Hong-Ou-Mandel Gravitational Wave Space spectrometER – HOMER mission

Michelson type gravitational wave detectors measure the strain caused by gravitational waves on the interferometer's arms. Gravitational waves can also cause the rotation of photon's linear polarization vector, thus disturbing the interference of entangled photons in Hong-Ou-Mandel (HOM) i...

Full description

Saved in:
Bibliographic Details
Published inActa astronautica Vol. 147; pp. 364 - 373
Main Authors Jacinto de Matos, Clovis, Tajmar, Martin
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.06.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0094-5765
1879-2030
DOI10.1016/j.actaastro.2018.03.040

Cover

Abstract Michelson type gravitational wave detectors measure the strain caused by gravitational waves on the interferometer's arms. Gravitational waves can also cause the rotation of photon's linear polarization vector, thus disturbing the interference of entangled photons in Hong-Ou-Mandel (HOM) interferometers. Here one uses that physical phenomenon to devise a spectrometer for gravitational waves through the implementation of a Hong-Ou-Mandel interferometer in Earth geostationary orbit with a constellation of three different spacecraft in accurate formation flight. We call this mission, the Hong-Ou-Mandel Gravitational Waves Space SpectrometER (HOMER). HOMER will cover the part of the gravitational wave spectrum with wavelengths around λ=105 km, which falls between the long wavelength detection range of LISA, around λ=106 km, and of ground based detectors like LIGO, around λ=103 km. With respect to Michelson type detectors, the proposed concept for the detection and spectral analysis of gravitational waves has the advantage of operating without the need of drag free satellites, however it requires a relative precision of the attitude between satellites of the order of the gravitational waves amplitude δθ/θ∼h∼10−20, which makes the architecture of the HOMER mission as challenging as the Michelson type space detectors. The difficulty being however transferred from the monitoring of the relative distance between spacecraft (for Michelson antennas) to their relative attitude. By focusing on photons polarization instead of photons phase one can measure the spectrum of the detected gravitational signal. As a bonus, the proposed instrument could also investigate the influence of spacetime curvature on photons quantum entanglement, thus experimentally peering into the relation between general relativity and quantum mechanics, which is currently a subject of high interest in theoretical physics. This paper will describe the HOMER mission concept in general and the main elements of the payload and spacecraft design in particular. •Use of Hong-Ou-Mandel Interferometer as a spectrometer for gravitational waves.•Alternative gravitational waves detection method complementing ground and space based Michelson-type antennas.•Investigate the effect of gravitational waves on heralded photons polarization and on entangled quantum states.•Innovative implementation of a satellite reference frame which is not parallel transported.•Innovative technics to achieve extremely high relative satellite attitude control at the order of 0.21 nArcsec.
AbstractList Michelson type gravitational wave detectors measure the strain caused by gravitational waves on the interferometer's arms. Gravitational waves can also cause the rotation of photon's linear polarization vector, thus disturbing the interference of entangled photons in Hong-Ou-Mandel (HOM) interferometers. Here one uses that physical phenomenon to devise a spectrometer for gravitational waves through the implementation of a Hong-Ou-Mandel interferometer in Earth geostationary orbit with a constellation of three different spacecraft in accurate formation flight. We call this mission, the Hong-Ou-Mandel Gravitational Waves Space SpectrometER (HOMER). HOMER will cover the part of the gravitational wave spectrum with wavelengths around λ = 105 km, which falls between the long wavelength detection range of LISA, around λ = 106 km, and of ground based detectors like LIGO, around λ = 103 km. With respect to Michelson type detectors, the proposed concept for the detection and spectral analysis of gravitational waves has the advantage of operating without the need of drag free satellites, however it requires a relative precision of the attitude between satellites of the order of the gravitational waves amplitude δθ/θ ~ h ~ 10-20, which makes the architecture of the HOMER mission as challenging as the Michelson type space detectors. The difficulty being however transferred from the monitoring of the relative distance between spacecraft (for Michelson antennas) to their relative attitude. By focusing on photons polarization instead of photons phase one can measure the spectrum of the detected gravitational signal. As a bonus, the proposed instrument could also investigate the influence of spacetime curvature on photons quantum entanglement, thus experimentally peering into the relation between general relativity and quantum mechanics, which is currently a subject of high interest in theoretical physics. This paper will describe the HOMER mission concept in general and the main elements of the payload and spacecraft design in particular.
Michelson type gravitational wave detectors measure the strain caused by gravitational waves on the interferometer's arms. Gravitational waves can also cause the rotation of photon's linear polarization vector, thus disturbing the interference of entangled photons in Hong-Ou-Mandel (HOM) interferometers. Here one uses that physical phenomenon to devise a spectrometer for gravitational waves through the implementation of a Hong-Ou-Mandel interferometer in Earth geostationary orbit with a constellation of three different spacecraft in accurate formation flight. We call this mission, the Hong-Ou-Mandel Gravitational Waves Space SpectrometER (HOMER). HOMER will cover the part of the gravitational wave spectrum with wavelengths around λ=105 km, which falls between the long wavelength detection range of LISA, around λ=106 km, and of ground based detectors like LIGO, around λ=103 km. With respect to Michelson type detectors, the proposed concept for the detection and spectral analysis of gravitational waves has the advantage of operating without the need of drag free satellites, however it requires a relative precision of the attitude between satellites of the order of the gravitational waves amplitude δθ/θ∼h∼10−20, which makes the architecture of the HOMER mission as challenging as the Michelson type space detectors. The difficulty being however transferred from the monitoring of the relative distance between spacecraft (for Michelson antennas) to their relative attitude. By focusing on photons polarization instead of photons phase one can measure the spectrum of the detected gravitational signal. As a bonus, the proposed instrument could also investigate the influence of spacetime curvature on photons quantum entanglement, thus experimentally peering into the relation between general relativity and quantum mechanics, which is currently a subject of high interest in theoretical physics. This paper will describe the HOMER mission concept in general and the main elements of the payload and spacecraft design in particular. •Use of Hong-Ou-Mandel Interferometer as a spectrometer for gravitational waves.•Alternative gravitational waves detection method complementing ground and space based Michelson-type antennas.•Investigate the effect of gravitational waves on heralded photons polarization and on entangled quantum states.•Innovative implementation of a satellite reference frame which is not parallel transported.•Innovative technics to achieve extremely high relative satellite attitude control at the order of 0.21 nArcsec.
Author Jacinto de Matos, Clovis
Tajmar, Martin
Author_xml – sequence: 1
  givenname: Clovis
  surname: Jacinto de Matos
  fullname: Jacinto de Matos, Clovis
  email: clovis.de_matos@mailbox.tu-dresden.de
– sequence: 2
  givenname: Martin
  orcidid: 0000-0002-7406-7588
  surname: Tajmar
  fullname: Tajmar, Martin
  email: martin.tajmar@tu-dresden.de
BookMark eNqNkMtKw0AUhgepYFt9BgOuE08yk8xk4aKUXoSWghdcDpPkRCakSZxJC-58B9_QJ3FKiws3ujpn8X__OXwjMmjaBgm5DiEIIUxuq0DlvVK2N20QQSgCoAEwOCPDUPDUj4DCgAwBUubHPIkvyMjaCgB4JNIhmS_b5tXf7Py1agqsvYVRe92rXreNqr0XtUfvsVM5erbD3J3YYj978L4-Pr3lZu22rbbWZS_Jealqi1enOSbP89nTdOmvNov76WTl55TR3k95yCEtMhphhlmZZEnG3BvAGM8yjiwWkCRxSpVKYhVmRSlcTpWMoUAhWEHH5ObY25n2bYe2l1W7M-5VKyMQUcRFwrhL8WMqN621BkvZGb1V5l2GIA_SZCV_pMmDNAlUOmmOvPtF5icbvVG6_gc_OfLoJOw1GmlzjU2OhTbOnyxa_WfHN-1jkKo
CitedBy_id crossref_primary_10_1088_1361_6382_ab42df
Cites_doi 10.1088/0264-9381/15/8/024
10.1016/j.actaastro.2010.04.002
10.1088/0264-9381/17/13/305
10.1103/PhysRevA.45.7729
10.1088/0264-9381/32/22/224020
10.1103/PhysRevA.78.012114
10.1088/0264-9381/18/15/309
10.1103/PhysRevLett.59.2044
10.1038/nature14331
10.1038/nphys629
ContentType Journal Article
Copyright 2018 IAA
Copyright Elsevier BV Jun 2018
Copyright_xml – notice: 2018 IAA
– notice: Copyright Elsevier BV Jun 2018
DBID AAYXX
CITATION
7TB
7TG
8FD
FR3
H8D
KL.
L7M
DOI 10.1016/j.actaastro.2018.03.040
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1879-2030
EndPage 373
ExternalDocumentID 10_1016_j_actaastro_2018_03_040
S0094576517317253
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7TB
7TG
8FD
AGCQF
FR3
H8D
KL.
L7M
ID FETCH-LOGICAL-c343t-971709db32ebebf6b6b42890447bb7e458066593aa65a1bdf8ebeaf44e8e884d3
IEDL.DBID .~1
ISSN 0094-5765
IngestDate Wed Aug 13 06:10:15 EDT 2025
Thu Oct 02 04:30:22 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Sun Apr 06 06:54:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Photon polarization
Hong-Ou-Mandel interferometer
Gravitational wave spectrometry in space
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-971709db32ebebf6b6b42890447bb7e458066593aa65a1bdf8ebeaf44e8e884d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7406-7588
PQID 2082278647
PQPubID 2045287
PageCount 10
ParticipantIDs proquest_journals_2082278647
crossref_primary_10_1016_j_actaastro_2018_03_040
crossref_citationtrail_10_1016_j_actaastro_2018_03_040
elsevier_sciencedirect_doi_10_1016_j_actaastro_2018_03_040
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Acta astronautica
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Maggiore (bib1) 2008
Yanjun (bib10) 2010; 67
Lopes (bib5) 2015; 250
Tamburini, Bassett, Ungarelli, Tamburini, de Matos, Perdigues Armengol, Colacino (bib6) 2008; 78
Ursin (bib9) 2007; 3
Montanari (bib8) 1998; 15
Abbott, Abbott, Abbott (bib2) 2016; 116
Cruise (bib7) 2000; 17
Kwiat (bib4) 1992; 45
Conklin (bib12) 2015; 32
Sorge, Bini, Felice (bib11) 2001; 18
Hong, Ou, Mandel (bib3) 1987; 59
Ruiz, Frey (bib13) 2005
Sorge (10.1016/j.actaastro.2018.03.040_bib11) 2001; 18
Ursin (10.1016/j.actaastro.2018.03.040_bib9) 2007; 3
Maggiore (10.1016/j.actaastro.2018.03.040_bib1) 2008
Tamburini (10.1016/j.actaastro.2018.03.040_bib6b) 2009; 124
Abbott (10.1016/j.actaastro.2018.03.040_bib2c) 2017; 119
Kwiat (10.1016/j.actaastro.2018.03.040_bib4) 1992; 45
Lopes (10.1016/j.actaastro.2018.03.040_bib5) 2015; 250
Yanjun (10.1016/j.actaastro.2018.03.040_bib10) 2010; 67
Montanari (10.1016/j.actaastro.2018.03.040_bib8) 1998; 15
Conklin (10.1016/j.actaastro.2018.03.040_bib12) 2015; 32
Tamburini (10.1016/j.actaastro.2018.03.040_bib6a) 2008; 78
Ruiz (10.1016/j.actaastro.2018.03.040_bib13) 2005
Abbott (10.1016/j.actaastro.2018.03.040_bib2b) 2016; 116
Abbott (10.1016/j.actaastro.2018.03.040_bib2a) 2016; 116
Cruise (10.1016/j.actaastro.2018.03.040_bib7) 2000; 17
Hong (10.1016/j.actaastro.2018.03.040_bib3) 1987; 59
References_xml – year: 2008
  ident: bib1
  article-title: Gravitational Waves
– volume: 59
  start-page: 2044
  year: 1987
  ident: bib3
  article-title: Measurement of subpicosecond time intervals between two photons by interference
  publication-title: Phys. Rev. Lett.
– volume: 32
  year: 2015
  ident: bib12
  article-title: Gravity Probe B data analysis: III. Estimation tools and analysis results
  publication-title: CQG
– volume: 18
  start-page: 2945
  year: 2001
  end-page: 2958
  ident: bib11
  article-title: Gravitational waves, gyroscopes and frame dragging
  publication-title: CQG
– volume: 45
  start-page: 7729
  year: 1992
  end-page: 7739
  ident: bib4
  article-title: Observation of a quantum eraser : a revival of coherence in a two – photon interference experiment
  publication-title: Phys. Rev.
– volume: 3
  year: 2007
  ident: bib9
  article-title: Entanglement-based quantum communications over 144 Km
  publication-title: Nat. Phys.
– volume: 67
  start-page: 455
  year: 2010
  end-page: 467
  ident: bib10
  article-title: On Relative position and attitude estimation for satellite formation with coupled translational and rotational dynamics
  publication-title: Acta Astronaut.
– volume: 250
  start-page: 66
  year: 2015
  end-page: 68
  ident: bib5
  article-title: Atomic Hong-ou-Mandel experiment
  publication-title: Nature
– volume: 15
  start-page: 2493
  year: 1998
  end-page: 2507
  ident: bib8
  article-title: On the propagation of electromagnetic radiation in the field of a plane gravitational wave
  publication-title: CQG
– volume: 78
  start-page: 511
  year: 2008
  end-page: 525
  ident: bib6
  article-title: Detecting gravitational waves using entangled photon states
  publication-title: Phys. Rev.
– volume: 17
  start-page: 2525
  year: 2000
  end-page: 2530
  ident: bib7
  article-title: An electromagnetic detector for very-high-frequency gravitational waves
  publication-title: CQG
– volume: 116
  year: 2016
  ident: bib2
  article-title: Observation of gravitational waves from a binary black hole merger
  publication-title: Phys. Rev. Lett.
– start-page: 1227
  year: 2005
  end-page: 1232
  ident: bib13
  article-title: Geosynchronous satellite use of GPS
  publication-title: Proceedings of Ion GNSS
– volume: 124
  start-page: 511
  issue: 5
  year: 2009
  ident: 10.1016/j.actaastro.2018.03.040_bib6b
  article-title: Detecting gravitational waves with a heralded-photon quantum eraser
  publication-title: Il Nuovo Cimento
– volume: 15
  start-page: 2493
  year: 1998
  ident: 10.1016/j.actaastro.2018.03.040_bib8
  article-title: On the propagation of electromagnetic radiation in the field of a plane gravitational wave
  publication-title: CQG
  doi: 10.1088/0264-9381/15/8/024
– volume: 67
  start-page: 455
  year: 2010
  ident: 10.1016/j.actaastro.2018.03.040_bib10
  article-title: On Relative position and attitude estimation for satellite formation with coupled translational and rotational dynamics
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2010.04.002
– volume: 119
  year: 2017
  ident: 10.1016/j.actaastro.2018.03.040_bib2c
  article-title: GW170817: observation of gravitational waves from a binary neutron star inspiral
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 2525
  year: 2000
  ident: 10.1016/j.actaastro.2018.03.040_bib7
  article-title: An electromagnetic detector for very-high-frequency gravitational waves
  publication-title: CQG
  doi: 10.1088/0264-9381/17/13/305
– volume: 45
  start-page: 7729
  issue: 11
  year: 1992
  ident: 10.1016/j.actaastro.2018.03.040_bib4
  article-title: Observation of a quantum eraser : a revival of coherence in a two – photon interference experiment
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.45.7729
– volume: 32
  year: 2015
  ident: 10.1016/j.actaastro.2018.03.040_bib12
  article-title: Gravity Probe B data analysis: III. Estimation tools and analysis results
  publication-title: CQG
  doi: 10.1088/0264-9381/32/22/224020
– start-page: 1227
  year: 2005
  ident: 10.1016/j.actaastro.2018.03.040_bib13
  article-title: Geosynchronous satellite use of GPS
  publication-title: Proceedings of Ion GNSS
– volume: 78
  issue: 1
  year: 2008
  ident: 10.1016/j.actaastro.2018.03.040_bib6a
  article-title: Detecting gravitational waves using entangled photon states
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.78.012114
– volume: 18
  start-page: 2945
  year: 2001
  ident: 10.1016/j.actaastro.2018.03.040_bib11
  article-title: Gravitational waves, gyroscopes and frame dragging
  publication-title: CQG
  doi: 10.1088/0264-9381/18/15/309
– volume: 116
  year: 2016
  ident: 10.1016/j.actaastro.2018.03.040_bib2b
  article-title: GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence
  publication-title: Phys. Rev. Lett.
– volume: 116
  year: 2016
  ident: 10.1016/j.actaastro.2018.03.040_bib2a
  article-title: Observation of gravitational waves from a binary black hole merger
  publication-title: Phys. Rev. Lett.
– year: 2008
  ident: 10.1016/j.actaastro.2018.03.040_bib1
– volume: 59
  start-page: 2044
  year: 1987
  ident: 10.1016/j.actaastro.2018.03.040_bib3
  article-title: Measurement of subpicosecond time intervals between two photons by interference
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2044
– volume: 250
  start-page: 66
  year: 2015
  ident: 10.1016/j.actaastro.2018.03.040_bib5
  article-title: Atomic Hong-ou-Mandel experiment
  publication-title: Nature
  doi: 10.1038/nature14331
– volume: 3
  year: 2007
  ident: 10.1016/j.actaastro.2018.03.040_bib9
  article-title: Entanglement-based quantum communications over 144 Km
  publication-title: Nat. Phys.
  doi: 10.1038/nphys629
SSID ssj0007289
Score 2.1619487
Snippet Michelson type gravitational wave detectors measure the strain caused by gravitational waves on the interferometer's arms. Gravitational waves can also cause...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 364
SubjectTerms Antennas
Architecture
Artificial satellites
Attitudes
Curvature
Detectors
Earth orbits
Electrons
Geosynchronous orbits
Gravitation
Gravitational wave spectrometry in space
Gravitational waves
Hong-Ou-Mandel interferometer
Interferometers
Interferometry
Linear polarization
Photon polarization
Photons
Polarization
Quantum entanglement
Quantum mechanics
Relativity
Satellites
Space exploration
Spacecraft
Spacecraft design
Spectral analysis
Theoretical physics
Wavelengths
Title Hong-Ou-Mandel Gravitational Wave Space spectrometER – HOMER mission
URI https://dx.doi.org/10.1016/j.actaastro.2018.03.040
https://www.proquest.com/docview/2082278647
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: AKRWK
  dateStart: 19740101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUquMABsYqyVDlwNU0T23G4IdQSQG0loKI3y05tVFSlVZtyRPwDf8iX4MlSKELqgVsWT5S8ccYz41kQOjNEypA1GI5DKjGR1MWKBhJzLolnyCA2WfpYu8OiHrnt034FXZW5MBBWWcj-XKZn0rq4Ui_QrE-GQ8jxDYnVlmkjsGugR6HiJyEBdDE4f_sO8wg8nqvAIcEweinGS8aplLN0ClmADZ5VOwUvyN8r1C9ZnS1ArW20VWiOzmX-cjuoopNdtPmjnuAeakXj5Bl357gNruGRcz2Vr0UNbkv5JF-182BtZO1k-ZVQqCBt3juf7x9O1G3bI8tzcJ7to16r-XgV4aJRAo594qc4tDaZGw6U71mWKMMUUwQ2EC0cSgWaUA4bLKEvJaOyoQaG23HSEKK55pwM_AO0lowTfYgcKpXxvYAZaIxujSfFY-2amHlWrfINN1XESnBEXHwBNLMYiTJc7EUsUBWAqnB9YVGtIndBOMkLaawmuSjRF0tzQlhxv5r4pOSXKH7Lmb3PIfWXkeDoP88-RhtwlkeMnaC1dDrXp1Y3SVUtm3w1tH55cxd1vgB8O-Tf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsABsYqy5sDVkMZjx-GGECVAWyQW0ZtlpzYCobRq0x4R_8Af8iXYWdiE1AO3KPZEyRtnPDOeBaF9A1JGrM5wElGJQVIfKxpKzLmEwEA3MXn6WKvN4ju46NDOFDqpcmFcWGUp-wuZnkvr8s5hieZh__HR5fhGYLVlWg_tHhhQMo1mgQahs8AOXr7iPMKAFzpwBNhN_xHkJZNMymE2cGmAdZ6XO3VukL-3qF_COt-BGktosVQdvePi7ZbRlE5X0MK3goKrqBH30gd8NcIt5xt-9s4GclwW4baU93KsvRtrJGsvT7B0lQqy02vv_fXNi69a9soy3XnP1tBd4_T2JMZlpwScECAZjqxR5kddRQLLE2WYYgrcCSJAqFSogXJ3whIRKRmVddU13M6TBkBzzTl0yTqaSXup3kAelcqQIGTGdUa31pPiifZNwgKrVxHDTQ2xChyRlF_gulk8iype7El8oiocqsInwqJaQ_4nYb-opDGZ5KhCX_xYFMLK-8nE2xW_RPlfDu04d7m_DMLN_zx7D83Ft62maJ63L7fQvBspwse20Uw2GOkdq6hkajdfiB_beuZ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hong-Ou-Mandel+Gravitational+Wave+Space+spectrometER+%E2%80%93+HOMER+mission&rft.jtitle=Acta+astronautica&rft.au=de+Matos%2C+Clovis+Jacinto&rft.au=Tajmar%2C+Martin&rft.date=2018-06-01&rft.pub=Elsevier+BV&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=147&rft.spage=364&rft_id=info:doi/10.1016%2Fj.actaastro.2018.03.040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon