Spatiotemporal hybrid model for concrete arch dam deformation monitoring considering chaotic effect of residual series

•A dam deformation spatiotemporal hybrid model considering chaotic effect in residual series is proposed.•The model has good ability to predict the overall deformation simultaneously.•Effective components contained in residual series are extracted by PSO-SVM model. Single-measuring point deformation...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 228; p. 111488
Main Authors Wei, Bowen, Liu, Bo, Yuan, Dongyang, Mao, Ying, Yao, Siyang
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0141-0296
1873-7323
DOI10.1016/j.engstruct.2020.111488

Cover

Abstract •A dam deformation spatiotemporal hybrid model considering chaotic effect in residual series is proposed.•The model has good ability to predict the overall deformation simultaneously.•Effective components contained in residual series are extracted by PSO-SVM model. Single-measuring point deformation monitoring model is the most popular method in dam health monitoring. Considering that single-point monitoring model cannot comprehensively reflect the overall deformation properties of dams, a spatiotemporal hybrid model of multi-point deformation monitoring for concrete arch dams is proposed. Meanwhile, considering the chaotic effect of residual series, the support vector machine optimized by particle swarm optimization algorithm (PSO-SVM) is adopted to analyze and forecast the residual series. Hence, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering the chaotic effect of residual series is proposed in the study. Based on the theory of single-measuring point deformation monitoring, a spatiotemporal hybrid model is established by introducing space coordinate and calculating hydraulic component with finite element method. Then, with the good nonlinear processing ability of PSO-SVM, the chaotic effect of residual series is analyzed and predicted by PSO-SVM. Subsequently, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering chaotic effect of residual series is established by superimposing the residual prediction term with the predicted value of the spatiotemporal hybrid model. Engineering example show that the proposed model has better fitting and predicting precisions compared with the conventional single-point monitoring models, and it can analyze and predict the deformations of multi-point simultaneously. In addition, the proposed model reduces the workload of modelling point by point in single-point monitoring model, which considerably improves the practicality and computational efficiency of deformation-based health monitoring of concrete arch dams.
AbstractList •A dam deformation spatiotemporal hybrid model considering chaotic effect in residual series is proposed.•The model has good ability to predict the overall deformation simultaneously.•Effective components contained in residual series are extracted by PSO-SVM model. Single-measuring point deformation monitoring model is the most popular method in dam health monitoring. Considering that single-point monitoring model cannot comprehensively reflect the overall deformation properties of dams, a spatiotemporal hybrid model of multi-point deformation monitoring for concrete arch dams is proposed. Meanwhile, considering the chaotic effect of residual series, the support vector machine optimized by particle swarm optimization algorithm (PSO-SVM) is adopted to analyze and forecast the residual series. Hence, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering the chaotic effect of residual series is proposed in the study. Based on the theory of single-measuring point deformation monitoring, a spatiotemporal hybrid model is established by introducing space coordinate and calculating hydraulic component with finite element method. Then, with the good nonlinear processing ability of PSO-SVM, the chaotic effect of residual series is analyzed and predicted by PSO-SVM. Subsequently, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering chaotic effect of residual series is established by superimposing the residual prediction term with the predicted value of the spatiotemporal hybrid model. Engineering example show that the proposed model has better fitting and predicting precisions compared with the conventional single-point monitoring models, and it can analyze and predict the deformations of multi-point simultaneously. In addition, the proposed model reduces the workload of modelling point by point in single-point monitoring model, which considerably improves the practicality and computational efficiency of deformation-based health monitoring of concrete arch dams.
Single-measuring point deformation monitoring model is the most popular method in dam health monitoring. Considering that single-point monitoring model cannot comprehensively reflect the overall deformation properties of dams, a spatiotemporal hybrid model of multi-point deformation monitoring for concrete arch dams is proposed. Meanwhile, considering the chaotic effect of residual series, the support vector machine optimized by particle swarm optimization algorithm (PSO-SVM) is adopted to analyze and forecast the residual series. Hence, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering the chaotic effect of residual series is proposed in the study. Based on the theory of single-measuring point deformation monitoring, a spatiotemporal hybrid model is established by introducing space coordinate and calculating hydraulic component with finite element method. Then, with the good nonlinear processing ability of PSO-SVM, the chaotic effect of residual series is analyzed and predicted by PSO-SVM. Subsequently, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering chaotic effect of residual series is established by superimposing the residual prediction term with the predicted value of the spatiotemporal hybrid model. Engineering example show that the proposed model has better fitting and predicting precisions compared with the conventional single-point monitoring models, and it can analyze and predict the deformations of multi-point simultaneously. In addition, the proposed model reduces the workload of modelling point by point in single-point monitoring model, which considerably improves the practicality and computational efficiency of deformation-based health monitoring of concrete arch dams.
ArticleNumber 111488
Author Wei, Bowen
Yuan, Dongyang
Liu, Bo
Mao, Ying
Yao, Siyang
Author_xml – sequence: 1
  givenname: Bowen
  surname: Wei
  fullname: Wei, Bowen
  organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
– sequence: 2
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  email: liubo0127@email.ncu.edu.cn
  organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
– sequence: 3
  givenname: Dongyang
  surname: Yuan
  fullname: Yuan, Dongyang
  email: yuandongyang@hhu.edu.cn
  organization: College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
– sequence: 4
  givenname: Ying
  surname: Mao
  fullname: Mao, Ying
  organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
– sequence: 5
  givenname: Siyang
  surname: Yao
  fullname: Yao, Siyang
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
BookMark eNqNkE1rGzEQhkVJoU7a31BBz-tqVvuhPeQQQvoBgRzSnoUsjWIZr-SO5ED-feRuySGX9DTD6Hln0HPOzmKKyNhnEGsQMHzdrTE-5EJHW9ataOsUoFPqHVuBGmUzylaesZWADhrRTsMHdp7zTgjRKiVW7PH-YEpIBedDIrPn26cNBcfn5HDPfSJuU7SEBbkhu-XOzNxhnc-nVKxcDCVRiA8nMAeHS781qQTL0Xu0hSfPCevjsR7IlcD8kb33Zp_x0796wX5_u_l1_aO5vfv-8_rqtrGyk6VRnQdlBjN5kN3Yjb1VOIJRg-x7BW0re-vkMFlpJ98b6YWCzSSGCazrpBk38oJ9WfYeKP05Yi56l44U60ndVkmiAxCiUpcLZSnlTOi1DeXvBwuZsNcg9Em13ukX1fqkWi-qa358lT9QmA09_UfyaklilfAYkHS2AaNFF6ia0y6FN3c8A_L-onU
CitedBy_id crossref_primary_10_1155_2021_6950538
crossref_primary_10_1007_s13349_024_00776_y
crossref_primary_10_1016_j_istruc_2022_08_021
crossref_primary_10_3390_app132011212
crossref_primary_10_1016_j_engfailanal_2024_108570
crossref_primary_10_1016_j_aei_2024_102959
crossref_primary_10_1016_j_engstruct_2024_117899
crossref_primary_10_1007_s13349_024_00906_6
crossref_primary_10_1016_j_eswa_2024_124829
crossref_primary_10_3390_w16081190
crossref_primary_10_1016_j_istruc_2024_107615
crossref_primary_10_3390_w15142656
crossref_primary_10_1016_j_ymssp_2023_110721
crossref_primary_10_1155_2023_4040761
crossref_primary_10_3390_ma15238343
crossref_primary_10_1016_j_measurement_2024_115664
crossref_primary_10_1177_14759217231203243
crossref_primary_10_3390_math11092010
crossref_primary_10_1155_2023_3879096
crossref_primary_10_1016_j_engappai_2023_106813
crossref_primary_10_1016_j_aei_2024_102367
crossref_primary_10_1016_j_engappai_2024_109310
crossref_primary_10_1016_j_istruc_2024_107760
crossref_primary_10_1016_j_istruc_2024_108056
crossref_primary_10_1016_j_compgeo_2024_106518
crossref_primary_10_1016_j_ymssp_2024_111201
crossref_primary_10_1177_14759217241271055
crossref_primary_10_1088_1361_6501_ad1cc9
crossref_primary_10_3390_w14162464
crossref_primary_10_1016_j_istruc_2024_108094
crossref_primary_10_1155_2022_6569367
crossref_primary_10_1155_2021_3739551
crossref_primary_10_1016_j_aei_2021_101407
crossref_primary_10_3390_w16233341
crossref_primary_10_1007_s13349_023_00733_1
crossref_primary_10_1088_1361_665X_ac1086
crossref_primary_10_1016_j_soildyn_2022_107635
crossref_primary_10_1016_j_measurement_2022_112109
crossref_primary_10_1016_j_istruc_2022_08_040
crossref_primary_10_1016_j_measurement_2022_111811
crossref_primary_10_1016_j_jclepro_2024_143135
crossref_primary_10_1016_j_engstruct_2024_117949
crossref_primary_10_1016_j_aei_2023_102016
crossref_primary_10_1061_JMCEE7_MTENG_18138
crossref_primary_10_1016_j_aei_2023_101881
crossref_primary_10_3390_app132212457
crossref_primary_10_3390_buildings14123780
crossref_primary_10_1016_j_engstruct_2023_116940
crossref_primary_10_1016_j_jobe_2023_108106
crossref_primary_10_1016_j_istruc_2024_107072
crossref_primary_10_3390_w15071271
crossref_primary_10_1007_s13349_022_00557_5
crossref_primary_10_1007_s40996_022_00906_w
crossref_primary_10_1155_2022_9572105
crossref_primary_10_32604_sdhm_2023_024912
crossref_primary_10_1007_s10064_021_02364_6
crossref_primary_10_1016_j_ymssp_2022_109193
crossref_primary_10_3390_w16040590
crossref_primary_10_1016_j_aei_2022_101855
crossref_primary_10_1016_j_aej_2024_07_029
crossref_primary_10_1016_j_autcon_2022_104365
crossref_primary_10_1177_14759217211044116
crossref_primary_10_1177_14759217211069639
crossref_primary_10_1002_stc_2940
crossref_primary_10_32604_cmes_2022_018325
crossref_primary_10_1016_j_advengsoft_2024_103635
Cites_doi 10.1016/j.compbiomed.2013.01.020
10.1016/j.engstruct.2010.12.011
10.1016/j.applthermaleng.2015.04.023
10.1016/j.renene.2017.11.011
10.1002/stc.2188
10.1177/1475921718760309
10.1016/j.engstruct.2015.03.001
10.3390/ijerph17010319
10.1016/j.apm.2019.09.046
10.1061/(ASCE)0887-3828(2009)23:3(166)
10.1016/j.asoc.2007.10.007
10.1016/j.ymssp.2018.03.022
10.1016/j.advengsoft.2012.11.015
10.1016/j.engstruct.2018.11.065
10.1002/stc.2037
10.1002/stc.2417
10.1177/1475921718797949
10.1002/stc.1575
10.1016/j.strusafe.2013.02.005
10.1016/j.engstruct.2006.04.022
10.1179/1752270614Y.0000000112
10.1007/s11831-015-9157-9
10.1177/1475921716654963
10.1007/s00521-012-0856-y
10.1177/1475921717748608
10.1016/j.aei.2018.11.006
10.1360/N092014-00181
10.1002/stc.1997
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Feb 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 1, 2021
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2020.111488
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2020_111488
S014102962034089X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c343t-84f18a6a9f1347475c8e71a86355812235cd369c3c9f5a3f081b90691cd43a7b3
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Wed Aug 13 08:11:43 EDT 2025
Thu Oct 02 04:20:27 EDT 2025
Thu Apr 24 22:53:26 EDT 2025
Sun Apr 06 06:53:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Radial deformation
Spatiotemporal hybrid model
Concrete arch dam
Support vector machine
Residual series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-84f18a6a9f1347475c8e71a86355812235cd369c3c9f5a3f081b90691cd43a7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2488041100
PQPubID 2045481
ParticipantIDs proquest_journals_2488041100
crossref_citationtrail_10_1016_j_engstruct_2020_111488
crossref_primary_10_1016_j_engstruct_2020_111488
elsevier_sciencedirect_doi_10_1016_j_engstruct_2020_111488
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mata (b0020) 2011; 33
Su, Chen, Wen (b0060) 2016; 23
Li, Wang, Liu (b0180) 2013; 43
Wu (b0140) 2003
Zheng, Huo, Li (b0165) 2012; 02
Alcay, Yigit, Inal (b0085) 2018; 16
Dai, Liu, Meng (b0105) 2014; 46
Cheng, Zheng (b0005) 2013; 57
Huang, Dun (b0195) 2008; 8
Santillan, Salete, Vicente (b0175) 2014; 140
Hu, Wu (b0050) 2019; 18
Kang, Liu, Li (b0070) 2017
Shao, Gu, Yang, Xu, Su (b0090) 2018; 25
Gu, Fu, Shao (b0095) 2020; 17
Subasi (b0130) 2013; 43
De Sortis, Paoliani (b0030) 2007; 29
Léger, Hydrostatic (b0150) 2007; 133
Chen, Hu, Huang (b0170) 2019; 18
Wang, Hou, Wang (b0185) 2020
Wei, Chen, Li (b0125) 2020; 78
Wei, Peng, Xu (b0110) 2015; 45
Santillan, Salete, Toledo (b0080) 2015; 85
Mata, Castro, Costa (b0035) 2014; 21
Su, Li, Yang (b0065) 2018; 110
Léger, Seydou (b0045) 2009; 23
Wang, Xu, Gu (b0135) 2019
Wei, Yuan, Li (b0120) 2019; 18
Eseye, Zhang, Zheng (b0190) 2018; 118
Monjezi, Hasanipanah, Khandelwal (b0055) 2013; 22
Li, Zhou, Gan (b0100) 2011; 42
Wang, Xu, Gu (b0025) 2019; 26
Wei, Yuan, Xu (b0040) 2018
Kang, Li, Zhao (b0155) 2019; 180
Salazar, Moran, Toledo (b0015) 2017; 24
Shen, Mei, Wang (b0200) 2010
Su, Wen, Chen (b0115) 2016; 15
Gu, Wu (b0145) 2006
Li, Shen, Ren (b0010) 2019; 39
Santillan, Salete, Toledo (b0075) 2015; 92
Santillan, Salete, Toledo (b0160) 2015
Dai (10.1016/j.engstruct.2020.111488_b0105) 2014; 46
Wei (10.1016/j.engstruct.2020.111488_b0120) 2019; 18
Su (10.1016/j.engstruct.2020.111488_b0060) 2016; 23
Wu (10.1016/j.engstruct.2020.111488_b0140) 2003
Salazar (10.1016/j.engstruct.2020.111488_b0015) 2017; 24
Mata (10.1016/j.engstruct.2020.111488_b0035) 2014; 21
Wang (10.1016/j.engstruct.2020.111488_b0185) 2020
Monjezi (10.1016/j.engstruct.2020.111488_b0055) 2013; 22
Hu (10.1016/j.engstruct.2020.111488_b0050) 2019; 18
Alcay (10.1016/j.engstruct.2020.111488_b0085) 2018; 16
Li (10.1016/j.engstruct.2020.111488_b0100) 2011; 42
Chen (10.1016/j.engstruct.2020.111488_b0170) 2019; 18
Cheng (10.1016/j.engstruct.2020.111488_b0005) 2013; 57
Mata (10.1016/j.engstruct.2020.111488_b0020) 2011; 33
Shao (10.1016/j.engstruct.2020.111488_b0090) 2018; 25
Li (10.1016/j.engstruct.2020.111488_b0180) 2013; 43
Su (10.1016/j.engstruct.2020.111488_b0115) 2016; 15
Gu (10.1016/j.engstruct.2020.111488_b0095) 2020; 17
De Sortis (10.1016/j.engstruct.2020.111488_b0030) 2007; 29
Kang (10.1016/j.engstruct.2020.111488_b0070) 2017
Wang (10.1016/j.engstruct.2020.111488_b0025) 2019; 26
Eseye (10.1016/j.engstruct.2020.111488_b0190) 2018; 118
Subasi (10.1016/j.engstruct.2020.111488_b0130) 2013; 43
Léger (10.1016/j.engstruct.2020.111488_b0045) 2009; 23
Léger (10.1016/j.engstruct.2020.111488_b0150) 2007; 133
Gu (10.1016/j.engstruct.2020.111488_b0145) 2006
Santillan (10.1016/j.engstruct.2020.111488_b0075) 2015; 92
Santillan (10.1016/j.engstruct.2020.111488_b0080) 2015; 85
Zheng (10.1016/j.engstruct.2020.111488_b0165) 2012; 02
Li (10.1016/j.engstruct.2020.111488_b0010) 2019; 39
Wei (10.1016/j.engstruct.2020.111488_b0040) 2018
Su (10.1016/j.engstruct.2020.111488_b0065) 2018; 110
Santillan (10.1016/j.engstruct.2020.111488_b0160) 2015
Shen (10.1016/j.engstruct.2020.111488_b0200) 2010
Huang (10.1016/j.engstruct.2020.111488_b0195) 2008; 8
Wei (10.1016/j.engstruct.2020.111488_b0110) 2015; 45
Wang (10.1016/j.engstruct.2020.111488_b0135) 2019
Kang (10.1016/j.engstruct.2020.111488_b0155) 2019; 180
Santillan (10.1016/j.engstruct.2020.111488_b0175) 2014; 140
Wei (10.1016/j.engstruct.2020.111488_b0125) 2020; 78
References_xml – volume: 133
  start-page: 267
  year: 2007
  end-page: 277
  ident: b0150
  article-title: Temperature, time-displacement model for concrete dams
  publication-title: J Eng Mech
– volume: 22
  start-page: 1637
  year: 2013
  end-page: 1643
  ident: b0055
  article-title: Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network
  publication-title: Neural Comput Appl
– volume: 42
  start-page: 981
  year: 2011
  end-page: 985
  ident: b0100
  article-title: Research on multiple points deterministic displacement monitoring model of concrete arch dam
  publication-title: J Hydraul Eng
– volume: 39
  start-page: 41
  year: 2019
  end-page: 52
  ident: b0010
  article-title: A new distributed time series evolution prediction model for dam deformation based on constituent elements
  publication-title: Adv Eng Inf
– volume: 45
  start-page: 541
  year: 2015
  end-page: 546
  ident: b0110
  article-title: The GA-BP prediction model considering chaos effect of dam displacement residual
  publication-title: Scientia Sinica Technologica
– start-page: 443
  year: 2010
  end-page: 451
  ident: b0200
  article-title: Deformation prediction model of concrete arch dam based on improved particle swarm optimization Algorithm. Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging
  publication-title: Environments
– volume: 21
  start-page: 423
  year: 2014
  end-page: 437
  ident: b0035
  article-title: Constructing statistical models for arch dam deformation
  publication-title: Struct Control Health Monit
– volume: 25
  year: 2018
  ident: b0090
  article-title: A novel model of dam displacement based on panel data
  publication-title: Struct Control Health Monit
– volume: 16
  start-page: 1279
  year: 2018
  end-page: 1291
  ident: b0085
  article-title: Analysis of displacement response of the Ermenek dam monitored by an integratedgeodetic and pendulum system. International
  publication-title: J Civ Eng
– year: 2018
  ident: b0040
  article-title: Modified hybrid forecast model considering chaotic residual errors for dam deformation
  publication-title: Struct Control Health Monit
– volume: 57
  start-page: 48
  year: 2013
  end-page: 56
  ident: b0005
  article-title: Two online dam safety monitoring models based on the process of extracting environmental effect
  publication-title: Adv Eng Softw
– volume: 78
  start-page: 20
  year: 2020
  end-page: 36
  ident: b0125
  article-title: Optimized prediction model for concrete dam displacement based on signal residual amendment
  publication-title: Appl Math Model
– volume: 18
  start-page: 232
  year: 2019
  end-page: 244
  ident: b0120
  article-title: Combination forecast model for concrete dam displacement considering residual correction
  publication-title: Struct Health Monit
– volume: 43
  start-page: 12
  year: 2013
  end-page: 20
  ident: b0180
  article-title: Towards an error correction model for dam monitoring data analysis based on cointegration theory
  publication-title: Struct Saf
– year: 2019
  ident: b0135
  article-title: Two spatial association–considered mathematical models for diagnosing the long-term balanced relationship and short-term fluctuation of the deformation behavior of high concrete arch dams
  publication-title: Struct Health Monit
– volume: 23
  start-page: 166
  year: 2009
  end-page: 174
  ident: b0045
  article-title: Seasonal thermal displacements of gravity dams located in northern regions
  publication-title: J Perform Constr Facil
– volume: 23
  year: 2016
  ident: b0060
  article-title: Performance improvement method of support vector machine-based model monitoring dam safety
  publication-title: Struct Control Health Monit
– year: 2017
  ident: b0070
  article-title: Concrete dam deformation prediction model for health monitoring based on extreme learning machine
  publication-title: Struct Control Health Monit
– volume: 46
  start-page: 437
  year: 2014
  end-page: 443
  ident: b0105
  article-title: Spatio-temporal modelling of dam deformation using independent component analysis
  publication-title: Survey Rev
– volume: 140
  year: 2014
  ident: b0175
  article-title: Treatment of solar radiation by spatial and temporal discretization for modeling the thermal response of arch dams
  publication-title: J Eng Mech
– volume: 180
  start-page: 642
  year: 2019
  end-page: 653
  ident: b0155
  article-title: Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation
  publication-title: Eng Struct
– year: 2015
  ident: b0160
  article-title: An improved 1D-model for computing the thermal behaviour of concrete dams during operation. Comparison with other approaches
  publication-title: Literary culture and the Pacific
– volume: 15
  start-page: 639
  year: 2016
  end-page: 649
  ident: b0115
  article-title: Dam safety prediction model considering chaotic characteristics in prototype monitoring data series
  publication-title: Struct Health Monit
– volume: 118
  start-page: 357
  year: 2018
  end-page: 367
  ident: b0190
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renew Energy
– volume: 18
  start-page: 546
  year: 2019
  end-page: 562
  ident: b0050
  article-title: Statistical modeling for deformation analysis of concrete arch dams with influential horizontal cracks
  publication-title: Struct Health Monit
– volume: 24
  start-page: 1
  year: 2017
  end-page: 21
  ident: b0015
  article-title: Data-based models for the prediction of dam behaviour: a review and some methodological considerations
  publication-title: Arch Comput Methods Eng
– start-page: 1
  year: 2020
  end-page: 14
  ident: b0185
  article-title: APU performance parameter prediction model based on adaptive variation PSO-SVM
  publication-title: J Syst Eng Electron
– volume: 29
  start-page: 110
  year: 2007
  end-page: 120
  ident: b0030
  article-title: Statistical analysis and structural identification in concrete dam monitoring
  publication-title: Eng Struct
– year: 2006
  ident: b0145
  article-title: Safety monitoring of dams and dam foundations-theories & methods and their application
– volume: 92
  start-page: 123
  year: 2015
  end-page: 141
  ident: b0075
  article-title: A methodology for the assessment of the effect of climate change on the thermal-strain stress behavior of structures
  publication-title: Eng Struct
– volume: 85
  start-page: 160
  year: 2015
  end-page: 171
  ident: b0080
  article-title: A new 1D analytical model for computing the thermal field of concrete dams due to the environmental actions
  publication-title: Appl Therm Eng
– volume: 26
  year: 2019
  ident: b0025
  article-title: Hysteretic effect considered monitoring model for interpreting abnormal deformationbehavior of arch dams: A case study
  publication-title: Struct Control Health Monit
– year: 2003
  ident: b0140
  article-title: Safety monitoring theory and its application of hydraulic structures
– volume: 17
  start-page: 319
  year: 2020
  ident: b0095
  article-title: Application of spatiotemporal hybrid model of deformation in safety monitoring of high arch dams: a case study
  publication-title: Int J Environ Res Public Health
– volume: 18
  start-page: 1355
  year: 2019
  end-page: 1371
  ident: b0170
  article-title: A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data
  publication-title: Struct Health Monit
– volume: 33
  start-page: 903
  year: 2011
  end-page: 910
  ident: b0020
  article-title: Interpretation of concrete dam behavior with artificial neural network and multiple linear regression models
  publication-title: Eng Struct
– volume: 8
  start-page: 1381
  year: 2008
  end-page: 1391
  ident: b0195
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl Soft Comput
– volume: 110
  start-page: 412
  year: 2018
  end-page: 427
  ident: b0065
  article-title: Wavelet support vector machine-based prediction model of dam deformation
  publication-title: Mech Syst Sig Process
– volume: 02
  start-page: 213
  year: 2012
  end-page: 219
  ident: b0165
  article-title: Arch-dam crack deformation monitoring hybrid model based on XFEM
  publication-title: Scientia Sinica Technologica
– volume: 43
  start-page: 576
  year: 2013
  end-page: 586
  ident: b0130
  article-title: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders
  publication-title: Comput Biol Med
– volume: 140
  issue: 11
  year: 2014
  ident: 10.1016/j.engstruct.2020.111488_b0175
  article-title: Treatment of solar radiation by spatial and temporal discretization for modeling the thermal response of arch dams
  publication-title: J Eng Mech
– volume: 43
  start-page: 576
  issue: 5
  year: 2013
  ident: 10.1016/j.engstruct.2020.111488_b0130
  article-title: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.01.020
– volume: 33
  start-page: 903
  issue: 3
  year: 2011
  ident: 10.1016/j.engstruct.2020.111488_b0020
  article-title: Interpretation of concrete dam behavior with artificial neural network and multiple linear regression models
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.12.011
– volume: 85
  start-page: 160
  year: 2015
  ident: 10.1016/j.engstruct.2020.111488_b0080
  article-title: A new 1D analytical model for computing the thermal field of concrete dams due to the environmental actions
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.04.023
– volume: 118
  start-page: 357
  year: 2018
  ident: 10.1016/j.engstruct.2020.111488_b0190
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.11.011
– year: 2018
  ident: 10.1016/j.engstruct.2020.111488_b0040
  article-title: Modified hybrid forecast model considering chaotic residual errors for dam deformation
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2188
– volume: 18
  start-page: 546
  issue: 2
  year: 2019
  ident: 10.1016/j.engstruct.2020.111488_b0050
  article-title: Statistical modeling for deformation analysis of concrete arch dams with influential horizontal cracks
  publication-title: Struct Health Monit
  doi: 10.1177/1475921718760309
– year: 2006
  ident: 10.1016/j.engstruct.2020.111488_b0145
– volume: 92
  start-page: 123
  issue: jul.1
  year: 2015
  ident: 10.1016/j.engstruct.2020.111488_b0075
  article-title: A methodology for the assessment of the effect of climate change on the thermal-strain stress behavior of structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.03.001
– volume: 17
  start-page: 319
  issue: 1
  year: 2020
  ident: 10.1016/j.engstruct.2020.111488_b0095
  article-title: Application of spatiotemporal hybrid model of deformation in safety monitoring of high arch dams: a case study
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17010319
– volume: 78
  start-page: 20
  year: 2020
  ident: 10.1016/j.engstruct.2020.111488_b0125
  article-title: Optimized prediction model for concrete dam displacement based on signal residual amendment
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2019.09.046
– volume: 23
  start-page: 166
  issue: 3
  year: 2009
  ident: 10.1016/j.engstruct.2020.111488_b0045
  article-title: Seasonal thermal displacements of gravity dams located in northern regions
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)0887-3828(2009)23:3(166)
– volume: 8
  start-page: 1381
  issue: 4
  year: 2008
  ident: 10.1016/j.engstruct.2020.111488_b0195
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.10.007
– volume: 110
  start-page: 412
  year: 2018
  ident: 10.1016/j.engstruct.2020.111488_b0065
  article-title: Wavelet support vector machine-based prediction model of dam deformation
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2018.03.022
– volume: 133
  start-page: 267
  issue: 3
  year: 2007
  ident: 10.1016/j.engstruct.2020.111488_b0150
  article-title: Temperature, time-displacement model for concrete dams
  publication-title: J Eng Mech
– year: 2003
  ident: 10.1016/j.engstruct.2020.111488_b0140
– volume: 57
  start-page: 48
  year: 2013
  ident: 10.1016/j.engstruct.2020.111488_b0005
  article-title: Two online dam safety monitoring models based on the process of extracting environmental effect
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2012.11.015
– start-page: 1
  year: 2020
  ident: 10.1016/j.engstruct.2020.111488_b0185
  article-title: APU performance parameter prediction model based on adaptive variation PSO-SVM
  publication-title: J Syst Eng Electron
– volume: 180
  start-page: 642
  year: 2019
  ident: 10.1016/j.engstruct.2020.111488_b0155
  article-title: Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.11.065
– volume: 25
  issue: 1
  year: 2018
  ident: 10.1016/j.engstruct.2020.111488_b0090
  article-title: A novel model of dam displacement based on panel data
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2037
– volume: 26
  issue: 10
  year: 2019
  ident: 10.1016/j.engstruct.2020.111488_b0025
  article-title: Hysteretic effect considered monitoring model for interpreting abnormal deformationbehavior of arch dams: A case study
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2417
– volume: 18
  start-page: 1355
  issue: 5–6
  year: 2019
  ident: 10.1016/j.engstruct.2020.111488_b0170
  article-title: A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data
  publication-title: Struct Health Monit
  doi: 10.1177/1475921718797949
– volume: 21
  start-page: 423
  issue: 3
  year: 2014
  ident: 10.1016/j.engstruct.2020.111488_b0035
  article-title: Constructing statistical models for arch dam deformation
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1575
– start-page: 443
  year: 2010
  ident: 10.1016/j.engstruct.2020.111488_b0200
  article-title: Deformation prediction model of concrete arch dam based on improved particle swarm optimization Algorithm. Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging
  publication-title: Environments
– volume: 42
  start-page: 981
  issue: 8
  year: 2011
  ident: 10.1016/j.engstruct.2020.111488_b0100
  article-title: Research on multiple points deterministic displacement monitoring model of concrete arch dam
  publication-title: J Hydraul Eng
– year: 2015
  ident: 10.1016/j.engstruct.2020.111488_b0160
  article-title: An improved 1D-model for computing the thermal behaviour of concrete dams during operation. Comparison with other approaches
– volume: 02
  start-page: 213
  year: 2012
  ident: 10.1016/j.engstruct.2020.111488_b0165
  article-title: Arch-dam crack deformation monitoring hybrid model based on XFEM
  publication-title: Scientia Sinica Technologica
– volume: 23
  issue: 252–266
  year: 2016
  ident: 10.1016/j.engstruct.2020.111488_b0060
  article-title: Performance improvement method of support vector machine-based model monitoring dam safety
  publication-title: Struct Control Health Monit
– year: 2019
  ident: 10.1016/j.engstruct.2020.111488_b0135
  article-title: Two spatial association–considered mathematical models for diagnosing the long-term balanced relationship and short-term fluctuation of the deformation behavior of high concrete arch dams
  publication-title: Struct Health Monit
– volume: 43
  start-page: 12
  year: 2013
  ident: 10.1016/j.engstruct.2020.111488_b0180
  article-title: Towards an error correction model for dam monitoring data analysis based on cointegration theory
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2013.02.005
– volume: 29
  start-page: 110
  issue: 1
  year: 2007
  ident: 10.1016/j.engstruct.2020.111488_b0030
  article-title: Statistical analysis and structural identification in concrete dam monitoring
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2006.04.022
– volume: 46
  start-page: 437
  issue: 339
  year: 2014
  ident: 10.1016/j.engstruct.2020.111488_b0105
  article-title: Spatio-temporal modelling of dam deformation using independent component analysis
  publication-title: Survey Rev
  doi: 10.1179/1752270614Y.0000000112
– volume: 24
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.engstruct.2020.111488_b0015
  article-title: Data-based models for the prediction of dam behaviour: a review and some methodological considerations
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-015-9157-9
– volume: 15
  start-page: 639
  year: 2016
  ident: 10.1016/j.engstruct.2020.111488_b0115
  article-title: Dam safety prediction model considering chaotic characteristics in prototype monitoring data series
  publication-title: Struct Health Monit
  doi: 10.1177/1475921716654963
– volume: 16
  start-page: 1279
  issue: 10
  year: 2018
  ident: 10.1016/j.engstruct.2020.111488_b0085
  article-title: Analysis of displacement response of the Ermenek dam monitored by an integratedgeodetic and pendulum system. International
  publication-title: J Civ Eng
– volume: 22
  start-page: 1637
  issue: 7–8
  year: 2013
  ident: 10.1016/j.engstruct.2020.111488_b0055
  article-title: Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0856-y
– volume: 18
  start-page: 232
  issue: 1
  year: 2019
  ident: 10.1016/j.engstruct.2020.111488_b0120
  article-title: Combination forecast model for concrete dam displacement considering residual correction
  publication-title: Struct Health Monit
  doi: 10.1177/1475921717748608
– volume: 39
  start-page: 41
  year: 2019
  ident: 10.1016/j.engstruct.2020.111488_b0010
  article-title: A new distributed time series evolution prediction model for dam deformation based on constituent elements
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2018.11.006
– volume: 45
  start-page: 541
  year: 2015
  ident: 10.1016/j.engstruct.2020.111488_b0110
  article-title: The GA-BP prediction model considering chaos effect of dam displacement residual
  publication-title: Scientia Sinica Technologica
  doi: 10.1360/N092014-00181
– year: 2017
  ident: 10.1016/j.engstruct.2020.111488_b0070
  article-title: Concrete dam deformation prediction model for health monitoring based on extreme learning machine
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1997
SSID ssj0002880
Score 2.5839884
Snippet •A dam deformation spatiotemporal hybrid model considering chaotic effect in residual series is proposed.•The model has good ability to predict the overall...
Single-measuring point deformation monitoring model is the most popular method in dam health monitoring. Considering that single-point monitoring model cannot...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111488
SubjectTerms Algorithms
Arch dams
Computer applications
Concrete
Concrete arch dam
Concrete dams
Dams
Deformation
Deformation effects
Finite element method
Mathematical analysis
Mathematical models
Monitoring
Particle swarm optimization
Predictions
Radial deformation
Residual series
Spatiotemporal hybrid model
Support vector machine
Support vector machines
Title Spatiotemporal hybrid model for concrete arch dam deformation monitoring considering chaotic effect of residual series
URI https://dx.doi.org/10.1016/j.engstruct.2020.111488
https://www.proquest.com/docview/2488041100
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AKRWK
  dateStart: 19781001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuJ0jhy81rVJmrbexnBMhV3mYLeQtombzG2wIXjxb_e9tJ1OhB28lfKSlryX9wG_936E3IgUCmljpSckUpjxhHtQNhvPphCutMhSnTu0xUD2R-JxHI5rpFv1wiCssvT9hU933rp80y5Ps72cTttDB1FkiWQ-F36cjLGDXUTIYnD7-Q3zYLFjT0NhD6W3MF5m_lKMaYVCkTn3IRwFy58R6pevdgGod0QOy8yRdoqfOyY1Mz8hBz_mCZ6S96HDR5fjpmZ08oH9WNSx3VDITikUv5Alrg1F86a5fqO52bQvghzeb9wKBR2Pp3ue6AV8kxbQD7qwFEp018NF0X7N6oyMevfP3b5XEit4GRd87cXCBrGWOrHYSCqiMItNFOgYkw8I-IyHWc5lkvEssaHmFtKGNPFlEmQ5KDBK-Tmpzxdzc0GoFVIYw6KcWwOlIte55uACIh6KgNlcN4isDlNl5dRxJL-YqQpe9qo2WlCoBVVooUH8zcJlMXhj95K7Sltqy4YUhIfdi5uVflV5jVeKoXsTOFXv8j97X5F9hlAYB_ZukjoImGvIZdZpyxlri-x1Hp76gy_1XPZy
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT8IwEG4QH9QH48-IovbB1wm0Xbf5ZogEFXkBEt6abmsVg0ACMfHFv927bkMxJjz4tizXbuldv7tLvrsj5ErEkEgbKz0hcYQZj7gHabPxbAzuSosk1qljW3RleyAehv6wRJpFLQzSKnPszzDdoXX-ppafZm02GtV6jqLIIsnqXNTDaLhBNoXPAszArj-_eR4sdOPTUNpD8RWSl5k8Z31aIVNkDj-Em8Hyp4v6BdbOA7X2yG4eOtLb7O_2SclMDsjOj4aCh-S95wjSeb-pMX35wIIs6sbdUAhPKWS_ECYuDEX7pql-o6lZ1i-CHF5w3AoF3SBP9_yip_BNmnE_6NRSyNFdERdFAzbzIzJo3fWbbS-frOAlXPCFFwrbCLXUkcVKUhH4SWiChg4x-gCPz7ifpFxGCU8i62tuIW6Io7qMGkkKGgxifkzKk-nEnBBqhRTGsCDl1kCuyHWqOWBAwH3RYDbVFSKLw1RJ3nYcp1-MVcEve1VLLSjUgsq0UCH15cJZ1nlj_ZKbQltqxYgU-If1i6uFflV-j-eKIb4JbKt3-p-9L8lWu__UUZ377uMZ2WbIi3HM7yopg7A5h8BmEV84w_0Cpdb4Bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+hybrid+model+for+concrete+arch+dam+deformation+monitoring+considering+chaotic+effect+of+residual+series&rft.jtitle=Engineering+structures&rft.au=Wei%2C+Bowen&rft.au=Liu%2C+Bo&rft.au=Yuan%2C+Dongyang&rft.au=Mao%2C+Ying&rft.date=2021-02-01&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.volume=228&rft_id=info:doi/10.1016%2Fj.engstruct.2020.111488&rft.externalDocID=S014102962034089X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon