Cooperative Localization in WSNs Using Gaussian Mixture Modeling: Distributed ECM Algorithms
We study cooperative sensor network localization in a realistic scenario where the underlying measurement errors more probably follow a non-Gaussian distribution; the measurement error distribution is unknown without conducting massive offline calibrations; and non-line-of-sight identification is no...
        Saved in:
      
    
          | Published in | IEEE transactions on signal processing Vol. 63; no. 6; pp. 1448 - 1463 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IEEE
    
        15.03.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-587X 1941-0476 1941-0476  | 
| DOI | 10.1109/TSP.2015.2394300 | 
Cover
| Abstract | We study cooperative sensor network localization in a realistic scenario where the underlying measurement errors more probably follow a non-Gaussian distribution; the measurement error distribution is unknown without conducting massive offline calibrations; and non-line-of-sight identification is not performed due to the complexity constraint and/or storage limitation. The underlying measurement error distribution is approximated parametrically by a Gaussian mixture with finite number of components, and the expectation-conditional maximization (ECM) criterion is adopted to approximate the maximum-likelihood estimator of the unknown sensor positions and an extra set of Gaussian mixture model parameters. The resulting centralized ECM algorithms lead to easier inference tasks and meanwhile retain several convergence properties with a proof of the "space filling" condition. To meet the scalability requirement, we further develop two distributed ECM algorithms where an average consensus algorithm plays an important role for updating the Gaussian mixture model parameters locally. The proposed algorithms are analyzed systematically in terms of computational complexity and communication overhead. Various computer based tests are also conducted with both simulation and experimental data. The results pin down that the proposed distributed algorithms can provide overall good performance for the assumed scenario even under model mismatch, while the existing competing algorithms either cannot work without the prior knowledge of the measurement error statistics or merely provide degraded localization performance when the measurement error is clearly non-Gaussian. | 
    
|---|---|
| AbstractList | We study cooperative sensor network localization in a realistic scenario where 1) the underlying measurement errors more probably follow a non-Gaussian distribution; 2) the measurement error distribution is unknown without conducting massive offline calibrations; and 3) non-line-of-sight identification is not performed due to the complexity constraint and/or storage limitation. The underlying measurement error distribution is approximated parametrically by a Gaussian mixture with finite number of components, and the expectation-conditional maximization (ECM) criterion is adopted to approximate the maximum-likelihood estimator of the unknown sensor positions and an extra set of Gaussian mixture model parameters. The resulting centralized ECM algorithms lead to easier inference tasks and meanwhile retain several convergence properties with a proof of the "space filling" condition. To meet the scalability requirement, we further develop two distributed ECM algorithms where an average consensus algorithm plays an important role for updating the Gaussian mixture model parameters locally. The proposed algorithms are analyzed systematically in terms of computational complexity and communication overhead. Various computer based tests are also conducted with both simulation and experimental data. The results pin down that the proposed distributed algorithms can provide overall good performance for the assumed scenario even under model mismatch, while the existing competing algorithms either cannot work without the prior knowledge of the measurement error statistics or merely provide degraded localization performance when the measurement error is clearly non-Gaussian. We study cooperative sensor network localization in a realistic scenario where the underlying measurement errors more probably follow a non-Gaussian distribution; the measurement error distribution is unknown without conducting massive offline calibrations; and non-line-of-sight identification is not performed due to the complexity constraint and/or storage limitation. The underlying measurement error distribution is approximated parametrically by a Gaussian mixture with finite number of components, and the expectation-conditional maximization (ECM) criterion is adopted to approximate the maximum-likelihood estimator of the unknown sensor positions and an extra set of Gaussian mixture model parameters. The resulting centralized ECM algorithms lead to easier inference tasks and meanwhile retain several convergence properties with a proof of the "space filling" condition. To meet the scalability requirement, we further develop two distributed ECM algorithms where an average consensus algorithm plays an important role for updating the Gaussian mixture model parameters locally. The proposed algorithms are analyzed systematically in terms of computational complexity and communication overhead. Various computer based tests are also conducted with both simulation and experimental data. The results pin down that the proposed distributed algorithms can provide overall good performance for the assumed scenario even under model mismatch, while the existing competing algorithms either cannot work without the prior knowledge of the measurement error statistics or merely provide degraded localization performance when the measurement error is clearly non-Gaussian.  | 
    
| Author | Gustafsson, Fredrik Di Jin Zoubir, Abdelhak M. Fritsche, Carsten Feng Yin  | 
    
| Author_xml | – sequence: 1 surname: Feng Yin fullname: Feng Yin email: fyin@spg.tu-darmstadt.de organization: Signal Process. Group, Tech. Univ. Darmstadt, Darmstadt, Germany – sequence: 2 givenname: Carsten surname: Fritsche fullname: Fritsche, Carsten email: carsten@isy.liu.se organization: Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden – sequence: 3 surname: Di Jin fullname: Di Jin email: djin@spg.tu-darmstadt.de organization: Signal Process. Group, Tech. Univ. Darmstadt, Darmstadt, Germany – sequence: 4 givenname: Fredrik surname: Gustafsson fullname: Gustafsson, Fredrik email: fredrik@isy.liu.se organization: Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden – sequence: 5 givenname: Abdelhak M. surname: Zoubir fullname: Zoubir, Abdelhak M. email: zoubir@spg.tu-darmstadt.de organization: Signal Process. Group, Tech. Univ. Darmstadt, Darmstadt, Germany  | 
    
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-116504$$DView record from Swedish Publication Index | 
    
| BookMark | eNptkcFOAjEQhhuDiYDeTbz0BRan222X9UZQ0QTUBFAPJk1ZCtas203bFfHpLUI4EE8zk_m_mck_LdQoTakQOifQIQSyy8n4qRMDYZ2YZgkFOEJNkiUkgiTljZADoxHrpq8nqOXcBwBJkow30VvfmEpZ6fWXwkOTy0L_hMKUWJf4Zfzg8NTpcokHsnZOyxKP9LevrcIjM1dF6Fzha-281bPaqzm-6Y9wr1gaq_37pztFxwtZOHW2i200vb2Z9O-i4ePgvt8bRjlNqI84hTmlwDZnU5mkXcZnkCkWh268iIHPuiyNU5UrJVNCSMo4XcSSdwnLGJMxbSOynVuXlVyvZFGIyupPadeCgNjYI7yrxMYesbMnMNGWcStV1bM9YKQW1_q5J4xdikLXAecMkqDnW31ujXNWLUSu_Z9T3kpd7BeFPxwuggPw8LZ_kIstopVSe3kaJBw4_QVHo5Ki | 
    
| CODEN | ITPRED | 
    
| CitedBy_id | crossref_primary_10_1016_j_phycom_2023_102165 crossref_primary_10_1109_TCOMM_2018_2878843 crossref_primary_10_3390_s23073603 crossref_primary_10_1016_j_inffus_2015_11_008 crossref_primary_10_1109_LCOMM_2022_3166780 crossref_primary_10_1109_LSP_2023_3348389 crossref_primary_10_3390_s20051302 crossref_primary_10_1049_iet_com_2016_0804 crossref_primary_10_1007_s11227_023_05326_9 crossref_primary_10_1016_j_comcom_2017_02_006 crossref_primary_10_1155_2018_7295702 crossref_primary_10_1007_s11277_024_11209_w crossref_primary_10_1109_TCYB_2018_2815697 crossref_primary_10_1109_TVT_2023_3282210 crossref_primary_10_1371_journal_pone_0301078 crossref_primary_10_1016_j_comnet_2018_06_017 crossref_primary_10_1145_3448303 crossref_primary_10_1007_s11277_024_11018_1 crossref_primary_10_1109_TAES_2020_2999999 crossref_primary_10_1109_LCOMM_2022_3205740 crossref_primary_10_1109_LCOMM_2017_2666157 crossref_primary_10_1109_TSP_2021_3090593 crossref_primary_10_1016_j_heliyon_2024_e31625 crossref_primary_10_1080_03610918_2020_1720733 crossref_primary_10_1109_OJSP_2020_3036276 crossref_primary_10_3390_s20092598 crossref_primary_10_1109_ACCESS_2018_2885534 crossref_primary_10_1016_j_heliyon_2024_e34455 crossref_primary_10_1007_s11831_024_10086_7 crossref_primary_10_1109_JIOT_2016_2631520 crossref_primary_10_1109_TWC_2021_3128396 crossref_primary_10_1016_j_comnet_2016_10_006 crossref_primary_10_1049_iet_com_2018_5849 crossref_primary_10_1007_s11277_024_11147_7 crossref_primary_10_1007_s10586_024_04621_1 crossref_primary_10_1109_ACCESS_2018_2879386 crossref_primary_10_1007_s10586_017_0913_5 crossref_primary_10_1109_TCE_2024_3411606 crossref_primary_10_1007_s11277_024_11020_7 crossref_primary_10_1016_j_suscom_2024_100988 crossref_primary_10_1007_s11042_024_19054_6 crossref_primary_10_1109_TSIPN_2018_2882922 crossref_primary_10_1109_ACCESS_2020_3048154 crossref_primary_10_1007_s11277_024_11192_2 crossref_primary_10_1007_s11277_024_11228_7 crossref_primary_10_1109_TSP_2020_2969048 crossref_primary_10_1109_TCSI_2024_3408919 crossref_primary_10_1109_TIT_2018_2859330 crossref_primary_10_1049_iet_com_2019_0444 crossref_primary_10_1109_ACCESS_2021_3090566 crossref_primary_10_1186_s13638_018_1335_7 crossref_primary_10_1109_TSP_2019_2929960 crossref_primary_10_1109_JSEN_2022_3177409 crossref_primary_10_1109_TNET_2022_3216204 crossref_primary_10_1016_j_dsp_2025_105008 crossref_primary_10_1109_ACCESS_2018_2889794 crossref_primary_10_1364_AO_536756 crossref_primary_10_1007_s11831_024_10110_w crossref_primary_10_1109_LSP_2021_3082329 crossref_primary_10_1007_s11277_024_11200_5 crossref_primary_10_1016_j_iot_2024_101255 crossref_primary_10_1109_JIOT_2024_3494870 crossref_primary_10_1109_TSP_2023_3310890 crossref_primary_10_1109_JIOT_2024_3370830 crossref_primary_10_1109_TCE_2024_3479078 crossref_primary_10_1371_journal_pone_0305092  | 
    
| Cites_doi | 10.1109/TWC.2014.2350493 10.1109/18.910572 10.1109/ICASSP.2004.1326696 10.1214/10-AOS799 10.1016/j.comnet.2006.11.018 10.1109/TVT.2007.904535 10.1145/1138127.1138129 10.1109/TSP.2013.2251341 10.1145/984622.984626 10.1109/JPROC.2008.2008853 10.1109/MSP.2005.1458287 10.1049/ic.2011.0169 10.1145/332833.332838 10.1109/TIT.2006.874516 10.1109/TSP.2003.814623 10.1109/JPROC.2010.2052531 10.1109/JSAC.2005.843548 10.1109/VETECF.2010.5594105 10.1002/0470010940 10.1109/TSP.2012.2232664 10.1155/2012/281592 10.1109/MLSP.2011.6064578 10.1109/JSAC.2012.121029 10.1093/biomet/80.2.267 10.1002/9781118104750 10.1109/TSP.2006.888886 10.1111/j.2517-6161.1977.tb01600.x 10.1109/TSP.2003.814469 10.1145/1149283.1149286 10.1109/TSP.2013.2286779 10.1016/S1389-1286(01)00302-4 10.1109/TPDS.2004.67 10.1109/TCOMM.2012.042712.110035 10.1109/GLOCOM.2010.5683693 10.1109/PIMRCW.2010.5670376 10.1109/SPAWC.2013.6612101 10.1109/ICASSP.2008.4518028  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION ABXSW ADTPV AOWAS D8T DG8 ZZAVC ADTOC UNPAY  | 
    
| DOI | 10.1109/TSP.2015.2394300 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1941-0476 | 
    
| EndPage | 1463 | 
    
| ExternalDocumentID | oai:DiVA.org:liu-116504 oai_DiVA_org_liu_116504 10_1109_TSP_2015_2394300 7015606  | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AJQPL AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 3EH 53G 5VS AAYXX ABFSI ACKIV AETIX AI. AIBXA AKJIK ALLEH CITATION E.L H~9 ICLAB IFJZH VH1 ABXSW ADTPV AOWAS D8T DG8 ZZAVC ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c343t-630d330543003a47856b09e523432f206b85727eceea71117563f2a6815955a23 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1053-587X 1941-0476  | 
    
| IngestDate | Sun Oct 26 04:14:15 EDT 2025 Thu Aug 21 06:55:12 EDT 2025 Wed Oct 01 03:34:17 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Tue Aug 26 16:40:39 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | wireless sensor network (WSN) Gaussian mixture cooperative localization expectation-conditional maximization (ECM) Centralized and distributed algorithms  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c343t-630d330543003a47856b09e523432f206b85727eceea71117563f2a6815955a23 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-116504 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | ieee_primary_7015606 crossref_citationtrail_10_1109_TSP_2015_2394300 swepub_primary_oai_DiVA_org_liu_116504 unpaywall_primary_10_1109_tsp_2015_2394300 crossref_primary_10_1109_TSP_2015_2394300  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-03-15 | 
    
| PublicationDateYYYYMMDD | 2015-03-15 | 
    
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | IEEE transactions on signal processing | 
    
| PublicationTitleAbbrev | TSP | 
    
| PublicationYear | 2015 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 fritsche (ref24) 2009 ref11 ref32 ref10 welling (ref21) 2007 pearl (ref18) 1988 ref2 patwari (ref28) 2009 ref1 ref39 ref17 ref16 ref19 yin (ref30) 2014 ref46 jelasity (ref38) 2003 ref23 ref26 ref25 ref20 ref42 ref41 dempster (ref33) 1977; 39 ref22 ref44 kowalczyk (ref37) 2005 ji (ref7) 2004; 4 ref43 gustafsson (ref45) 2012 ref29 ref8 strang (ref47) 2005 ref9 ref4 maronna (ref27) 2006 ref3 ref6 ref5 ref40  | 
    
| References_xml | – ident: ref23 doi: 10.1109/TWC.2014.2350493 – ident: ref19 doi: 10.1109/18.910572 – ident: ref36 doi: 10.1109/ICASSP.2004.1326696 – ident: ref46 doi: 10.1214/10-AOS799 – ident: ref20 doi: 10.1016/j.comnet.2006.11.018 – ident: ref4 doi: 10.1109/TVT.2007.904535 – ident: ref8 doi: 10.1145/1138127.1138129 – ident: ref31 doi: 10.1109/TSP.2013.2251341 – start-page: 713 year: 2005 ident: ref37 article-title: Newscast EM publication-title: Proc Adv Neural Inf Process Syst – year: 2005 ident: ref47 publication-title: Linear Algebra and its Applications – ident: ref44 doi: 10.1145/984622.984626 – ident: ref5 doi: 10.1109/JPROC.2008.2008853 – ident: ref2 doi: 10.1109/MSP.2005.1458287 – start-page: 767 year: 2007 ident: ref21 article-title: A distributed message passing algorithm for sensor localization publication-title: Proc Int Conf Artif Neural Netw – ident: ref15 doi: 10.1049/ic.2011.0169 – ident: ref43 doi: 10.1145/332833.332838 – ident: ref39 doi: 10.1109/TIT.2006.874516 – ident: ref35 doi: 10.1109/TSP.2003.814623 – ident: ref34 doi: 10.1109/JPROC.2010.2052531 – year: 2003 ident: ref38 publication-title: ?Newscast Computing ? – ident: ref13 doi: 10.1109/JSAC.2005.843548 – ident: ref14 doi: 10.1109/VETECF.2010.5594105 – year: 2006 ident: ref27 publication-title: Robust Statistics Theory and Methods doi: 10.1002/0470010940 – year: 2014 ident: ref30 publication-title: Robust wireless localization in harsh mixed line-of-sight/non-line-of-sight environments – ident: ref10 doi: 10.1109/TSP.2012.2232664 – ident: ref16 doi: 10.1155/2012/281592 – volume: 4 start-page: 2652 year: 2004 ident: ref7 article-title: Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling publication-title: Proc IEEE Conf Comput Commun (INFOCOM) – start-page: 1953 year: 2009 ident: ref24 article-title: On the performance of mobile terminal tracking in urban GSM networks using particle filters publication-title: Proc Eur Signal Process Conf (EUSIPCO) – ident: ref41 doi: 10.1109/MLSP.2011.6064578 – ident: ref17 doi: 10.1109/JSAC.2012.121029 – year: 2012 ident: ref45 publication-title: Statistical Sensor Fusion – ident: ref29 doi: 10.1093/biomet/80.2.267 – ident: ref42 doi: 10.1002/9781118104750 – ident: ref26 doi: 10.1109/TSP.2006.888886 – volume: 39 start-page: 1 year: 1977 ident: ref33 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Statist Soc B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref3 doi: 10.1109/TSP.2003.814469 – ident: ref9 doi: 10.1145/1149283.1149286 – ident: ref32 doi: 10.1109/TSP.2013.2286779 – ident: ref1 doi: 10.1016/S1389-1286(01)00302-4 – ident: ref6 doi: 10.1109/TPDS.2004.67 – ident: ref22 doi: 10.1109/TCOMM.2012.042712.110035 – ident: ref12 doi: 10.1109/GLOCOM.2010.5683693 – year: 1988 ident: ref18 publication-title: Probabilistic Reasoning in Intelligent Systems – ident: ref11 doi: 10.1109/PIMRCW.2010.5670376 – ident: ref25 doi: 10.1109/SPAWC.2013.6612101 – ident: ref40 doi: 10.1109/ICASSP.2008.4518028 – year: 2009 ident: ref28 publication-title: Localization Algorithms and Strategies for Wireless Sensor Networks  | 
    
| SSID | ssj0014496 | 
    
| Score | 2.480728 | 
    
| Snippet | We study cooperative sensor network localization in a realistic scenario where the underlying measurement errors more probably follow a non-Gaussian... We study cooperative sensor network localization in a realistic scenario where 1) the underlying measurement errors more probably follow a non-Gaussian...  | 
    
| SourceID | unpaywall swepub crossref ieee  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 1448 | 
    
| SubjectTerms | Approximation algorithms Centralized and distributed algorithms cooperative localization Electronic countermeasures expectation-conditional maximization (ECM) Gaussian mixture Inference algorithms Maximum likelihood estimation Measurement errors Signal processing algorithms wireless sensor network (WSN) Wireless sensor networks  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEF_k-kH7wVcVzxf7QQSFvSb7ygNEjmtrEe8otKcnCGE32dRgTI5LUh9_vTtJGk8KQj_kQ5JNluxvyMzszPwGoReBSJX2qSK-VB7hlMYkcKgmjuY6pmmcBG1W5Xwhj5f8_Uqs_m5d2OXrk9yts1nmF-atvfLGHmGhi7AyYZ41YZJdKAK0McADuiOFNcJHaGe5OJl-bmObghHhe6s2nsyts8y9IUDpBPt1BTSVrphAU3AGlW1bCqntsDKwhu6im02xVr9-qDzf0jpHd9DqsnanSzb5NmlqPYl_X6VyvO4H3UW3e0sUTzvRuYdumOI-2t3iJ9xDX2ZluTYdNzj-AFqvr9rEWYE_nS4q3GYc4HeqqaAYE8-znxCRwNBhDercQ3wAxLzQU8sk-HA2x9P8vNxk9dfv1QO0PDo8mx2Tvh0DiRlnNZHMSZj9PcCiMcU9X0jtBMZ6spzRlDpS-8JaQ8aqXeW5QAEqWUqV9K3FJISi7CEaFWVhHiGcSKXShEsd2xeliituvNh1lW8ETxRVY7R_iUkU91zl0DIjj1qfxQmis9OTCFCMehTH6NXwxLrj6fjP2D2AeRjnteXkcoxedrAPN4B6-yD7OI3KzXlkgYo6jMbo9SAWVyaz4vXPZI-vM_gJugWnkOPmiqdoVG8a88waPbV-3gv4Hyei_SM priority: 102 providerName: Unpaywall  | 
    
| Title | Cooperative Localization in WSNs Using Gaussian Mixture Modeling: Distributed ECM Algorithms | 
    
| URI | https://ieeexplore.ieee.org/document/7015606 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-116504 http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-116504  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 63 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB615QH6wFUqwlHtA0IC4cTZyzZvUdpSIRJVagNBQrJ212uwMHbU2OL49ezYjhUOId4see21Z1aeWc983wfwJBKp0iFVXihV4HFKjRf5VHu-5trQ1CRR01U5m8uzBX-9FMsdeNFjYay1TfOZHeJhU8tPSlPjr7JR0OB-5S7sBqFssVp9xYDzRovLpQvME2Gw3JQk_Wh0eXGOPVxiiDLgDLFsWyGo0VTpeUL34XpdrNT3ryrPt-LM6S2YbZ6wbS_5PKwrPTQ_fiNv_N9XuA03u4STTNoVcgd2bHEX9rdoCA_gw7QsV7alACdvMLh14EySFeTdxXxNmsYC8krVa8Rckln2DQsPBIXUEM7-khwj_y5KZ9mEnExnZJJ_LK-y6tOX9T1YnJ5cTs-8TnXBM4yzypPMT5j7CqClmOJBKKT2I-s2rJzRlPpSh8IlPdZFVxWMkelTspQqGbrESAhF2SHsFWVh7wNJpFJpwqU27kap4orbwIzHKrSCJ4qqAYw2johNR0mOyhh53GxN_Ch2rovRdXHnugE8669YtXQc_xh7gPbvx3WmH8DT1tf9CWTYPs7eTmLnqTjP6hgpiXw-gOf9Wvhjsmq9-mWyB3-f7CHcwFHYtDYWj2CvuqrtY5fFVPqoWb5HcG0xP5-8_wmfFu6J | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4ty2HZA68FUZ4-ICQQaVO_knCrursUaCqk7UIPSJGTOBARkmqbiMevx-OkUXkIcYsUO048Vmbsme_7AB4HIlOxT5XjS-U5nNLECVwaO27M44RmSRrYqspwIWfn_PVKrPbgeY-F0Vrb4jM9xEuby0-rpMGjspFncb_yElwWnHPRorX6nAHnVo3LBAzMEb632iYl3WC0PHuLVVxiiELgDNFsO07Iqqr0TKGHcNCUa_X9qyqKHU9zeg3C7Tu2BSafh00dD5Mfv9E3_u9HXIerXchJJu0auQF7urwJhztEhEfwYVpVa92SgJM5urcOnknykrw_W2yILS0gL1WzQdQlCfNvmHogKKWGgPYX5BgZeFE8S6fkZBqSSfGxusjrT182t-D89GQ5nTmd7oKTMM5qRzI3ZeY_gDPFFPd8IWM30GbLyhnNqCtjX5iwRxv_qrwxcn1KllElfRMaCaEouw37ZVXqO0BSqVSWchkn5kGZ4oprLxmPla8FTxVVAxhtDRElHSk5amMUkd2cuEFkTBeh6aLOdAN42vdYt4Qc_2h7hPPft-umfgBPWlv3N5Bj-zh_N4mMpaIibyIkJXL5AJ71a-GPwerN-pfB7v59sEdwMFuG82j-avHmHlzBHljCNhb3Yb--aPQDE9PU8UO7lH8CvrvwJg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEF_k-kH7wVcVzxf7QQSFvSb7ygNEjmtrEe8otKcnCGE32dRgTI5LUh9_vTtJGk8KQj_kQ5JNluxvyMzszPwGoReBSJX2qSK-VB7hlMYkcKgmjuY6pmmcBG1W5Xwhj5f8_Uqs_m5d2OXrk9yts1nmF-atvfLGHmGhi7AyYZ41YZJdKAK0McADuiOFNcJHaGe5OJl-bmObghHhe6s2nsyts8y9IUDpBPt1BTSVrphAU3AGlW1bCqntsDKwhu6im02xVr9-qDzf0jpHd9DqsnanSzb5NmlqPYl_X6VyvO4H3UW3e0sUTzvRuYdumOI-2t3iJ9xDX2ZluTYdNzj-AFqvr9rEWYE_nS4q3GYc4HeqqaAYE8-znxCRwNBhDercQ3wAxLzQU8sk-HA2x9P8vNxk9dfv1QO0PDo8mx2Tvh0DiRlnNZHMSZj9PcCiMcU9X0jtBMZ6spzRlDpS-8JaQ8aqXeW5QAEqWUqV9K3FJISi7CEaFWVhHiGcSKXShEsd2xeliituvNh1lW8ETxRVY7R_iUkU91zl0DIjj1qfxQmis9OTCFCMehTH6NXwxLrj6fjP2D2AeRjnteXkcoxedrAPN4B6-yD7OI3KzXlkgYo6jMbo9SAWVyaz4vXPZI-vM_gJugWnkOPmiqdoVG8a88waPbV-3gv4Hyei_SM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Localization+in+WSNs+Using+Gaussian+Mixture+Modeling%3A+Distributed+ECM+Algorithms&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Feng+Yin&rft.au=Fritsche%2C+Carsten&rft.au=Di+Jin&rft.au=Gustafsson%2C+Fredrik&rft.date=2015-03-15&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=63&rft.issue=6&rft.spage=1448&rft.epage=1463&rft_id=info:doi/10.1109%2FTSP.2015.2394300&rft.externalDocID=7015606 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |