOvP6v0ZXtFev0HNGzDoLi7dF8Q7nd6El3K6txmtHK87k-OT77chb_Tn
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKewAOFU-xtMAc4AKKSOaRSQ4VKtBqS7srhFqptzBPiaokobuoy5_jtzFOZ7oFid56jJJYisfxfB7bnwFeOiOdooXPQvCgMu6kyaqClZlwtuRGVAH24znkZFqOj_inY3G8Ar9TLwyWVSafODhq2xk8I38b4gqa1wHPinf9jwynRmF2NY3QUHG0gt0aKMZiY8e--3UeQrjZ1t7HsN6vKN3dOfwwzuKUgcwwzuaZyn1ONS0cDQ7dSlMbVnOnXGW0V77inhvLRe5K7qX21via0spqKwrNa6s8C3JvwRpnvA7B39r7nennL8miC8xyyiWgQuYX5GxK1wIJ03jMk-HeEcKxgFiw7jJ8LKaoqUypWOz3QyocPADAatGqyBZ_b6ZLhPxPUnfYK3fvwXoEuWT7wirvw4prH8DdK9SHD2GybVWPrpb0Ab6TPs5OIqq1pAs3vsf-UBJANTnrdBdEkXM3pMpI58lQCu8W5KT71s5nj-DoRpT-GFbbrnVPgJTOSSGEMZVi3DKmbWWl1EpS9FW0HkGedNSYyHuO4zdOm0vG5kGtTVBrg2ptFiN4fflKf0H6cd3Dm0nxTfz_Z83SWkfwJi3Gldv_E_b0emEv4Pb4cHLQHOxN9zfgDh0sAQ1iE1bnZz_dswCQ5vp5tEICX2_a8P8AvHcemQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYQSGh7gME2UWDMD3tiSts4dpw8VkCBsVZ7WKXuKfNPCTaSiAaB9tfvnNiFoW3StMfIjqPcXc7f5c7fIfTOKG4EiW0EwYOIqOEqyuIkjZjRKVUsA9jv_kNOpunZjH6Ys7nvc7oI1e4hJdmdaXAsTWUzqLUdLA--OU4YFwm7ssksjgBErkFkwsHQ10anXy5OgknFLs3IHxCNo15xpEnhmjnGMuoTVc55QzwEkMEVPhIAH-ChCA-50N8999fd7AGiPsmqtpvVeBN9Da_Z1ah86982sq9-PGGA_A85vEAbHsjiUWd5W2jFlNvo-SN6w5doMtKidu4U1wDRce37I2FRalzBwLU_A4oBOOObSlawFL4zbToMVxa35e7mHl9Vl2WzeIVm45PPR2eRb98QqYQmTSSGdkgkiQ2BnVJzlaskp0aYTEkrbEYtVZqyoUmp5dJqZXNCMi01iyXNtbDJa7RaVqXZQTg1hjPGlMpEQnWSSJ1pzqXgxPkjkvfQMKihUJ7b3LXY-F4sWZlbSRUgqcJJqrjvocPlLXVH7PG3yftBt4X_xhcFRLpgIxBhsR56H1T1aPhPi-3-0-y3aP3T8bj4eD692EPPSKtqp_F9tNrc3Jo3AIkaeeDN_iemO_4q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+pass+planning+and+optimization+for+robotic+welding+of+complex+joints&rft.jtitle=Advances+in+manufacturing&rft.au=Fang%2C+H.+C.&rft.au=Ong%2C+S.+K.&rft.au=Nee%2C+A.+Y.+C.&rft.date=2017-06-01&rft.issn=2095-3127&rft.eissn=2195-3597&rft.volume=5&rft.issue=2&rft.spage=93&rft.epage=104&rft_id=info:doi/10.1007%2Fs40436-017-0181-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40436_017_0181_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-3127&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-3127&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-3127&client=summon