Cooperative Localization in WSNs Using Gaussian Mixture Modeling: Distributed ECM Algorithms

We study cooperative sensor network localization in a realistic scenario where the underlying measurement errors more probably follow a non-Gaussian distribution; the measurement error distribution is unknown without conducting massive offline calibrations; and non-line-of-sight identification is no...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 63; no. 6; pp. 1448 - 1463
Main Authors Feng Yin, Fritsche, Carsten, Di Jin, Gustafsson, Fredrik, Zoubir, Abdelhak M.
Format Journal Article
LanguageEnglish
Published IEEE 15.03.2015
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
1941-0476
DOI10.1109/TSP.2015.2394300

Cover

Abstract We study cooperative sensor network localization in a realistic scenario where the underlying measurement errors more probably follow a non-Gaussian distribution; the measurement error distribution is unknown without conducting massive offline calibrations; and non-line-of-sight identification is not performed due to the complexity constraint and/or storage limitation. The underlying measurement error distribution is approximated parametrically by a Gaussian mixture with finite number of components, and the expectation-conditional maximization (ECM) criterion is adopted to approximate the maximum-likelihood estimator of the unknown sensor positions and an extra set of Gaussian mixture model parameters. The resulting centralized ECM algorithms lead to easier inference tasks and meanwhile retain several convergence properties with a proof of the "space filling" condition. To meet the scalability requirement, we further develop two distributed ECM algorithms where an average consensus algorithm plays an important role for updating the Gaussian mixture model parameters locally. The proposed algorithms are analyzed systematically in terms of computational complexity and communication overhead. Various computer based tests are also conducted with both simulation and experimental data. The results pin down that the proposed distributed algorithms can provide overall good performance for the assumed scenario even under model mismatch, while the existing competing algorithms either cannot work without the prior knowledge of the measurement error statistics or merely provide degraded localization performance when the measurement error is clearly non-Gaussian.
AbstractList We study cooperative sensor network localization in a realistic scenario where 1) the underlying measurement errors more probably follow a non-Gaussian distribution; 2) the measurement error distribution is unknown without conducting massive offline calibrations; and 3) non-line-of-sight identification is not performed due to the complexity constraint and/or storage limitation. The underlying measurement error distribution is approximated parametrically by a Gaussian mixture with finite number of components, and the expectation-conditional maximization (ECM) criterion is adopted to approximate the maximum-likelihood estimator of the unknown sensor positions and an extra set of Gaussian mixture model parameters. The resulting centralized ECM algorithms lead to easier inference tasks and meanwhile retain several convergence properties with a proof of the "space filling" condition. To meet the scalability requirement, we further develop two distributed ECM algorithms where an average consensus algorithm plays an important role for updating the Gaussian mixture model parameters locally. The proposed algorithms are analyzed systematically in terms of computational complexity and communication overhead. Various computer based tests are also conducted with both simulation and experimental data. The results pin down that the proposed distributed algorithms can provide overall good performance for the assumed scenario even under model mismatch, while the existing competing algorithms either cannot work without the prior knowledge of the measurement error statistics or merely provide degraded localization performance when the measurement error is clearly non-Gaussian.
We study cooperative sensor network localization in a realistic scenario where the underlying measurement errors more probably follow a non-Gaussian distribution; the measurement error distribution is unknown without conducting massive offline calibrations; and non-line-of-sight identification is not performed due to the complexity constraint and/or storage limitation. The underlying measurement error distribution is approximated parametrically by a Gaussian mixture with finite number of components, and the expectation-conditional maximization (ECM) criterion is adopted to approximate the maximum-likelihood estimator of the unknown sensor positions and an extra set of Gaussian mixture model parameters. The resulting centralized ECM algorithms lead to easier inference tasks and meanwhile retain several convergence properties with a proof of the "space filling" condition. To meet the scalability requirement, we further develop two distributed ECM algorithms where an average consensus algorithm plays an important role for updating the Gaussian mixture model parameters locally. The proposed algorithms are analyzed systematically in terms of computational complexity and communication overhead. Various computer based tests are also conducted with both simulation and experimental data. The results pin down that the proposed distributed algorithms can provide overall good performance for the assumed scenario even under model mismatch, while the existing competing algorithms either cannot work without the prior knowledge of the measurement error statistics or merely provide degraded localization performance when the measurement error is clearly non-Gaussian.
Author Gustafsson, Fredrik
Di Jin
Zoubir, Abdelhak M.
Fritsche, Carsten
Feng Yin
Author_xml – sequence: 1
  surname: Feng Yin
  fullname: Feng Yin
  email: fyin@spg.tu-darmstadt.de
  organization: Signal Process. Group, Tech. Univ. Darmstadt, Darmstadt, Germany
– sequence: 2
  givenname: Carsten
  surname: Fritsche
  fullname: Fritsche, Carsten
  email: carsten@isy.liu.se
  organization: Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden
– sequence: 3
  surname: Di Jin
  fullname: Di Jin
  email: djin@spg.tu-darmstadt.de
  organization: Signal Process. Group, Tech. Univ. Darmstadt, Darmstadt, Germany
– sequence: 4
  givenname: Fredrik
  surname: Gustafsson
  fullname: Gustafsson, Fredrik
  email: fredrik@isy.liu.se
  organization: Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden
– sequence: 5
  givenname: Abdelhak M.
  surname: Zoubir
  fullname: Zoubir, Abdelhak M.
  email: zoubir@spg.tu-darmstadt.de
  organization: Signal Process. Group, Tech. Univ. Darmstadt, Darmstadt, Germany
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-116504$$DView record from Swedish Publication Index
BookMark eNptkcFOAjEQhhuDiYDeTbz0BRan222X9UZQ0QTUBFAPJk1ZCtas203bFfHpLUI4EE8zk_m_mck_LdQoTakQOifQIQSyy8n4qRMDYZ2YZgkFOEJNkiUkgiTljZADoxHrpq8nqOXcBwBJkow30VvfmEpZ6fWXwkOTy0L_hMKUWJf4Zfzg8NTpcokHsnZOyxKP9LevrcIjM1dF6Fzha-281bPaqzm-6Y9wr1gaq_37pztFxwtZOHW2i200vb2Z9O-i4ePgvt8bRjlNqI84hTmlwDZnU5mkXcZnkCkWh268iIHPuiyNU5UrJVNCSMo4XcSSdwnLGJMxbSOynVuXlVyvZFGIyupPadeCgNjYI7yrxMYesbMnMNGWcStV1bM9YKQW1_q5J4xdikLXAecMkqDnW31ujXNWLUSu_Z9T3kpd7BeFPxwuggPw8LZ_kIstopVSe3kaJBw4_QVHo5Ki
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_phycom_2023_102165
crossref_primary_10_1109_TCOMM_2018_2878843
crossref_primary_10_3390_s23073603
crossref_primary_10_1016_j_inffus_2015_11_008
crossref_primary_10_1109_LCOMM_2022_3166780
crossref_primary_10_1109_LSP_2023_3348389
crossref_primary_10_3390_s20051302
crossref_primary_10_1049_iet_com_2016_0804
crossref_primary_10_1007_s11227_023_05326_9
crossref_primary_10_1016_j_comcom_2017_02_006
crossref_primary_10_1155_2018_7295702
crossref_primary_10_1007_s11277_024_11209_w
crossref_primary_10_1109_TCYB_2018_2815697
crossref_primary_10_1109_TVT_2023_3282210
crossref_primary_10_1371_journal_pone_0301078
crossref_primary_10_1016_j_comnet_2018_06_017
crossref_primary_10_1145_3448303
crossref_primary_10_1007_s11277_024_11018_1
crossref_primary_10_1109_TAES_2020_2999999
crossref_primary_10_1109_LCOMM_2022_3205740
crossref_primary_10_1109_LCOMM_2017_2666157
crossref_primary_10_1109_TSP_2021_3090593
crossref_primary_10_1016_j_heliyon_2024_e31625
crossref_primary_10_1080_03610918_2020_1720733
crossref_primary_10_1109_OJSP_2020_3036276
crossref_primary_10_3390_s20092598
crossref_primary_10_1109_ACCESS_2018_2885534
crossref_primary_10_1016_j_heliyon_2024_e34455
crossref_primary_10_1007_s11831_024_10086_7
crossref_primary_10_1109_JIOT_2016_2631520
crossref_primary_10_1109_TWC_2021_3128396
crossref_primary_10_1016_j_comnet_2016_10_006
crossref_primary_10_1049_iet_com_2018_5849
crossref_primary_10_1007_s11277_024_11147_7
crossref_primary_10_1007_s10586_024_04621_1
crossref_primary_10_1109_ACCESS_2018_2879386
crossref_primary_10_1007_s10586_017_0913_5
crossref_primary_10_1109_TCE_2024_3411606
crossref_primary_10_1007_s11277_024_11020_7
crossref_primary_10_1016_j_suscom_2024_100988
crossref_primary_10_1007_s11042_024_19054_6
crossref_primary_10_1109_TSIPN_2018_2882922
crossref_primary_10_1109_ACCESS_2020_3048154
crossref_primary_10_1007_s11277_024_11192_2
crossref_primary_10_1007_s11277_024_11228_7
crossref_primary_10_1109_TSP_2020_2969048
crossref_primary_10_1109_TCSI_2024_3408919
crossref_primary_10_1109_TIT_2018_2859330
crossref_primary_10_1049_iet_com_2019_0444
crossref_primary_10_1109_ACCESS_2021_3090566
crossref_primary_10_1186_s13638_018_1335_7
crossref_primary_10_1109_TSP_2019_2929960
crossref_primary_10_1109_JSEN_2022_3177409
crossref_primary_10_1109_TNET_2022_3216204
crossref_primary_10_1016_j_dsp_2025_105008
crossref_primary_10_1109_ACCESS_2018_2889794
crossref_primary_10_1364_AO_536756
crossref_primary_10_1007_s11831_024_10110_w
crossref_primary_10_1109_LSP_2021_3082329
crossref_primary_10_1007_s11277_024_11200_5
crossref_primary_10_1016_j_iot_2024_101255
crossref_primary_10_1109_JIOT_2024_3494870
crossref_primary_10_1109_TSP_2023_3310890
crossref_primary_10_1109_JIOT_2024_3370830
crossref_primary_10_1109_TCE_2024_3479078
crossref_primary_10_1371_journal_pone_0305092
Cites_doi 10.1109/TWC.2014.2350493
10.1109/18.910572
10.1109/ICASSP.2004.1326696
10.1214/10-AOS799
10.1016/j.comnet.2006.11.018
10.1109/TVT.2007.904535
10.1145/1138127.1138129
10.1109/TSP.2013.2251341
10.1145/984622.984626
10.1109/JPROC.2008.2008853
10.1109/MSP.2005.1458287
10.1049/ic.2011.0169
10.1145/332833.332838
10.1109/TIT.2006.874516
10.1109/TSP.2003.814623
10.1109/JPROC.2010.2052531
10.1109/JSAC.2005.843548
10.1109/VETECF.2010.5594105
10.1002/0470010940
10.1109/TSP.2012.2232664
10.1155/2012/281592
10.1109/MLSP.2011.6064578
10.1109/JSAC.2012.121029
10.1093/biomet/80.2.267
10.1002/9781118104750
10.1109/TSP.2006.888886
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TSP.2003.814469
10.1145/1149283.1149286
10.1109/TSP.2013.2286779
10.1016/S1389-1286(01)00302-4
10.1109/TPDS.2004.67
10.1109/TCOMM.2012.042712.110035
10.1109/GLOCOM.2010.5683693
10.1109/PIMRCW.2010.5670376
10.1109/SPAWC.2013.6612101
10.1109/ICASSP.2008.4518028
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ADTOC
UNPAY
DOI 10.1109/TSP.2015.2394300
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1463
ExternalDocumentID oai:DiVA.org:liu-116504
oai_DiVA_org_liu_116504
10_1109_TSP_2015_2394300
7015606
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
VH1
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c343t-630d330543003a47856b09e523432f206b85727eceea71117563f2a6815955a23
IEDL.DBID RIE
ISSN 1053-587X
1941-0476
IngestDate Sun Oct 26 04:14:15 EDT 2025
Thu Aug 21 06:55:12 EDT 2025
Wed Oct 01 03:34:17 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Tue Aug 26 16:40:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords wireless sensor network (WSN)
Gaussian mixture
cooperative localization
expectation-conditional maximization (ECM)
Centralized and distributed algorithms
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-630d330543003a47856b09e523432f206b85727eceea71117563f2a6815955a23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-116504
PageCount 16
ParticipantIDs ieee_primary_7015606
crossref_citationtrail_10_1109_TSP_2015_2394300
swepub_primary_oai_DiVA_org_liu_116504
unpaywall_primary_10_1109_tsp_2015_2394300
crossref_primary_10_1109_TSP_2015_2394300
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-15
PublicationDateYYYYMMDD 2015-03-15
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-15
  day: 15
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
fritsche (ref24) 2009
ref11
ref32
ref10
welling (ref21) 2007
pearl (ref18) 1988
ref2
patwari (ref28) 2009
ref1
ref39
ref17
ref16
ref19
yin (ref30) 2014
ref46
jelasity (ref38) 2003
ref23
ref26
ref25
ref20
ref42
ref41
dempster (ref33) 1977; 39
ref22
ref44
kowalczyk (ref37) 2005
ji (ref7) 2004; 4
ref43
gustafsson (ref45) 2012
ref29
ref8
strang (ref47) 2005
ref9
ref4
maronna (ref27) 2006
ref3
ref6
ref5
ref40
References_xml – ident: ref23
  doi: 10.1109/TWC.2014.2350493
– ident: ref19
  doi: 10.1109/18.910572
– ident: ref36
  doi: 10.1109/ICASSP.2004.1326696
– ident: ref46
  doi: 10.1214/10-AOS799
– ident: ref20
  doi: 10.1016/j.comnet.2006.11.018
– ident: ref4
  doi: 10.1109/TVT.2007.904535
– ident: ref8
  doi: 10.1145/1138127.1138129
– ident: ref31
  doi: 10.1109/TSP.2013.2251341
– start-page: 713
  year: 2005
  ident: ref37
  article-title: Newscast EM
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2005
  ident: ref47
  publication-title: Linear Algebra and its Applications
– ident: ref44
  doi: 10.1145/984622.984626
– ident: ref5
  doi: 10.1109/JPROC.2008.2008853
– ident: ref2
  doi: 10.1109/MSP.2005.1458287
– start-page: 767
  year: 2007
  ident: ref21
  article-title: A distributed message passing algorithm for sensor localization
  publication-title: Proc Int Conf Artif Neural Netw
– ident: ref15
  doi: 10.1049/ic.2011.0169
– ident: ref43
  doi: 10.1145/332833.332838
– ident: ref39
  doi: 10.1109/TIT.2006.874516
– ident: ref35
  doi: 10.1109/TSP.2003.814623
– ident: ref34
  doi: 10.1109/JPROC.2010.2052531
– year: 2003
  ident: ref38
  publication-title: ?Newscast Computing ?
– ident: ref13
  doi: 10.1109/JSAC.2005.843548
– ident: ref14
  doi: 10.1109/VETECF.2010.5594105
– year: 2006
  ident: ref27
  publication-title: Robust Statistics Theory and Methods
  doi: 10.1002/0470010940
– year: 2014
  ident: ref30
  publication-title: Robust wireless localization in harsh mixed line-of-sight/non-line-of-sight environments
– ident: ref10
  doi: 10.1109/TSP.2012.2232664
– ident: ref16
  doi: 10.1155/2012/281592
– volume: 4
  start-page: 2652
  year: 2004
  ident: ref7
  article-title: Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling
  publication-title: Proc IEEE Conf Comput Commun (INFOCOM)
– start-page: 1953
  year: 2009
  ident: ref24
  article-title: On the performance of mobile terminal tracking in urban GSM networks using particle filters
  publication-title: Proc Eur Signal Process Conf (EUSIPCO)
– ident: ref41
  doi: 10.1109/MLSP.2011.6064578
– ident: ref17
  doi: 10.1109/JSAC.2012.121029
– year: 2012
  ident: ref45
  publication-title: Statistical Sensor Fusion
– ident: ref29
  doi: 10.1093/biomet/80.2.267
– ident: ref42
  doi: 10.1002/9781118104750
– ident: ref26
  doi: 10.1109/TSP.2006.888886
– volume: 39
  start-page: 1
  year: 1977
  ident: ref33
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Statist Soc B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref3
  doi: 10.1109/TSP.2003.814469
– ident: ref9
  doi: 10.1145/1149283.1149286
– ident: ref32
  doi: 10.1109/TSP.2013.2286779
– ident: ref1
  doi: 10.1016/S1389-1286(01)00302-4
– ident: ref6
  doi: 10.1109/TPDS.2004.67
– ident: ref22
  doi: 10.1109/TCOMM.2012.042712.110035
– ident: ref12
  doi: 10.1109/GLOCOM.2010.5683693
– year: 1988
  ident: ref18
  publication-title: Probabilistic Reasoning in Intelligent Systems
– ident: ref11
  doi: 10.1109/PIMRCW.2010.5670376
– ident: ref25
  doi: 10.1109/SPAWC.2013.6612101
– ident: ref40
  doi: 10.1109/ICASSP.2008.4518028
– year: 2009
  ident: ref28
  publication-title: Localization Algorithms and Strategies for Wireless Sensor Networks
SSID ssj0014496
Score 2.480728
Snippet We study cooperative sensor network localization in a realistic scenario where the underlying measurement errors more probably follow a non-Gaussian...
We study cooperative sensor network localization in a realistic scenario where 1) the underlying measurement errors more probably follow a non-Gaussian...
SourceID unpaywall
swepub
crossref
ieee
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1448
SubjectTerms Approximation algorithms
Centralized and distributed algorithms
cooperative localization
Electronic countermeasures
expectation-conditional maximization (ECM)
Gaussian mixture
Inference algorithms
Maximum likelihood estimation
Measurement errors
Signal processing algorithms
wireless sensor network (WSN)
Wireless sensor networks
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEF_k-kH7wVcVzxf7QQSFvSb7ygNEjmtrEe8otKcnCGE32dRgTI5LUh9_vTtJGk8KQj_kQ5JNluxvyMzszPwGoReBSJX2qSK-VB7hlMYkcKgmjuY6pmmcBG1W5Xwhj5f8_Uqs_m5d2OXrk9yts1nmF-atvfLGHmGhi7AyYZ41YZJdKAK0McADuiOFNcJHaGe5OJl-bmObghHhe6s2nsyts8y9IUDpBPt1BTSVrphAU3AGlW1bCqntsDKwhu6im02xVr9-qDzf0jpHd9DqsnanSzb5NmlqPYl_X6VyvO4H3UW3e0sUTzvRuYdumOI-2t3iJ9xDX2ZluTYdNzj-AFqvr9rEWYE_nS4q3GYc4HeqqaAYE8-znxCRwNBhDercQ3wAxLzQU8sk-HA2x9P8vNxk9dfv1QO0PDo8mx2Tvh0DiRlnNZHMSZj9PcCiMcU9X0jtBMZ6spzRlDpS-8JaQ8aqXeW5QAEqWUqV9K3FJISi7CEaFWVhHiGcSKXShEsd2xeliituvNh1lW8ETxRVY7R_iUkU91zl0DIjj1qfxQmis9OTCFCMehTH6NXwxLrj6fjP2D2AeRjnteXkcoxedrAPN4B6-yD7OI3KzXlkgYo6jMbo9SAWVyaz4vXPZI-vM_gJugWnkOPmiqdoVG8a88waPbV-3gv4Hyei_SM
  priority: 102
  providerName: Unpaywall
Title Cooperative Localization in WSNs Using Gaussian Mixture Modeling: Distributed ECM Algorithms
URI https://ieeexplore.ieee.org/document/7015606
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-116504
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-116504
UnpaywallVersion submittedVersion
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB615QH6wFUqwlHtA0IC4cTZyzZvUdpSIRJVagNBQrJ212uwMHbU2OL49ezYjhUOId4see21Z1aeWc983wfwJBKp0iFVXihV4HFKjRf5VHu-5trQ1CRR01U5m8uzBX-9FMsdeNFjYay1TfOZHeJhU8tPSlPjr7JR0OB-5S7sBqFssVp9xYDzRovLpQvME2Gw3JQk_Wh0eXGOPVxiiDLgDLFsWyGo0VTpeUL34XpdrNT3ryrPt-LM6S2YbZ6wbS_5PKwrPTQ_fiNv_N9XuA03u4STTNoVcgd2bHEX9rdoCA_gw7QsV7alACdvMLh14EySFeTdxXxNmsYC8krVa8Rckln2DQsPBIXUEM7-khwj_y5KZ9mEnExnZJJ_LK-y6tOX9T1YnJ5cTs-8TnXBM4yzypPMT5j7CqClmOJBKKT2I-s2rJzRlPpSh8IlPdZFVxWMkelTspQqGbrESAhF2SHsFWVh7wNJpFJpwqU27kap4orbwIzHKrSCJ4qqAYw2johNR0mOyhh53GxN_Ch2rovRdXHnugE8669YtXQc_xh7gPbvx3WmH8DT1tf9CWTYPs7eTmLnqTjP6hgpiXw-gOf9Wvhjsmq9-mWyB3-f7CHcwFHYtDYWj2CvuqrtY5fFVPqoWb5HcG0xP5-8_wmfFu6J
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4ty2HZA68FUZ4-ICQQaVO_knCrursUaCqk7UIPSJGTOBARkmqbiMevx-OkUXkIcYsUO048Vmbsme_7AB4HIlOxT5XjS-U5nNLECVwaO27M44RmSRrYqspwIWfn_PVKrPbgeY-F0Vrb4jM9xEuby0-rpMGjspFncb_yElwWnHPRorX6nAHnVo3LBAzMEb632iYl3WC0PHuLVVxiiELgDNFsO07Iqqr0TKGHcNCUa_X9qyqKHU9zeg3C7Tu2BSafh00dD5Mfv9E3_u9HXIerXchJJu0auQF7urwJhztEhEfwYVpVa92SgJM5urcOnknykrw_W2yILS0gL1WzQdQlCfNvmHogKKWGgPYX5BgZeFE8S6fkZBqSSfGxusjrT182t-D89GQ5nTmd7oKTMM5qRzI3ZeY_gDPFFPd8IWM30GbLyhnNqCtjX5iwRxv_qrwxcn1KllElfRMaCaEouw37ZVXqO0BSqVSWchkn5kGZ4oprLxmPla8FTxVVAxhtDRElHSk5amMUkd2cuEFkTBeh6aLOdAN42vdYt4Qc_2h7hPPft-umfgBPWlv3N5Bj-zh_N4mMpaIibyIkJXL5AJ71a-GPwerN-pfB7v59sEdwMFuG82j-avHmHlzBHljCNhb3Yb--aPQDE9PU8UO7lH8CvrvwJg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEF_k-kH7wVcVzxf7QQSFvSb7ygNEjmtrEe8otKcnCGE32dRgTI5LUh9_vTtJGk8KQj_kQ5JNluxvyMzszPwGoReBSJX2qSK-VB7hlMYkcKgmjuY6pmmcBG1W5Xwhj5f8_Uqs_m5d2OXrk9yts1nmF-atvfLGHmGhi7AyYZ41YZJdKAK0McADuiOFNcJHaGe5OJl-bmObghHhe6s2nsyts8y9IUDpBPt1BTSVrphAU3AGlW1bCqntsDKwhu6im02xVr9-qDzf0jpHd9DqsnanSzb5NmlqPYl_X6VyvO4H3UW3e0sUTzvRuYdumOI-2t3iJ9xDX2ZluTYdNzj-AFqvr9rEWYE_nS4q3GYc4HeqqaAYE8-znxCRwNBhDercQ3wAxLzQU8sk-HA2x9P8vNxk9dfv1QO0PDo8mx2Tvh0DiRlnNZHMSZj9PcCiMcU9X0jtBMZ6spzRlDpS-8JaQ8aqXeW5QAEqWUqV9K3FJISi7CEaFWVhHiGcSKXShEsd2xeliituvNh1lW8ETxRVY7R_iUkU91zl0DIjj1qfxQmis9OTCFCMehTH6NXwxLrj6fjP2D2AeRjnteXkcoxedrAPN4B6-yD7OI3KzXlkgYo6jMbo9SAWVyaz4vXPZI-vM_gJugWnkOPmiqdoVG8a88waPbV-3gv4Hyei_SM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Localization+in+WSNs+Using+Gaussian+Mixture+Modeling%3A+Distributed+ECM+Algorithms&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Feng+Yin&rft.au=Fritsche%2C+Carsten&rft.au=Di+Jin&rft.au=Gustafsson%2C+Fredrik&rft.date=2015-03-15&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=63&rft.issue=6&rft.spage=1448&rft.epage=1463&rft_id=info:doi/10.1109%2FTSP.2015.2394300&rft.externalDocID=7015606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon