Microwave photonic notch filter with complex coefficient based on four wave mixing

A microwave photonic notch filter with a complex coefficient is proposed and demonstrated based on four wave mixing(FWM). FWM effect of two single-frequency laser beams occurs in a highly nonlinear fiber(HNLF), and multi-wavelength optical signals are generated and used to generate the multi-tap of...

Full description

Saved in:
Bibliographic Details
Published inOptoelectronics letters Vol. 12; no. 6; pp. 417 - 420
Main Author 许东 曹晔 童峥嵘 杨菁芃
Format Journal Article
LanguageEnglish
Published Tianjin Tianjin University of Technology 01.11.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1673-1905
1993-5013
DOI10.1007/s11801-016-6167-2

Cover

More Information
Summary:A microwave photonic notch filter with a complex coefficient is proposed and demonstrated based on four wave mixing(FWM). FWM effect of two single-frequency laser beams occurs in a highly nonlinear fiber(HNLF), and multi-wavelength optical signals are generated and used to generate the multi-tap of microwave photonic filter(MPF). The complex coefficient is generated by using a Fourier-domain optical processor(FD-OP) to control the amplitude and phase of the optical carrier and phase modulation sidebands. The results show that this filter can be changed from bandpass filter to notch filter by controlling the FD-OP. The center frequency of the notch filter can be continuously tuned from 5.853 GHz to 29.311 GHz with free spectral range(FSR) of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.
Bibliography:A microwave photonic notch filter with a complex coefficient is proposed and demonstrated based on four wave mixing(FWM). FWM effect of two single-frequency laser beams occurs in a highly nonlinear fiber(HNLF), and multi-wavelength optical signals are generated and used to generate the multi-tap of microwave photonic filter(MPF). The complex coefficient is generated by using a Fourier-domain optical processor(FD-OP) to control the amplitude and phase of the optical carrier and phase modulation sidebands. The results show that this filter can be changed from bandpass filter to notch filter by controlling the FD-OP. The center frequency of the notch filter can be continuously tuned from 5.853 GHz to 29.311 GHz with free spectral range(FSR) of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.
XU Dong 1, CAO Ye2, TONG Zheng-rong1, YANG Jing-peng( 1. Communication Devices and Technology Engineering Research Center, School of Computer and Communication Engineering, Tianjin University of Technology, Tianjin 300384, China ;2. School of Electronic and Information Engineering, Qingdao University, Qingdao 266071, China)
12-1370/TN
notch photonic mixing tuned processor microwave unchanged continuously tunable modulator
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1673-1905
1993-5013
DOI:10.1007/s11801-016-6167-2