Unveiling breast cancer risk profiles: a survival clustering analysis empowered by an online web application
To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival information. Analysis is based on the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which contains 1726 subjects...
        Saved in:
      
    
          | Published in | Future oncology (London, England) Vol. 19; no. 40; pp. 2651 - 2667 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Future Medicine Ltd
    
        01.12.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1479-6694 1744-8301 1744-8301  | 
| DOI | 10.2217/fon-2023-0736 | 
Cover
| Abstract | To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival information.
Analysis is based on the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which contains 1726 subjects and 22 variables. Cox regression was used to identify survival risk factors for K-means clustering. Logrank tests and C-statistics were compared across different cluster numbers and Kaplan–Meier plots were presented.
Our study fills an existing void by introducing a unique combination of unsupervised learning techniques and survival information on the clinician side, demonstrating the potential of survival clustering as a valuable tool in uncovering hidden structures based on distinct risk profiles. | 
    
|---|---|
| AbstractList | To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival information.
Analysis is based on the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which contains 1726 subjects and 22 variables. Cox regression was used to identify survival risk factors for K-means clustering. Logrank tests and C-statistics were compared across different cluster numbers and Kaplan-Meier plots were presented.
Our study fills an existing void by introducing a unique combination of unsupervised learning techniques and survival information on the clinician side, demonstrating the potential of survival clustering as a valuable tool in uncovering hidden structures based on distinct risk profiles. Aim: To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival information. Materials & methods: Analysis is based on the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which contains 1726 subjects and 22 variables. Cox regression was used to identify survival risk factors for K-means clustering. Logrank tests and C-statistics were compared across different cluster numbers and Kaplan-Meier plots were presented. Results & conclusion: Our study fills an existing void by introducing a unique combination of unsupervised learning techniques and survival information on the clinician side, demonstrating the potential of survival clustering as a valuable tool in uncovering hidden structures based on distinct risk profiles.Aim: To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival information. Materials & methods: Analysis is based on the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which contains 1726 subjects and 22 variables. Cox regression was used to identify survival risk factors for K-means clustering. Logrank tests and C-statistics were compared across different cluster numbers and Kaplan-Meier plots were presented. Results & conclusion: Our study fills an existing void by introducing a unique combination of unsupervised learning techniques and survival information on the clinician side, demonstrating the potential of survival clustering as a valuable tool in uncovering hidden structures based on distinct risk profiles.  | 
    
| Author | Gong, Yishu Li, Chen Wang, Mingyue Gu, Yuan Wang, Yuli Wang, Ziyang Zhang, Dan Li, Xin Jiang, Song  | 
    
| AuthorAffiliation | 4Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK 5Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA 7Department of Information Science and Engineering, Shandong University, Shan Dong, China 3Harvard T.H. Chan School of Public Health, Harvard University, Boston, NY 02115, USA 2Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA 6Department of Biochemistry, Huzhou Institute of Biological Products Co., Ltd., 313017, China 8Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, 14195, Germany 1Department of Statistics, The George Washington University, Washington, DC 20052, USA  | 
    
| AuthorAffiliation_xml | – name: 5Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA – name: 2Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA – name: 4Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK – name: 8Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, 14195, Germany – name: 1Department of Statistics, The George Washington University, Washington, DC 20052, USA – name: 3Harvard T.H. Chan School of Public Health, Harvard University, Boston, NY 02115, USA – name: 6Department of Biochemistry, Huzhou Institute of Biological Products Co., Ltd., 313017, China – name: 7Department of Information Science and Engineering, Shandong University, Shan Dong, China  | 
    
| Author_xml | – sequence: 1 givenname: Yuan orcidid: 0000-0001-6222-7241 surname: Gu fullname: Gu, Yuan organization: Department of Statistics, The George Washington University, Washington, DC20052, USA – sequence: 2 givenname: Mingyue orcidid: 0000-0002-4141-3931 surname: Wang fullname: Wang, Mingyue organization: Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA – sequence: 3 givenname: Yishu orcidid: 0000-0002-7777-6363 surname: Gong fullname: Gong, Yishu organization: Harvard T.H. Chan School of Public Health, Harvard University, Boston, NY 02115, USA – sequence: 4 givenname: Xin orcidid: 0009-0009-2682-428X surname: Li fullname: Li, Xin organization: Department of Statistics, The George Washington University, Washington, DC20052, USA – sequence: 5 givenname: Ziyang orcidid: 0000-0003-1605-0873 surname: Wang fullname: Wang, Ziyang organization: Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK – sequence: 6 givenname: Yuli orcidid: 0000-0003-3311-2810 surname: Wang fullname: Wang, Yuli organization: Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA – sequence: 7 givenname: Song orcidid: 0009-0007-8363-7304 surname: Jiang fullname: Jiang, Song organization: Department of Biochemistry, Huzhou Institute of Biological Products Co., Ltd., 313017, China – sequence: 8 givenname: Dan orcidid: 0000-0001-5625-8615 surname: Zhang fullname: Zhang, Dan organization: Department of Information Science and Engineering, Shandong University, Shan Dong, China – sequence: 9 givenname: Chen orcidid: 0000-0002-6895-2759 surname: Li fullname: Li, Chen organization: Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, 14195, Germany  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38095059$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp1kTtv2zAUhYkiQew8xq4Fxy5KrkhKFLsVQZsECJClmQmKvCrY0pRKSjb870vXyVLAEx_4zsG591ySszhGJORjDbeM1fJuGGPFgPEKJG8_kHUthag6DvVZuQupqrZVYkUuc_4FICRv4IKseAeqgUatSXiNW_TBx5-0T2jyTK2JFhNNPv-mUxoHHzB_oYbmJW391gRqw5JnTAeJiSbss88UN9O4w4SO9vvyS8dYLJHusKdmmoK3ZvZjvCbngwkZb97OK_L6_duP-8fq-eXh6f7rc2W54HMllXMldW2ddFyIru6wdR0y6PoenHWKqYE7pUAgH6wSjWUFcI0CWYNjgl-Rz0ffkv_PgnnWG58thmAijkvWTAFTrQQlC_rpDV36DTo9Jb8xaa_fN1QAfgRsGnNOOGjr53_TzMn4oGvQhx506UEfetCHHoqq-k_1bnyKV0d-WOYlYbYeSwv6-Cq5vC3rPKH9CxUMnuk | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3443126 crossref_primary_10_3389_fonc_2024_1444531  | 
    
| Cites_doi | 10.1088/1361-6560/ac0b82 10.1177/000313480907500703 10.1038/s41523-018-0056-8 10.1186/s12911-019-0801-4 10.1371/journal.pone.0162259 10.1002/jcp.21799 10.1023/A:1022166517963 10.1093/jnci/djm059 10.1038/s41598-022-06841-0 10.1186/s13040-015-0078-9 10.1093/jjco/hyv112 10.1023/A:1005765403093 10.1080/15476286.2019.1679585 10.1158/0008-5472.CAN-07-1683 10.1016/j.jgg.2021.03.016 10.1002/1097-0142(19871201)60:11<2766::AID-CNCR2820601129>3.0.CO;2-0 10.1016/j.compbiomed.2011.10.016 10.1111/bjh.17342 10.1371/journal.pcbi.1009459 10.1007/s00253-022-11917-y 10.1016/j.semcancer.2008.03.013 10.1186/s12920-017-0250-9 10.3390/ijerph19159306 10.1186/s12911-023-02293-2 10.1016/S0140-6736(03)13308-9 10.1002/hep.1840070628 10.1002/1097-0142(19890101)63:1<181::AID-CNCR2820630129>3.0.CO;2-H 10.1200/CCI.23.00049 10.1007/BF01840834 10.1158/1078-0432.CCR-08-1211 10.1016/j.apsb.2022.02.023 10.1186/s12911-020-01225-8 10.1016/S0959-8049(99)00264-6 10.2196/27633 10.1162/089976698300017575 10.1200/CCI.21.00031 10.1038/s41467-021-26216-9 10.1016/j.semcancer.2018.06.005 10.1073/pnas.0932692100 10.1016/j.otohns.2010.05.007 10.1016/j.compbiomed.2022.105617 10.1371/journal.pone.0285852 10.12688/f1000research.9417.3 10.3389/fgene.2019.00166 10.21037/atm.2018.02.12 10.1088/1361-6560/ab23cb 10.1016/j.prp.2023.154850 10.1038/nature10983 10.1007/s10549-007-9596-6 10.1101/2023.05.31.23290804 10.1016/j.artmed.2007.11.005 10.1159/000012061 10.3390/s21124085 10.1016/j.jacc.2020.07.059 10.1007/s10549-019-05462-y 10.1093/postmj/qgad095 10.1088/1361-6560/ab8c92 10.1038/sj.bjc.6601119 10.1093/aje/kws457 10.1158/0008-5472.CAN-21-2335 10.1371/journal.pone.0244378 10.1890/07-0539.1 10.1016/j.neunet.2021.09.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Future Medicine Ltd | 
    
| Copyright_xml | – notice: 2023 Future Medicine Ltd | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.2217/fon-2023-0736 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1744-8301 | 
    
| EndPage | 2667 | 
    
| ExternalDocumentID | 38095059 10_2217_fon_2023_0736  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 70G AAWTL ABJNI ACGFS ACWKX ADBBV AENEX AFFYO AHMBA ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS F5P HZ~ IAO IEA IHR K-O MV1 NTCAX O9- P2P RFM TFL 7X7 88E 8AO 8FI 8FJ AAWFG AAYXX ABNDM ABUWG AFKRA BENPR BPHCQ BVXVI CCPQU CITATION EHMNL EJD FYUFA H13 HMCUK ITC M1P M4Z OVD PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RPM TDBHL TEORI TFMDE TMEDX UKHRP 3V. ALIPV CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c343t-79dd6691cd7d344818e6d8e208bb0dcd929f3d9904e3fc945c2e6dd590710d243 | 
    
| ISSN | 1479-6694 1744-8301  | 
    
| IngestDate | Sun Sep 28 08:04:22 EDT 2025 Wed Feb 19 02:06:17 EST 2025 Wed Oct 01 04:48:03 EDT 2025 Thu Apr 24 23:13:31 EDT 2025 Fri May 10 00:16:09 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 40 | 
    
| Keywords | survival breast cancer shiny Cox regression machine learning web-based application Kaplan–Meier curve K-means clustering cancer risk profiles unsupervised learning  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c343t-79dd6691cd7d344818e6d8e208bb0dcd929f3d9904e3fc945c2e6dd590710d243 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0009-0009-2682-428X 0009-0007-8363-7304 0000-0001-6222-7241 0000-0002-4141-3931 0000-0003-3311-2810 0000-0003-1605-0873 0000-0001-5625-8615 0000-0002-7777-6363 0000-0002-6895-2759  | 
    
| PMID | 38095059 | 
    
| PQID | 2902967097 | 
    
| PQPubID | 23479 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | proquest_miscellaneous_2902967097 pubmed_primary_38095059 crossref_citationtrail_10_2217_fon_2023_0736 crossref_primary_10_2217_fon_2023_0736 futurescience_futuremedicine_10_2217_fon_2023_0736  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20231201 2023-12-00 2023-Dec  | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 20231201 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Future oncology (London, England) | 
    
| PublicationTitleAlternate | Future Oncol | 
    
| PublicationYear | 2023 | 
    
| Publisher | Future Medicine Ltd | 
    
| Publisher_xml | – name: Future Medicine Ltd | 
    
| References | e_1_3_6_30_1 e_1_3_6_53_1 e_1_3_6_55_1 e_1_3_6_11_1 e_1_3_6_51_1 e_1_3_6_70_1 e_1_3_6_15_1 e_1_3_6_38_1 e_1_3_6_13_1 e_1_3_6_19_1 e_1_3_6_34_1 e_1_3_6_57_1 e_1_3_6_17_1 e_1_3_6_59_1 e_1_3_6_42_1 e_1_3_6_65_1 e_1_3_6_21_1 e_1_3_6_44_1 e_1_3_6_63_1 e_1_3_6_61_1 e_1_3_6_40_1 e_1_3_6_6_1 e_1_3_6_4_1 Yang Q (e_1_3_6_16_1) 2023; 10 e_1_3_6_8_1 e_1_3_6_27_1 e_1_3_6_29_1 e_1_3_6_23_1 e_1_3_6_46_1 e_1_3_6_69_1 e_1_3_6_25_1 e_1_3_6_48_1 e_1_3_6_67_1 e_1_3_6_31_1 e_1_3_6_52_1 e_1_3_6_33_1 e_1_3_6_54_1 e_1_3_6_10_1 e_1_3_6_73_1 e_1_3_6_50_1 Feng A (e_1_3_6_32_1) 2023 Chi CL (e_1_3_6_43_1) 2007; 2007 Novak A (e_1_3_6_72_1) 2019; 32 Bayati H (e_1_3_6_71_1) 2008; 2008 Hajihosseini M (e_1_3_6_36_1) 2015; 44 e_1_3_6_14_1 e_1_3_6_39_1 e_1_3_6_12_1 e_1_3_6_18_1 El Haji H (e_1_3_6_41_1) 2023; 7 e_1_3_6_56_1 e_1_3_6_37_1 e_1_3_6_58_1 e_1_3_6_20_1 Vahdaninia M (e_1_3_6_35_1) 2004; 5 e_1_3_6_66_1 e_1_3_6_22_1 e_1_3_6_64_1 e_1_3_6_62_1 e_1_3_6_60_1 e_1_3_6_5_1 e_1_3_6_3_1 e_1_3_6_9_1 e_1_3_6_7_1 e_1_3_6_28_1 e_1_3_6_49_1 e_1_3_6_24_1 e_1_3_6_45_1 Banu A (e_1_3_6_47_1) 2023; 305 e_1_3_6_26_1 e_1_3_6_68_1  | 
    
| References_xml | – ident: e_1_3_6_27_1 doi: 10.1088/1361-6560/ac0b82 – ident: e_1_3_6_13_1 doi: 10.1177/000313480907500703 – ident: e_1_3_6_60_1 doi: 10.1038/s41523-018-0056-8 – ident: e_1_3_6_31_1 doi: 10.1186/s12911-019-0801-4 – ident: e_1_3_6_19_1 doi: 10.1371/journal.pone.0162259 – ident: e_1_3_6_12_1 doi: 10.1002/jcp.21799 – ident: e_1_3_6_69_1 doi: 10.1023/A:1022166517963 – ident: e_1_3_6_70_1 doi: 10.1093/jnci/djm059 – ident: e_1_3_6_26_1 doi: 10.1038/s41598-022-06841-0 – ident: e_1_3_6_62_1 doi: 10.1186/s13040-015-0078-9 – volume: 32 start-page: 99 issue: 1 year: 2019 ident: e_1_3_6_72_1 article-title: The introduction of health behavior profiles in the Hungarian Defense Forces: a cluster analysis of lifestyle factors according to the health screening tests performed in 2011–2015 publication-title: Int. J. Occup. Med. Environ. Health – volume: 2008 start-page: 4684 year: 2008 ident: e_1_3_6_71_1 article-title: A heuristic method for finding the optimal number of clusters with application in medical data publication-title: Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. – ident: e_1_3_6_14_1 doi: 10.1093/jjco/hyv112 – ident: e_1_3_6_34_1 doi: 10.1023/A:1005765403093 – ident: e_1_3_6_45_1 doi: 10.1080/15476286.2019.1679585 – ident: e_1_3_6_7_1 doi: 10.1158/0008-5472.CAN-07-1683 – volume: 305 start-page: 632 year: 2023 ident: e_1_3_6_47_1 article-title: Predicting overall survival in METABRIC cohort using machine learning publication-title: Stud. Health Technol. Inform – ident: e_1_3_6_28_1 doi: 10.1016/j.jgg.2021.03.016 – ident: e_1_3_6_65_1 doi: 10.1002/1097-0142(19871201)60:11<2766::AID-CNCR2820601129>3.0.CO;2-0 – ident: e_1_3_6_18_1 doi: 10.1016/j.compbiomed.2011.10.016 – ident: e_1_3_6_57_1 doi: 10.1111/bjh.17342 – ident: e_1_3_6_61_1 doi: 10.1371/journal.pcbi.1009459 – ident: e_1_3_6_73_1 doi: 10.1007/s00253-022-11917-y – ident: e_1_3_6_10_1 doi: 10.1016/j.semcancer.2008.03.013 – ident: e_1_3_6_4_1 doi: 10.1186/s12920-017-0250-9 – ident: e_1_3_6_29_1 doi: 10.3390/ijerph19159306 – ident: e_1_3_6_33_1 doi: 10.1186/s12911-023-02293-2 – year: 2023 ident: e_1_3_6_32_1 article-title: Label propagation via random walk for training robust thalamus nuclei parcellation model from noisy annotations publication-title: ArXiv – volume: 5 start-page: 223 issue: 2 year: 2004 ident: e_1_3_6_35_1 article-title: Breast cancer in Iran: a survival analysis publication-title: Asian Pac. J. Cancer Prev. – ident: e_1_3_6_48_1 doi: 10.1016/S0140-6736(03)13308-9 – ident: e_1_3_6_21_1 doi: 10.1002/hep.1840070628 – ident: e_1_3_6_66_1 doi: 10.1002/1097-0142(19890101)63:1<181::AID-CNCR2820630129>3.0.CO;2-H – volume: 7 start-page: e2300049 year: 2023 ident: e_1_3_6_41_1 article-title: Evolution of breast cancer recurrence risk prediction: a systematic review of statistical and machine learning-based models publication-title: JCO Clin. Cancer Inform doi: 10.1200/CCI.23.00049 – ident: e_1_3_6_67_1 doi: 10.1007/BF01840834 – ident: e_1_3_6_15_1 doi: 10.1158/1078-0432.CCR-08-1211 – volume: 2007 start-page: 130 year: 2007 ident: e_1_3_6_43_1 article-title: Application of artificial neural network-based survival analysis on two breast cancer datasets publication-title: AMIA Annu. Symp. Proc. – ident: e_1_3_6_11_1 doi: 10.1016/j.apsb.2022.02.023 – ident: e_1_3_6_44_1 doi: 10.1186/s12911-020-01225-8 – ident: e_1_3_6_68_1 doi: 10.1016/S0959-8049(99)00264-6 – ident: e_1_3_6_24_1 doi: 10.2196/27633 – ident: e_1_3_6_40_1 doi: 10.1162/089976698300017575 – ident: e_1_3_6_6_1 doi: 10.1200/CCI.21.00031 – ident: e_1_3_6_58_1 doi: 10.1038/s41467-021-26216-9 – ident: e_1_3_6_9_1 doi: 10.1016/j.semcancer.2018.06.005 – ident: e_1_3_6_49_1 doi: 10.1073/pnas.0932692100 – ident: e_1_3_6_20_1 doi: 10.1016/j.otohns.2010.05.007 – ident: e_1_3_6_37_1 doi: 10.1016/j.compbiomed.2022.105617 – ident: e_1_3_6_39_1 doi: 10.1371/journal.pone.0285852 – volume: 10 start-page: 044001 issue: 4 year: 2023 ident: e_1_3_6_16_1 article-title: Single slice thigh CT muscle group segmentation with domain adaptation and self-training publication-title: J. Med. Imaging (Bellingham) – ident: e_1_3_6_63_1 doi: 10.12688/f1000research.9417.3 – ident: e_1_3_6_52_1 doi: 10.3389/fgene.2019.00166 – ident: e_1_3_6_22_1 doi: 10.21037/atm.2018.02.12 – ident: e_1_3_6_59_1 doi: 10.1088/1361-6560/ab23cb – ident: e_1_3_6_8_1 doi: 10.1016/j.prp.2023.154850 – ident: e_1_3_6_17_1 doi: 10.1038/nature10983 – ident: e_1_3_6_50_1 doi: 10.1007/s10549-007-9596-6 – volume: 44 start-page: 1677 issue: 12 year: 2015 ident: e_1_3_6_36_1 article-title: Survival analysis of breast cancer patients after surgery with an intermediate event: application of illness-death model publication-title: Iran J. Public Health – ident: e_1_3_6_25_1 doi: 10.1101/2023.05.31.23290804 – ident: e_1_3_6_3_1 doi: 10.1016/j.artmed.2007.11.005 – ident: e_1_3_6_30_1 doi: 10.1159/000012061 – ident: e_1_3_6_51_1 doi: 10.3390/s21124085 – ident: e_1_3_6_56_1 doi: 10.1016/j.jacc.2020.07.059 – ident: e_1_3_6_64_1 doi: 10.1007/s10549-019-05462-y – ident: e_1_3_6_42_1 doi: 10.1093/postmj/qgad095 – ident: e_1_3_6_46_1 doi: 10.1088/1361-6560/ab8c92 – ident: e_1_3_6_23_1 doi: 10.1038/sj.bjc.6601119 – ident: e_1_3_6_5_1 doi: 10.1093/aje/kws457 – ident: e_1_3_6_55_1 doi: 10.1158/0008-5472.CAN-21-2335 – ident: e_1_3_6_53_1 doi: 10.1371/journal.pone.0244378 – ident: e_1_3_6_38_1 doi: 10.1890/07-0539.1 – ident: e_1_3_6_54_1 doi: 10.1016/j.neunet.2021.09.006  | 
    
| SSID | ssj0047350 | 
    
| Score | 2.404721 | 
    
| Snippet | To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival... Aim: To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival...  | 
    
| SourceID | proquest pubmed crossref futurescience  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2651 | 
    
| SubjectTerms | breast cancer Breast Neoplasms - epidemiology Breast Neoplasms - genetics Breast Neoplasms - therapy cancer risk profiles Cluster Analysis Cox regression Female Humans K-means clustering Kaplan–Meier curve machine learning Risk Factors shiny survival Survival Analysis unsupervised learning web-based application  | 
    
| Title | Unveiling breast cancer risk profiles: a survival clustering analysis empowered by an online web application | 
    
| URI | http://dx.doi.org/10.2217/fon-2023-0736 https://www.ncbi.nlm.nih.gov/pubmed/38095059 https://www.proquest.com/docview/2902967097  | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1744-8301 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0047350 issn: 1479-6694 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB2Mwxr6XrhsajL1s7lxJ_lDfxlgpg-6pgb4Z68MwCM5onI72r--dT3KckMDWFxOLs5XofrrcSbrfMfbRN2mppLSJx9mkjIMpVTiVWKFKCH5ycGFxaeDsV346VT8vsotVzdY-u6Qzh_Zma17JXbQKbaBXzJL9D80OL4UG-Az6hStoGK7_pONpe-V_9_nkBs-Wd3iEy_pLOi8eqnEvKJ15sQSbcIVkILMlciNQbmIgJEF6qr9YtBOdUaxV0dNnfMY0xtEG99iPPempSEDQEofTtsIgcZEhrCkIuXE-I7zjLOzujw4YoYlUhU7ynEoTH3pqK5RKShleEe2qHuGHOJmilcwDyawPt1SRY9OaC9FTQDXzNum_ZEpZCpsE2RDGoGQFchXKVSh3nz0QYOfTuH5D_81YZ7lPkY2_gVhX8fGva92seSmPid4luCS7Q5HeJTl_yp6EWIJ_I2A8Y_d8-5w9jOP5gs0GfHDCByd8cMQHj_g45jWP6OArdPCIDj6gg5traOWEDg7o4CN0vGTTkx_n30-TUF0jsVLJLim0czAER9YVTkKQflT63JVepKUxqbMO_OZGOnBWlJeN1SqzAgRcptEpdULJV2yvnbf-DeMmK6zNvM3A-VN1WmgtclcLUwutcq-bCfsSR7OygXoeK6DMqq26m7BPg_gf4lzZJSjWVFPRXTyVsuuhD1F_FZhS3B-rWz9fLiqhU6GRz7CYsNek2KF_WUIsAqHI_l26fMserWbZAdvrLpf-HfiynXnfw_MWq3GhZQ | 
    
| linkProvider | National Library of Medicine | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+breast+cancer+risk+profiles%3A+a+survival+clustering+analysis+empowered+by+an+online+web+application&rft.jtitle=Future+oncology+%28London%2C+England%29&rft.date=2023-12-01&rft.pub=Future+Medicine+Ltd&rft.issn=1479-6694&rft.eissn=1744-8301&rft.volume=19&rft.issue=40&rft.spage=2651&rft.epage=2667&rft_id=info:doi/10.2217%2Ffon-2023-0736&rft.externalDocID=10_2217_fon_2023_0736 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-6694&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-6694&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-6694&client=summon |