Unveiling breast cancer risk profiles: a survival clustering analysis empowered by an online web application

To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival information. Analysis is based on the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which contains 1726 subjects...

Full description

Saved in:
Bibliographic Details
Published inFuture oncology (London, England) Vol. 19; no. 40; pp. 2651 - 2667
Main Authors Gu, Yuan, Wang, Mingyue, Gong, Yishu, Li, Xin, Wang, Ziyang, Wang, Yuli, Jiang, Song, Zhang, Dan, Li, Chen
Format Journal Article
LanguageEnglish
Published England Future Medicine Ltd 01.12.2023
Subjects
Online AccessGet full text
ISSN1479-6694
1744-8301
1744-8301
DOI10.2217/fon-2023-0736

Cover

Abstract To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival information. Analysis is based on the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which contains 1726 subjects and 22 variables. Cox regression was used to identify survival risk factors for K-means clustering. Logrank tests and C-statistics were compared across different cluster numbers and Kaplan–Meier plots were presented. Our study fills an existing void by introducing a unique combination of unsupervised learning techniques and survival information on the clinician side, demonstrating the potential of survival clustering as a valuable tool in uncovering hidden structures based on distinct risk profiles.
AbstractList To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival information. Analysis is based on the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which contains 1726 subjects and 22 variables. Cox regression was used to identify survival risk factors for K-means clustering. Logrank tests and C-statistics were compared across different cluster numbers and Kaplan-Meier plots were presented. Our study fills an existing void by introducing a unique combination of unsupervised learning techniques and survival information on the clinician side, demonstrating the potential of survival clustering as a valuable tool in uncovering hidden structures based on distinct risk profiles.
Aim: To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival information. Materials & methods: Analysis is based on the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which contains 1726 subjects and 22 variables. Cox regression was used to identify survival risk factors for K-means clustering. Logrank tests and C-statistics were compared across different cluster numbers and Kaplan-Meier plots were presented. Results & conclusion: Our study fills an existing void by introducing a unique combination of unsupervised learning techniques and survival information on the clinician side, demonstrating the potential of survival clustering as a valuable tool in uncovering hidden structures based on distinct risk profiles.Aim: To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival information. Materials & methods: Analysis is based on the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, which contains 1726 subjects and 22 variables. Cox regression was used to identify survival risk factors for K-means clustering. Logrank tests and C-statistics were compared across different cluster numbers and Kaplan-Meier plots were presented. Results & conclusion: Our study fills an existing void by introducing a unique combination of unsupervised learning techniques and survival information on the clinician side, demonstrating the potential of survival clustering as a valuable tool in uncovering hidden structures based on distinct risk profiles.
Author Gong, Yishu
Li, Chen
Wang, Mingyue
Gu, Yuan
Wang, Yuli
Wang, Ziyang
Zhang, Dan
Li, Xin
Jiang, Song
AuthorAffiliation 4Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
5Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
7Department of Information Science and Engineering, Shandong University, Shan Dong, China
3Harvard T.H. Chan School of Public Health, Harvard University, Boston, NY 02115, USA
2Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA
6Department of Biochemistry, Huzhou Institute of Biological Products Co., Ltd., 313017, China
8Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, 14195, Germany
1Department of Statistics, The George Washington University, Washington, DC 20052, USA
AuthorAffiliation_xml – name: 5Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
– name: 2Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA
– name: 4Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
– name: 8Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, 14195, Germany
– name: 1Department of Statistics, The George Washington University, Washington, DC 20052, USA
– name: 3Harvard T.H. Chan School of Public Health, Harvard University, Boston, NY 02115, USA
– name: 6Department of Biochemistry, Huzhou Institute of Biological Products Co., Ltd., 313017, China
– name: 7Department of Information Science and Engineering, Shandong University, Shan Dong, China
Author_xml – sequence: 1
  givenname: Yuan
  orcidid: 0000-0001-6222-7241
  surname: Gu
  fullname: Gu, Yuan
  organization: Department of Statistics, The George Washington University, Washington, DC20052, USA
– sequence: 2
  givenname: Mingyue
  orcidid: 0000-0002-4141-3931
  surname: Wang
  fullname: Wang, Mingyue
  organization: Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA
– sequence: 3
  givenname: Yishu
  orcidid: 0000-0002-7777-6363
  surname: Gong
  fullname: Gong, Yishu
  organization: Harvard T.H. Chan School of Public Health, Harvard University, Boston, NY 02115, USA
– sequence: 4
  givenname: Xin
  orcidid: 0009-0009-2682-428X
  surname: Li
  fullname: Li, Xin
  organization: Department of Statistics, The George Washington University, Washington, DC20052, USA
– sequence: 5
  givenname: Ziyang
  orcidid: 0000-0003-1605-0873
  surname: Wang
  fullname: Wang, Ziyang
  organization: Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
– sequence: 6
  givenname: Yuli
  orcidid: 0000-0003-3311-2810
  surname: Wang
  fullname: Wang, Yuli
  organization: Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
– sequence: 7
  givenname: Song
  orcidid: 0009-0007-8363-7304
  surname: Jiang
  fullname: Jiang, Song
  organization: Department of Biochemistry, Huzhou Institute of Biological Products Co., Ltd., 313017, China
– sequence: 8
  givenname: Dan
  orcidid: 0000-0001-5625-8615
  surname: Zhang
  fullname: Zhang, Dan
  organization: Department of Information Science and Engineering, Shandong University, Shan Dong, China
– sequence: 9
  givenname: Chen
  orcidid: 0000-0002-6895-2759
  surname: Li
  fullname: Li, Chen
  organization: Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, 14195, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38095059$$D View this record in MEDLINE/PubMed
BookMark eNp1kTtv2zAUhYkiQew8xq4Fxy5KrkhKFLsVQZsECJClmQmKvCrY0pRKSjb870vXyVLAEx_4zsG591ySszhGJORjDbeM1fJuGGPFgPEKJG8_kHUthag6DvVZuQupqrZVYkUuc_4FICRv4IKseAeqgUatSXiNW_TBx5-0T2jyTK2JFhNNPv-mUxoHHzB_oYbmJW391gRqw5JnTAeJiSbss88UN9O4w4SO9vvyS8dYLJHusKdmmoK3ZvZjvCbngwkZb97OK_L6_duP-8fq-eXh6f7rc2W54HMllXMldW2ddFyIru6wdR0y6PoenHWKqYE7pUAgH6wSjWUFcI0CWYNjgl-Rz0ffkv_PgnnWG58thmAijkvWTAFTrQQlC_rpDV36DTo9Jb8xaa_fN1QAfgRsGnNOOGjr53_TzMn4oGvQhx506UEfetCHHoqq-k_1bnyKV0d-WOYlYbYeSwv6-Cq5vC3rPKH9CxUMnuk
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3443126
crossref_primary_10_3389_fonc_2024_1444531
Cites_doi 10.1088/1361-6560/ac0b82
10.1177/000313480907500703
10.1038/s41523-018-0056-8
10.1186/s12911-019-0801-4
10.1371/journal.pone.0162259
10.1002/jcp.21799
10.1023/A:1022166517963
10.1093/jnci/djm059
10.1038/s41598-022-06841-0
10.1186/s13040-015-0078-9
10.1093/jjco/hyv112
10.1023/A:1005765403093
10.1080/15476286.2019.1679585
10.1158/0008-5472.CAN-07-1683
10.1016/j.jgg.2021.03.016
10.1002/1097-0142(19871201)60:11<2766::AID-CNCR2820601129>3.0.CO;2-0
10.1016/j.compbiomed.2011.10.016
10.1111/bjh.17342
10.1371/journal.pcbi.1009459
10.1007/s00253-022-11917-y
10.1016/j.semcancer.2008.03.013
10.1186/s12920-017-0250-9
10.3390/ijerph19159306
10.1186/s12911-023-02293-2
10.1016/S0140-6736(03)13308-9
10.1002/hep.1840070628
10.1002/1097-0142(19890101)63:1<181::AID-CNCR2820630129>3.0.CO;2-H
10.1200/CCI.23.00049
10.1007/BF01840834
10.1158/1078-0432.CCR-08-1211
10.1016/j.apsb.2022.02.023
10.1186/s12911-020-01225-8
10.1016/S0959-8049(99)00264-6
10.2196/27633
10.1162/089976698300017575
10.1200/CCI.21.00031
10.1038/s41467-021-26216-9
10.1016/j.semcancer.2018.06.005
10.1073/pnas.0932692100
10.1016/j.otohns.2010.05.007
10.1016/j.compbiomed.2022.105617
10.1371/journal.pone.0285852
10.12688/f1000research.9417.3
10.3389/fgene.2019.00166
10.21037/atm.2018.02.12
10.1088/1361-6560/ab23cb
10.1016/j.prp.2023.154850
10.1038/nature10983
10.1007/s10549-007-9596-6
10.1101/2023.05.31.23290804
10.1016/j.artmed.2007.11.005
10.1159/000012061
10.3390/s21124085
10.1016/j.jacc.2020.07.059
10.1007/s10549-019-05462-y
10.1093/postmj/qgad095
10.1088/1361-6560/ab8c92
10.1038/sj.bjc.6601119
10.1093/aje/kws457
10.1158/0008-5472.CAN-21-2335
10.1371/journal.pone.0244378
10.1890/07-0539.1
10.1016/j.neunet.2021.09.006
ContentType Journal Article
Copyright 2023 Future Medicine Ltd
Copyright_xml – notice: 2023 Future Medicine Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.2217/fon-2023-0736
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1744-8301
EndPage 2667
ExternalDocumentID 38095059
10_2217_fon_2023_0736
Genre Journal Article
GroupedDBID ---
0R~
29H
4.4
53G
5GY
70G
AAWTL
ABJNI
ACGFS
ACWKX
ADBBV
AENEX
AFFYO
AHMBA
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
F5P
HZ~
IAO
IEA
IHR
K-O
MV1
NTCAX
O9-
P2P
RFM
TFL
7X7
88E
8AO
8FI
8FJ
AAWFG
AAYXX
ABNDM
ABUWG
AFKRA
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
EHMNL
EJD
FYUFA
H13
HMCUK
ITC
M1P
M4Z
OVD
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RPM
TDBHL
TEORI
TFMDE
TMEDX
UKHRP
3V.
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c343t-79dd6691cd7d344818e6d8e208bb0dcd929f3d9904e3fc945c2e6dd590710d243
ISSN 1479-6694
1744-8301
IngestDate Sun Sep 28 08:04:22 EDT 2025
Wed Feb 19 02:06:17 EST 2025
Wed Oct 01 04:48:03 EDT 2025
Thu Apr 24 23:13:31 EDT 2025
Fri May 10 00:16:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords survival
breast cancer
shiny
Cox regression
machine learning
web-based application
Kaplan–Meier curve
K-means clustering
cancer risk profiles
unsupervised learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-79dd6691cd7d344818e6d8e208bb0dcd929f3d9904e3fc945c2e6dd590710d243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0009-2682-428X
0009-0007-8363-7304
0000-0001-6222-7241
0000-0002-4141-3931
0000-0003-3311-2810
0000-0003-1605-0873
0000-0001-5625-8615
0000-0002-7777-6363
0000-0002-6895-2759
PMID 38095059
PQID 2902967097
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2902967097
pubmed_primary_38095059
crossref_citationtrail_10_2217_fon_2023_0736
crossref_primary_10_2217_fon_2023_0736
futurescience_futuremedicine_10_2217_fon_2023_0736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231201
2023-12-00
2023-Dec
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231201
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Future oncology (London, England)
PublicationTitleAlternate Future Oncol
PublicationYear 2023
Publisher Future Medicine Ltd
Publisher_xml – name: Future Medicine Ltd
References e_1_3_6_30_1
e_1_3_6_53_1
e_1_3_6_55_1
e_1_3_6_11_1
e_1_3_6_51_1
e_1_3_6_70_1
e_1_3_6_15_1
e_1_3_6_38_1
e_1_3_6_13_1
e_1_3_6_19_1
e_1_3_6_34_1
e_1_3_6_57_1
e_1_3_6_17_1
e_1_3_6_59_1
e_1_3_6_42_1
e_1_3_6_65_1
e_1_3_6_21_1
e_1_3_6_44_1
e_1_3_6_63_1
e_1_3_6_61_1
e_1_3_6_40_1
e_1_3_6_6_1
e_1_3_6_4_1
Yang Q (e_1_3_6_16_1) 2023; 10
e_1_3_6_8_1
e_1_3_6_27_1
e_1_3_6_29_1
e_1_3_6_23_1
e_1_3_6_46_1
e_1_3_6_69_1
e_1_3_6_25_1
e_1_3_6_48_1
e_1_3_6_67_1
e_1_3_6_31_1
e_1_3_6_52_1
e_1_3_6_33_1
e_1_3_6_54_1
e_1_3_6_10_1
e_1_3_6_73_1
e_1_3_6_50_1
Feng A (e_1_3_6_32_1) 2023
Chi CL (e_1_3_6_43_1) 2007; 2007
Novak A (e_1_3_6_72_1) 2019; 32
Bayati H (e_1_3_6_71_1) 2008; 2008
Hajihosseini M (e_1_3_6_36_1) 2015; 44
e_1_3_6_14_1
e_1_3_6_39_1
e_1_3_6_12_1
e_1_3_6_18_1
El Haji H (e_1_3_6_41_1) 2023; 7
e_1_3_6_56_1
e_1_3_6_37_1
e_1_3_6_58_1
e_1_3_6_20_1
Vahdaninia M (e_1_3_6_35_1) 2004; 5
e_1_3_6_66_1
e_1_3_6_22_1
e_1_3_6_64_1
e_1_3_6_62_1
e_1_3_6_60_1
e_1_3_6_5_1
e_1_3_6_3_1
e_1_3_6_9_1
e_1_3_6_7_1
e_1_3_6_28_1
e_1_3_6_49_1
e_1_3_6_24_1
e_1_3_6_45_1
Banu A (e_1_3_6_47_1) 2023; 305
e_1_3_6_26_1
e_1_3_6_68_1
References_xml – ident: e_1_3_6_27_1
  doi: 10.1088/1361-6560/ac0b82
– ident: e_1_3_6_13_1
  doi: 10.1177/000313480907500703
– ident: e_1_3_6_60_1
  doi: 10.1038/s41523-018-0056-8
– ident: e_1_3_6_31_1
  doi: 10.1186/s12911-019-0801-4
– ident: e_1_3_6_19_1
  doi: 10.1371/journal.pone.0162259
– ident: e_1_3_6_12_1
  doi: 10.1002/jcp.21799
– ident: e_1_3_6_69_1
  doi: 10.1023/A:1022166517963
– ident: e_1_3_6_70_1
  doi: 10.1093/jnci/djm059
– ident: e_1_3_6_26_1
  doi: 10.1038/s41598-022-06841-0
– ident: e_1_3_6_62_1
  doi: 10.1186/s13040-015-0078-9
– volume: 32
  start-page: 99
  issue: 1
  year: 2019
  ident: e_1_3_6_72_1
  article-title: The introduction of health behavior profiles in the Hungarian Defense Forces: a cluster analysis of lifestyle factors according to the health screening tests performed in 2011–2015
  publication-title: Int. J. Occup. Med. Environ. Health
– volume: 2008
  start-page: 4684
  year: 2008
  ident: e_1_3_6_71_1
  article-title: A heuristic method for finding the optimal number of clusters with application in medical data
  publication-title: Ann. Int. Conf. IEEE Eng. Med. Biol. Soc.
– ident: e_1_3_6_14_1
  doi: 10.1093/jjco/hyv112
– ident: e_1_3_6_34_1
  doi: 10.1023/A:1005765403093
– ident: e_1_3_6_45_1
  doi: 10.1080/15476286.2019.1679585
– ident: e_1_3_6_7_1
  doi: 10.1158/0008-5472.CAN-07-1683
– volume: 305
  start-page: 632
  year: 2023
  ident: e_1_3_6_47_1
  article-title: Predicting overall survival in METABRIC cohort using machine learning
  publication-title: Stud. Health Technol. Inform
– ident: e_1_3_6_28_1
  doi: 10.1016/j.jgg.2021.03.016
– ident: e_1_3_6_65_1
  doi: 10.1002/1097-0142(19871201)60:11<2766::AID-CNCR2820601129>3.0.CO;2-0
– ident: e_1_3_6_18_1
  doi: 10.1016/j.compbiomed.2011.10.016
– ident: e_1_3_6_57_1
  doi: 10.1111/bjh.17342
– ident: e_1_3_6_61_1
  doi: 10.1371/journal.pcbi.1009459
– ident: e_1_3_6_73_1
  doi: 10.1007/s00253-022-11917-y
– ident: e_1_3_6_10_1
  doi: 10.1016/j.semcancer.2008.03.013
– ident: e_1_3_6_4_1
  doi: 10.1186/s12920-017-0250-9
– ident: e_1_3_6_29_1
  doi: 10.3390/ijerph19159306
– ident: e_1_3_6_33_1
  doi: 10.1186/s12911-023-02293-2
– year: 2023
  ident: e_1_3_6_32_1
  article-title: Label propagation via random walk for training robust thalamus nuclei parcellation model from noisy annotations
  publication-title: ArXiv
– volume: 5
  start-page: 223
  issue: 2
  year: 2004
  ident: e_1_3_6_35_1
  article-title: Breast cancer in Iran: a survival analysis
  publication-title: Asian Pac. J. Cancer Prev.
– ident: e_1_3_6_48_1
  doi: 10.1016/S0140-6736(03)13308-9
– ident: e_1_3_6_21_1
  doi: 10.1002/hep.1840070628
– ident: e_1_3_6_66_1
  doi: 10.1002/1097-0142(19890101)63:1<181::AID-CNCR2820630129>3.0.CO;2-H
– volume: 7
  start-page: e2300049
  year: 2023
  ident: e_1_3_6_41_1
  article-title: Evolution of breast cancer recurrence risk prediction: a systematic review of statistical and machine learning-based models
  publication-title: JCO Clin. Cancer Inform
  doi: 10.1200/CCI.23.00049
– ident: e_1_3_6_67_1
  doi: 10.1007/BF01840834
– ident: e_1_3_6_15_1
  doi: 10.1158/1078-0432.CCR-08-1211
– volume: 2007
  start-page: 130
  year: 2007
  ident: e_1_3_6_43_1
  article-title: Application of artificial neural network-based survival analysis on two breast cancer datasets
  publication-title: AMIA Annu. Symp. Proc.
– ident: e_1_3_6_11_1
  doi: 10.1016/j.apsb.2022.02.023
– ident: e_1_3_6_44_1
  doi: 10.1186/s12911-020-01225-8
– ident: e_1_3_6_68_1
  doi: 10.1016/S0959-8049(99)00264-6
– ident: e_1_3_6_24_1
  doi: 10.2196/27633
– ident: e_1_3_6_40_1
  doi: 10.1162/089976698300017575
– ident: e_1_3_6_6_1
  doi: 10.1200/CCI.21.00031
– ident: e_1_3_6_58_1
  doi: 10.1038/s41467-021-26216-9
– ident: e_1_3_6_9_1
  doi: 10.1016/j.semcancer.2018.06.005
– ident: e_1_3_6_49_1
  doi: 10.1073/pnas.0932692100
– ident: e_1_3_6_20_1
  doi: 10.1016/j.otohns.2010.05.007
– ident: e_1_3_6_37_1
  doi: 10.1016/j.compbiomed.2022.105617
– ident: e_1_3_6_39_1
  doi: 10.1371/journal.pone.0285852
– volume: 10
  start-page: 044001
  issue: 4
  year: 2023
  ident: e_1_3_6_16_1
  article-title: Single slice thigh CT muscle group segmentation with domain adaptation and self-training
  publication-title: J. Med. Imaging (Bellingham)
– ident: e_1_3_6_63_1
  doi: 10.12688/f1000research.9417.3
– ident: e_1_3_6_52_1
  doi: 10.3389/fgene.2019.00166
– ident: e_1_3_6_22_1
  doi: 10.21037/atm.2018.02.12
– ident: e_1_3_6_59_1
  doi: 10.1088/1361-6560/ab23cb
– ident: e_1_3_6_8_1
  doi: 10.1016/j.prp.2023.154850
– ident: e_1_3_6_17_1
  doi: 10.1038/nature10983
– ident: e_1_3_6_50_1
  doi: 10.1007/s10549-007-9596-6
– volume: 44
  start-page: 1677
  issue: 12
  year: 2015
  ident: e_1_3_6_36_1
  article-title: Survival analysis of breast cancer patients after surgery with an intermediate event: application of illness-death model
  publication-title: Iran J. Public Health
– ident: e_1_3_6_25_1
  doi: 10.1101/2023.05.31.23290804
– ident: e_1_3_6_3_1
  doi: 10.1016/j.artmed.2007.11.005
– ident: e_1_3_6_30_1
  doi: 10.1159/000012061
– ident: e_1_3_6_51_1
  doi: 10.3390/s21124085
– ident: e_1_3_6_56_1
  doi: 10.1016/j.jacc.2020.07.059
– ident: e_1_3_6_64_1
  doi: 10.1007/s10549-019-05462-y
– ident: e_1_3_6_42_1
  doi: 10.1093/postmj/qgad095
– ident: e_1_3_6_46_1
  doi: 10.1088/1361-6560/ab8c92
– ident: e_1_3_6_23_1
  doi: 10.1038/sj.bjc.6601119
– ident: e_1_3_6_5_1
  doi: 10.1093/aje/kws457
– ident: e_1_3_6_55_1
  doi: 10.1158/0008-5472.CAN-21-2335
– ident: e_1_3_6_53_1
  doi: 10.1371/journal.pone.0244378
– ident: e_1_3_6_38_1
  doi: 10.1890/07-0539.1
– ident: e_1_3_6_54_1
  doi: 10.1016/j.neunet.2021.09.006
SSID ssj0047350
Score 2.404721
Snippet To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival...
Aim: To develop a shiny app for doctors to investigate breast cancer treatments through a new approach by incorporating unsupervised clustering and survival...
SourceID proquest
pubmed
crossref
futurescience
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2651
SubjectTerms breast cancer
Breast Neoplasms - epidemiology
Breast Neoplasms - genetics
Breast Neoplasms - therapy
cancer risk profiles
Cluster Analysis
Cox regression
Female
Humans
K-means clustering
Kaplan–Meier curve
machine learning
Risk Factors
shiny
survival
Survival Analysis
unsupervised learning
web-based application
Title Unveiling breast cancer risk profiles: a survival clustering analysis empowered by an online web application
URI http://dx.doi.org/10.2217/fon-2023-0736
https://www.ncbi.nlm.nih.gov/pubmed/38095059
https://www.proquest.com/docview/2902967097
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1744-8301
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0047350
  issn: 1479-6694
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB2Mwxr6XrhsajL1s7lxJ_lDfxlgpg-6pgb4Z68MwCM5onI72r--dT3KckMDWFxOLs5XofrrcSbrfMfbRN2mppLSJx9mkjIMpVTiVWKFKCH5ycGFxaeDsV346VT8vsotVzdY-u6Qzh_Zma17JXbQKbaBXzJL9D80OL4UG-Az6hStoGK7_pONpe-V_9_nkBs-Wd3iEy_pLOi8eqnEvKJ15sQSbcIVkILMlciNQbmIgJEF6qr9YtBOdUaxV0dNnfMY0xtEG99iPPempSEDQEofTtsIgcZEhrCkIuXE-I7zjLOzujw4YoYlUhU7ynEoTH3pqK5RKShleEe2qHuGHOJmilcwDyawPt1SRY9OaC9FTQDXzNum_ZEpZCpsE2RDGoGQFchXKVSh3nz0QYOfTuH5D_81YZ7lPkY2_gVhX8fGva92seSmPid4luCS7Q5HeJTl_yp6EWIJ_I2A8Y_d8-5w9jOP5gs0GfHDCByd8cMQHj_g45jWP6OArdPCIDj6gg5traOWEDg7o4CN0vGTTkx_n30-TUF0jsVLJLim0czAER9YVTkKQflT63JVepKUxqbMO_OZGOnBWlJeN1SqzAgRcptEpdULJV2yvnbf-DeMmK6zNvM3A-VN1WmgtclcLUwutcq-bCfsSR7OygXoeK6DMqq26m7BPg_gf4lzZJSjWVFPRXTyVsuuhD1F_FZhS3B-rWz9fLiqhU6GRz7CYsNek2KF_WUIsAqHI_l26fMserWbZAdvrLpf-HfiynXnfw_MWq3GhZQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+breast+cancer+risk+profiles%3A+a+survival+clustering+analysis+empowered+by+an+online+web+application&rft.jtitle=Future+oncology+%28London%2C+England%29&rft.date=2023-12-01&rft.pub=Future+Medicine+Ltd&rft.issn=1479-6694&rft.eissn=1744-8301&rft.volume=19&rft.issue=40&rft.spage=2651&rft.epage=2667&rft_id=info:doi/10.2217%2Ffon-2023-0736&rft.externalDocID=10_2217_fon_2023_0736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-6694&client=summon