Spatiotemporal hybrid model for concrete arch dam deformation monitoring considering chaotic effect of residual series
•A dam deformation spatiotemporal hybrid model considering chaotic effect in residual series is proposed.•The model has good ability to predict the overall deformation simultaneously.•Effective components contained in residual series are extracted by PSO-SVM model. Single-measuring point deformation...
        Saved in:
      
    
          | Published in | Engineering structures Vol. 228; p. 111488 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Kidlington
          Elsevier Ltd
    
        01.02.2021
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0141-0296 1873-7323  | 
| DOI | 10.1016/j.engstruct.2020.111488 | 
Cover
| Abstract | •A dam deformation spatiotemporal hybrid model considering chaotic effect in residual series is proposed.•The model has good ability to predict the overall deformation simultaneously.•Effective components contained in residual series are extracted by PSO-SVM model.
Single-measuring point deformation monitoring model is the most popular method in dam health monitoring. Considering that single-point monitoring model cannot comprehensively reflect the overall deformation properties of dams, a spatiotemporal hybrid model of multi-point deformation monitoring for concrete arch dams is proposed. Meanwhile, considering the chaotic effect of residual series, the support vector machine optimized by particle swarm optimization algorithm (PSO-SVM) is adopted to analyze and forecast the residual series. Hence, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering the chaotic effect of residual series is proposed in the study. Based on the theory of single-measuring point deformation monitoring, a spatiotemporal hybrid model is established by introducing space coordinate and calculating hydraulic component with finite element method. Then, with the good nonlinear processing ability of PSO-SVM, the chaotic effect of residual series is analyzed and predicted by PSO-SVM. Subsequently, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering chaotic effect of residual series is established by superimposing the residual prediction term with the predicted value of the spatiotemporal hybrid model. Engineering example show that the proposed model has better fitting and predicting precisions compared with the conventional single-point monitoring models, and it can analyze and predict the deformations of multi-point simultaneously. In addition, the proposed model reduces the workload of modelling point by point in single-point monitoring model, which considerably improves the practicality and computational efficiency of deformation-based health monitoring of concrete arch dams. | 
    
|---|---|
| AbstractList | •A dam deformation spatiotemporal hybrid model considering chaotic effect in residual series is proposed.•The model has good ability to predict the overall deformation simultaneously.•Effective components contained in residual series are extracted by PSO-SVM model.
Single-measuring point deformation monitoring model is the most popular method in dam health monitoring. Considering that single-point monitoring model cannot comprehensively reflect the overall deformation properties of dams, a spatiotemporal hybrid model of multi-point deformation monitoring for concrete arch dams is proposed. Meanwhile, considering the chaotic effect of residual series, the support vector machine optimized by particle swarm optimization algorithm (PSO-SVM) is adopted to analyze and forecast the residual series. Hence, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering the chaotic effect of residual series is proposed in the study. Based on the theory of single-measuring point deformation monitoring, a spatiotemporal hybrid model is established by introducing space coordinate and calculating hydraulic component with finite element method. Then, with the good nonlinear processing ability of PSO-SVM, the chaotic effect of residual series is analyzed and predicted by PSO-SVM. Subsequently, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering chaotic effect of residual series is established by superimposing the residual prediction term with the predicted value of the spatiotemporal hybrid model. Engineering example show that the proposed model has better fitting and predicting precisions compared with the conventional single-point monitoring models, and it can analyze and predict the deformations of multi-point simultaneously. In addition, the proposed model reduces the workload of modelling point by point in single-point monitoring model, which considerably improves the practicality and computational efficiency of deformation-based health monitoring of concrete arch dams. Single-measuring point deformation monitoring model is the most popular method in dam health monitoring. Considering that single-point monitoring model cannot comprehensively reflect the overall deformation properties of dams, a spatiotemporal hybrid model of multi-point deformation monitoring for concrete arch dams is proposed. Meanwhile, considering the chaotic effect of residual series, the support vector machine optimized by particle swarm optimization algorithm (PSO-SVM) is adopted to analyze and forecast the residual series. Hence, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering the chaotic effect of residual series is proposed in the study. Based on the theory of single-measuring point deformation monitoring, a spatiotemporal hybrid model is established by introducing space coordinate and calculating hydraulic component with finite element method. Then, with the good nonlinear processing ability of PSO-SVM, the chaotic effect of residual series is analyzed and predicted by PSO-SVM. Subsequently, a spatiotemporal hybrid model for concrete arch dam deformation monitoring considering chaotic effect of residual series is established by superimposing the residual prediction term with the predicted value of the spatiotemporal hybrid model. Engineering example show that the proposed model has better fitting and predicting precisions compared with the conventional single-point monitoring models, and it can analyze and predict the deformations of multi-point simultaneously. In addition, the proposed model reduces the workload of modelling point by point in single-point monitoring model, which considerably improves the practicality and computational efficiency of deformation-based health monitoring of concrete arch dams.  | 
    
| ArticleNumber | 111488 | 
    
| Author | Wei, Bowen Yuan, Dongyang Liu, Bo Mao, Ying Yao, Siyang  | 
    
| Author_xml | – sequence: 1 givenname: Bowen surname: Wei fullname: Wei, Bowen organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China – sequence: 2 givenname: Bo surname: Liu fullname: Liu, Bo email: liubo0127@email.ncu.edu.cn organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China – sequence: 3 givenname: Dongyang surname: Yuan fullname: Yuan, Dongyang email: yuandongyang@hhu.edu.cn organization: College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China – sequence: 4 givenname: Ying surname: Mao fullname: Mao, Ying organization: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China – sequence: 5 givenname: Siyang surname: Yao fullname: Yao, Siyang organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China  | 
    
| BookMark | eNqNkE1rGzEQhkVJoU7a31BBz-tqVvuhPeQQQvoBgRzSnoUsjWIZr-SO5ED-feRuySGX9DTD6Hln0HPOzmKKyNhnEGsQMHzdrTE-5EJHW9ataOsUoFPqHVuBGmUzylaesZWADhrRTsMHdp7zTgjRKiVW7PH-YEpIBedDIrPn26cNBcfn5HDPfSJuU7SEBbkhu-XOzNxhnc-nVKxcDCVRiA8nMAeHS781qQTL0Xu0hSfPCevjsR7IlcD8kb33Zp_x0796wX5_u_l1_aO5vfv-8_rqtrGyk6VRnQdlBjN5kN3Yjb1VOIJRg-x7BW0re-vkMFlpJ98b6YWCzSSGCazrpBk38oJ9WfYeKP05Yi56l44U60ndVkmiAxCiUpcLZSnlTOi1DeXvBwuZsNcg9Em13ukX1fqkWi-qa358lT9QmA09_UfyaklilfAYkHS2AaNFF6ia0y6FN3c8A_L-onU | 
    
| CitedBy_id | crossref_primary_10_1155_2021_6950538 crossref_primary_10_1007_s13349_024_00776_y crossref_primary_10_1016_j_istruc_2022_08_021 crossref_primary_10_3390_app132011212 crossref_primary_10_1016_j_engfailanal_2024_108570 crossref_primary_10_1016_j_aei_2024_102959 crossref_primary_10_1016_j_engstruct_2024_117899 crossref_primary_10_1007_s13349_024_00906_6 crossref_primary_10_1016_j_eswa_2024_124829 crossref_primary_10_3390_w16081190 crossref_primary_10_1016_j_istruc_2024_107615 crossref_primary_10_3390_w15142656 crossref_primary_10_1016_j_ymssp_2023_110721 crossref_primary_10_1155_2023_4040761 crossref_primary_10_3390_ma15238343 crossref_primary_10_1016_j_measurement_2024_115664 crossref_primary_10_1177_14759217231203243 crossref_primary_10_3390_math11092010 crossref_primary_10_1155_2023_3879096 crossref_primary_10_1016_j_engappai_2023_106813 crossref_primary_10_1016_j_aei_2024_102367 crossref_primary_10_1016_j_engappai_2024_109310 crossref_primary_10_1016_j_istruc_2024_107760 crossref_primary_10_1016_j_istruc_2024_108056 crossref_primary_10_1016_j_compgeo_2024_106518 crossref_primary_10_1016_j_ymssp_2024_111201 crossref_primary_10_1177_14759217241271055 crossref_primary_10_1088_1361_6501_ad1cc9 crossref_primary_10_3390_w14162464 crossref_primary_10_1016_j_istruc_2024_108094 crossref_primary_10_1155_2022_6569367 crossref_primary_10_1155_2021_3739551 crossref_primary_10_1016_j_aei_2021_101407 crossref_primary_10_3390_w16233341 crossref_primary_10_1007_s13349_023_00733_1 crossref_primary_10_1088_1361_665X_ac1086 crossref_primary_10_1016_j_soildyn_2022_107635 crossref_primary_10_1016_j_measurement_2022_112109 crossref_primary_10_1016_j_istruc_2022_08_040 crossref_primary_10_1016_j_measurement_2022_111811 crossref_primary_10_1016_j_jclepro_2024_143135 crossref_primary_10_1016_j_engstruct_2024_117949 crossref_primary_10_1016_j_aei_2023_102016 crossref_primary_10_1061_JMCEE7_MTENG_18138 crossref_primary_10_1016_j_aei_2023_101881 crossref_primary_10_3390_app132212457 crossref_primary_10_3390_buildings14123780 crossref_primary_10_1016_j_engstruct_2023_116940 crossref_primary_10_1016_j_jobe_2023_108106 crossref_primary_10_1016_j_istruc_2024_107072 crossref_primary_10_3390_w15071271 crossref_primary_10_1007_s13349_022_00557_5 crossref_primary_10_1007_s40996_022_00906_w crossref_primary_10_1155_2022_9572105 crossref_primary_10_32604_sdhm_2023_024912 crossref_primary_10_1007_s10064_021_02364_6 crossref_primary_10_1016_j_ymssp_2022_109193 crossref_primary_10_3390_w16040590 crossref_primary_10_1016_j_aei_2022_101855 crossref_primary_10_1016_j_aej_2024_07_029 crossref_primary_10_1016_j_autcon_2022_104365 crossref_primary_10_1177_14759217211044116 crossref_primary_10_1177_14759217211069639 crossref_primary_10_1002_stc_2940 crossref_primary_10_32604_cmes_2022_018325 crossref_primary_10_1016_j_advengsoft_2024_103635  | 
    
| Cites_doi | 10.1016/j.compbiomed.2013.01.020 10.1016/j.engstruct.2010.12.011 10.1016/j.applthermaleng.2015.04.023 10.1016/j.renene.2017.11.011 10.1002/stc.2188 10.1177/1475921718760309 10.1016/j.engstruct.2015.03.001 10.3390/ijerph17010319 10.1016/j.apm.2019.09.046 10.1061/(ASCE)0887-3828(2009)23:3(166) 10.1016/j.asoc.2007.10.007 10.1016/j.ymssp.2018.03.022 10.1016/j.advengsoft.2012.11.015 10.1016/j.engstruct.2018.11.065 10.1002/stc.2037 10.1002/stc.2417 10.1177/1475921718797949 10.1002/stc.1575 10.1016/j.strusafe.2013.02.005 10.1016/j.engstruct.2006.04.022 10.1179/1752270614Y.0000000112 10.1007/s11831-015-9157-9 10.1177/1475921716654963 10.1007/s00521-012-0856-y 10.1177/1475921717748608 10.1016/j.aei.2018.11.006 10.1360/N092014-00181 10.1002/stc.1997  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Feb 1, 2021  | 
    
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Feb 1, 2021  | 
    
| DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI  | 
    
| DOI | 10.1016/j.engstruct.2020.111488 | 
    
| DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts  | 
    
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-7323 | 
    
| ExternalDocumentID | 10_1016_j_engstruct_2020_111488 S014102962034089X  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SSH SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW VH1 WUQ ZY4 ~HD 7SR 7ST 8BQ 8FD AGCQF C1K FR3 JG9 KR7 SOI  | 
    
| ID | FETCH-LOGICAL-c343t-84f18a6a9f1347475c8e71a86355812235cd369c3c9f5a3f081b90691cd43a7b3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0141-0296 | 
    
| IngestDate | Wed Aug 13 08:11:43 EDT 2025 Thu Oct 02 04:20:27 EDT 2025 Thu Apr 24 22:53:26 EDT 2025 Sun Apr 06 06:53:00 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Radial deformation Spatiotemporal hybrid model Concrete arch dam Support vector machine Residual series  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c343t-84f18a6a9f1347475c8e71a86355812235cd369c3c9f5a3f081b90691cd43a7b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2488041100 | 
    
| PQPubID | 2045481 | 
    
| ParticipantIDs | proquest_journals_2488041100 crossref_citationtrail_10_1016_j_engstruct_2020_111488 crossref_primary_10_1016_j_engstruct_2020_111488 elsevier_sciencedirect_doi_10_1016_j_engstruct_2020_111488  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-02-01 2021-02-00 20210201  | 
    
| PublicationDateYYYYMMDD | 2021-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Kidlington | 
    
| PublicationPlace_xml | – name: Kidlington | 
    
| PublicationTitle | Engineering structures | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Mata (b0020) 2011; 33 Su, Chen, Wen (b0060) 2016; 23 Li, Wang, Liu (b0180) 2013; 43 Wu (b0140) 2003 Zheng, Huo, Li (b0165) 2012; 02 Alcay, Yigit, Inal (b0085) 2018; 16 Dai, Liu, Meng (b0105) 2014; 46 Cheng, Zheng (b0005) 2013; 57 Huang, Dun (b0195) 2008; 8 Santillan, Salete, Vicente (b0175) 2014; 140 Hu, Wu (b0050) 2019; 18 Kang, Liu, Li (b0070) 2017 Shao, Gu, Yang, Xu, Su (b0090) 2018; 25 Gu, Fu, Shao (b0095) 2020; 17 Subasi (b0130) 2013; 43 De Sortis, Paoliani (b0030) 2007; 29 Léger, Hydrostatic (b0150) 2007; 133 Chen, Hu, Huang (b0170) 2019; 18 Wang, Hou, Wang (b0185) 2020 Wei, Chen, Li (b0125) 2020; 78 Wei, Peng, Xu (b0110) 2015; 45 Santillan, Salete, Toledo (b0080) 2015; 85 Mata, Castro, Costa (b0035) 2014; 21 Su, Li, Yang (b0065) 2018; 110 Léger, Seydou (b0045) 2009; 23 Wang, Xu, Gu (b0135) 2019 Wei, Yuan, Li (b0120) 2019; 18 Eseye, Zhang, Zheng (b0190) 2018; 118 Monjezi, Hasanipanah, Khandelwal (b0055) 2013; 22 Li, Zhou, Gan (b0100) 2011; 42 Wang, Xu, Gu (b0025) 2019; 26 Wei, Yuan, Xu (b0040) 2018 Kang, Li, Zhao (b0155) 2019; 180 Salazar, Moran, Toledo (b0015) 2017; 24 Shen, Mei, Wang (b0200) 2010 Su, Wen, Chen (b0115) 2016; 15 Gu, Wu (b0145) 2006 Li, Shen, Ren (b0010) 2019; 39 Santillan, Salete, Toledo (b0075) 2015; 92 Santillan, Salete, Toledo (b0160) 2015 Dai (10.1016/j.engstruct.2020.111488_b0105) 2014; 46 Wei (10.1016/j.engstruct.2020.111488_b0120) 2019; 18 Su (10.1016/j.engstruct.2020.111488_b0060) 2016; 23 Wu (10.1016/j.engstruct.2020.111488_b0140) 2003 Salazar (10.1016/j.engstruct.2020.111488_b0015) 2017; 24 Mata (10.1016/j.engstruct.2020.111488_b0035) 2014; 21 Wang (10.1016/j.engstruct.2020.111488_b0185) 2020 Monjezi (10.1016/j.engstruct.2020.111488_b0055) 2013; 22 Hu (10.1016/j.engstruct.2020.111488_b0050) 2019; 18 Alcay (10.1016/j.engstruct.2020.111488_b0085) 2018; 16 Li (10.1016/j.engstruct.2020.111488_b0100) 2011; 42 Chen (10.1016/j.engstruct.2020.111488_b0170) 2019; 18 Cheng (10.1016/j.engstruct.2020.111488_b0005) 2013; 57 Mata (10.1016/j.engstruct.2020.111488_b0020) 2011; 33 Shao (10.1016/j.engstruct.2020.111488_b0090) 2018; 25 Li (10.1016/j.engstruct.2020.111488_b0180) 2013; 43 Su (10.1016/j.engstruct.2020.111488_b0115) 2016; 15 Gu (10.1016/j.engstruct.2020.111488_b0095) 2020; 17 De Sortis (10.1016/j.engstruct.2020.111488_b0030) 2007; 29 Kang (10.1016/j.engstruct.2020.111488_b0070) 2017 Wang (10.1016/j.engstruct.2020.111488_b0025) 2019; 26 Eseye (10.1016/j.engstruct.2020.111488_b0190) 2018; 118 Subasi (10.1016/j.engstruct.2020.111488_b0130) 2013; 43 Léger (10.1016/j.engstruct.2020.111488_b0045) 2009; 23 Léger (10.1016/j.engstruct.2020.111488_b0150) 2007; 133 Gu (10.1016/j.engstruct.2020.111488_b0145) 2006 Santillan (10.1016/j.engstruct.2020.111488_b0075) 2015; 92 Santillan (10.1016/j.engstruct.2020.111488_b0080) 2015; 85 Zheng (10.1016/j.engstruct.2020.111488_b0165) 2012; 02 Li (10.1016/j.engstruct.2020.111488_b0010) 2019; 39 Wei (10.1016/j.engstruct.2020.111488_b0040) 2018 Su (10.1016/j.engstruct.2020.111488_b0065) 2018; 110 Santillan (10.1016/j.engstruct.2020.111488_b0160) 2015 Shen (10.1016/j.engstruct.2020.111488_b0200) 2010 Huang (10.1016/j.engstruct.2020.111488_b0195) 2008; 8 Wei (10.1016/j.engstruct.2020.111488_b0110) 2015; 45 Wang (10.1016/j.engstruct.2020.111488_b0135) 2019 Kang (10.1016/j.engstruct.2020.111488_b0155) 2019; 180 Santillan (10.1016/j.engstruct.2020.111488_b0175) 2014; 140 Wei (10.1016/j.engstruct.2020.111488_b0125) 2020; 78  | 
    
| References_xml | – volume: 133 start-page: 267 year: 2007 end-page: 277 ident: b0150 article-title: Temperature, time-displacement model for concrete dams publication-title: J Eng Mech – volume: 22 start-page: 1637 year: 2013 end-page: 1643 ident: b0055 article-title: Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network publication-title: Neural Comput Appl – volume: 42 start-page: 981 year: 2011 end-page: 985 ident: b0100 article-title: Research on multiple points deterministic displacement monitoring model of concrete arch dam publication-title: J Hydraul Eng – volume: 39 start-page: 41 year: 2019 end-page: 52 ident: b0010 article-title: A new distributed time series evolution prediction model for dam deformation based on constituent elements publication-title: Adv Eng Inf – volume: 45 start-page: 541 year: 2015 end-page: 546 ident: b0110 article-title: The GA-BP prediction model considering chaos effect of dam displacement residual publication-title: Scientia Sinica Technologica – start-page: 443 year: 2010 end-page: 451 ident: b0200 article-title: Deformation prediction model of concrete arch dam based on improved particle swarm optimization Algorithm. Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging publication-title: Environments – volume: 21 start-page: 423 year: 2014 end-page: 437 ident: b0035 article-title: Constructing statistical models for arch dam deformation publication-title: Struct Control Health Monit – volume: 25 year: 2018 ident: b0090 article-title: A novel model of dam displacement based on panel data publication-title: Struct Control Health Monit – volume: 16 start-page: 1279 year: 2018 end-page: 1291 ident: b0085 article-title: Analysis of displacement response of the Ermenek dam monitored by an integratedgeodetic and pendulum system. International publication-title: J Civ Eng – year: 2018 ident: b0040 article-title: Modified hybrid forecast model considering chaotic residual errors for dam deformation publication-title: Struct Control Health Monit – volume: 57 start-page: 48 year: 2013 end-page: 56 ident: b0005 article-title: Two online dam safety monitoring models based on the process of extracting environmental effect publication-title: Adv Eng Softw – volume: 78 start-page: 20 year: 2020 end-page: 36 ident: b0125 article-title: Optimized prediction model for concrete dam displacement based on signal residual amendment publication-title: Appl Math Model – volume: 18 start-page: 232 year: 2019 end-page: 244 ident: b0120 article-title: Combination forecast model for concrete dam displacement considering residual correction publication-title: Struct Health Monit – volume: 43 start-page: 12 year: 2013 end-page: 20 ident: b0180 article-title: Towards an error correction model for dam monitoring data analysis based on cointegration theory publication-title: Struct Saf – year: 2019 ident: b0135 article-title: Two spatial association–considered mathematical models for diagnosing the long-term balanced relationship and short-term fluctuation of the deformation behavior of high concrete arch dams publication-title: Struct Health Monit – volume: 23 start-page: 166 year: 2009 end-page: 174 ident: b0045 article-title: Seasonal thermal displacements of gravity dams located in northern regions publication-title: J Perform Constr Facil – volume: 23 year: 2016 ident: b0060 article-title: Performance improvement method of support vector machine-based model monitoring dam safety publication-title: Struct Control Health Monit – year: 2017 ident: b0070 article-title: Concrete dam deformation prediction model for health monitoring based on extreme learning machine publication-title: Struct Control Health Monit – volume: 46 start-page: 437 year: 2014 end-page: 443 ident: b0105 article-title: Spatio-temporal modelling of dam deformation using independent component analysis publication-title: Survey Rev – volume: 140 year: 2014 ident: b0175 article-title: Treatment of solar radiation by spatial and temporal discretization for modeling the thermal response of arch dams publication-title: J Eng Mech – volume: 180 start-page: 642 year: 2019 end-page: 653 ident: b0155 article-title: Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation publication-title: Eng Struct – year: 2015 ident: b0160 article-title: An improved 1D-model for computing the thermal behaviour of concrete dams during operation. Comparison with other approaches publication-title: Literary culture and the Pacific – volume: 15 start-page: 639 year: 2016 end-page: 649 ident: b0115 article-title: Dam safety prediction model considering chaotic characteristics in prototype monitoring data series publication-title: Struct Health Monit – volume: 118 start-page: 357 year: 2018 end-page: 367 ident: b0190 article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information publication-title: Renew Energy – volume: 18 start-page: 546 year: 2019 end-page: 562 ident: b0050 article-title: Statistical modeling for deformation analysis of concrete arch dams with influential horizontal cracks publication-title: Struct Health Monit – volume: 24 start-page: 1 year: 2017 end-page: 21 ident: b0015 article-title: Data-based models for the prediction of dam behaviour: a review and some methodological considerations publication-title: Arch Comput Methods Eng – start-page: 1 year: 2020 end-page: 14 ident: b0185 article-title: APU performance parameter prediction model based on adaptive variation PSO-SVM publication-title: J Syst Eng Electron – volume: 29 start-page: 110 year: 2007 end-page: 120 ident: b0030 article-title: Statistical analysis and structural identification in concrete dam monitoring publication-title: Eng Struct – year: 2006 ident: b0145 article-title: Safety monitoring of dams and dam foundations-theories & methods and their application – volume: 92 start-page: 123 year: 2015 end-page: 141 ident: b0075 article-title: A methodology for the assessment of the effect of climate change on the thermal-strain stress behavior of structures publication-title: Eng Struct – volume: 85 start-page: 160 year: 2015 end-page: 171 ident: b0080 article-title: A new 1D analytical model for computing the thermal field of concrete dams due to the environmental actions publication-title: Appl Therm Eng – volume: 26 year: 2019 ident: b0025 article-title: Hysteretic effect considered monitoring model for interpreting abnormal deformationbehavior of arch dams: A case study publication-title: Struct Control Health Monit – year: 2003 ident: b0140 article-title: Safety monitoring theory and its application of hydraulic structures – volume: 17 start-page: 319 year: 2020 ident: b0095 article-title: Application of spatiotemporal hybrid model of deformation in safety monitoring of high arch dams: a case study publication-title: Int J Environ Res Public Health – volume: 18 start-page: 1355 year: 2019 end-page: 1371 ident: b0170 article-title: A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data publication-title: Struct Health Monit – volume: 33 start-page: 903 year: 2011 end-page: 910 ident: b0020 article-title: Interpretation of concrete dam behavior with artificial neural network and multiple linear regression models publication-title: Eng Struct – volume: 8 start-page: 1381 year: 2008 end-page: 1391 ident: b0195 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization publication-title: Appl Soft Comput – volume: 110 start-page: 412 year: 2018 end-page: 427 ident: b0065 article-title: Wavelet support vector machine-based prediction model of dam deformation publication-title: Mech Syst Sig Process – volume: 02 start-page: 213 year: 2012 end-page: 219 ident: b0165 article-title: Arch-dam crack deformation monitoring hybrid model based on XFEM publication-title: Scientia Sinica Technologica – volume: 43 start-page: 576 year: 2013 end-page: 586 ident: b0130 article-title: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders publication-title: Comput Biol Med – volume: 140 issue: 11 year: 2014 ident: 10.1016/j.engstruct.2020.111488_b0175 article-title: Treatment of solar radiation by spatial and temporal discretization for modeling the thermal response of arch dams publication-title: J Eng Mech – volume: 43 start-page: 576 issue: 5 year: 2013 ident: 10.1016/j.engstruct.2020.111488_b0130 article-title: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2013.01.020 – volume: 33 start-page: 903 issue: 3 year: 2011 ident: 10.1016/j.engstruct.2020.111488_b0020 article-title: Interpretation of concrete dam behavior with artificial neural network and multiple linear regression models publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.12.011 – volume: 85 start-page: 160 year: 2015 ident: 10.1016/j.engstruct.2020.111488_b0080 article-title: A new 1D analytical model for computing the thermal field of concrete dams due to the environmental actions publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.04.023 – volume: 118 start-page: 357 year: 2018 ident: 10.1016/j.engstruct.2020.111488_b0190 article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information publication-title: Renew Energy doi: 10.1016/j.renene.2017.11.011 – year: 2018 ident: 10.1016/j.engstruct.2020.111488_b0040 article-title: Modified hybrid forecast model considering chaotic residual errors for dam deformation publication-title: Struct Control Health Monit doi: 10.1002/stc.2188 – volume: 18 start-page: 546 issue: 2 year: 2019 ident: 10.1016/j.engstruct.2020.111488_b0050 article-title: Statistical modeling for deformation analysis of concrete arch dams with influential horizontal cracks publication-title: Struct Health Monit doi: 10.1177/1475921718760309 – year: 2006 ident: 10.1016/j.engstruct.2020.111488_b0145 – volume: 92 start-page: 123 issue: jul.1 year: 2015 ident: 10.1016/j.engstruct.2020.111488_b0075 article-title: A methodology for the assessment of the effect of climate change on the thermal-strain stress behavior of structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2015.03.001 – volume: 17 start-page: 319 issue: 1 year: 2020 ident: 10.1016/j.engstruct.2020.111488_b0095 article-title: Application of spatiotemporal hybrid model of deformation in safety monitoring of high arch dams: a case study publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17010319 – volume: 78 start-page: 20 year: 2020 ident: 10.1016/j.engstruct.2020.111488_b0125 article-title: Optimized prediction model for concrete dam displacement based on signal residual amendment publication-title: Appl Math Model doi: 10.1016/j.apm.2019.09.046 – volume: 23 start-page: 166 issue: 3 year: 2009 ident: 10.1016/j.engstruct.2020.111488_b0045 article-title: Seasonal thermal displacements of gravity dams located in northern regions publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)0887-3828(2009)23:3(166) – volume: 8 start-page: 1381 issue: 4 year: 2008 ident: 10.1016/j.engstruct.2020.111488_b0195 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.10.007 – volume: 110 start-page: 412 year: 2018 ident: 10.1016/j.engstruct.2020.111488_b0065 article-title: Wavelet support vector machine-based prediction model of dam deformation publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2018.03.022 – volume: 133 start-page: 267 issue: 3 year: 2007 ident: 10.1016/j.engstruct.2020.111488_b0150 article-title: Temperature, time-displacement model for concrete dams publication-title: J Eng Mech – year: 2003 ident: 10.1016/j.engstruct.2020.111488_b0140 – volume: 57 start-page: 48 year: 2013 ident: 10.1016/j.engstruct.2020.111488_b0005 article-title: Two online dam safety monitoring models based on the process of extracting environmental effect publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2012.11.015 – start-page: 1 year: 2020 ident: 10.1016/j.engstruct.2020.111488_b0185 article-title: APU performance parameter prediction model based on adaptive variation PSO-SVM publication-title: J Syst Eng Electron – volume: 180 start-page: 642 year: 2019 ident: 10.1016/j.engstruct.2020.111488_b0155 article-title: Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.11.065 – volume: 25 issue: 1 year: 2018 ident: 10.1016/j.engstruct.2020.111488_b0090 article-title: A novel model of dam displacement based on panel data publication-title: Struct Control Health Monit doi: 10.1002/stc.2037 – volume: 26 issue: 10 year: 2019 ident: 10.1016/j.engstruct.2020.111488_b0025 article-title: Hysteretic effect considered monitoring model for interpreting abnormal deformationbehavior of arch dams: A case study publication-title: Struct Control Health Monit doi: 10.1002/stc.2417 – volume: 18 start-page: 1355 issue: 5–6 year: 2019 ident: 10.1016/j.engstruct.2020.111488_b0170 article-title: A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data publication-title: Struct Health Monit doi: 10.1177/1475921718797949 – volume: 21 start-page: 423 issue: 3 year: 2014 ident: 10.1016/j.engstruct.2020.111488_b0035 article-title: Constructing statistical models for arch dam deformation publication-title: Struct Control Health Monit doi: 10.1002/stc.1575 – start-page: 443 year: 2010 ident: 10.1016/j.engstruct.2020.111488_b0200 article-title: Deformation prediction model of concrete arch dam based on improved particle swarm optimization Algorithm. Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging publication-title: Environments – volume: 42 start-page: 981 issue: 8 year: 2011 ident: 10.1016/j.engstruct.2020.111488_b0100 article-title: Research on multiple points deterministic displacement monitoring model of concrete arch dam publication-title: J Hydraul Eng – year: 2015 ident: 10.1016/j.engstruct.2020.111488_b0160 article-title: An improved 1D-model for computing the thermal behaviour of concrete dams during operation. Comparison with other approaches – volume: 02 start-page: 213 year: 2012 ident: 10.1016/j.engstruct.2020.111488_b0165 article-title: Arch-dam crack deformation monitoring hybrid model based on XFEM publication-title: Scientia Sinica Technologica – volume: 23 issue: 252–266 year: 2016 ident: 10.1016/j.engstruct.2020.111488_b0060 article-title: Performance improvement method of support vector machine-based model monitoring dam safety publication-title: Struct Control Health Monit – year: 2019 ident: 10.1016/j.engstruct.2020.111488_b0135 article-title: Two spatial association–considered mathematical models for diagnosing the long-term balanced relationship and short-term fluctuation of the deformation behavior of high concrete arch dams publication-title: Struct Health Monit – volume: 43 start-page: 12 year: 2013 ident: 10.1016/j.engstruct.2020.111488_b0180 article-title: Towards an error correction model for dam monitoring data analysis based on cointegration theory publication-title: Struct Saf doi: 10.1016/j.strusafe.2013.02.005 – volume: 29 start-page: 110 issue: 1 year: 2007 ident: 10.1016/j.engstruct.2020.111488_b0030 article-title: Statistical analysis and structural identification in concrete dam monitoring publication-title: Eng Struct doi: 10.1016/j.engstruct.2006.04.022 – volume: 46 start-page: 437 issue: 339 year: 2014 ident: 10.1016/j.engstruct.2020.111488_b0105 article-title: Spatio-temporal modelling of dam deformation using independent component analysis publication-title: Survey Rev doi: 10.1179/1752270614Y.0000000112 – volume: 24 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.engstruct.2020.111488_b0015 article-title: Data-based models for the prediction of dam behaviour: a review and some methodological considerations publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-015-9157-9 – volume: 15 start-page: 639 year: 2016 ident: 10.1016/j.engstruct.2020.111488_b0115 article-title: Dam safety prediction model considering chaotic characteristics in prototype monitoring data series publication-title: Struct Health Monit doi: 10.1177/1475921716654963 – volume: 16 start-page: 1279 issue: 10 year: 2018 ident: 10.1016/j.engstruct.2020.111488_b0085 article-title: Analysis of displacement response of the Ermenek dam monitored by an integratedgeodetic and pendulum system. International publication-title: J Civ Eng – volume: 22 start-page: 1637 issue: 7–8 year: 2013 ident: 10.1016/j.engstruct.2020.111488_b0055 article-title: Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0856-y – volume: 18 start-page: 232 issue: 1 year: 2019 ident: 10.1016/j.engstruct.2020.111488_b0120 article-title: Combination forecast model for concrete dam displacement considering residual correction publication-title: Struct Health Monit doi: 10.1177/1475921717748608 – volume: 39 start-page: 41 year: 2019 ident: 10.1016/j.engstruct.2020.111488_b0010 article-title: A new distributed time series evolution prediction model for dam deformation based on constituent elements publication-title: Adv Eng Inf doi: 10.1016/j.aei.2018.11.006 – volume: 45 start-page: 541 year: 2015 ident: 10.1016/j.engstruct.2020.111488_b0110 article-title: The GA-BP prediction model considering chaos effect of dam displacement residual publication-title: Scientia Sinica Technologica doi: 10.1360/N092014-00181 – year: 2017 ident: 10.1016/j.engstruct.2020.111488_b0070 article-title: Concrete dam deformation prediction model for health monitoring based on extreme learning machine publication-title: Struct Control Health Monit doi: 10.1002/stc.1997  | 
    
| SSID | ssj0002880 | 
    
| Score | 2.5839884 | 
    
| Snippet | •A dam deformation spatiotemporal hybrid model considering chaotic effect in residual series is proposed.•The model has good ability to predict the overall... Single-measuring point deformation monitoring model is the most popular method in dam health monitoring. Considering that single-point monitoring model cannot...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 111488 | 
    
| SubjectTerms | Algorithms Arch dams Computer applications Concrete Concrete arch dam Concrete dams Dams Deformation Deformation effects Finite element method Mathematical analysis Mathematical models Monitoring Particle swarm optimization Predictions Radial deformation Residual series Spatiotemporal hybrid model Support vector machine Support vector machines  | 
    
| Title | Spatiotemporal hybrid model for concrete arch dam deformation monitoring considering chaotic effect of residual series | 
    
| URI | https://dx.doi.org/10.1016/j.engstruct.2020.111488 https://www.proquest.com/docview/2488041100  | 
    
| Volume | 228 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: AKRWK dateStart: 19781001 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuJ0jhy81rVJmrbexnBMhV3mYLeQtombzG2wIXjxb_e9tJ1OhB28lfKSlryX9wG_936E3IgUCmljpSckUpjxhHtQNhvPphCutMhSnTu0xUD2R-JxHI5rpFv1wiCssvT9hU933rp80y5Ps72cTttDB1FkiWQ-F36cjLGDXUTIYnD7-Q3zYLFjT0NhD6W3MF5m_lKMaYVCkTn3IRwFy58R6pevdgGod0QOy8yRdoqfOyY1Mz8hBz_mCZ6S96HDR5fjpmZ08oH9WNSx3VDITikUv5Alrg1F86a5fqO52bQvghzeb9wKBR2Pp3ue6AV8kxbQD7qwFEp018NF0X7N6oyMevfP3b5XEit4GRd87cXCBrGWOrHYSCqiMItNFOgYkw8I-IyHWc5lkvEssaHmFtKGNPFlEmQ5KDBK-Tmpzxdzc0GoFVIYw6KcWwOlIte55uACIh6KgNlcN4isDlNl5dRxJL-YqQpe9qo2WlCoBVVooUH8zcJlMXhj95K7Sltqy4YUhIfdi5uVflV5jVeKoXsTOFXv8j97X5F9hlAYB_ZukjoImGvIZdZpyxlri-x1Hp76gy_1XPZy | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT8IwEG4QH9QH48-IovbB1wm0Xbf5ZogEFXkBEt6abmsVg0ACMfHFv927bkMxJjz4tizXbuldv7tLvrsj5ErEkEgbKz0hcYQZj7gHabPxbAzuSosk1qljW3RleyAehv6wRJpFLQzSKnPszzDdoXX-ppafZm02GtV6jqLIIsnqXNTDaLhBNoXPAszArj-_eR4sdOPTUNpD8RWSl5k8Z31aIVNkDj-Em8Hyp4v6BdbOA7X2yG4eOtLb7O_2SclMDsjOj4aCh-S95wjSeb-pMX35wIIs6sbdUAhPKWS_ECYuDEX7pql-o6lZ1i-CHF5w3AoF3SBP9_yip_BNmnE_6NRSyNFdERdFAzbzIzJo3fWbbS-frOAlXPCFFwrbCLXUkcVKUhH4SWiChg4x-gCPz7ifpFxGCU8i62tuIW6Io7qMGkkKGgxifkzKk-nEnBBqhRTGsCDl1kCuyHWqOWBAwH3RYDbVFSKLw1RJ3nYcp1-MVcEve1VLLSjUgsq0UCH15cJZ1nlj_ZKbQltqxYgU-If1i6uFflV-j-eKIb4JbKt3-p-9L8lWu__UUZ377uMZ2WbIi3HM7yopg7A5h8BmEV84w_0Cpdb4Bw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+hybrid+model+for+concrete+arch+dam+deformation+monitoring+considering+chaotic+effect+of+residual+series&rft.jtitle=Engineering+structures&rft.au=Wei%2C+Bowen&rft.au=Liu%2C+Bo&rft.au=Yuan%2C+Dongyang&rft.au=Mao%2C+Ying&rft.date=2021-02-01&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.volume=228&rft_id=info:doi/10.1016%2Fj.engstruct.2020.111488&rft.externalDocID=S014102962034089X | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |