Laser powder bed fusion parameter estimation with k-NN
Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal alloy. This technology is well equipped to produce complex parts with otherwise impossible features, such as hidden voids or lattice structures....
Saved in:
| Published in | International journal of advanced manufacturing technology Vol. 138; no. 3; pp. 1075 - 1092 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.05.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0268-3768 1433-3015 1433-3015 |
| DOI | 10.1007/s00170-025-15591-y |
Cover
| Abstract | Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal alloy. This technology is well equipped to produce complex parts with otherwise impossible features, such as hidden voids or lattice structures. Alongside capability, reliability and quality are key characteristics considered when choosing a manufacturing method, and these are gaining attention as this method becomes more prevalent in industry. One main indicator of a stable L-PBF process is consistent melt pool geometry, and the properties of which are likely to determine the quality of the part produced. As computing power and sensing technologies become more advanced, this melt pool geometry could be studied in real time. This work addresses the challenge by leveraging a k-nearest neighbor (k-NN) model to identify key features within melt pool imagery and predict the energy density. The k-NN model was trained on data provided by the National Institute of Standards and Technology (NIST). Data preprocessing was performed on the images to extract features that were used in the k-NN model. This approach was used to accurately infer the energy density of unseen layers within the same part. The algorithm was subsequently tested with unique scan strategies and found to reasonably estimate the energy density of different parts. A fivefold cross validation found the algorithm to be consistently predicting the class of 91.4% of the in situ melt pool images. |
|---|---|
| AbstractList | Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal alloy. This technology is well equipped to produce complex parts with otherwise impossible features, such as hidden voids or lattice structures. Alongside capability, reliability and quality are key characteristics considered when choosing a manufacturing method, and these are gaining attention as this method becomes more prevalent in industry. One main indicator of a stable L-PBF process is consistent melt pool geometry, and the properties of which are likely to determine the quality of the part produced. As computing power and sensing technologies become more advanced, this melt pool geometry could be studied in real time. This work addresses the challenge by leveraging a k-nearest neighbor (k-NN) model to identify key features within melt pool imagery and predict the energy density. The k-NN model was trained on data provided by the National Institute of Standards and Technology (NIST). Data preprocessing was performed on the images to extract features that were used in the k-NN model. This approach was used to accurately infer the energy density of unseen layers within the same part. The algorithm was subsequently tested with unique scan strategies and found to reasonably estimate the energy density of different parts. A fivefold cross validation found the algorithm to be consistently predicting the class of 91.4% of the in situ melt pool images. Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal alloy. This technology is well equipped to produce complex parts with otherwise impossible features, such as hidden voids or lattice structures. Alongside capability, reliability and quality are key characteristics considered when choosing a manufacturing method, and these are gaining attention as this method becomes more prevalent in industry. One main indicator of a stable L-PBF process is consistent melt pool geometry, and the properties of which are likely to determine the quality of the part produced. As computing power and sensing technologies become more advanced, this melt pool geometry could be studied in real time. This work addresses the challenge by leveraging a k-nearest neighbor (k-NN) model to identify key features within melt pool imagery and predict the energy density. The k-NN model was trained on data provided by the National Institute of Standards and Technology (NIST). Data preprocessing was performed on the images to extract features that were used in the k-NN model. This approach was used to accurately infer the energy density of unseen layers within the same part. The algorithm was subsequently tested with unique scan strategies and found to reasonably estimate the energy density of different parts. A fivefold cross validation found the algorithm to be consistently predicting the class of 91.4% of the in situ melt pool images. |
| Author | Jung, Patrick Saldaña, Christopher Fu, Katherine DeVol, Nathaniel |
| Author_xml | – sequence: 1 givenname: Patrick orcidid: 0000-0002-6789-0859 surname: Jung fullname: Jung, Patrick organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology – sequence: 2 givenname: Nathaniel orcidid: 0000-0001-8938-7413 surname: DeVol fullname: DeVol, Nathaniel organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology – sequence: 3 givenname: Christopher orcidid: 0000-0003-1427-7732 surname: Saldaña fullname: Saldaña, Christopher organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology – sequence: 4 givenname: Katherine orcidid: 0000-0002-4093-2932 surname: Fu fullname: Fu, Katherine email: kate.fu@wisc.edu organization: Department of Mechanical Engineering, University of Wisconsin - Madison |
| BookMark | eNqNT01LAzEUDFLBtvoHPC14jr7kJbvZoxS_oOhFzyFNstra7q7JLmX_valb8CbyDvMYZoaZGZnUTe0JuWRwzQCKmwjACqDAJWVSlowOJ2TKBCJFYHJCpsBzRbHI1RmZxbhJ8pzlakrypYk-ZG2zdwlW3mVVH9dNnbUmmJ3vEuljt96Z7kDu191H9kmfn8_JaWW20V8ccU7e7u9eF490-fLwtLhdUosCOyoNKquEc1g6EMZUSkpbcHTe8bJSzK6sA18dTjkOFrwwILDkwAuVHpwTHHP7ujXD3my3ug2pTRg0A32YrsfpOk3XP9P1kFxXo6sNzVef-utN04c6FdXIQUApCiGTio8qG5oYg6_-F30sFJO4fvfhN_oP1zf9_XoV |
| Cites_doi | 10.1109/COASE.2019.8843316 10.1109/TGRS.2010.2055876 10.1016/j.actamat.2016.07.019 10.1016/j.addma.2019.100946 10.1016/j.apsusc.2007.08.074 10.6028/jres.124.033 10.1007/s10845-020-01549-2 10.1016/j.matdes.2013.05.070 10.1016/j.ijrmhm.2017.11.034 10.3390/jmmp3010021 10.1115/1.4028540 10.1063/1.4937809 10.3390/jmmp1020023 10.1016/j.jmatprotec.2008.02.040 10.1115/DETC2015-47802 10.1016/j.actamat.2016.04.029 10.1016/j.addma.2018.04.005 10.1201/9781315119106-34 10.1016/j.addma.2021.102383 10.1115/1.4028533 10.1007/s10845-023-02121-4 10.1115/1.4046335 10.1016/j.addma.2020.101383 10.1007/s11837-016-2234-1 10.1109/LGRS.2012.2189547 10.1016/j.jmapro.2023.05.048 10.1016/S0890-6955(98)00036-4 10.1016/j.actamat.2016.02.014 10.1016/j.commatsci.2011.09.012 10.1007/s10845-022-02012-0 10.1016/j.surfcoat.2006.05.006 10.1016/j.addma.2019.04.021 10.1007/s10845-018-1412-0 10.1520/F2792-12 10.1007/s10845-020-01725-4 10.1088/1361-6501/aa5c4f 10.1007/s11665-014-0958-z 10.1016/j.ijmachtools.2017.03.004 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 Copyright Springer Nature B.V. May 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. May 2025 |
| DBID | C6C AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1007/s00170-025-15591-y |
| DatabaseName | Springer Nature Link CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1433-3015 |
| EndPage | 1092 |
| ExternalDocumentID | 10.1007/s00170-025-15591-y 10_1007_s00170_025_15591_y |
| GrantInformation_xml | – fundername: U.S. Department of Energy grantid: DE-EE-0008303 funderid: http://dx.doi.org/10.13039/100000015 |
| GroupedDBID | -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PHGZM PHGZT PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z8Z ZMTXR ZY4 ~8M ~A9 ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION PQGLB PUEGO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c343t-5a38c84dd39d04aaf855c723ded29f81cbcd0efefef8d20c0e4a0439202780433 |
| IEDL.DBID | UNPAY |
| ISSN | 0268-3768 1433-3015 |
| IngestDate | Sun Oct 26 03:33:30 EDT 2025 Fri Jul 25 09:41:41 EDT 2025 Wed Oct 01 06:06:33 EDT 2025 Fri May 16 02:05:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Laser powder bed fusion Additive manufacturing Melt pool monitoring Machine learning Smart manufacturing |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-5a38c84dd39d04aaf855c723ded29f81cbcd0efefef8d20c0e4a0439202780433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4093-2932 0000-0002-6789-0859 0000-0003-1427-7732 0000-0001-8938-7413 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00170-025-15591-y.pdf |
| PQID | 3204094745 |
| PQPubID | 2044010 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1007_s00170_025_15591_y proquest_journals_3204094745 crossref_primary_10_1007_s00170_025_15591_y springer_journals_10_1007_s00170_025_15591_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | International journal of advanced manufacturing technology |
| PublicationTitleAbbrev | Int J Adv Manuf Technol |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Z Yang (15591_CR39) 2020; 20 M Grasso (15591_CR11) 2017; 28 C Xia (15591_CR38) 2022; 33 JA Mitchell (15591_CR31) 2020; 31 M Aminzadeh (15591_CR2) 2019; 30 X Li (15591_CR25) 2020; 31 J Liu (15591_CR26) 2023; 34 SA Khairallah (15591_CR17) 2016; 108 15591_CR20 K Chomboon (15591_CR4) 2015; 2015 YJ Liu (15591_CR27) 2016; 113 H Yeung (15591_CR40) 2020; 35 AV Gusarov (15591_CR13) 2007; 254 M Hasanlou (15591_CR14) 2012; 9 P Witherell (15591_CR37) 2014; 136 15591_CR28 B Lane (15591_CR21) 2019; 124 L Ma (15591_CR29) 2010; 48 G Bi (15591_CR3) 2006; 201 J Akhavan (15591_CR1) 2023 A Suzuki (15591_CR34) 2021; 48 M Letenneur (15591_CR23) 2017; 1 Q Guo (15591_CR12) 2019; 28 NIST (15591_CR32) 2013 F42.91, A. C (15591_CR8) 2012 R Cunningham (15591_CR6) 2017; 69 WE King (15591_CR18) 2015; 2 C Gobert (15591_CR10) 2018; 21 J Yin (15591_CR41) 2012; 53 K Taherkhani (15591_CR35) 2023; 99 L Dong (15591_CR7) 2009; 209 15591_CR30 D Herzog (15591_CR15) 2016; 117 WE Frazier (15591_CR9) 2014; 23 A Hussein (15591_CR16) 2013; 52 M Letenneur (15591_CR24) 2019; 3 K-H Leitz (15591_CR22) 2018; 72 M Shiomi (15591_CR33) 1999; 39 LE Criales (15591_CR5) 2017; 121 G Tapia (15591_CR36) 2014; 136 15591_CR19 |
| References_xml | – ident: 15591_CR19 doi: 10.1109/COASE.2019.8843316 – volume: 48 start-page: 4099 issue: 11 year: 2010 ident: 15591_CR29 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2010.2055876 – volume: 117 start-page: 371 year: 2016 ident: 15591_CR15 publication-title: Acta Materialia doi: 10.1016/j.actamat.2016.07.019 – volume: 31 start-page: 100946 year: 2020 ident: 15591_CR31 publication-title: Addit Manuf doi: 10.1016/j.addma.2019.100946 – volume: 254 start-page: 975 issue: 4 year: 2007 ident: 15591_CR13 publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2007.08.074 – volume: 124 start-page: 1 year: 2019 ident: 15591_CR21 publication-title: J Res Nat Inst Stand Technol doi: 10.6028/jres.124.033 – volume: 31 start-page: 2003 issue: 8 year: 2020 ident: 15591_CR25 publication-title: J Intell Manuf doi: 10.1007/s10845-020-01549-2 – volume: 52 start-page: 638 year: 2013 ident: 15591_CR16 publication-title: Mater Design (1980-2015) doi: 10.1016/j.matdes.2013.05.070 – ident: 15591_CR20 – volume: 72 start-page: 1 year: 2018 ident: 15591_CR22 publication-title: Int J Refractory Metal Hard Mater doi: 10.1016/j.ijrmhm.2017.11.034 – volume: 3 start-page: 21 issue: 1 year: 2019 ident: 15591_CR24 publication-title: J Manuf Mater Process doi: 10.3390/jmmp3010021 – volume: 136 start-page: 60801 issue: 6 year: 2014 ident: 15591_CR36 publication-title: J Manuf Sci Eng doi: 10.1115/1.4028540 – volume: 2 start-page: 41304 issue: 4 year: 2015 ident: 15591_CR18 publication-title: Appl Phys Rev doi: 10.1063/1.4937809 – volume: 1 start-page: 23 issue: 2 year: 2017 ident: 15591_CR23 publication-title: J Manuf Mater Process doi: 10.3390/jmmp1020023 – volume: 2015 start-page: 280 year: 2015 ident: 15591_CR4 publication-title: Proceed 2nd Int Conf Indust Applic Eng – volume: 209 start-page: 700 issue: 2 year: 2009 ident: 15591_CR7 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.02.040 – ident: 15591_CR28 doi: 10.1115/DETC2015-47802 – volume: 113 start-page: 56 year: 2016 ident: 15591_CR27 publication-title: Acta Materialia doi: 10.1016/j.actamat.2016.04.029 – volume: 21 start-page: 517 year: 2018 ident: 15591_CR10 publication-title: Addit Manuf doi: 10.1016/j.addma.2018.04.005 – ident: 15591_CR30 doi: 10.1201/9781315119106-34 – volume-title: Measurement science roadmap for metal-based additive manufacturing year: 2013 ident: 15591_CR32 – volume: 48 start-page: 102383 year: 2021 ident: 15591_CR34 publication-title: Addit Manuf doi: 10.1016/j.addma.2021.102383 – volume: 136 start-page: 61025 issue: 6 year: 2014 ident: 15591_CR37 publication-title: J Manuf Sci Eng doi: 10.1115/1.4028533 – year: 2023 ident: 15591_CR1 publication-title: J Intell Manuf doi: 10.1007/s10845-023-02121-4 – volume: 20 start-page: 51001 issue: 5 year: 2020 ident: 15591_CR39 publication-title: J Comput Inf Sci Eng doi: 10.1115/1.4046335 – volume: 35 start-page: 101383 year: 2020 ident: 15591_CR40 publication-title: Addit Manuf doi: 10.1016/j.addma.2020.101383 – volume: 69 start-page: 479 year: 2017 ident: 15591_CR6 publication-title: JOM doi: 10.1007/s11837-016-2234-1 – volume: 9 start-page: 1046 issue: 6 year: 2012 ident: 15591_CR14 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2012.2189547 – volume: 99 start-page: 848 issue: May year: 2023 ident: 15591_CR35 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2023.05.048 – volume: 39 start-page: 237 issue: 2 year: 1999 ident: 15591_CR33 publication-title: Int J Mach Tools Manuf doi: 10.1016/S0890-6955(98)00036-4 – volume: 108 start-page: 36 year: 2016 ident: 15591_CR17 publication-title: Acta Mater doi: 10.1016/j.actamat.2016.02.014 – volume: 53 start-page: 333 issue: 1 year: 2012 ident: 15591_CR41 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2011.09.012 – volume: 34 start-page: 3249 issue: 8 year: 2023 ident: 15591_CR26 publication-title: J Intell Manuf doi: 10.1007/s10845-022-02012-0 – volume: 201 start-page: 2676 issue: 6 year: 2006 ident: 15591_CR3 publication-title: Surf Coatings Technol doi: 10.1016/j.surfcoat.2006.05.006 – volume: 28 start-page: 600 year: 2019 ident: 15591_CR12 publication-title: Additive Manuf doi: 10.1016/j.addma.2019.04.021 – volume: 30 start-page: 2505 issue: 6 year: 2019 ident: 15591_CR2 publication-title: J Intell Manuf doi: 10.1007/s10845-018-1412-0 – year: 2012 ident: 15591_CR8 publication-title: ASTM Int doi: 10.1520/F2792-12 – volume: 33 start-page: 1467 issue: 5 year: 2022 ident: 15591_CR38 publication-title: J Intell Manuf doi: 10.1007/s10845-020-01725-4 – volume: 28 start-page: 44005 issue: 4 year: 2017 ident: 15591_CR11 publication-title: Meas Sci Technol doi: 10.1088/1361-6501/aa5c4f – volume: 23 start-page: 1917 year: 2014 ident: 15591_CR9 publication-title: J Mater Eng Perform doi: 10.1007/s11665-014-0958-z – volume: 121 start-page: 22 year: 2017 ident: 15591_CR5 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2017.03.004 |
| SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
| Score | 2.437907 |
| Snippet | Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal... Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1075 |
| SubjectTerms | Advanced manufacturing technologies Algorithms CAE) and Design Computer-Aided Engineering (CAD Engineering Feature extraction Industrial and Production Engineering Lasers Manufacturing Mechanical Engineering Media Management Melt pools Melting Metal powders Original Article Parameter estimation Powder beds Production methods |
| SummonAdditionalLinks | – databaseName: Springer Nature Link dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aD9qD-InVKjl4s8HdJLubPUqxFNGeLPS25Gsv1rbUltJ_byb70Soiyh72sJDA2xdmkpd5g9BtYLmJIwvSYJ4QnltDpIvTROXKRQSpLfW-BS-DuD_kT6NoVNrkQC3MN_3-3rfoDgg0XQUBLSTrXbTnglTshdm4W3EnTBPof1lzi6bQdH7DXcYjVihapcIQh75Mzm1BBCwyURbU_Dzn16C1yURr8bSJ9peTmVyv5Hi8FZ96R-iwTCzxQ8GEY7RjJyeouWU3eIriZxey5ng2XRn3UtbgfAmHZRj8v9_hXgwGz42imBHDCS1-I4PBGRr2Hl-7fVL2TSCacbYgkWRCC24MS03ApcxFFOmEMmMNTXMRaqVNYHN4hKGBdv9LQoUsnIMIMDQ7R43JdGIvEOYmibVQVGqmeCy1klRLQ4VNXaaVWNtCdxUw2aywx8hqI2QPY-ZgzDyM2bqF2hV2WblUPjJGA9hjJjxqoU6F5-bzb6N1asz_MPnl_0a_QgcUGODvNrZRYzFf2muXfyzUjSfeJwKgyuo priority: 102 providerName: Springer Nature |
| Title | Laser powder bed fusion parameter estimation with k-NN |
| URI | https://link.springer.com/article/10.1007/s00170-025-15591-y https://www.proquest.com/docview/3204094745 https://link.springer.com/content/pdf/10.1007/s00170-025-15591-y.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 138 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 1433-3015 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 1433-3015 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016168 issn: 1433-3015 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6F5NBy4NEWEQiRD73BBrO7tjfHEAgRLVYPjQQna1--ACYCRyj8enb8SChCFQhZsg9rrbUzs5rxzHzfAvz0LTdhYLE0mEaEp9YQ6fw0UalyHkFqSwvegos4HE_4-WVw2YCTGgtTdLvXJckS04AsTVl-ODXp4QL4VtC-EDyKFctqR2Tec8Mr0AoDF5E3oTWJ_wyuyvSKwD1UIOI4Y8TZc1BhZ96e6F__tAw6F3XSVfgyy6Zy_ihvbl64otE62HoRZQfKdW-Wq55-esXv-NlVbsBaFat6g9K4NqFhs2-w-oLB8DuEv50XvPemd4_GPZQ1XjrD_JuHlOK32GrjIY1HiY_0MOnrXZM4_gGT0enf4ZhURzEQzTjLSSCZ0IIbw_rG51KmIgh0RJmxhvZTcaSVNr5N8RKG-tqZgETQLaZWBHKkbUEzu8vsNnjcRKEWikrNFA-lVpJqaaiwfRe8Rda2Yb9WQDItGTeSBbdyIZHESSQpJJLM29CpdZRUu-8hYdTH39aIB204qMW8HP7fbAcL3b7j4zsfe30XvlJUZtEu2YFmfj-zey6kyVUXWoPR8XGMz7OrX6ddWBmGQ3ef0EG3suZnv97xvA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6I8M7BRV6ntJM6IEKVA6UQlmCK_shRKBa1Q-fX48mpBCIEyZIhkK3dn3_s7gFPfchMGFlODaUR4ag2RTk8TlSqnEaS2NMMtuOuFnT6_eQgeiqawt7LavUxJZjd11eyWQb0QHL-KqbQWmS7CEncOCq3B0vnV4-1lKUetOMJZmJWc0RgH0M_kmPGA5dmtItsQtrKWOeeOCDxwomiu-XnXrwpsZpVWidRVWJ4MR3L6Lp-e5nRVex365V_mJSqD5mSsmvrjGwDkf8mwAWuF8eqd59K2CQt2uAWrc5CG2xB2nVp89UYv78a9lDVeOsGAnIcY489Ye-MhrkfeMOlhFNgbkF5vB_rty_uLDilmMxDNOBuTQDKhBTeGxcbnUqYiCHREmbGGxqloaaWNb1N8hKG-djIhsQsXYy0CQdN2oTZ8Gdo98LiJQi0UlZopHkqtJNXSUGFjZ81F1tbhrCR4MsohOJIKbDmjRuKokWTUSKZ1OCx5khTH8S1h1Ec_NuJBHRolWWeff1utUfHyD5vv_2_1E1ju3N91k-517_YAVigyNaulPITa-HVij5y9M1bHhXh_AoVF7y8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gI-D-MT6zMGbXUx3N8nmKNVStQYPCr2Fze7mosZSU0r_vTt5tYKIkkMOgV34MsvMzsz3DcCFa7j2PYOlwTQgPDWaSOunSZIm1iNIZWihW_AY-f0Xfj_0hgss_qLbvS5JlpwGVGnK8quRTq8a4lsh-0JwFCuW1Tpktgyr3Ho3nGHQ9bu1RXXCAKdiNhZHQxxFP7doxj1W1rmquoPfKchz9mIi8OiJimbz857fXdk8Pm1KqpuwPslGcjaVb28LXqu3DVtVuOlcl_axA0sm24XNBRHCPfAH1pGNndHHVNtXYrSTTjCF5qAq-Dt2yzioxFFSHB3M2zqvJIr24aV3-9ztk2qaAlGMs5x4kgkluNYs1C6XMhWepwLKtNE0TEVHJUq7JsVHaOoq-xcl8mYxOyJQ5uwAVrKPzByCw3XgK5FQqVjCfakSSZXUVJjQxl-BMS24rIGJR6VoRtzIIxcwxhbGuIAxnrXgpMYurg7QZ8yoizfPgHstaNd4zj__tlq7wfwPmx_9b_VzWHu66cWDu-jhGDYoGkPR_HgCK_l4Yk5tgJInZ4UNfgH_MtYg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VMkAH3ojyUgY2cEltJ3HHiocQgoqBSmWK_MrSEiJIVJVfj51XC0IIhDJksOXId2fd5e6-zwAnrqbK97QtDUYBopFWiBs_jUQkjEfgUuOct-B-4N8M6e3IGzXgssLC5N3uVUmywDRYlqY4PU9UdF4D33LaF2SvYrVltS6adczwEiz7nonIm7A8HDz0n4r0CrNnKEfEUUKQsWevxM58v9Bn_zQPOus6aQtWsjjhsymfTBZc0fU66GoTRQfKuJOloiPfv_A7_neXG7BWxqpOvzCuTWjoeAtaCwyG2-DfGS_46iQvU2VeQisnymz-zbGU4s-21caxNB4FPtKxSV9njAaDHRheXz1e3KDyKgYkCSUp8jhhklGlSE-5lPOIeZ4MMFFa4V7EulJI5erIPkxhVxoT4BZ0a1MrzHKk7UIzfon1HjhUBb5kAnNJBPW5FBxLrjDTPRO8BVq34bRSQJgUjBthza2cSyQ0EglziYSzNhxWOgrL0_cWEuza39aAem04q8Q8H_5ptbNat7_4-P7fph_AKrbKzNslD6GZvmb6yIQ0qTguLfYDmP7s5g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+powder+bed+fusion+parameter+estimation+with+k-NN&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Jung%2C+Patrick&rft.au=DeVol%2C+Nathaniel&rft.au=Salda%C3%B1a%2C+Christopher&rft.au=Fu%2C+Katherine&rft.date=2025-05-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=138&rft.issue=3-4&rft.spage=1075&rft.epage=1092&rft_id=info:doi/10.1007%2Fs00170-025-15591-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_025_15591_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |