Hong-Ou-Mandel Gravitational Wave Space spectrometER – HOMER mission
Michelson type gravitational wave detectors measure the strain caused by gravitational waves on the interferometer's arms. Gravitational waves can also cause the rotation of photon's linear polarization vector, thus disturbing the interference of entangled photons in Hong-Ou-Mandel (HOM) i...
        Saved in:
      
    
          | Published in | Acta astronautica Vol. 147; pp. 364 - 373 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Elmsford
          Elsevier Ltd
    
        01.06.2018
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0094-5765 1879-2030  | 
| DOI | 10.1016/j.actaastro.2018.03.040 | 
Cover
| Abstract | Michelson type gravitational wave detectors measure the strain caused by gravitational waves on the interferometer's arms. Gravitational waves can also cause the rotation of photon's linear polarization vector, thus disturbing the interference of entangled photons in Hong-Ou-Mandel (HOM) interferometers. Here one uses that physical phenomenon to devise a spectrometer for gravitational waves through the implementation of a Hong-Ou-Mandel interferometer in Earth geostationary orbit with a constellation of three different spacecraft in accurate formation flight. We call this mission, the Hong-Ou-Mandel Gravitational Waves Space SpectrometER (HOMER). HOMER will cover the part of the gravitational wave spectrum with wavelengths around λ=105 km, which falls between the long wavelength detection range of LISA, around λ=106 km, and of ground based detectors like LIGO, around λ=103 km. With respect to Michelson type detectors, the proposed concept for the detection and spectral analysis of gravitational waves has the advantage of operating without the need of drag free satellites, however it requires a relative precision of the attitude between satellites of the order of the gravitational waves amplitude δθ/θ∼h∼10−20, which makes the architecture of the HOMER mission as challenging as the Michelson type space detectors. The difficulty being however transferred from the monitoring of the relative distance between spacecraft (for Michelson antennas) to their relative attitude. By focusing on photons polarization instead of photons phase one can measure the spectrum of the detected gravitational signal. As a bonus, the proposed instrument could also investigate the influence of spacetime curvature on photons quantum entanglement, thus experimentally peering into the relation between general relativity and quantum mechanics, which is currently a subject of high interest in theoretical physics. This paper will describe the HOMER mission concept in general and the main elements of the payload and spacecraft design in particular.
•Use of Hong-Ou-Mandel Interferometer as a spectrometer for gravitational waves.•Alternative gravitational waves detection method complementing ground and space based Michelson-type antennas.•Investigate the effect of gravitational waves on heralded photons polarization and on entangled quantum states.•Innovative implementation of a satellite reference frame which is not parallel transported.•Innovative technics to achieve extremely high relative satellite attitude control at the order of 0.21 nArcsec. | 
    
|---|---|
| AbstractList | Michelson type gravitational wave detectors measure the strain caused by gravitational waves on the interferometer's arms. Gravitational waves can also cause the rotation of photon's linear polarization vector, thus disturbing the interference of entangled photons in Hong-Ou-Mandel (HOM) interferometers. Here one uses that physical phenomenon to devise a spectrometer for gravitational waves through the implementation of a Hong-Ou-Mandel interferometer in Earth geostationary orbit with a constellation of three different spacecraft in accurate formation flight. We call this mission, the Hong-Ou-Mandel Gravitational Waves Space SpectrometER (HOMER). HOMER will cover the part of the gravitational wave spectrum with wavelengths around λ = 105 km, which falls between the long wavelength detection range of LISA, around λ = 106 km, and of ground based detectors like LIGO, around λ = 103 km. With respect to Michelson type detectors, the proposed concept for the detection and spectral analysis of gravitational waves has the advantage of operating without the need of drag free satellites, however it requires a relative precision of the attitude between satellites of the order of the gravitational waves amplitude δθ/θ ~ h ~ 10-20, which makes the architecture of the HOMER mission as challenging as the Michelson type space detectors. The difficulty being however transferred from the monitoring of the relative distance between spacecraft (for Michelson antennas) to their relative attitude. By focusing on photons polarization instead of photons phase one can measure the spectrum of the detected gravitational signal. As a bonus, the proposed instrument could also investigate the influence of spacetime curvature on photons quantum entanglement, thus experimentally peering into the relation between general relativity and quantum mechanics, which is currently a subject of high interest in theoretical physics. This paper will describe the HOMER mission concept in general and the main elements of the payload and spacecraft design in particular. Michelson type gravitational wave detectors measure the strain caused by gravitational waves on the interferometer's arms. Gravitational waves can also cause the rotation of photon's linear polarization vector, thus disturbing the interference of entangled photons in Hong-Ou-Mandel (HOM) interferometers. Here one uses that physical phenomenon to devise a spectrometer for gravitational waves through the implementation of a Hong-Ou-Mandel interferometer in Earth geostationary orbit with a constellation of three different spacecraft in accurate formation flight. We call this mission, the Hong-Ou-Mandel Gravitational Waves Space SpectrometER (HOMER). HOMER will cover the part of the gravitational wave spectrum with wavelengths around λ=105 km, which falls between the long wavelength detection range of LISA, around λ=106 km, and of ground based detectors like LIGO, around λ=103 km. With respect to Michelson type detectors, the proposed concept for the detection and spectral analysis of gravitational waves has the advantage of operating without the need of drag free satellites, however it requires a relative precision of the attitude between satellites of the order of the gravitational waves amplitude δθ/θ∼h∼10−20, which makes the architecture of the HOMER mission as challenging as the Michelson type space detectors. The difficulty being however transferred from the monitoring of the relative distance between spacecraft (for Michelson antennas) to their relative attitude. By focusing on photons polarization instead of photons phase one can measure the spectrum of the detected gravitational signal. As a bonus, the proposed instrument could also investigate the influence of spacetime curvature on photons quantum entanglement, thus experimentally peering into the relation between general relativity and quantum mechanics, which is currently a subject of high interest in theoretical physics. This paper will describe the HOMER mission concept in general and the main elements of the payload and spacecraft design in particular. •Use of Hong-Ou-Mandel Interferometer as a spectrometer for gravitational waves.•Alternative gravitational waves detection method complementing ground and space based Michelson-type antennas.•Investigate the effect of gravitational waves on heralded photons polarization and on entangled quantum states.•Innovative implementation of a satellite reference frame which is not parallel transported.•Innovative technics to achieve extremely high relative satellite attitude control at the order of 0.21 nArcsec.  | 
    
| Author | Jacinto de Matos, Clovis Tajmar, Martin  | 
    
| Author_xml | – sequence: 1 givenname: Clovis surname: Jacinto de Matos fullname: Jacinto de Matos, Clovis email: clovis.de_matos@mailbox.tu-dresden.de – sequence: 2 givenname: Martin orcidid: 0000-0002-7406-7588 surname: Tajmar fullname: Tajmar, Martin email: martin.tajmar@tu-dresden.de  | 
    
| BookMark | eNqNkMtKw0AUhgepYFt9BgOuE08yk8xk4aKUXoSWghdcDpPkRCakSZxJC-58B9_QJ3FKiws3ujpn8X__OXwjMmjaBgm5DiEIIUxuq0DlvVK2N20QQSgCoAEwOCPDUPDUj4DCgAwBUubHPIkvyMjaCgB4JNIhmS_b5tXf7Py1agqsvYVRe92rXreNqr0XtUfvsVM5erbD3J3YYj978L4-Pr3lZu22rbbWZS_Jealqi1enOSbP89nTdOmvNov76WTl55TR3k95yCEtMhphhlmZZEnG3BvAGM8yjiwWkCRxSpVKYhVmRSlcTpWMoUAhWEHH5ObY25n2bYe2l1W7M-5VKyMQUcRFwrhL8WMqN621BkvZGb1V5l2GIA_SZCV_pMmDNAlUOmmOvPtF5icbvVG6_gc_OfLoJOw1GmlzjU2OhTbOnyxa_WfHN-1jkKo | 
    
| CitedBy_id | crossref_primary_10_1088_1361_6382_ab42df | 
    
| Cites_doi | 10.1088/0264-9381/15/8/024 10.1016/j.actaastro.2010.04.002 10.1088/0264-9381/17/13/305 10.1103/PhysRevA.45.7729 10.1088/0264-9381/32/22/224020 10.1103/PhysRevA.78.012114 10.1088/0264-9381/18/15/309 10.1103/PhysRevLett.59.2044 10.1038/nature14331 10.1038/nphys629  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 IAA Copyright Elsevier BV Jun 2018  | 
    
| Copyright_xml | – notice: 2018 IAA – notice: Copyright Elsevier BV Jun 2018  | 
    
| DBID | AAYXX CITATION 7TB 7TG 8FD FR3 H8D KL. L7M  | 
    
| DOI | 10.1016/j.actaastro.2018.03.040 | 
    
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic  | 
    
| DatabaseTitleList | Aerospace Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Architecture  | 
    
| EISSN | 1879-2030 | 
    
| EndPage | 373 | 
    
| ExternalDocumentID | 10_1016_j_actaastro_2018_03_040 S0094576517317253  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7TB 7TG 8FD AGCQF FR3 H8D KL. L7M  | 
    
| ID | FETCH-LOGICAL-c343t-971709db32ebebf6b6b42890447bb7e458066593aa65a1bdf8ebeaf44e8e884d3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0094-5765 | 
    
| IngestDate | Wed Aug 13 06:10:15 EDT 2025 Thu Oct 02 04:30:22 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 Sun Apr 06 06:54:38 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Photon polarization Hong-Ou-Mandel interferometer Gravitational wave spectrometry in space  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c343t-971709db32ebebf6b6b42890447bb7e458066593aa65a1bdf8ebeaf44e8e884d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-7406-7588 | 
    
| PQID | 2082278647 | 
    
| PQPubID | 2045287 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_journals_2082278647 crossref_primary_10_1016_j_actaastro_2018_03_040 crossref_citationtrail_10_1016_j_actaastro_2018_03_040 elsevier_sciencedirect_doi_10_1016_j_actaastro_2018_03_040  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | June 2018 2018-06-00 20180601  | 
    
| PublicationDateYYYYMMDD | 2018-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2018 text: June 2018  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Elmsford | 
    
| PublicationPlace_xml | – name: Elmsford | 
    
| PublicationTitle | Acta astronautica | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Maggiore (bib1) 2008 Yanjun (bib10) 2010; 67 Lopes (bib5) 2015; 250 Tamburini, Bassett, Ungarelli, Tamburini, de Matos, Perdigues Armengol, Colacino (bib6) 2008; 78 Ursin (bib9) 2007; 3 Montanari (bib8) 1998; 15 Abbott, Abbott, Abbott (bib2) 2016; 116 Cruise (bib7) 2000; 17 Kwiat (bib4) 1992; 45 Conklin (bib12) 2015; 32 Sorge, Bini, Felice (bib11) 2001; 18 Hong, Ou, Mandel (bib3) 1987; 59 Ruiz, Frey (bib13) 2005 Sorge (10.1016/j.actaastro.2018.03.040_bib11) 2001; 18 Ursin (10.1016/j.actaastro.2018.03.040_bib9) 2007; 3 Maggiore (10.1016/j.actaastro.2018.03.040_bib1) 2008 Tamburini (10.1016/j.actaastro.2018.03.040_bib6b) 2009; 124 Abbott (10.1016/j.actaastro.2018.03.040_bib2c) 2017; 119 Kwiat (10.1016/j.actaastro.2018.03.040_bib4) 1992; 45 Lopes (10.1016/j.actaastro.2018.03.040_bib5) 2015; 250 Yanjun (10.1016/j.actaastro.2018.03.040_bib10) 2010; 67 Montanari (10.1016/j.actaastro.2018.03.040_bib8) 1998; 15 Conklin (10.1016/j.actaastro.2018.03.040_bib12) 2015; 32 Tamburini (10.1016/j.actaastro.2018.03.040_bib6a) 2008; 78 Ruiz (10.1016/j.actaastro.2018.03.040_bib13) 2005 Abbott (10.1016/j.actaastro.2018.03.040_bib2b) 2016; 116 Abbott (10.1016/j.actaastro.2018.03.040_bib2a) 2016; 116 Cruise (10.1016/j.actaastro.2018.03.040_bib7) 2000; 17 Hong (10.1016/j.actaastro.2018.03.040_bib3) 1987; 59  | 
    
| References_xml | – year: 2008 ident: bib1 article-title: Gravitational Waves – volume: 59 start-page: 2044 year: 1987 ident: bib3 article-title: Measurement of subpicosecond time intervals between two photons by interference publication-title: Phys. Rev. Lett. – volume: 32 year: 2015 ident: bib12 article-title: Gravity Probe B data analysis: III. Estimation tools and analysis results publication-title: CQG – volume: 18 start-page: 2945 year: 2001 end-page: 2958 ident: bib11 article-title: Gravitational waves, gyroscopes and frame dragging publication-title: CQG – volume: 45 start-page: 7729 year: 1992 end-page: 7739 ident: bib4 article-title: Observation of a quantum eraser : a revival of coherence in a two – photon interference experiment publication-title: Phys. Rev. – volume: 3 year: 2007 ident: bib9 article-title: Entanglement-based quantum communications over 144 Km publication-title: Nat. Phys. – volume: 67 start-page: 455 year: 2010 end-page: 467 ident: bib10 article-title: On Relative position and attitude estimation for satellite formation with coupled translational and rotational dynamics publication-title: Acta Astronaut. – volume: 250 start-page: 66 year: 2015 end-page: 68 ident: bib5 article-title: Atomic Hong-ou-Mandel experiment publication-title: Nature – volume: 15 start-page: 2493 year: 1998 end-page: 2507 ident: bib8 article-title: On the propagation of electromagnetic radiation in the field of a plane gravitational wave publication-title: CQG – volume: 78 start-page: 511 year: 2008 end-page: 525 ident: bib6 article-title: Detecting gravitational waves using entangled photon states publication-title: Phys. Rev. – volume: 17 start-page: 2525 year: 2000 end-page: 2530 ident: bib7 article-title: An electromagnetic detector for very-high-frequency gravitational waves publication-title: CQG – volume: 116 year: 2016 ident: bib2 article-title: Observation of gravitational waves from a binary black hole merger publication-title: Phys. Rev. Lett. – start-page: 1227 year: 2005 end-page: 1232 ident: bib13 article-title: Geosynchronous satellite use of GPS publication-title: Proceedings of Ion GNSS – volume: 124 start-page: 511 issue: 5 year: 2009 ident: 10.1016/j.actaastro.2018.03.040_bib6b article-title: Detecting gravitational waves with a heralded-photon quantum eraser publication-title: Il Nuovo Cimento – volume: 15 start-page: 2493 year: 1998 ident: 10.1016/j.actaastro.2018.03.040_bib8 article-title: On the propagation of electromagnetic radiation in the field of a plane gravitational wave publication-title: CQG doi: 10.1088/0264-9381/15/8/024 – volume: 67 start-page: 455 year: 2010 ident: 10.1016/j.actaastro.2018.03.040_bib10 article-title: On Relative position and attitude estimation for satellite formation with coupled translational and rotational dynamics publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2010.04.002 – volume: 119 year: 2017 ident: 10.1016/j.actaastro.2018.03.040_bib2c article-title: GW170817: observation of gravitational waves from a binary neutron star inspiral publication-title: Phys. Rev. Lett. – volume: 17 start-page: 2525 year: 2000 ident: 10.1016/j.actaastro.2018.03.040_bib7 article-title: An electromagnetic detector for very-high-frequency gravitational waves publication-title: CQG doi: 10.1088/0264-9381/17/13/305 – volume: 45 start-page: 7729 issue: 11 year: 1992 ident: 10.1016/j.actaastro.2018.03.040_bib4 article-title: Observation of a quantum eraser : a revival of coherence in a two – photon interference experiment publication-title: Phys. Rev. doi: 10.1103/PhysRevA.45.7729 – volume: 32 year: 2015 ident: 10.1016/j.actaastro.2018.03.040_bib12 article-title: Gravity Probe B data analysis: III. Estimation tools and analysis results publication-title: CQG doi: 10.1088/0264-9381/32/22/224020 – start-page: 1227 year: 2005 ident: 10.1016/j.actaastro.2018.03.040_bib13 article-title: Geosynchronous satellite use of GPS publication-title: Proceedings of Ion GNSS – volume: 78 issue: 1 year: 2008 ident: 10.1016/j.actaastro.2018.03.040_bib6a article-title: Detecting gravitational waves using entangled photon states publication-title: Phys. Rev. doi: 10.1103/PhysRevA.78.012114 – volume: 18 start-page: 2945 year: 2001 ident: 10.1016/j.actaastro.2018.03.040_bib11 article-title: Gravitational waves, gyroscopes and frame dragging publication-title: CQG doi: 10.1088/0264-9381/18/15/309 – volume: 116 year: 2016 ident: 10.1016/j.actaastro.2018.03.040_bib2b article-title: GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence publication-title: Phys. Rev. Lett. – volume: 116 year: 2016 ident: 10.1016/j.actaastro.2018.03.040_bib2a article-title: Observation of gravitational waves from a binary black hole merger publication-title: Phys. Rev. Lett. – year: 2008 ident: 10.1016/j.actaastro.2018.03.040_bib1 – volume: 59 start-page: 2044 year: 1987 ident: 10.1016/j.actaastro.2018.03.040_bib3 article-title: Measurement of subpicosecond time intervals between two photons by interference publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2044 – volume: 250 start-page: 66 year: 2015 ident: 10.1016/j.actaastro.2018.03.040_bib5 article-title: Atomic Hong-ou-Mandel experiment publication-title: Nature doi: 10.1038/nature14331 – volume: 3 year: 2007 ident: 10.1016/j.actaastro.2018.03.040_bib9 article-title: Entanglement-based quantum communications over 144 Km publication-title: Nat. Phys. doi: 10.1038/nphys629  | 
    
| SSID | ssj0007289 | 
    
| Score | 2.1619487 | 
    
| Snippet | Michelson type gravitational wave detectors measure the strain caused by gravitational waves on the interferometer's arms. Gravitational waves can also cause... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 364 | 
    
| SubjectTerms | Antennas Architecture Artificial satellites Attitudes Curvature Detectors Earth orbits Electrons Geosynchronous orbits Gravitation Gravitational wave spectrometry in space Gravitational waves Hong-Ou-Mandel interferometer Interferometers Interferometry Linear polarization Photon polarization Photons Polarization Quantum entanglement Quantum mechanics Relativity Satellites Space exploration Spacecraft Spacecraft design Spectral analysis Theoretical physics Wavelengths  | 
    
| Title | Hong-Ou-Mandel Gravitational Wave Space spectrometER – HOMER mission | 
    
| URI | https://dx.doi.org/10.1016/j.actaastro.2018.03.040 https://www.proquest.com/docview/2082278647  | 
    
| Volume | 147 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007289 issn: 0094-5765 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007289 issn: 0094-5765 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007289 issn: 0094-5765 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007289 issn: 0094-5765 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007289 issn: 0094-5765 databaseCode: AKRWK dateStart: 19740101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUquMABsYqyVDlwNU0T23G4IdQSQG0loKI3y05tVFSlVZtyRPwDf8iX4MlSKELqgVsWT5S8ccYz41kQOjNEypA1GI5DKjGR1MWKBhJzLolnyCA2WfpYu8OiHrnt034FXZW5MBBWWcj-XKZn0rq4Ui_QrE-GQ8jxDYnVlmkjsGugR6HiJyEBdDE4f_sO8wg8nqvAIcEweinGS8aplLN0ClmADZ5VOwUvyN8r1C9ZnS1ArW20VWiOzmX-cjuoopNdtPmjnuAeakXj5Bl357gNruGRcz2Vr0UNbkv5JF-182BtZO1k-ZVQqCBt3juf7x9O1G3bI8tzcJ7to16r-XgV4aJRAo594qc4tDaZGw6U71mWKMMUUwQ2EC0cSgWaUA4bLKEvJaOyoQaG23HSEKK55pwM_AO0lowTfYgcKpXxvYAZaIxujSfFY-2amHlWrfINN1XESnBEXHwBNLMYiTJc7EUsUBWAqnB9YVGtIndBOMkLaawmuSjRF0tzQlhxv5r4pOSXKH7Lmb3PIfWXkeDoP88-RhtwlkeMnaC1dDrXp1Y3SVUtm3w1tH55cxd1vgB8O-Tf | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsABsYqy5sDVkMZjx-GGECVAWyQW0ZtlpzYCobRq0x4R_8Af8iXYWdiE1AO3KPZEyRtnPDOeBaF9A1JGrM5wElGJQVIfKxpKzLmEwEA3MXn6WKvN4ju46NDOFDqpcmFcWGUp-wuZnkvr8s5hieZh__HR5fhGYLVlWg_tHhhQMo1mgQahs8AOXr7iPMKAFzpwBNhN_xHkJZNMymE2cGmAdZ6XO3VukL-3qF_COt-BGktosVQdvePi7ZbRlE5X0MK3goKrqBH30gd8NcIt5xt-9s4GclwW4baU93KsvRtrJGsvT7B0lQqy02vv_fXNi69a9soy3XnP1tBd4_T2JMZlpwScECAZjqxR5kddRQLLE2WYYgrcCSJAqFSogXJ3whIRKRmVddU13M6TBkBzzTl0yTqaSXup3kAelcqQIGTGdUa31pPiifZNwgKrVxHDTQ2xChyRlF_gulk8iype7El8oiocqsInwqJaQ_4nYb-opDGZ5KhCX_xYFMLK-8nE2xW_RPlfDu04d7m_DMLN_zx7D83Ft62maJ63L7fQvBspwse20Uw2GOkdq6hkajdfiB_beuZ0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hong-Ou-Mandel+Gravitational+Wave+Space+spectrometER+%E2%80%93+HOMER+mission&rft.jtitle=Acta+astronautica&rft.au=de+Matos%2C+Clovis+Jacinto&rft.au=Tajmar%2C+Martin&rft.date=2018-06-01&rft.pub=Elsevier+BV&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=147&rft.spage=364&rft_id=info:doi/10.1016%2Fj.actaastro.2018.03.040&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |