Laser powder bed fusion parameter estimation with k-NN

Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal alloy. This technology is well equipped to produce complex parts with otherwise impossible features, such as hidden voids or lattice structures....

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 138; no. 3; pp. 1075 - 1092
Main Authors Jung, Patrick, DeVol, Nathaniel, Saldaña, Christopher, Fu, Katherine
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
1433-3015
DOI10.1007/s00170-025-15591-y

Cover

Abstract Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal alloy. This technology is well equipped to produce complex parts with otherwise impossible features, such as hidden voids or lattice structures. Alongside capability, reliability and quality are key characteristics considered when choosing a manufacturing method, and these are gaining attention as this method becomes more prevalent in industry. One main indicator of a stable L-PBF process is consistent melt pool geometry, and the properties of which are likely to determine the quality of the part produced. As computing power and sensing technologies become more advanced, this melt pool geometry could be studied in real time. This work addresses the challenge by leveraging a k-nearest neighbor (k-NN) model to identify key features within melt pool imagery and predict the energy density. The k-NN model was trained on data provided by the National Institute of Standards and Technology (NIST). Data preprocessing was performed on the images to extract features that were used in the k-NN model. This approach was used to accurately infer the energy density of unseen layers within the same part. The algorithm was subsequently tested with unique scan strategies and found to reasonably estimate the energy density of different parts. A fivefold cross validation found the algorithm to be consistently predicting the class of 91.4% of the in situ melt pool images.
AbstractList Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal alloy. This technology is well equipped to produce complex parts with otherwise impossible features, such as hidden voids or lattice structures. Alongside capability, reliability and quality are key characteristics considered when choosing a manufacturing method, and these are gaining attention as this method becomes more prevalent in industry. One main indicator of a stable L-PBF process is consistent melt pool geometry, and the properties of which are likely to determine the quality of the part produced. As computing power and sensing technologies become more advanced, this melt pool geometry could be studied in real time. This work addresses the challenge by leveraging a k-nearest neighbor (k-NN) model to identify key features within melt pool imagery and predict the energy density. The k-NN model was trained on data provided by the National Institute of Standards and Technology (NIST). Data preprocessing was performed on the images to extract features that were used in the k-NN model. This approach was used to accurately infer the energy density of unseen layers within the same part. The algorithm was subsequently tested with unique scan strategies and found to reasonably estimate the energy density of different parts. A fivefold cross validation found the algorithm to be consistently predicting the class of 91.4% of the in situ melt pool images.
Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal alloy. This technology is well equipped to produce complex parts with otherwise impossible features, such as hidden voids or lattice structures. Alongside capability, reliability and quality are key characteristics considered when choosing a manufacturing method, and these are gaining attention as this method becomes more prevalent in industry. One main indicator of a stable L-PBF process is consistent melt pool geometry, and the properties of which are likely to determine the quality of the part produced. As computing power and sensing technologies become more advanced, this melt pool geometry could be studied in real time. This work addresses the challenge by leveraging a k-nearest neighbor (k-NN) model to identify key features within melt pool imagery and predict the energy density. The k-NN model was trained on data provided by the National Institute of Standards and Technology (NIST). Data preprocessing was performed on the images to extract features that were used in the k-NN model. This approach was used to accurately infer the energy density of unseen layers within the same part. The algorithm was subsequently tested with unique scan strategies and found to reasonably estimate the energy density of different parts. A fivefold cross validation found the algorithm to be consistently predicting the class of 91.4% of the in situ melt pool images.
Author Jung, Patrick
Saldaña, Christopher
Fu, Katherine
DeVol, Nathaniel
Author_xml – sequence: 1
  givenname: Patrick
  orcidid: 0000-0002-6789-0859
  surname: Jung
  fullname: Jung, Patrick
  organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
– sequence: 2
  givenname: Nathaniel
  orcidid: 0000-0001-8938-7413
  surname: DeVol
  fullname: DeVol, Nathaniel
  organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
– sequence: 3
  givenname: Christopher
  orcidid: 0000-0003-1427-7732
  surname: Saldaña
  fullname: Saldaña, Christopher
  organization: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
– sequence: 4
  givenname: Katherine
  orcidid: 0000-0002-4093-2932
  surname: Fu
  fullname: Fu, Katherine
  email: kate.fu@wisc.edu
  organization: Department of Mechanical Engineering, University of Wisconsin - Madison
BookMark eNqNT01LAzEUDFLBtvoHPC14jr7kJbvZoxS_oOhFzyFNstra7q7JLmX_valb8CbyDvMYZoaZGZnUTe0JuWRwzQCKmwjACqDAJWVSlowOJ2TKBCJFYHJCpsBzRbHI1RmZxbhJ8pzlakrypYk-ZG2zdwlW3mVVH9dNnbUmmJ3vEuljt96Z7kDu191H9kmfn8_JaWW20V8ccU7e7u9eF490-fLwtLhdUosCOyoNKquEc1g6EMZUSkpbcHTe8bJSzK6sA18dTjkOFrwwILDkwAuVHpwTHHP7ujXD3my3ug2pTRg0A32YrsfpOk3XP9P1kFxXo6sNzVef-utN04c6FdXIQUApCiGTio8qG5oYg6_-F30sFJO4fvfhN_oP1zf9_XoV
Cites_doi 10.1109/COASE.2019.8843316
10.1109/TGRS.2010.2055876
10.1016/j.actamat.2016.07.019
10.1016/j.addma.2019.100946
10.1016/j.apsusc.2007.08.074
10.6028/jres.124.033
10.1007/s10845-020-01549-2
10.1016/j.matdes.2013.05.070
10.1016/j.ijrmhm.2017.11.034
10.3390/jmmp3010021
10.1115/1.4028540
10.1063/1.4937809
10.3390/jmmp1020023
10.1016/j.jmatprotec.2008.02.040
10.1115/DETC2015-47802
10.1016/j.actamat.2016.04.029
10.1016/j.addma.2018.04.005
10.1201/9781315119106-34
10.1016/j.addma.2021.102383
10.1115/1.4028533
10.1007/s10845-023-02121-4
10.1115/1.4046335
10.1016/j.addma.2020.101383
10.1007/s11837-016-2234-1
10.1109/LGRS.2012.2189547
10.1016/j.jmapro.2023.05.048
10.1016/S0890-6955(98)00036-4
10.1016/j.actamat.2016.02.014
10.1016/j.commatsci.2011.09.012
10.1007/s10845-022-02012-0
10.1016/j.surfcoat.2006.05.006
10.1016/j.addma.2019.04.021
10.1007/s10845-018-1412-0
10.1520/F2792-12
10.1007/s10845-020-01725-4
10.1088/1361-6501/aa5c4f
10.1007/s11665-014-0958-z
10.1016/j.ijmachtools.2017.03.004
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. May 2025
DBID C6C
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1007/s00170-025-15591-y
DatabaseName Springer Nature Link
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 1092
ExternalDocumentID 10.1007/s00170-025-15591-y
10_1007_s00170_025_15591_y
GrantInformation_xml – fundername: U.S. Department of Energy
  grantid: DE-EE-0008303
  funderid: http://dx.doi.org/10.13039/100000015
GroupedDBID -XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PHGZM
PHGZT
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z8Z
ZMTXR
ZY4
~8M
~A9
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
PQGLB
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c343t-5a38c84dd39d04aaf855c723ded29f81cbcd0efefef8d20c0e4a0439202780433
IEDL.DBID UNPAY
ISSN 0268-3768
1433-3015
IngestDate Sun Oct 26 03:33:30 EDT 2025
Fri Jul 25 09:41:41 EDT 2025
Wed Oct 01 06:06:33 EDT 2025
Fri May 16 02:05:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Laser powder bed fusion
Additive manufacturing
Melt pool monitoring
Machine learning
Smart manufacturing
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-5a38c84dd39d04aaf855c723ded29f81cbcd0efefef8d20c0e4a0439202780433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4093-2932
0000-0002-6789-0859
0000-0003-1427-7732
0000-0001-8938-7413
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00170-025-15591-y.pdf
PQID 3204094745
PQPubID 2044010
PageCount 18
ParticipantIDs unpaywall_primary_10_1007_s00170_025_15591_y
proquest_journals_3204094745
crossref_primary_10_1007_s00170_025_15591_y
springer_journals_10_1007_s00170_025_15591_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Z Yang (15591_CR39) 2020; 20
M Grasso (15591_CR11) 2017; 28
C Xia (15591_CR38) 2022; 33
JA Mitchell (15591_CR31) 2020; 31
M Aminzadeh (15591_CR2) 2019; 30
X Li (15591_CR25) 2020; 31
J Liu (15591_CR26) 2023; 34
SA Khairallah (15591_CR17) 2016; 108
15591_CR20
K Chomboon (15591_CR4) 2015; 2015
YJ Liu (15591_CR27) 2016; 113
H Yeung (15591_CR40) 2020; 35
AV Gusarov (15591_CR13) 2007; 254
M Hasanlou (15591_CR14) 2012; 9
P Witherell (15591_CR37) 2014; 136
15591_CR28
B Lane (15591_CR21) 2019; 124
L Ma (15591_CR29) 2010; 48
G Bi (15591_CR3) 2006; 201
J Akhavan (15591_CR1) 2023
A Suzuki (15591_CR34) 2021; 48
M Letenneur (15591_CR23) 2017; 1
Q Guo (15591_CR12) 2019; 28
NIST (15591_CR32) 2013
F42.91, A. C (15591_CR8) 2012
R Cunningham (15591_CR6) 2017; 69
WE King (15591_CR18) 2015; 2
C Gobert (15591_CR10) 2018; 21
J Yin (15591_CR41) 2012; 53
K Taherkhani (15591_CR35) 2023; 99
L Dong (15591_CR7) 2009; 209
15591_CR30
D Herzog (15591_CR15) 2016; 117
WE Frazier (15591_CR9) 2014; 23
A Hussein (15591_CR16) 2013; 52
M Letenneur (15591_CR24) 2019; 3
K-H Leitz (15591_CR22) 2018; 72
M Shiomi (15591_CR33) 1999; 39
LE Criales (15591_CR5) 2017; 121
G Tapia (15591_CR36) 2014; 136
15591_CR19
References_xml – ident: 15591_CR19
  doi: 10.1109/COASE.2019.8843316
– volume: 48
  start-page: 4099
  issue: 11
  year: 2010
  ident: 15591_CR29
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2010.2055876
– volume: 117
  start-page: 371
  year: 2016
  ident: 15591_CR15
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2016.07.019
– volume: 31
  start-page: 100946
  year: 2020
  ident: 15591_CR31
  publication-title: Addit Manuf
  doi: 10.1016/j.addma.2019.100946
– volume: 254
  start-page: 975
  issue: 4
  year: 2007
  ident: 15591_CR13
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2007.08.074
– volume: 124
  start-page: 1
  year: 2019
  ident: 15591_CR21
  publication-title: J Res Nat Inst Stand Technol
  doi: 10.6028/jres.124.033
– volume: 31
  start-page: 2003
  issue: 8
  year: 2020
  ident: 15591_CR25
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01549-2
– volume: 52
  start-page: 638
  year: 2013
  ident: 15591_CR16
  publication-title: Mater Design (1980-2015)
  doi: 10.1016/j.matdes.2013.05.070
– ident: 15591_CR20
– volume: 72
  start-page: 1
  year: 2018
  ident: 15591_CR22
  publication-title: Int J Refractory Metal Hard Mater
  doi: 10.1016/j.ijrmhm.2017.11.034
– volume: 3
  start-page: 21
  issue: 1
  year: 2019
  ident: 15591_CR24
  publication-title: J Manuf Mater Process
  doi: 10.3390/jmmp3010021
– volume: 136
  start-page: 60801
  issue: 6
  year: 2014
  ident: 15591_CR36
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4028540
– volume: 2
  start-page: 41304
  issue: 4
  year: 2015
  ident: 15591_CR18
  publication-title: Appl Phys Rev
  doi: 10.1063/1.4937809
– volume: 1
  start-page: 23
  issue: 2
  year: 2017
  ident: 15591_CR23
  publication-title: J Manuf Mater Process
  doi: 10.3390/jmmp1020023
– volume: 2015
  start-page: 280
  year: 2015
  ident: 15591_CR4
  publication-title: Proceed 2nd Int Conf Indust Applic Eng
– volume: 209
  start-page: 700
  issue: 2
  year: 2009
  ident: 15591_CR7
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.02.040
– ident: 15591_CR28
  doi: 10.1115/DETC2015-47802
– volume: 113
  start-page: 56
  year: 2016
  ident: 15591_CR27
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2016.04.029
– volume: 21
  start-page: 517
  year: 2018
  ident: 15591_CR10
  publication-title: Addit Manuf
  doi: 10.1016/j.addma.2018.04.005
– ident: 15591_CR30
  doi: 10.1201/9781315119106-34
– volume-title: Measurement science roadmap for metal-based additive manufacturing
  year: 2013
  ident: 15591_CR32
– volume: 48
  start-page: 102383
  year: 2021
  ident: 15591_CR34
  publication-title: Addit Manuf
  doi: 10.1016/j.addma.2021.102383
– volume: 136
  start-page: 61025
  issue: 6
  year: 2014
  ident: 15591_CR37
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4028533
– year: 2023
  ident: 15591_CR1
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-023-02121-4
– volume: 20
  start-page: 51001
  issue: 5
  year: 2020
  ident: 15591_CR39
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.4046335
– volume: 35
  start-page: 101383
  year: 2020
  ident: 15591_CR40
  publication-title: Addit Manuf
  doi: 10.1016/j.addma.2020.101383
– volume: 69
  start-page: 479
  year: 2017
  ident: 15591_CR6
  publication-title: JOM
  doi: 10.1007/s11837-016-2234-1
– volume: 9
  start-page: 1046
  issue: 6
  year: 2012
  ident: 15591_CR14
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2012.2189547
– volume: 99
  start-page: 848
  issue: May
  year: 2023
  ident: 15591_CR35
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2023.05.048
– volume: 39
  start-page: 237
  issue: 2
  year: 1999
  ident: 15591_CR33
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(98)00036-4
– volume: 108
  start-page: 36
  year: 2016
  ident: 15591_CR17
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2016.02.014
– volume: 53
  start-page: 333
  issue: 1
  year: 2012
  ident: 15591_CR41
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2011.09.012
– volume: 34
  start-page: 3249
  issue: 8
  year: 2023
  ident: 15591_CR26
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-022-02012-0
– volume: 201
  start-page: 2676
  issue: 6
  year: 2006
  ident: 15591_CR3
  publication-title: Surf Coatings Technol
  doi: 10.1016/j.surfcoat.2006.05.006
– volume: 28
  start-page: 600
  year: 2019
  ident: 15591_CR12
  publication-title: Additive Manuf
  doi: 10.1016/j.addma.2019.04.021
– volume: 30
  start-page: 2505
  issue: 6
  year: 2019
  ident: 15591_CR2
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-018-1412-0
– year: 2012
  ident: 15591_CR8
  publication-title: ASTM Int
  doi: 10.1520/F2792-12
– volume: 33
  start-page: 1467
  issue: 5
  year: 2022
  ident: 15591_CR38
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01725-4
– volume: 28
  start-page: 44005
  issue: 4
  year: 2017
  ident: 15591_CR11
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/aa5c4f
– volume: 23
  start-page: 1917
  year: 2014
  ident: 15591_CR9
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-014-0958-z
– volume: 121
  start-page: 22
  year: 2017
  ident: 15591_CR5
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2017.03.004
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.437907
Snippet Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal...
Laser powder bed fusion (L-PBF) is a technique within additive manufacturing that uses a high power density laser to build parts from fused powdered metal...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1075
SubjectTerms Advanced manufacturing technologies
Algorithms
CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Feature extraction
Industrial and Production Engineering
Lasers
Manufacturing
Mechanical Engineering
Media Management
Melt pools
Melting
Metal powders
Original Article
Parameter estimation
Powder beds
Production methods
SummonAdditionalLinks – databaseName: Springer Nature Link
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aD9qD-InVKjl4s8HdJLubPUqxFNGeLPS25Gsv1rbUltJ_byb70Soiyh72sJDA2xdmkpd5g9BtYLmJIwvSYJ4QnltDpIvTROXKRQSpLfW-BS-DuD_kT6NoVNrkQC3MN_3-3rfoDgg0XQUBLSTrXbTnglTshdm4W3EnTBPof1lzi6bQdH7DXcYjVihapcIQh75Mzm1BBCwyURbU_Dzn16C1yURr8bSJ9peTmVyv5Hi8FZ96R-iwTCzxQ8GEY7RjJyeouWU3eIriZxey5ng2XRn3UtbgfAmHZRj8v9_hXgwGz42imBHDCS1-I4PBGRr2Hl-7fVL2TSCacbYgkWRCC24MS03ApcxFFOmEMmMNTXMRaqVNYHN4hKGBdv9LQoUsnIMIMDQ7R43JdGIvEOYmibVQVGqmeCy1klRLQ4VNXaaVWNtCdxUw2aywx8hqI2QPY-ZgzDyM2bqF2hV2WblUPjJGA9hjJjxqoU6F5-bzb6N1asz_MPnl_0a_QgcUGODvNrZRYzFf2muXfyzUjSfeJwKgyuo
  priority: 102
  providerName: Springer Nature
Title Laser powder bed fusion parameter estimation with k-NN
URI https://link.springer.com/article/10.1007/s00170-025-15591-y
https://www.proquest.com/docview/3204094745
https://link.springer.com/content/pdf/10.1007/s00170-025-15591-y.pdf
UnpaywallVersion publishedVersion
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 1433-3015
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 1433-3015
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 1433-3015
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6F5NBy4NEWEQiRD73BBrO7tjfHEAgRLVYPjQQna1--ACYCRyj8enb8SChCFQhZsg9rrbUzs5rxzHzfAvz0LTdhYLE0mEaEp9YQ6fw0UalyHkFqSwvegos4HE_4-WVw2YCTGgtTdLvXJckS04AsTVl-ODXp4QL4VtC-EDyKFctqR2Tec8Mr0AoDF5E3oTWJ_wyuyvSKwD1UIOI4Y8TZc1BhZ96e6F__tAw6F3XSVfgyy6Zy_ihvbl64otE62HoRZQfKdW-Wq55-esXv-NlVbsBaFat6g9K4NqFhs2-w-oLB8DuEv50XvPemd4_GPZQ1XjrD_JuHlOK32GrjIY1HiY_0MOnrXZM4_gGT0enf4ZhURzEQzTjLSSCZ0IIbw_rG51KmIgh0RJmxhvZTcaSVNr5N8RKG-tqZgETQLaZWBHKkbUEzu8vsNnjcRKEWikrNFA-lVpJqaaiwfRe8Rda2Yb9WQDItGTeSBbdyIZHESSQpJJLM29CpdZRUu-8hYdTH39aIB204qMW8HP7fbAcL3b7j4zsfe30XvlJUZtEu2YFmfj-zey6kyVUXWoPR8XGMz7OrX6ddWBmGQ3ef0EG3suZnv97xvA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6I8M7BRV6ntJM6IEKVA6UQlmCK_shRKBa1Q-fX48mpBCIEyZIhkK3dn3_s7gFPfchMGFlODaUR4ag2RTk8TlSqnEaS2NMMtuOuFnT6_eQgeiqawt7LavUxJZjd11eyWQb0QHL-KqbQWmS7CEncOCq3B0vnV4-1lKUetOMJZmJWc0RgH0M_kmPGA5dmtItsQtrKWOeeOCDxwomiu-XnXrwpsZpVWidRVWJ4MR3L6Lp-e5nRVex365V_mJSqD5mSsmvrjGwDkf8mwAWuF8eqd59K2CQt2uAWrc5CG2xB2nVp89UYv78a9lDVeOsGAnIcY489Ye-MhrkfeMOlhFNgbkF5vB_rty_uLDilmMxDNOBuTQDKhBTeGxcbnUqYiCHREmbGGxqloaaWNb1N8hKG-djIhsQsXYy0CQdN2oTZ8Gdo98LiJQi0UlZopHkqtJNXSUGFjZ81F1tbhrCR4MsohOJIKbDmjRuKokWTUSKZ1OCx5khTH8S1h1Ec_NuJBHRolWWeff1utUfHyD5vv_2_1E1ju3N91k-517_YAVigyNaulPITa-HVij5y9M1bHhXh_AoVF7y8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gI-D-MT6zMGbXUx3N8nmKNVStQYPCr2Fze7mosZSU0r_vTt5tYKIkkMOgV34MsvMzsz3DcCFa7j2PYOlwTQgPDWaSOunSZIm1iNIZWihW_AY-f0Xfj_0hgss_qLbvS5JlpwGVGnK8quRTq8a4lsh-0JwFCuW1Tpktgyr3Ho3nGHQ9bu1RXXCAKdiNhZHQxxFP7doxj1W1rmquoPfKchz9mIi8OiJimbz857fXdk8Pm1KqpuwPslGcjaVb28LXqu3DVtVuOlcl_axA0sm24XNBRHCPfAH1pGNndHHVNtXYrSTTjCF5qAq-Dt2yzioxFFSHB3M2zqvJIr24aV3-9ztk2qaAlGMs5x4kgkluNYs1C6XMhWepwLKtNE0TEVHJUq7JsVHaOoq-xcl8mYxOyJQ5uwAVrKPzByCw3XgK5FQqVjCfakSSZXUVJjQxl-BMS24rIGJR6VoRtzIIxcwxhbGuIAxnrXgpMYurg7QZ8yoizfPgHstaNd4zj__tlq7wfwPmx_9b_VzWHu66cWDu-jhGDYoGkPR_HgCK_l4Yk5tgJInZ4UNfgH_MtYg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VMkAH3ojyUgY2cEltJ3HHiocQgoqBSmWK_MrSEiJIVJVfj51XC0IIhDJksOXId2fd5e6-zwAnrqbK97QtDUYBopFWiBs_jUQkjEfgUuOct-B-4N8M6e3IGzXgssLC5N3uVUmywDRYlqY4PU9UdF4D33LaF2SvYrVltS6adczwEiz7nonIm7A8HDz0n4r0CrNnKEfEUUKQsWevxM58v9Bn_zQPOus6aQtWsjjhsymfTBZc0fU66GoTRQfKuJOloiPfv_A7_neXG7BWxqpOvzCuTWjoeAtaCwyG2-DfGS_46iQvU2VeQisnymz-zbGU4s-21caxNB4FPtKxSV9njAaDHRheXz1e3KDyKgYkCSUp8jhhklGlSE-5lPOIeZ4MMFFa4V7EulJI5erIPkxhVxoT4BZ0a1MrzHKk7UIzfon1HjhUBb5kAnNJBPW5FBxLrjDTPRO8BVq34bRSQJgUjBthza2cSyQ0EglziYSzNhxWOgrL0_cWEuza39aAem04q8Q8H_5ptbNat7_4-P7fph_AKrbKzNslD6GZvmb6yIQ0qTguLfYDmP7s5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+powder+bed+fusion+parameter+estimation+with+k-NN&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Jung%2C+Patrick&rft.au=DeVol%2C+Nathaniel&rft.au=Salda%C3%B1a%2C+Christopher&rft.au=Fu%2C+Katherine&rft.date=2025-05-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=138&rft.issue=3-4&rft.spage=1075&rft.epage=1092&rft_id=info:doi/10.1007%2Fs00170-025-15591-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_025_15591_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon