Adaptive pass planning and optimization for robotic welding of complex joints
Current industrial robotic welding systems cannot achieve automated solutions for multi-layer multi-pass welding of complex joints due to the presence of non-uniform and irregular welding groove geometries. This paper presents an adaptive pass planning approach for robotic welding of such complex jo...
Saved in:
| Published in | Advances in manufacturing Vol. 5; no. 2; pp. 93 - 104 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Shanghai
Shanghai University
01.06.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2095-3127 2195-3597 |
| DOI | 10.1007/s40436-017-0181-x |
Cover
| Abstract | Current industrial robotic welding systems cannot achieve automated solutions for multi-layer multi-pass welding of complex joints due to the presence of non-uniform and irregular welding groove geometries. This paper presents an adaptive pass planning approach for robotic welding of such complex joints. The welding groove is first segmented considering both the variation in groove dimension and the reachability of the robot welding torch. For each welding segment, the welding passes are planned to be in accordance with welding practices, viz., keeping the same number of welding passes in each layer while maintaining consistent welding parameters. An adaptive pass adjustment scheme is developed to address the discrepancies between the simulated results and the actual welding deposition after finishing a few layers of welding. Corresponding robot paths are generated and optimized to ensure minimum joint movement subject to three constraints, viz., reachability, collision-free and singularity avoidance. The proposed approach has been simulated with the arc welding of a Y-type joint found typically in offshore structures. |
|---|---|
| AbstractList | Current industrial robotic welding systems cannot achieve automated solutions for multi-layer multi-pass welding of complex joints due to the presence of non-uniform and irregular welding groove geometries. This paper presents an adaptive pass planning approach for robotic welding of such complex joints. The welding groove is first segmented considering both the variation in groove dimension and the reachability of the robot welding torch. For each welding segment, the welding passes are planned to be in accordance with welding practices, viz., keeping the same number of welding passes in each layer while maintaining consistent welding parameters. An adaptive pass adjustment scheme is developed to address the discrepancies between the simulated results and the actual welding deposition after finishing a few layers of welding. Corresponding robot paths are generated and optimized to ensure minimum joint movement subject to three constraints, viz., reachability, collision-free and singularity avoidance. The proposed approach has been simulated with the arc welding of a Y-type joint found typically in offshore structures. |
| Author | Ong, S. K. Nee, A. Y. C. Fang, H. C. |
| Author_xml | – sequence: 1 givenname: H. C. surname: Fang fullname: Fang, H. C. organization: Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore – sequence: 2 givenname: S. K. surname: Ong fullname: Ong, S. K. organization: Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore – sequence: 3 givenname: A. Y. C. surname: Nee fullname: Nee, A. Y. C. email: mpeneeyc@nus.edu.sg organization: Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore |
| BookMark | eNp9kMtOAyEUhompibX2AdyRuB4FhrmwbBpvSY0bXROGS0MzhRGoVp9exrowJrognOT8H-fwnYKJ804DcI7RJUaouYoU0bIuEG7yaXGxPwJTgllVlBVrJrlGY41JcwLmMdoOkXrs4HoKHhZKDMm-ajiIGOHQC-esW0PhFPS5sbUfIlnvoPEBBt_5ZCV8070aQ95A6bdDr_dw461L8QwcG9FHPf--Z-D55vppeVesHm_vl4tVIUtapkIgg0hHsCYlxaqRTJaMaqFb2RlhWmqoVLRCuqam6YyShhHSqk5VuKNMCVPOwMXh3SH4l52OiW_8Lrg8kmOG83cRZVVO4UNKBh9j0IYPwW5FeOcY8VEcP4jjWRwfxfF9ZppfjLTpy0AKwvb_kuRAxjzFrXX4sdOf0CfatoZ_ |
| CitedBy_id | crossref_primary_10_3390_s21144791 crossref_primary_10_1007_s40436_019_00283_0 crossref_primary_10_1016_j_mechatronics_2021_102657 crossref_primary_10_1109_ACCESS_2020_3021950 crossref_primary_10_1007_s13198_021_01473_5 crossref_primary_10_1007_s00170_019_04216_w crossref_primary_10_1016_j_rcim_2021_102167 crossref_primary_10_1016_j_jmapro_2020_04_085 crossref_primary_10_1016_j_ifacol_2019_11_056 crossref_primary_10_1016_j_jmapro_2024_05_014 crossref_primary_10_1109_ACCESS_2020_2984694 crossref_primary_10_3390_app142310878 crossref_primary_10_3390_electronics9111917 crossref_primary_10_1007_s00170_021_07728_6 crossref_primary_10_1007_s00521_021_05939_2 crossref_primary_10_1007_s00170_018_2932_7 crossref_primary_10_1016_j_eswa_2021_115356 crossref_primary_10_1007_s00170_019_04344_3 crossref_primary_10_1109_ACCESS_2023_3317688 crossref_primary_10_1016_j_jmsy_2020_06_020 crossref_primary_10_1007_s00170_024_14430_w crossref_primary_10_3390_machines9120368 crossref_primary_10_1016_j_jmapro_2019_04_014 crossref_primary_10_1007_s00170_022_08941_7 crossref_primary_10_1016_j_jmapro_2024_05_024 crossref_primary_10_1016_j_rcim_2020_101948 |
| Cites_doi | 10.1108/IR-03-2015-0053 10.1108/SR-04-2013-649 10.1016/j.robot.2013.02.005 10.1007/s40436-014-0087-9 10.1016/j.jmatprotec.2007.02.006 10.1016/S0924-0136(02)00803-8 10.1016/j.procir.2016.10.052 10.1016/j.cad.2011.01.006 10.1016/j.rcim.2010.08.004 10.1016/j.cirp.2008.03.120 10.1016/j.rcim.2010.11.002 10.1108/01439910810893626 10.1016/S0924-0136(02)00101-2 10.1016/j.rcim.2012.09.011 10.1016/j.rcim.2011.09.003 10.1016/S0924-0136(00)00736-6 10.1007/s00170-016-9684-z |
| ContentType | Journal Article |
| Copyright | Shanghai University and Springer-Verlag Berlin Heidelberg 2017 Advances in Manufacturing is a copyright of Springer, 2017. |
| Copyright_xml | – notice: Shanghai University and Springer-Verlag Berlin Heidelberg 2017 – notice: Advances in Manufacturing is a copyright of Springer, 2017. |
| DBID | AAYXX CITATION 7TA 7TB 8FD 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ CCPQU DWQXO F28 FR3 HCIFZ JG9 L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s40436-017-0181-x |
| DatabaseName | CrossRef Materials Business File Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China Materials Business File ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2195-3597 |
| EndPage | 104 |
| ExternalDocumentID | 10_1007_s40436_017_0181_x |
| GrantInformation_xml | – fundername: ASTAR grantid: Project No. 1225100006 |
| GroupedDBID | -03 -0C -EM -SC -S~ 0R~ 4.4 406 5VR 8FE 8FG 92M 96X 9D9 9DC AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AVXWI AXYYD BENPR BGLVJ BGNMA CAJEC CCEZO CCPQU CEKLB CHBEP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD HCIFZ HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR J-C JBSCW JUIAU JZLTJ KOV L6V LLZTM M4Y M7S NB0 NPVJJ NQJWS NU0 O9- O9J PT4 PTHSS Q-- Q-2 R-C RLLFE ROL RSV RT3 SCL SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T8S TSG U1F U1G U5C U5M UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7R Z7V Z7X ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEUYN AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7TA 7TB 8FD DWQXO F28 FR3 JG9 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c343t-a0f02b21e2341d7c9c394eae8cbfaf84f4cd450e64f7bfdcf9228dbd51b49daf3 |
| IEDL.DBID | AGYKE |
| ISSN | 2095-3127 |
| IngestDate | Thu Sep 25 20:06:20 EDT 2025 Wed Oct 01 02:47:31 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Fri Feb 21 02:31:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Robot path planning Robotic welding Pass adjustment Multi-pass planning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-a0f02b21e2341d7c9c394eae8cbfaf84f4cd450e64f7bfdcf9228dbd51b49daf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1912090495 |
| PQPubID | 2034557 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_1912090495 crossref_primary_10_1007_s40436_017_0181_x crossref_citationtrail_10_1007_s40436_017_0181_x springer_journals_10_1007_s40436_017_0181_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-01 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Shanghai |
| PublicationPlace_xml | – name: Shanghai |
| PublicationTitle | Advances in manufacturing |
| PublicationTitleAbbrev | Adv. Manuf |
| PublicationYear | 2017 |
| Publisher | Shanghai University Springer Nature B.V |
| Publisher_xml | – name: Shanghai University – name: Springer Nature B.V |
| References | SuryakumarSKarunakaranKPBernardAWeld bead modeling and process optimization in hybrid layered manufacturingComput Aided Design201143433134410.1016/j.cad.2011.01.006 CaoYZhuSLiangXOverlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding processRobot Comput Integr Manuf201127364164510.1016/j.rcim.2010.11.002 KimISonJParkCA study on prediction of bead height in robotic arc welding using a neural networkJ Mater Process Tech2002130–13122923410.1016/S0924-0136(02)00803-8 Lorincz J (2015) Robotic welding fills skills gap with quality production. http://www.sme.org/MEMagazine/Article.aspx?id=8589936441. Accessed 26 Oct 2015 PiresJNLoureiroABölmsjoGWelding robots: technology, system issues and application2006LondonSpringer Yan SJ, Ong SK, Nee AYC (2016) Optimal pass planning for robotic welding of large-dimension joints with deep grooves. In: Proceedings of 9th international conference on digital enterprise technology (det2016)—intelligent manufacturing in the knowledge economy era, 29–31 March 2016, Nanjing, China NetoPMendesNDirect off-line robot programming via a common CAD packageRobot Auton Syst201361889691010.1016/j.robot.2013.02.005 HuoLBaronLThe self-adaptation of weights for joint-limits and singularity avoidances of functionally redundant robotic-taskRobot Comput Integr Manuf201127236737610.1016/j.rcim.2010.08.004 LinWLuoHNeeAYCRobotic weldingSpringer handbook of manufacturing engineering and technology: robotics and automation2015LondonSpringer24042444 GanjigattiJPPratiharDKChoudhuryRGlobal versus cluster-wise regression analyses for prediction of bead geometry in MIG welding processJ Mater Process Tech200718935236610.1016/j.jmatprotec.2007.02.006 LeeJIUmKWPrediction of welding process parameters by prediction of back-bead geometryJ Mater Process Tech200010810611310.1016/S0924-0136(00)00736-6 ReinhartGMunzertUVoglWA programming system for robot-based remote-laser-welding with conventional opticsAnnals of the CIRP2008571374010.1016/j.cirp.2008.03.120 XiongJZhangGGaoHModeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturingRobot Comput Integr Manuf201329241742310.1016/j.rcim.2012.09.011 YangCYeZChenYMulti-pass path planning for thick plate by DSAW based on vision sensorSensor Rev201434441642310.1108/SR-04-2013-649 FangHCOngSKNeeAYCNovel AR-based interface for human-robot interaction and visualizationAdv Manuf20142427528810.1007/s40436-014-0087-9 RampaulHPipe welding procedure20022New YorkIndustrial Press FangHCOngSKNeeAYCInteractive robot trajectory planning and simulation using augmented realityRobot Comput Integr Manuf201228222723710.1016/j.rcim.2011.09.003 NageshDSDattaGLPrediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networksJ Mater Process Technol200212330331210.1016/S0924-0136(02)00101-2 HuoLBaronLThe joint-limits and singularity avoidance in robotic weldingInd Robot200835545646410.1108/01439910810893626 OgbemheJMpofuKTowards achieving a fully intelligent robotic arc welding: a reviewInd Robot201542547548410.1108/IR-03-2015-0053 Fang HC, Ong SK, Nee AYC (2016) Robot path planning optimization for welding complex joints. Int J Adv Manuf Technol. doi: 10.1007/s00170-016-9684-z C Yang (181_CR8) 2014; 34 JP Ganjigatti (181_CR12) 2007; 189 L Huo (181_CR18) 2011; 27 HC Fang (181_CR7) 2014; 2 JI Lee (181_CR13) 2000; 108 W Lin (181_CR2) 2015 P Neto (181_CR4) 2013; 61 181_CR16 G Reinhart (181_CR5) 2008; 57 HC Fang (181_CR6) 2012; 28 J Xiong (181_CR10) 2013; 29 I Kim (181_CR14) 2002; 130–131 Y Cao (181_CR9) 2011; 27 181_CR20 J Ogbemhe (181_CR19) 2015; 42 L Huo (181_CR17) 2008; 35 181_CR1 S Suryakumar (181_CR11) 2011; 43 JN Pires (181_CR3) 2006 H Rampaul (181_CR21) 2002 DS Nagesh (181_CR15) 2002; 123 |
| References_xml | – reference: Fang HC, Ong SK, Nee AYC (2016) Robot path planning optimization for welding complex joints. Int J Adv Manuf Technol. doi: 10.1007/s00170-016-9684-z – reference: PiresJNLoureiroABölmsjoGWelding robots: technology, system issues and application2006LondonSpringer – reference: YangCYeZChenYMulti-pass path planning for thick plate by DSAW based on vision sensorSensor Rev201434441642310.1108/SR-04-2013-649 – reference: GanjigattiJPPratiharDKChoudhuryRGlobal versus cluster-wise regression analyses for prediction of bead geometry in MIG welding processJ Mater Process Tech200718935236610.1016/j.jmatprotec.2007.02.006 – reference: LeeJIUmKWPrediction of welding process parameters by prediction of back-bead geometryJ Mater Process Tech200010810611310.1016/S0924-0136(00)00736-6 – reference: XiongJZhangGGaoHModeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturingRobot Comput Integr Manuf201329241742310.1016/j.rcim.2012.09.011 – reference: CaoYZhuSLiangXOverlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding processRobot Comput Integr Manuf201127364164510.1016/j.rcim.2010.11.002 – reference: NageshDSDattaGLPrediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networksJ Mater Process Technol200212330331210.1016/S0924-0136(02)00101-2 – reference: OgbemheJMpofuKTowards achieving a fully intelligent robotic arc welding: a reviewInd Robot201542547548410.1108/IR-03-2015-0053 – reference: Lorincz J (2015) Robotic welding fills skills gap with quality production. http://www.sme.org/MEMagazine/Article.aspx?id=8589936441. Accessed 26 Oct 2015 – reference: NetoPMendesNDirect off-line robot programming via a common CAD packageRobot Auton Syst201361889691010.1016/j.robot.2013.02.005 – reference: LinWLuoHNeeAYCRobotic weldingSpringer handbook of manufacturing engineering and technology: robotics and automation2015LondonSpringer24042444 – reference: FangHCOngSKNeeAYCInteractive robot trajectory planning and simulation using augmented realityRobot Comput Integr Manuf201228222723710.1016/j.rcim.2011.09.003 – reference: FangHCOngSKNeeAYCNovel AR-based interface for human-robot interaction and visualizationAdv Manuf20142427528810.1007/s40436-014-0087-9 – reference: KimISonJParkCA study on prediction of bead height in robotic arc welding using a neural networkJ Mater Process Tech2002130–13122923410.1016/S0924-0136(02)00803-8 – reference: Yan SJ, Ong SK, Nee AYC (2016) Optimal pass planning for robotic welding of large-dimension joints with deep grooves. In: Proceedings of 9th international conference on digital enterprise technology (det2016)—intelligent manufacturing in the knowledge economy era, 29–31 March 2016, Nanjing, China – reference: HuoLBaronLThe self-adaptation of weights for joint-limits and singularity avoidances of functionally redundant robotic-taskRobot Comput Integr Manuf201127236737610.1016/j.rcim.2010.08.004 – reference: HuoLBaronLThe joint-limits and singularity avoidance in robotic weldingInd Robot200835545646410.1108/01439910810893626 – reference: RampaulHPipe welding procedure20022New YorkIndustrial Press – reference: ReinhartGMunzertUVoglWA programming system for robot-based remote-laser-welding with conventional opticsAnnals of the CIRP2008571374010.1016/j.cirp.2008.03.120 – reference: SuryakumarSKarunakaranKPBernardAWeld bead modeling and process optimization in hybrid layered manufacturingComput Aided Design201143433134410.1016/j.cad.2011.01.006 – volume: 42 start-page: 475 issue: 5 year: 2015 ident: 181_CR19 publication-title: Ind Robot doi: 10.1108/IR-03-2015-0053 – volume: 34 start-page: 416 issue: 4 year: 2014 ident: 181_CR8 publication-title: Sensor Rev doi: 10.1108/SR-04-2013-649 – volume: 61 start-page: 896 issue: 8 year: 2013 ident: 181_CR4 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2013.02.005 – volume: 2 start-page: 275 issue: 4 year: 2014 ident: 181_CR7 publication-title: Adv Manuf doi: 10.1007/s40436-014-0087-9 – volume: 189 start-page: 352 year: 2007 ident: 181_CR12 publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2007.02.006 – volume: 130–131 start-page: 229 year: 2002 ident: 181_CR14 publication-title: J Mater Process Tech doi: 10.1016/S0924-0136(02)00803-8 – ident: 181_CR16 doi: 10.1016/j.procir.2016.10.052 – ident: 181_CR1 – volume: 43 start-page: 331 issue: 4 year: 2011 ident: 181_CR11 publication-title: Comput Aided Design doi: 10.1016/j.cad.2011.01.006 – volume: 27 start-page: 367 issue: 2 year: 2011 ident: 181_CR18 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2010.08.004 – volume: 57 start-page: 37 issue: 1 year: 2008 ident: 181_CR5 publication-title: Annals of the CIRP doi: 10.1016/j.cirp.2008.03.120 – volume: 27 start-page: 641 issue: 3 year: 2011 ident: 181_CR9 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2010.11.002 – volume: 35 start-page: 456 issue: 5 year: 2008 ident: 181_CR17 publication-title: Ind Robot doi: 10.1108/01439910810893626 – volume-title: Pipe welding procedure year: 2002 ident: 181_CR21 – volume: 123 start-page: 303 year: 2002 ident: 181_CR15 publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(02)00101-2 – volume: 29 start-page: 417 issue: 2 year: 2013 ident: 181_CR10 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2012.09.011 – start-page: 2404 volume-title: Springer handbook of manufacturing engineering and technology: robotics and automation year: 2015 ident: 181_CR2 – volume: 28 start-page: 227 issue: 2 year: 2012 ident: 181_CR6 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2011.09.003 – volume: 108 start-page: 106 year: 2000 ident: 181_CR13 publication-title: J Mater Process Tech doi: 10.1016/S0924-0136(00)00736-6 – volume-title: Welding robots: technology, system issues and application year: 2006 ident: 181_CR3 – ident: 181_CR20 doi: 10.1007/s00170-016-9684-z |
| SSID | ssib026359716 ssib012720733 ssj0002118395 ssib051367479 |
| Score | 2.1833746 |
| Snippet | Current industrial robotic welding systems cannot achieve automated solutions for multi-layer multi-pass welding of complex joints due to the presence of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 93 |
| SubjectTerms | Arc welding Automatic welding Collision avoidance Control Deposition Engineering Finishing Machines Manufacturing Mechatronics Nanotechnology and Microengineering Offshore engineering Offshore structures Processes Robotics Welded joints Welding parameters |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS-UwEB70edGD6Kr41F1y2JMSbNOkaQ_Loosigg8RBW8lP8HFbbv6xPfnm6mJTxfWY0mbwmQ6-abf5BuA785Ip1juaUgeFOVOGlrlRUmFsyU3ogqwH_9DXkzKsxt-fituF2CSzsJgWWWKiUOgtp3Bf-SHIa9gWR3wrPjZ_6XYNQrZ1dRCQ8XWCvbHIDG2CEsMlbFGsHR8Mrm8Sh6WI-so5wAHlVhQQyldCxQw45G3wlge0qOAILAOMrwcKWMmEzWK5-9QmgYTcqzerHI6-7i5zRHrPyTrsHedrsFqBJ3k6NVL1mHBtV9g5Z0U4QZcHFnVY-gjfYDTpI-9jIhqLenCwJ94XpMEkEseOt2FqcizG6gr0nkylKa7Gfnd3bXTx024OT25_nVGY6sFagpeTKnKfMY0yx0Lu5qVpjZFzZ1yldFe-Yp7biwXmSu5l9pb42vGKqutyDWvrfLFFozarnXbQErnpBDCmEoV3BaFtpWVUivJMHawegxZslFjog45tsO4b94UlAezNsGsDZq1mY1h_-2R_lWE47Ob95Lhm_g9PjZz7xnDQVqMd8P_m2zn88l2YZkNq49OsAej6cOT-xpAylR_i573AuV33tY priority: 102 providerName: ProQuest |
| Title | Adaptive pass planning and optimization for robotic welding of complex joints |
| URI | https://link.springer.com/article/10.1007/s40436-017-0181-x https://www.proquest.com/docview/1912090495 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2195-3597 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118395 issn: 2095-3127 databaseCode: AFBBN dateStart: 20130301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2195-3597 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0002118395 issn: 2095-3127 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2195-3597 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0002118395 issn: 2095-3127 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2195-3597 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118395 issn: 2095-3127 databaseCode: AGYKE dateStart: 20130101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y6U90LdYSpEPnFoFbRw7do4L2gWBQKgCiZ4iP6W-khUbBOLXM87ay0O0EqcosuPIM5PxN5nxZ4AtZ4RTNPcZBg8qY06YTOZFmXFnS2a4RNgf_kMeHZf7Z-zgnJ_HfdzzVO2eUpK9p15udgs8MCH6DaWSMs8QOK70dFsDWBnv_TicJDPKQ2pR3KGYQLcSiJLSPQ8sZSwmp4LDxhgIYUIodqQIONArUZHyn0-99-EKdgdLH2VS-wVq-gZO09QWdSm_ty87vW1uHrE-PnPub2E1AlYyXljYO3jhmvfw-h6N4Qc4Gls1C26TzBCKk1k8B4moxpIWG_7GvZ4EATK5aHWLQ5Er16e9SOtJX9bursmv9mfTzT_C2XRyurufxWMaMlOwosvUyI-oprmjuCJaYSpTVMwpJ432ykvmmbGMj1zJvNDeGl9RKq22PNesssoXn2DQtI1bA1I6JzjnxkhVMFsU2korhFaCBr9DqyGMkuhrEznMw1Eaf-ol-3IvqRolVQdJ1ddD-Lp8ZLYg8Phf542kzzp-y_MaI1q0C4yk-BC-JfXca_7XYOvP6v0ZXtFev0HNGzDoLi7dF8Q7nd6El3K6txmtHK87k-OT77chb_Tn |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKewAOFU-xtMAc4AKKSOaRSQ4VKtBqS7srhFqptzBPiaokobuoy5_jtzFOZ7oFid56jJJYisfxfB7bnwFeOiOdooXPQvCgMu6kyaqClZlwtuRGVAH24znkZFqOj_inY3G8Ar9TLwyWVSafODhq2xk8I38b4gqa1wHPinf9jwynRmF2NY3QUHG0gt0aKMZiY8e--3UeQrjZ1t7HsN6vKN3dOfwwzuKUgcwwzuaZyn1ONS0cDQ7dSlMbVnOnXGW0V77inhvLRe5K7qX21via0spqKwrNa6s8C3JvwRpnvA7B39r7nennL8miC8xyyiWgQuYX5GxK1wIJ03jMk-HeEcKxgFiw7jJ8LKaoqUypWOz3QyocPADAatGqyBZ_b6ZLhPxPUnfYK3fvwXoEuWT7wirvw4prH8DdK9SHD2GybVWPrpb0Ab6TPs5OIqq1pAs3vsf-UBJANTnrdBdEkXM3pMpI58lQCu8W5KT71s5nj-DoRpT-GFbbrnVPgJTOSSGEMZVi3DKmbWWl1EpS9FW0HkGedNSYyHuO4zdOm0vG5kGtTVBrg2ptFiN4fflKf0H6cd3Dm0nxTfz_Z83SWkfwJi3Gldv_E_b0emEv4Pb4cHLQHOxN9zfgDh0sAQ1iE1bnZz_dswCQ5vp5tEICX2_a8P8AvHcemQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYQSGh7gME2UWDMD3tiSts4dpw8VkCBsVZ7WKXuKfNPCTaSiAaB9tfvnNiFoW3StMfIjqPcXc7f5c7fIfTOKG4EiW0EwYOIqOEqyuIkjZjRKVUsA9jv_kNOpunZjH6Ys7nvc7oI1e4hJdmdaXAsTWUzqLUdLA--OU4YFwm7ssksjgBErkFkwsHQ10anXy5OgknFLs3IHxCNo15xpEnhmjnGMuoTVc55QzwEkMEVPhIAH-ChCA-50N8999fd7AGiPsmqtpvVeBN9Da_Z1ah86982sq9-PGGA_A85vEAbHsjiUWd5W2jFlNvo-SN6w5doMtKidu4U1wDRce37I2FRalzBwLU_A4oBOOObSlawFL4zbToMVxa35e7mHl9Vl2WzeIVm45PPR2eRb98QqYQmTSSGdkgkiQ2BnVJzlaskp0aYTEkrbEYtVZqyoUmp5dJqZXNCMi01iyXNtbDJa7RaVqXZQTg1hjPGlMpEQnWSSJ1pzqXgxPkjkvfQMKihUJ7b3LXY-F4sWZlbSRUgqcJJqrjvocPlLXVH7PG3yftBt4X_xhcFRLpgIxBhsR56H1T1aPhPi-3-0-y3aP3T8bj4eD692EPPSKtqp_F9tNrc3Jo3AIkaeeDN_iemO_4q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+pass+planning+and+optimization+for+robotic+welding+of+complex+joints&rft.jtitle=Advances+in+manufacturing&rft.au=Fang%2C+H.+C.&rft.au=Ong%2C+S.+K.&rft.au=Nee%2C+A.+Y.+C.&rft.date=2017-06-01&rft.issn=2095-3127&rft.eissn=2195-3597&rft.volume=5&rft.issue=2&rft.spage=93&rft.epage=104&rft_id=info:doi/10.1007%2Fs40436-017-0181-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40436_017_0181_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-3127&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-3127&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-3127&client=summon |