Non-probabilistic method to consider uncertainties in structural damage identification based on Hybrid Jaya and Tree Seeds Algorithm
•A novel non-probabilistic structural damage identification approach is proposed.•Uncertainties in finite element modelling and measurement errors are considered.•Developed a hybrid swarm intelligence technique based on Jaya and TSA.•Numerical and experimental investigations are conducted to verify...
Saved in:
| Published in | Engineering structures Vol. 220; p. 110925 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ltd
01.10.2020
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0141-0296 1873-7323 |
| DOI | 10.1016/j.engstruct.2020.110925 |
Cover
| Abstract | •A novel non-probabilistic structural damage identification approach is proposed.•Uncertainties in finite element modelling and measurement errors are considered.•Developed a hybrid swarm intelligence technique based on Jaya and TSA.•Numerical and experimental investigations are conducted to verify the approach.•Reliable results are obtained with probability of damage existence.
This paper proposes a novel non-probabilistic structural damage identification approach by developing a hybrid swarm intelligence technique based on Jaya and Tree Seeds Algorithm (TSA), taking into account the high-level uncertainties in the measurements and finite element modelling. The damage in structure is simulated as reduction of elemental stiffness, and structural damage identification is formulated as an optimization problem. To overcome the challenge for structural damage identification with a limited number of measurement data, an objective function based on the modal data and sparse regularization technique is defined. To make the optimization algorithm more powerful and robust, a hybridization of the K-means clustering based Jaya and TSA is proposed. Jaya algorithm is taken as the core in the hybridization. The clustering strategy is employed to replace solutions with low-quality objective values in the Jaya algorithm. Then the search strategy of the TSA is introduced into the best-so-far solution of each cycle. The proposed hybridization algorithm is termed as “ C-Jaya-TSA”. To enhance the capacity of the proposed algorithm to consider uncertainties, a non-probabilistic method is also integrated to calculate the interval bound (lower and upper bounds) of the elemental stiffness changes by using the interval analysis method. To better quantify the structural damage extents, Damage Measure Index (DMI) values are introduced for representing structural damage states. The DMI value can be viewed as a combination of deterministic stiffness reduction and the Possibility of Damage Existence (PoDE). Numerical benchmark functions, numerical studies and experimental investigations are conducted to verify the accuracy and performance of the proposed method. The identification results show that the developed C-Jaya-TSA integrated with the non-probabilistic interval analysis method is a promising tool to accurately identify the structural damage, even high-level uncertainties exist. |
|---|---|
| AbstractList | This paper proposes a novel non-probabilistic structural damage identification approach by developing a hybrid swarm intelligence technique based on Jaya and Tree Seeds Algorithm (TSA), taking into account the high-level uncertainties in the measurements and finite element modelling. The damage in structure is simulated as reduction of elemental stiffness, and structural damage identification is formulated as an optimization problem. To overcome the challenge for structural damage identification with a limited number of measurement data, an objective function based on the modal data and sparse regularization technique is defined. To make the optimization algorithm more powerful and robust, a hybridization of the K-means clustering based Jaya and TSA is proposed. Jaya algorithm is taken as the core in the hybridization. The clustering strategy is employed to replace solutions with low-quality objective values in the Jaya algorithm. Then the search strategy of the TSA is introduced into the best-so-far solution of each cycle. The proposed hybridization algorithm is termed as " C-Jaya-TSA". To enhance the capacity of the proposed algorithm to consider uncertainties, a non-probabilistic method is also integrated to calculate the interval bound (lower and upper bounds) of the elemental stiffness changes by using the interval analysis method. To better quantify the structural damage extents, Damage Measure Index (DMI) values are introduced for representing structural damage states. The DMI value can be viewed as a combination of deterministic stiffness reduction and the Possibility of Damage Existence (PoDE). Numerical benchmark functions, numerical studies and experimental investigations are conducted to verify the accuracy and performance of the proposed method. The identification results show that the developed C-Jaya-TSA integrated with the non-probabilistic interval analysis method is a promising tool to accurately identify the structural damage, even high-level uncertainties exist. •A novel non-probabilistic structural damage identification approach is proposed.•Uncertainties in finite element modelling and measurement errors are considered.•Developed a hybrid swarm intelligence technique based on Jaya and TSA.•Numerical and experimental investigations are conducted to verify the approach.•Reliable results are obtained with probability of damage existence. This paper proposes a novel non-probabilistic structural damage identification approach by developing a hybrid swarm intelligence technique based on Jaya and Tree Seeds Algorithm (TSA), taking into account the high-level uncertainties in the measurements and finite element modelling. The damage in structure is simulated as reduction of elemental stiffness, and structural damage identification is formulated as an optimization problem. To overcome the challenge for structural damage identification with a limited number of measurement data, an objective function based on the modal data and sparse regularization technique is defined. To make the optimization algorithm more powerful and robust, a hybridization of the K-means clustering based Jaya and TSA is proposed. Jaya algorithm is taken as the core in the hybridization. The clustering strategy is employed to replace solutions with low-quality objective values in the Jaya algorithm. Then the search strategy of the TSA is introduced into the best-so-far solution of each cycle. The proposed hybridization algorithm is termed as “ C-Jaya-TSA”. To enhance the capacity of the proposed algorithm to consider uncertainties, a non-probabilistic method is also integrated to calculate the interval bound (lower and upper bounds) of the elemental stiffness changes by using the interval analysis method. To better quantify the structural damage extents, Damage Measure Index (DMI) values are introduced for representing structural damage states. The DMI value can be viewed as a combination of deterministic stiffness reduction and the Possibility of Damage Existence (PoDE). Numerical benchmark functions, numerical studies and experimental investigations are conducted to verify the accuracy and performance of the proposed method. The identification results show that the developed C-Jaya-TSA integrated with the non-probabilistic interval analysis method is a promising tool to accurately identify the structural damage, even high-level uncertainties exist. |
| ArticleNumber | 110925 |
| Author | Li, Jun Hao, Hong Ding, Zhenghao |
| Author_xml | – sequence: 1 givenname: Zhenghao surname: Ding fullname: Ding, Zhenghao email: Zheng.Ding@student.curtin.edu.au organization: Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia – sequence: 2 givenname: Jun surname: Li fullname: Li, Jun email: junli@curtin.edu.au organization: Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia – sequence: 3 givenname: Hong surname: Hao fullname: Hao, Hong email: hong.hao@curtin.edu.au organization: Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia |
| BookMark | eNqNkE1vFDEMhiNUJLalv6GROM_ifOx8HDisKqCgih5azlEm8W69mk1KkkHaOz-clEEcuMDJlv2-fuXnnJ2FGJCxKwFrAaJ9e1hj2OeSZlfWEmSdChjk5gVbib5TTaekOmMrEFo0IIf2FTvP-QAAsu9hxX58iaF5SnG0I02UCzl-xPIYPS-RuxgyeUx8Dg5TsRQKYeYU-JI3Jztxb492j7zq6nZHzhaKgY82o-e1uTmNiTz_bE-W2-D5Q0Lk94g-8-20j4nK4_E1e7mzU8bL3_WCff3w_uH6prm9-_jpenvbOKVVabRqZa9aC8Nu1IPuB_AtoN_AZuid9H0nhdada4VVUg5St6NSvUPntPUaENQFe7PcrQ9_mzEXc4hzCjXSSK3bTm5Aq6p6t6hcijkn3BlH5ddXJVmajADzDN4czB_w5hm8WcBXf_eX_ynR0abTfzi3ixMrhO-EyWRHWNl7Sli1PtI_b_wE9A-mog |
| CitedBy_id | crossref_primary_10_3390_app12041876 crossref_primary_10_1002_tal_1967 crossref_primary_10_1177_21582440221094586 crossref_primary_10_1016_j_cma_2024_117288 crossref_primary_10_47836_pjst_32_2_06 crossref_primary_10_1080_15325008_2023_2227176 crossref_primary_10_1007_s11831_021_09698_0 crossref_primary_10_3390_a14060180 crossref_primary_10_1016_j_engstruct_2023_117413 crossref_primary_10_1080_0305215X_2024_2304131 crossref_primary_10_1115_1_4066311 crossref_primary_10_1002_stc_3047 crossref_primary_10_3390_s20195488 crossref_primary_10_3390_s22031275 crossref_primary_10_1177_14759217211018114 crossref_primary_10_1016_j_engstruct_2022_114685 crossref_primary_10_1016_j_engstruct_2022_115254 crossref_primary_10_1016_j_ymssp_2024_112146 crossref_primary_10_1038_s41598_022_17457_9 crossref_primary_10_1016_j_istruc_2024_107371 crossref_primary_10_1002_stc_2767 crossref_primary_10_1016_j_tafmec_2021_103213 crossref_primary_10_1016_j_istruc_2022_05_041 crossref_primary_10_1177_13694332241242984 crossref_primary_10_1016_j_measurement_2025_117106 crossref_primary_10_1016_j_ymssp_2023_111093 crossref_primary_10_1016_j_engstruct_2024_118510 crossref_primary_10_1016_j_oceaneng_2022_112422 crossref_primary_10_3390_buildings14010198 crossref_primary_10_1007_s00158_022_03308_8 crossref_primary_10_3390_buildings12081209 crossref_primary_10_1177_14759217221088493 crossref_primary_10_1007_s11831_021_09585_8 crossref_primary_10_1080_0305215X_2022_2086235 |
| Cites_doi | 10.1016/j.engstruct.2018.05.109 10.1080/17415977.2017.1310855 10.1007/s12559-018-9588-3 10.1016/j.ymssp.2016.06.007 10.1016/j.jsv.2018.02.064 10.1016/j.jsv.2019.06.011 10.1016/j.ymssp.2019.06.029 10.1016/j.engstruct.2019.01.118 10.1260/1369-4332.17.3.331 10.1088/0964-1726/21/10/105033 10.1016/j.jsv.2012.08.025 10.1177/1475921710365419 10.1061/(ASCE)BE.1943-5592.0000092 10.1016/j.apm.2016.09.008 10.1016/j.engappai.2019.06.013 10.1007/s10518-017-0222-7 10.1016/j.jsv.2013.10.019 10.1007/s00707-007-0518-9 10.1111/mice.12142 10.12989/smm.2016.3.1.033 10.1007/s00366-018-0668-5 10.3390/s18124131 10.1177/1475921715604386 10.3390/en12030551 10.1260/136943303769013183 10.1016/j.engstruct.2017.11.018 10.1016/j.advengsoft.2017.06.015 10.1111/mice.12255 10.1016/j.engstruct.2011.07.028 10.1016/j.asoc.2017.04.018 10.1002/nme.2257 10.1016/j.asoc.2010.04.008 10.1016/j.apacoust.2018.08.032 10.1016/j.asoc.2019.105604 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Oct 1, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Oct 1, 2020 |
| DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
| DOI | 10.1016/j.engstruct.2020.110925 |
| DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7323 |
| ExternalDocumentID | 10_1016_j_engstruct_2020_110925 S014102961934489X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SSH SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW VH1 WUQ ZY4 ~HD 7SR 7ST 8BQ 8FD AGCQF C1K FR3 JG9 KR7 SOI |
| ID | FETCH-LOGICAL-c343t-4362836a09fb494890d60ed50598c2d8721447c61a3229246b338cecc4ad40e03 |
| IEDL.DBID | .~1 |
| ISSN | 0141-0296 |
| IngestDate | Wed Aug 13 08:12:43 EDT 2025 Thu Oct 02 04:22:57 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Sun Apr 06 06:53:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sparse regularization technique Non-probabilistic Swarm intelligence method Hybridization Uncertainties Vibration-based damage identification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-4362836a09fb494890d60ed50598c2d8721447c61a3229246b338cecc4ad40e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2446725043 |
| PQPubID | 2045481 |
| ParticipantIDs | proquest_journals_2446725043 crossref_citationtrail_10_1016_j_engstruct_2020_110925 crossref_primary_10_1016_j_engstruct_2020_110925 elsevier_sciencedirect_doi_10_1016_j_engstruct_2020_110925 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Engineering structures |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Ghosh, Kaur, Bhullar, Karar (b0120) 2019; 12 Ubertini, Cavalagli, Kita, Comanducci (b0020) 2018; 16 Ding, Yao, Li, Lu (b0185) 2018; 26 Jadon (b0105) 2017; 58 Wang, Xia, Zhou, Yang (b0165) 2014; 333 Jahangiri, Najafgholipour, Dehghan, Hadianfard (b0075) 2019; 458 Tam, Dinh-Cong, Lee, Nguyen-Thoi (b0200) 2020 Ding, Lu, Liu (b0095) 2018; 61 Dinh-Cong, Vo-Duy, Ho-Huu, Dang-Trung, Nguyen-Thoi (b0090) 2017; 112 Zhou, Xia, Weng (b0135) 2015; 14 Tsogka, Daskalakis, Comanducci, Ubertini (b0025) 2017; 32 Li, Hao (b0010) 2016; 3 Padil, Bakhary, Hao (b0145) 2017; 83 Beck, Au, Vanik (b0150) 1999; 126 Xu, Zhang, Wang (b0170) 2010; 53 Chen, Lu, Lin, Chen, Ni, Xia (b0190) 2011; 33 Kim, Kim, Lee (b0205) 2019; 148 Yu, Li (b0060) 2014; 17 Lin, Huang, Lu (b0040) 2017; 41 Ding, Li, Hao (b0080) 2019; 132 Șenel, Gökçe, Yüksel, Yigit (b0110) 2019; 35 Hou, Xia, Bao, Zhou (b0195) 2018; 423 Alkayem, Cao, Ragulskis (b0065) 2019; 83 Sun, Betti (b0175) 2015; 30 Garcia-Macias, Ierimonti, Venanzi, Ubertini (b0030) 2019 Yi, Li, Zhang (b0085) 2012; 21 Pathirage, Li, Li, Hao, Liu, Ni (b0045) 2018; 172 Naik, Samantaray, Panda (b0115) 2015; 611 Feng, Feng (b0015) 2018; 156 Fan, Qiao (b0005) 2011; 10 Ghanem, Jantan (b0100) 2018; 10 Yuen, Katafygiotis (b0155) 2003; 6 Pramanik, Malti (b0125) 2019; 85 H. Tran-Ngoc, S. Khatir, G. De Roeck, T. Bui-Tien, L. Nguyen-Ngoc, M. Abdel Wahab, Model updating for Nam O Bridge using particle swarm optimization algorithm and genetic algorithm, Sensors. 18(12) (2018) 4131. Cai, Gong, Ling, Zhang (b0180) 2011; 11 Ding, Li, Hao, Lu (b0050) 2019; 185 Deng, Cai (b0055) 2010; 15 Rao (b0130) 2016; 7 Lu, Liu, Lu (b0035) 2013; 332 Wang, Qiu, Elishakoff (b0160) 2008; 198 Titurus, Friswell (b0140) 2008; 75 Ding (10.1016/j.engstruct.2020.110925_b0080) 2019; 132 Fan (10.1016/j.engstruct.2020.110925_b0005) 2011; 10 Padil (10.1016/j.engstruct.2020.110925_b0145) 2017; 83 Lu (10.1016/j.engstruct.2020.110925_b0035) 2013; 332 Yi (10.1016/j.engstruct.2020.110925_b0085) 2012; 21 Garcia-Macias (10.1016/j.engstruct.2020.110925_b0030) 2019 Tsogka (10.1016/j.engstruct.2020.110925_b0025) 2017; 32 Jadon (10.1016/j.engstruct.2020.110925_b0105) 2017; 58 Li (10.1016/j.engstruct.2020.110925_b0010) 2016; 3 Zhou (10.1016/j.engstruct.2020.110925_b0135) 2015; 14 Sun (10.1016/j.engstruct.2020.110925_b0175) 2015; 30 Cai (10.1016/j.engstruct.2020.110925_b0180) 2011; 11 Dinh-Cong (10.1016/j.engstruct.2020.110925_b0090) 2017; 112 Jahangiri (10.1016/j.engstruct.2020.110925_b0075) 2019; 458 Deng (10.1016/j.engstruct.2020.110925_b0055) 2010; 15 Kim (10.1016/j.engstruct.2020.110925_b0205) 2019; 148 Feng (10.1016/j.engstruct.2020.110925_b0015) 2018; 156 Naik (10.1016/j.engstruct.2020.110925_b0115) 2015; 611 Rao (10.1016/j.engstruct.2020.110925_b0130) 2016; 7 Xu (10.1016/j.engstruct.2020.110925_b0170) 2010; 53 Beck (10.1016/j.engstruct.2020.110925_b0150) 1999; 126 Ubertini (10.1016/j.engstruct.2020.110925_b0020) 2018; 16 Yuen (10.1016/j.engstruct.2020.110925_b0155) 2003; 6 Wang (10.1016/j.engstruct.2020.110925_b0160) 2008; 198 Chen (10.1016/j.engstruct.2020.110925_b0190) 2011; 33 10.1016/j.engstruct.2020.110925_b0070 Titurus (10.1016/j.engstruct.2020.110925_b0140) 2008; 75 Yu (10.1016/j.engstruct.2020.110925_b0060) 2014; 17 Ghanem (10.1016/j.engstruct.2020.110925_b0100) 2018; 10 Wang (10.1016/j.engstruct.2020.110925_b0165) 2014; 333 Alkayem (10.1016/j.engstruct.2020.110925_b0065) 2019; 83 Pathirage (10.1016/j.engstruct.2020.110925_b0045) 2018; 172 Pramanik (10.1016/j.engstruct.2020.110925_b0125) 2019; 85 Ding (10.1016/j.engstruct.2020.110925_b0095) 2018; 61 Hou (10.1016/j.engstruct.2020.110925_b0195) 2018; 423 Tam (10.1016/j.engstruct.2020.110925_b0200) 2020 Ding (10.1016/j.engstruct.2020.110925_b0050) 2019; 185 Ding (10.1016/j.engstruct.2020.110925_b0185) 2018; 26 Lin (10.1016/j.engstruct.2020.110925_b0040) 2017; 41 Șenel (10.1016/j.engstruct.2020.110925_b0110) 2019; 35 Ghosh (10.1016/j.engstruct.2020.110925_b0120) 2019; 12 |
| References_xml | – volume: 15 start-page: 553 year: 2010 end-page: 564 ident: b0055 article-title: Bridge model updating using response surface method and genetic algorithm publication-title: Journal of Bridge Engineering ASCE – reference: H. Tran-Ngoc, S. Khatir, G. De Roeck, T. Bui-Tien, L. Nguyen-Ngoc, M. Abdel Wahab, Model updating for Nam O Bridge using particle swarm optimization algorithm and genetic algorithm, Sensors. 18(12) (2018) 4131. – volume: 7 start-page: 19 year: 2016 end-page: 34 ident: b0130 article-title: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: International Journal of Industrial Engineering Computations – volume: 3 start-page: 33 year: 2016 end-page: 49 ident: b0010 article-title: A review of recent research advances on structural health monitoring in Western Australia publication-title: Structural Monitoring and Maintenance. – volume: 35 start-page: 1359 year: 2019 end-page: 1373 ident: b0110 article-title: A novel hybrid PSO-GWO algorithm for optimization problems publication-title: Engineering with Computers – volume: 83 start-page: 194 year: 2017 end-page: 209 ident: b0145 article-title: The use of a non-probabilistic artificial neural network to consider uncertainties in vibration-based-damage detection publication-title: Mech Syst Sig Process – volume: 148 start-page: 308 year: 2019 end-page: 321 ident: b0205 article-title: Vibration-based damage detection of planar and space trusses using differential evolution algorithm publication-title: Applied Acoustic. – volume: 32 start-page: 288 year: 2017 end-page: 303 ident: b0025 article-title: The stretching method for Vibration-Based Structural Health Monitoring of Civil Structures publication-title: Comput-Aided Civ Infrastruct Eng – volume: 333 start-page: 1344 year: 2014 end-page: 1355 ident: b0165 article-title: Structural damage measure index based on non-probabilistic reliability model publication-title: J Sound Vib – volume: 198 start-page: 51 year: 2008 end-page: 64 ident: b0160 article-title: Non-probabilistic set-theoretic model for structural safety measure publication-title: Acta Mech – volume: 26 start-page: 422 year: 2018 end-page: 442 ident: b0185 article-title: Structural damage identification based on modified Artificial Bee Colony algorithm using modal data publication-title: Inverse Prob Sci Eng – volume: 41 start-page: 604 year: 2017 end-page: 617 ident: b0040 article-title: Hybrid sensitivity matrix for damage identification in axially functionally graded beams publication-title: Appl Math Model – volume: 112 start-page: 76 year: 2017 end-page: 87 ident: b0090 article-title: An efficient multi-stage optimization approach for damage detection in plate structures publication-title: Adv Eng Softw – year: 2020 ident: b0200 article-title: An effective deep feed forward neural networks (DFNN) method for damage identification of truss structures using noisy incomplete modal data publication-title: Journal of Building Engineering. – volume: 332 start-page: 282 year: 2013 end-page: 293 ident: b0035 article-title: A two-step approach for crack identification in beam publication-title: J Sound Vib – volume: 53 start-page: 1159 year: 2010 end-page: 1169 ident: b0170 article-title: L publication-title: Inf Sci – volume: 33 start-page: 3628 year: 2011 end-page: 3646 ident: b0190 article-title: Theoretical and experimental modal analysis of the Guangzhou New TV Tower publication-title: Eng Struct – volume: 83 year: 2019 ident: b0065 article-title: Damage localization in irregular structures using intelligent FE model updating approach with a new hybrid objective function and social swarm algorithm publication-title: Appl Soft Comput – volume: 61 start-page: 417 year: 2018 end-page: 426 ident: b0095 article-title: Parameters identification of chaotic systems based on artificial bee colony algorithm combined with cuckoo search strategy publication-title: Science China Teleological Sciences. – volume: 12 start-page: 551 year: 2019 ident: b0120 article-title: Hybrid ABC-BAT for solving short-term hydrothermal scheduling problems publication-title: Energies. – volume: 16 start-page: 775 year: 2018 end-page: 801 ident: b0020 article-title: Assessment of a monumental masonry bell-tower after 2016 central Italy seismic sequence by long-term SHM publication-title: Bull Earthq Eng – volume: 14 start-page: 571 year: 2015 end-page: 582 ident: b0135 article-title: L publication-title: Structural Health Monitoring – volume: 58 start-page: 11 year: 2017 end-page: 24 ident: b0105 article-title: Hybrid Artificial Bee Colony algorithm with Differential Evolution publication-title: Appl Soft Comput – volume: 21 year: 2012 ident: b0085 article-title: A modified monkey algorithm for optimal sensor placement in structural health monitoring publication-title: Smart Material and Structures. – volume: 75 start-page: 440 year: 2008 end-page: 478 ident: b0140 article-title: Regularization in model updating publication-title: Int J Numer Meth Eng – year: 2019 ident: b0030 article-title: An innovative Methodology for Online Surrogate-Based Model Updating of Historic Buildings Using Monitoring Data publication-title: International Journal of Architectural Heritage. – volume: 172 start-page: 13 year: 2018 end-page: 28 ident: b0045 article-title: Structural damage identification based on autoencoder neural networks and deep learning publication-title: Eng Struct – volume: 17 start-page: 331 year: 2014 end-page: 346 ident: b0060 article-title: A global artificial fish swarm algorithm for structural damage detection publication-title: Adv Struct Eng – volume: 132 start-page: 211 year: 2019 end-page: 231 ident: b0080 article-title: Structural damage identification using improved Jaya algorithm based on sparse regularization and Bayesian inference publication-title: Mech Syst Sig Process – volume: 10 start-page: 83 year: 2011 end-page: 111 ident: b0005 article-title: Vibration-based damage identification methods: a review and comparative study publication-title: Structural Health Monitoring. – volume: 85 start-page: 194 year: 2019 end-page: 207 ident: b0125 article-title: An inventory model for deteriorating items with inflation induced variable demand under two level partial trade credit: A hybrid ABC-GA approach publication-title: Eng Appl Artif Intell – volume: 30 start-page: 602 year: 2015 end-page: 619 ident: b0175 article-title: A Hybrid Optimization Algorithm with Bayesian Inference for Probabilistic Model Updating publication-title: Comput-Aided Civ Infrastruct Eng – volume: 611 start-page: 3 year: 2015 end-page: 35 ident: b0115 article-title: A hybrid CS-GSA algorithm for optimization publication-title: Studies in Computational Intelligence. – volume: 11 start-page: 1363 year: 2011 end-page: 1397 ident: b0180 article-title: A clustering-based differential evolution for global optimization publication-title: Appl Soft Comput – volume: 6 start-page: 81 year: 2003 end-page: 95 ident: b0155 article-title: Bayesian fast Fourier transform approach for modal updating using ambient data publication-title: Adv Struct Eng – volume: 458 start-page: 1 year: 2019 end-page: 16 ident: b0075 article-title: The efficiency of a novel identification method for structural damage assessment using the first vibration mode data publication-title: J Sound Vib – volume: 185 start-page: 301 year: 2019 end-page: 314 ident: b0050 article-title: Structural damage identification with uncertain modelling errors and measurement noise by clustering based tree seeds algorithm publication-title: Eng Struct – volume: 126 start-page: 738 year: 1999 end-page: 745 ident: b0150 article-title: Bayesian probabilistic approach to structural health monitoring publication-title: J Eng Mech – volume: 423 start-page: 141 year: 2018 end-page: 160 ident: b0195 article-title: Selection of regularization parameter for publication-title: J Sound Vib – volume: 10 start-page: 1096 year: 2018 end-page: 1134 ident: b0100 article-title: A cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptions publication-title: Cognitive Computation. – volume: 156 start-page: 105 year: 2018 end-page: 117 ident: b0015 article-title: Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection - A review publication-title: Eng Struct – volume: 172 start-page: 13 year: 2018 ident: 10.1016/j.engstruct.2020.110925_b0045 article-title: Structural damage identification based on autoencoder neural networks and deep learning publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.05.109 – volume: 26 start-page: 422 issue: 3 year: 2018 ident: 10.1016/j.engstruct.2020.110925_b0185 article-title: Structural damage identification based on modified Artificial Bee Colony algorithm using modal data publication-title: Inverse Prob Sci Eng doi: 10.1080/17415977.2017.1310855 – volume: 10 start-page: 1096 issue: 6 year: 2018 ident: 10.1016/j.engstruct.2020.110925_b0100 article-title: A cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptions publication-title: Cognitive Computation. doi: 10.1007/s12559-018-9588-3 – volume: 83 start-page: 194 year: 2017 ident: 10.1016/j.engstruct.2020.110925_b0145 article-title: The use of a non-probabilistic artificial neural network to consider uncertainties in vibration-based-damage detection publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2016.06.007 – volume: 423 start-page: 141 year: 2018 ident: 10.1016/j.engstruct.2020.110925_b0195 article-title: Selection of regularization parameter for l1-regularized damage detection publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.02.064 – volume: 458 start-page: 1 year: 2019 ident: 10.1016/j.engstruct.2020.110925_b0075 article-title: The efficiency of a novel identification method for structural damage assessment using the first vibration mode data publication-title: J Sound Vib doi: 10.1016/j.jsv.2019.06.011 – volume: 132 start-page: 211 year: 2019 ident: 10.1016/j.engstruct.2020.110925_b0080 article-title: Structural damage identification using improved Jaya algorithm based on sparse regularization and Bayesian inference publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2019.06.029 – volume: 185 start-page: 301 year: 2019 ident: 10.1016/j.engstruct.2020.110925_b0050 article-title: Structural damage identification with uncertain modelling errors and measurement noise by clustering based tree seeds algorithm publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.01.118 – volume: 17 start-page: 331 issue: 3 year: 2014 ident: 10.1016/j.engstruct.2020.110925_b0060 article-title: A global artificial fish swarm algorithm for structural damage detection publication-title: Adv Struct Eng doi: 10.1260/1369-4332.17.3.331 – volume: 21 issue: 10 year: 2012 ident: 10.1016/j.engstruct.2020.110925_b0085 article-title: A modified monkey algorithm for optimal sensor placement in structural health monitoring publication-title: Smart Material and Structures. doi: 10.1088/0964-1726/21/10/105033 – volume: 332 start-page: 282 year: 2013 ident: 10.1016/j.engstruct.2020.110925_b0035 article-title: A two-step approach for crack identification in beam publication-title: J Sound Vib doi: 10.1016/j.jsv.2012.08.025 – volume: 126 start-page: 738 issue: 7 year: 1999 ident: 10.1016/j.engstruct.2020.110925_b0150 article-title: Bayesian probabilistic approach to structural health monitoring publication-title: J Eng Mech – volume: 10 start-page: 83 issue: 1 year: 2011 ident: 10.1016/j.engstruct.2020.110925_b0005 article-title: Vibration-based damage identification methods: a review and comparative study publication-title: Structural Health Monitoring. doi: 10.1177/1475921710365419 – year: 2020 ident: 10.1016/j.engstruct.2020.110925_b0200 article-title: An effective deep feed forward neural networks (DFNN) method for damage identification of truss structures using noisy incomplete modal data publication-title: Journal of Building Engineering. – year: 2019 ident: 10.1016/j.engstruct.2020.110925_b0030 article-title: An innovative Methodology for Online Surrogate-Based Model Updating of Historic Buildings Using Monitoring Data publication-title: International Journal of Architectural Heritage. – volume: 15 start-page: 553 issue: 5 year: 2010 ident: 10.1016/j.engstruct.2020.110925_b0055 article-title: Bridge model updating using response surface method and genetic algorithm publication-title: Journal of Bridge Engineering ASCE doi: 10.1061/(ASCE)BE.1943-5592.0000092 – volume: 41 start-page: 604 year: 2017 ident: 10.1016/j.engstruct.2020.110925_b0040 article-title: Hybrid sensitivity matrix for damage identification in axially functionally graded beams publication-title: Appl Math Model doi: 10.1016/j.apm.2016.09.008 – volume: 53 start-page: 1159 issue: 6 year: 2010 ident: 10.1016/j.engstruct.2020.110925_b0170 article-title: L1/2 regularization, Science China publication-title: Inf Sci – volume: 85 start-page: 194 year: 2019 ident: 10.1016/j.engstruct.2020.110925_b0125 article-title: An inventory model for deteriorating items with inflation induced variable demand under two level partial trade credit: A hybrid ABC-GA approach publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.06.013 – volume: 7 start-page: 19 year: 2016 ident: 10.1016/j.engstruct.2020.110925_b0130 article-title: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: International Journal of Industrial Engineering Computations – volume: 16 start-page: 775 issue: 2 year: 2018 ident: 10.1016/j.engstruct.2020.110925_b0020 article-title: Assessment of a monumental masonry bell-tower after 2016 central Italy seismic sequence by long-term SHM publication-title: Bull Earthq Eng doi: 10.1007/s10518-017-0222-7 – volume: 333 start-page: 1344 issue: 5 year: 2014 ident: 10.1016/j.engstruct.2020.110925_b0165 article-title: Structural damage measure index based on non-probabilistic reliability model publication-title: J Sound Vib doi: 10.1016/j.jsv.2013.10.019 – volume: 198 start-page: 51 issue: 1–2 year: 2008 ident: 10.1016/j.engstruct.2020.110925_b0160 article-title: Non-probabilistic set-theoretic model for structural safety measure publication-title: Acta Mech doi: 10.1007/s00707-007-0518-9 – volume: 30 start-page: 602 year: 2015 ident: 10.1016/j.engstruct.2020.110925_b0175 article-title: A Hybrid Optimization Algorithm with Bayesian Inference for Probabilistic Model Updating publication-title: Comput-Aided Civ Infrastruct Eng doi: 10.1111/mice.12142 – volume: 611 start-page: 3 year: 2015 ident: 10.1016/j.engstruct.2020.110925_b0115 article-title: A hybrid CS-GSA algorithm for optimization publication-title: Studies in Computational Intelligence. – volume: 3 start-page: 33 issue: 1 year: 2016 ident: 10.1016/j.engstruct.2020.110925_b0010 article-title: A review of recent research advances on structural health monitoring in Western Australia publication-title: Structural Monitoring and Maintenance. doi: 10.12989/smm.2016.3.1.033 – volume: 35 start-page: 1359 issue: 4 year: 2019 ident: 10.1016/j.engstruct.2020.110925_b0110 article-title: A novel hybrid PSO-GWO algorithm for optimization problems publication-title: Engineering with Computers doi: 10.1007/s00366-018-0668-5 – ident: 10.1016/j.engstruct.2020.110925_b0070 doi: 10.3390/s18124131 – volume: 14 start-page: 571 issue: 6 year: 2015 ident: 10.1016/j.engstruct.2020.110925_b0135 article-title: L1 regularization approach to structural damage detection using frequency data publication-title: Structural Health Monitoring doi: 10.1177/1475921715604386 – volume: 12 start-page: 551 year: 2019 ident: 10.1016/j.engstruct.2020.110925_b0120 article-title: Hybrid ABC-BAT for solving short-term hydrothermal scheduling problems publication-title: Energies. doi: 10.3390/en12030551 – volume: 6 start-page: 81 issue: 2 year: 2003 ident: 10.1016/j.engstruct.2020.110925_b0155 article-title: Bayesian fast Fourier transform approach for modal updating using ambient data publication-title: Adv Struct Eng doi: 10.1260/136943303769013183 – volume: 61 start-page: 417 issue: 3 year: 2018 ident: 10.1016/j.engstruct.2020.110925_b0095 article-title: Parameters identification of chaotic systems based on artificial bee colony algorithm combined with cuckoo search strategy publication-title: Science China Teleological Sciences. – volume: 156 start-page: 105 year: 2018 ident: 10.1016/j.engstruct.2020.110925_b0015 article-title: Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection - A review publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.11.018 – volume: 112 start-page: 76 year: 2017 ident: 10.1016/j.engstruct.2020.110925_b0090 article-title: An efficient multi-stage optimization approach for damage detection in plate structures publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.06.015 – volume: 32 start-page: 288 issue: 4 year: 2017 ident: 10.1016/j.engstruct.2020.110925_b0025 article-title: The stretching method for Vibration-Based Structural Health Monitoring of Civil Structures publication-title: Comput-Aided Civ Infrastruct Eng doi: 10.1111/mice.12255 – volume: 33 start-page: 3628 issue: 12 year: 2011 ident: 10.1016/j.engstruct.2020.110925_b0190 article-title: Theoretical and experimental modal analysis of the Guangzhou New TV Tower publication-title: Eng Struct doi: 10.1016/j.engstruct.2011.07.028 – volume: 58 start-page: 11 year: 2017 ident: 10.1016/j.engstruct.2020.110925_b0105 article-title: Hybrid Artificial Bee Colony algorithm with Differential Evolution publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.04.018 – volume: 75 start-page: 440 year: 2008 ident: 10.1016/j.engstruct.2020.110925_b0140 article-title: Regularization in model updating publication-title: Int J Numer Meth Eng doi: 10.1002/nme.2257 – volume: 11 start-page: 1363 year: 2011 ident: 10.1016/j.engstruct.2020.110925_b0180 article-title: A clustering-based differential evolution for global optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.04.008 – volume: 148 start-page: 308 year: 2019 ident: 10.1016/j.engstruct.2020.110925_b0205 article-title: Vibration-based damage detection of planar and space trusses using differential evolution algorithm publication-title: Applied Acoustic. doi: 10.1016/j.apacoust.2018.08.032 – volume: 83 year: 2019 ident: 10.1016/j.engstruct.2020.110925_b0065 article-title: Damage localization in irregular structures using intelligent FE model updating approach with a new hybrid objective function and social swarm algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105604 |
| SSID | ssj0002880 |
| Score | 2.4788816 |
| Snippet | •A novel non-probabilistic structural damage identification approach is proposed.•Uncertainties in finite element modelling and measurement errors are... This paper proposes a novel non-probabilistic structural damage identification approach by developing a hybrid swarm intelligence technique based on Jaya and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 110925 |
| SubjectTerms | Algorithms Cluster analysis Clustering Computer simulation Damage detection Finite element method Hybrid systems Hybridization Intelligence Modal data Non-probabilistic Objective function Optimization Probabilistic methods Reduction Regularization Robustness (mathematics) Seeds Sparse regularization technique Stiffness Structural damage Swarm intelligence Swarm intelligence method Uncertainties Uncertainty Upper bounds Vector quantization Vibration-based damage identification |
| Title | Non-probabilistic method to consider uncertainties in structural damage identification based on Hybrid Jaya and Tree Seeds Algorithm |
| URI | https://dx.doi.org/10.1016/j.engstruct.2020.110925 https://www.proquest.com/docview/2446725043 |
| Volume | 220 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7323 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: AKRWK dateStart: 19781001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQLDAgPkWhVDewhobEOAlbVYFKEV0AqZvl2G4JalMEXViY-OHcxQ5QhNQBZUkiO7J8zn1I795j7ERbEyeZSQJrBRYoPE8DLCNEkEaj0ER8xFNF3ci3A9F74P3h-XCFdeteGIJVet_vfHrlrf2btt_N9nNRtO8qiGKUYQUQY42RDamDnSekYnD6_g3ziNJKPY0GBzR6AeNly7GjacVCMXLsm6SZ_XeE-uWrqwB0tcU2feYIHbe4bbZiyx228YNPcJd9DGZlQBIxFW0uMTCDU4iG-Qy0l-YEjGQOB0BcqlCU4BZH_Btg1BQdDBTGg4gquwGFOgN403ujBi_oqzcFqjRw_2It3GEAfIXOZDx7KeaP0z32cHV53-0FXmYh0DGP5wHHGJbGQoXZKCeymCw0IrQGU6Ms1ZFJE2JVS7Q4U_jzY7kmcixrNZqeK8NDG8b7bLWclfaAgeVC4SZGOtcGK68kzXhm8RIqGWl7bhpM1FsrtecgJymMiazBZk_yyyaSbCKdTRos_Jr47Gg4lk-5qG0nF06UxGCxfHKztrb0P_WrxExIJBXl2-F_vn3E1unJIQKbbBUH2GPMbOZ5qzq6LbbWub7pDT4B0oX7Jg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKDMCAeIo3N7CGhsR1EjaEQKWULhSpm-XYLgSVFEEXFiZ-OHexUx5CYkBZotiOLJ99d5_0-TvGDrU1cZKZJLBWIEDheRogjBBBGg1DE_EhTxXdRr7uifYt7wxagwY7q-_CEK3S-37n0ytv7b80_Wo2n4qieVNRFKMMEUCMGCMbzLA53ooSQmBHb588jyityqdR74C6fyN52fLO6bQiUoyc_CYVzf49RP1w1lUEulhmSz51hFM3uxXWsOUqW_wiKLjG3nvjMqAaMZVuLkkwgysRDZMxaF-bEzCUOSIAialCUYKbHAlwgFGP6GGgMJ5FVBkOKNYZwJf2K93wgo56VaBKA_1na-EGI-ALnI7uxs_F5P5xnd1enPfP2oGvsxDomMeTgGMQS2OhwmyYk1pMFhoRWoO5UZbqyKQJyaolWhwrPP2I10SOuFaj7bkyPLRhvMFmy3FpNxlYLhQuYqRzbRB6JWnGM4uPUMlQ25bZYqJeWqm9CDnVwhjJmm32IKc2kWQT6WyyxcLpwCenw_H3kJPadvLblpIYLf4evFtbW_pT_SIxFRJJpfm2_Z9_H7D5dv-6K7uXvasdtkAtjh64y2axs93DNGeS71fb-AOZTfy7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-probabilistic+method+to+consider+uncertainties+in+structural+damage+identification+based+on+Hybrid+Jaya+and+Tree+Seeds+Algorithm&rft.jtitle=Engineering+structures&rft.au=Ding%2C+Zhenghao&rft.au=Li%2C+Jun&rft.au=Hao%2C+Hong&rft.date=2020-10-01&rft.issn=0141-0296&rft.volume=220&rft.spage=110925&rft_id=info:doi/10.1016%2Fj.engstruct.2020.110925&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2020_110925 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |