Image aesthetic quality evaluation using convolution neural network embedded learning

A way of embedded learning convolution neural network(ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to...

Full description

Saved in:
Bibliographic Details
Published inOptoelectronics letters Vol. 13; no. 6; pp. 471 - 475
Main Author 李雨鑫;普园媛;徐丹;钱文华;王立鹏
Format Journal Article
LanguageEnglish
Published Tianjin Tianjin University of Technology 01.11.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1673-1905
1993-5013
DOI10.1007/s11801-017-7203-6

Cover

Abstract A way of embedded learning convolution neural network(ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.
AbstractList A way of embedded learning convolution neural network(ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.
A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.
Author 李雨鑫;普园媛;徐丹;钱文华;王立鹏
AuthorAffiliation School of Information Science and Engineering, Yunnan University, Kunming 650504, China
Author_xml – sequence: 1
  fullname: 李雨鑫;普园媛;徐丹;钱文华;王立鹏
BookMark eNp9kUtPAjEUhRuDiYj8AHcTXY_2MdNOl4b4IDFxI-vm0unA4NBCO4Ph31sYYowL2sVtmvvdc3p6jQbWWYPQLcEPBGPxGAgpMEkxEamgmKX8Ag2JlCzNMWGDeOaCpUTi_AqNQ1jhuBgVRSaHaDZdw8IkYEK7NG2tk20HTd3uE7ODpoO2djbpQm0XiXZ255rueGNN56GJpf12_isx67kpS1MmjQFvY_MNuqygCWZ8qiM0e3n-nLyl7x-v08nTe6pZxtqUVpwCQAmQZ7TgOisFZGKemRxnRHOGqeCEirg1k8BKI7WMtjk2VcYqLNgI3fdzN95tu_gGtXKdt1FSEcnzOFMWRewifZf2LgRvKrXx9Rr8XhGsDgGqPkAVA1SHABWPjPjH6Lo9xtF6qJuzJO3JEFXswvg_ns5Adye5pbOLbeR-Pca_K3ARE2E_PICSFQ
CitedBy_id crossref_primary_10_1155_2021_5540201
crossref_primary_10_1007_s00521_019_04065_4
crossref_primary_10_1007_s10586_020_03201_3
crossref_primary_10_18287_2412_6179_CO_515
crossref_primary_10_1007_s00521_020_05565_4
Cites_doi 10.1007/s11801-017-7086-6
10.1007/s11801-016-6179-y
10.1109/TMM.2015.2479916
ContentType Journal Article
Copyright Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2017
– notice: Copyright Springer Science & Business Media 2017
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
DOI 10.1007/s11801-017-7203-6
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
DocumentTitleAlternate Image aesthetic quality evaluation using convolution neural network embedded learning
EISSN 1993-5013
EndPage 475
ExternalDocumentID 10_1007_s11801_017_7203_6
673808504
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
29N
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
6NX
8TC
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CCEZO
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9T
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGT
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W92
WK8
YLTOR
Z7R
Z7X
Z88
ZMTXR
~A9
~WA
-SI
-S~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEI
H13
Q--
SJYHP
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c343t-2f62aaadaa54286c4d7a47b4e5041c630276127272c39a3de9c978460ef43f073
IEDL.DBID U2A
ISSN 1673-1905
IngestDate Thu Sep 25 00:50:50 EDT 2025
Wed Oct 01 02:51:50 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Fri Feb 21 02:37:00 EST 2025
Wed Feb 14 10:01:49 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords A
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-2f62aaadaa54286c4d7a47b4e5041c630276127272c39a3de9c978460ef43f073
Notes 12-1370/TN
aesthetic,convolution,tuning,trained,label,continually,landscape,boost,chose,Night
A way of embedded learning convolution neural network(ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1965286988
PQPubID 2044109
PageCount 5
ParticipantIDs proquest_journals_1965286988
crossref_primary_10_1007_s11801_017_7203_6
crossref_citationtrail_10_1007_s11801_017_7203_6
springer_journals_10_1007_s11801_017_7203_6
chongqing_primary_673808504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Tianjin
PublicationPlace_xml – name: Tianjin
– name: Heidelberg
PublicationTitle Optoelectronics letters
PublicationTitleAbbrev Optoelectron. Lett
PublicationTitleAlternate Opto-electronics Letters
PublicationYear 2017
Publisher Tianjin University of Technology
Springer Nature B.V
Publisher_xml – name: Tianjin University of Technology
– name: Springer Nature B.V
References TianXDongZYangKMeiTIEEE Transactions on Multimedia201517203510.1109/TMM.2015.2479916
ShaoJZhouYJournal of Computational Information Systems201393209
KrizhevskyASutskeverIHintonGImageNet Classification with Deep Convolutional Neural Networks20121097
JiaYShelhamerEDonahueJKarayevSLongJGirshickRGuadarramaSDarrellTCaffe: Convolutional Architecture for Fast Feature Embedding2014675
ChatfieldKSimonyanKVedaldiAZissermanAReturn of the Devil in the Details: Delving Deep into Convolutional Nets2014
DattaRJoshiDLiJStudying Aesthetics in Photographic Images Using a Computational Approach2006288
LuoWWangXTangXContent-Based Photo Quality Assessment20112206
WangCPuYXuDEvaluating aesthetics quality in scenery images2015141
ObradorPSchmidt-HackenbergLOliverNThe role of Image Composition in Image Aesthetics20103185
GengH-qZhangHXueY-bZhouMXuG-pGaoZOptoelectronics Letters2017133812017OptEL..13..381G10.1007/s11801-017-7086-6
MurrayNMarchesottiLPerronninFAVA: A Large-Scale Database for Aesthetic Visual Analysis20122408
XuFLiuJ-hOptoelectronic Letters2016124732016OptEL..12..473X10.1007/s11801-016-6179-y
ZhouYLuXZhangJWangJJoint Image and Text Representation for Aesthetics Analysis2016262
WangCPuYXuDZhuJTaoZJournal of Software20152620
LuXLinZJinHYangJWangJRAPID: Rating Pictorial Aesthetics using Deep Learning2014457
DongZShenXLiHTianXPhoto Quality Assessment with DCNN that Understands Image Well2015524
GuoLLiFImage Aesthetic Evaluation Using Paralleled Deep Convolution Neural Network2015
DharSOrdonezVBergL THigh Level Describable Attributes for Predicting Aesthetics and Interestingness20111657
L Guo (7203_CR9) 2015
X Lu (7203_CR8) 2014
Y Jia (7203_CR18) 2014
P Obrador (7203_CR5) 2010
X Tian (7203_CR12) 2015; 17
C Wang (7203_CR6) 2015
J Shao (7203_CR3) 2013; 9
W Luo (7203_CR2) 2011
N Murray (7203_CR13) 2012
A Krizhevsky (7203_CR16) 2012
H-q Geng (7203_CR14) 2017; 13
Y Zhou (7203_CR10) 2016
C Wang (7203_CR7) 2015; 26
S Dhar (7203_CR4) 2011
K Chatfield (7203_CR17) 2014
F Xu (7203_CR15) 2016; 12
Z Dong (7203_CR11) 2015
R Datta (7203_CR1) 2006
References_xml – reference: ChatfieldKSimonyanKVedaldiAZissermanAReturn of the Devil in the Details: Delving Deep into Convolutional Nets2014
– reference: DongZShenXLiHTianXPhoto Quality Assessment with DCNN that Understands Image Well2015524
– reference: DharSOrdonezVBergL THigh Level Describable Attributes for Predicting Aesthetics and Interestingness20111657
– reference: GuoLLiFImage Aesthetic Evaluation Using Paralleled Deep Convolution Neural Network2015
– reference: ObradorPSchmidt-HackenbergLOliverNThe role of Image Composition in Image Aesthetics20103185
– reference: TianXDongZYangKMeiTIEEE Transactions on Multimedia201517203510.1109/TMM.2015.2479916
– reference: MurrayNMarchesottiLPerronninFAVA: A Large-Scale Database for Aesthetic Visual Analysis20122408
– reference: LuoWWangXTangXContent-Based Photo Quality Assessment20112206
– reference: KrizhevskyASutskeverIHintonGImageNet Classification with Deep Convolutional Neural Networks20121097
– reference: XuFLiuJ-hOptoelectronic Letters2016124732016OptEL..12..473X10.1007/s11801-016-6179-y
– reference: DattaRJoshiDLiJStudying Aesthetics in Photographic Images Using a Computational Approach2006288
– reference: GengH-qZhangHXueY-bZhouMXuG-pGaoZOptoelectronics Letters2017133812017OptEL..13..381G10.1007/s11801-017-7086-6
– reference: WangCPuYXuDZhuJTaoZJournal of Software20152620
– reference: LuXLinZJinHYangJWangJRAPID: Rating Pictorial Aesthetics using Deep Learning2014457
– reference: JiaYShelhamerEDonahueJKarayevSLongJGirshickRGuadarramaSDarrellTCaffe: Convolutional Architecture for Fast Feature Embedding2014675
– reference: ZhouYLuXZhangJWangJJoint Image and Text Representation for Aesthetics Analysis2016262
– reference: WangCPuYXuDEvaluating aesthetics quality in scenery images2015141
– reference: ShaoJZhouYJournal of Computational Information Systems201393209
– start-page: 675
  volume-title: Caffe: Convolutional Architecture for Fast Feature Embedding
  year: 2014
  ident: 7203_CR18
– start-page: 1657
  volume-title: High Level Describable Attributes for Predicting Aesthetics and Interestingness
  year: 2011
  ident: 7203_CR4
– start-page: 1097
  volume-title: ImageNet Classification with Deep Convolutional Neural Networks
  year: 2012
  ident: 7203_CR16
– start-page: 141
  volume-title: Evaluating aesthetics quality in scenery images
  year: 2015
  ident: 7203_CR6
– start-page: 288
  volume-title: Studying Aesthetics in Photographic Images Using a Computational Approach
  year: 2006
  ident: 7203_CR1
– start-page: 3185
  volume-title: The role of Image Composition in Image Aesthetics
  year: 2010
  ident: 7203_CR5
– start-page: 457
  volume-title: RAPID: Rating Pictorial Aesthetics using Deep Learning
  year: 2014
  ident: 7203_CR8
– volume: 13
  start-page: 381
  year: 2017
  ident: 7203_CR14
  publication-title: Optoelectronics Letters
  doi: 10.1007/s11801-017-7086-6
– start-page: 2408
  volume-title: AVA: A Large-Scale Database for Aesthetic Visual Analysis
  year: 2012
  ident: 7203_CR13
– volume-title: Image Aesthetic Evaluation Using Paralleled Deep Convolution Neural Network
  year: 2015
  ident: 7203_CR9
– volume: 12
  start-page: 473
  year: 2016
  ident: 7203_CR15
  publication-title: Optoelectronic Letters
  doi: 10.1007/s11801-016-6179-y
– start-page: 2206
  volume-title: Content-Based Photo Quality Assessment
  year: 2011
  ident: 7203_CR2
– start-page: 262
  volume-title: Joint Image and Text Representation for Aesthetics Analysis
  year: 2016
  ident: 7203_CR10
– volume: 9
  start-page: 3209
  year: 2013
  ident: 7203_CR3
  publication-title: Journal of Computational Information Systems
– start-page: 524
  volume-title: Photo Quality Assessment with DCNN that Understands Image Well
  year: 2015
  ident: 7203_CR11
– volume: 26
  start-page: 20
  year: 2015
  ident: 7203_CR7
  publication-title: Journal of Software
– volume: 17
  start-page: 2035
  year: 2015
  ident: 7203_CR12
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2015.2479916
– volume-title: Return of the Devil in the Details: Delving Deep into Convolutional Nets
  year: 2014
  ident: 7203_CR17
SSID ssj0000327849
Score 2.1120324
Snippet A way of embedded learning convolution neural network(ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper....
A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 471
SubjectTerms Classification
Convolution
Image classification
Image quality
Lasers
Neural networks
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Quality
Quality assessment
Tuning
Title Image aesthetic quality evaluation using convolution neural network embedded learning
URI http://lib.cqvip.com/qk/88368X/201706/673808504.html
https://link.springer.com/article/10.1007/s11801-017-7203-6
https://www.proquest.com/docview/1965286988
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1993-5013
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327849
  issn: 1673-1905
  databaseCode: AFBBN
  dateStart: 20050701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1993-5013
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327849
  issn: 1673-1905
  databaseCode: AGYKE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1993-5013
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000327849
  issn: 1673-1905
  databaseCode: U2A
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCIkLb8QYoBw4gSq1TZq2xwnxFpyYBKcqr24H1gEbB_49dpdugACJc1NHjZ3Y7md_ATgKQ1fGsckClRDMqNGMtY5tkKdcGBlluVOUKN7eycueuH5IHnwf97ipdm8gyfqknje7RVmd-qYBQYeBXISlhNi80Ih7cXf2YyXkhKVR2BvJlAfo8JIGzfxJCnEqDEZV_wVn_Oqb5gHnN4y0dj3n67DqY0bWnSp5AxZctQlrPn5kfneON2G5Luc04y3oXQ3xnGAK5Q6oS5FNeyff2Zzcm1HFe59R1bm3PkbcljhPNa0MZ26oHR5LlvmbJfrb0Ds_uz-9DPwFCoHhgk-CuJSxUsoqlWCWIY2wqRKpFi4JRWQkQZYY4BAUa3iuuHW5waRSSNSf4CVu_h1oVaPK7QKzpSkjm3D0_0qUVmQa4wqrtZKJy7TjbejMlrF4nhJlUM1YRpR4og1hs7CF8dzjdAXGUzFnTSa9FKiXgvRSyDYcz15p5P0xeL_RVuH34LggrkT86jzL2nDSaPDT49-E7f1rdAdWYrKmuj1xH1qT1zd3gHHKRB_CUvfi8ebssLbPD65H3wY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VRRVcSnlUbJcWH3oqCkpix0mOq6p0KY_TrgQny68sEiVAdzm0v74ziUNa1FbiHMd27LH9Tb6ZzwAf4thXaWqLSGdEMxo0Y2NSF5U5F1YmRek1OYpn53IyE18vsouQx73oot07SrLZqftkt6RoXN88IuowkiuwKtA_SQewOv5yedL_Wok5sWkEfBOZ8wiPvKzjM_9WD6kqXN3W83ts88_TqYecT1jS5vA52oBp1-025uT68GFpDu3PJ4qOz_yu1_AqgFE2bq1nE174egs2AjBlYdkvtuBlEydqF9swO77BDYhp7O4VpT-yNinzB-tVwxmF0s8ZhbMHs2Ykmont1G3IOfM3xuN-51i4smK-A7Ojz9NPkyjczBBZLvgySiuZaq2d1hm6L9IKl2uRG-GzWCRWEheKyIk4XstLzZ0vLXqrQqJhCF7hrvIGBvVt7XeBucpWics4AgstKicKg4DFGaNl5gvj-RBGj7Oj7loFDgpGK0hrTwwh7uZL2SBqTndrfFO9HDMNr8LhVTS8Sg7h4-MrXX3_KbzXGYEKi3uhSIQRv7osiiEcdHP62-N_Vfb2WaX3YW0yPTtVp8fnJyNYT8lAmhzIPRgsvz_4dwiGluZ9MP5fdM39Gg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRa24lGfFlpcPPYEikthxkiMqrHiLQ1fiZvmV5QBhyy6H_vvOJM4uRQWJc5yx4hnbM_lmvgH4Ece-SlNbRDojmNGgGRuTuqjMubAyKUqvKVC8upanQ3F-m92GPqeTLtu9gyTbmgZiaaqnh2NXHc4L35KiCYPziGDESH6CRUE8CWjQw_Ro9pMl5oSrkQucyJxHePllHbL5PynEr3D3WI9-4-z_3lNz5_MVXtpcQ4MV-Br8R3bUKnwVFny9BsvBl2Rhp07W4HOT2mkn6zA8e8Azg2mUe0cVi6yto_zD5kTfjLLfR4wy0IMlMuK5xHnqNkuc-Qfj8YhyLHSZGG3AcHDy6-dpFJopRJYLPo3SSqZaa6d1hhGHtMLlWuRG-CwWiZUEX6KzQ7Cs5aXmzpcWA0whUZeCV3gQfINe_Vj7TWCuslXiMo6-gBaVE4VBH8MZo2XmC-N5H7Zmy6jGLWkG5Y8VRI8n-hB3C6ts4CGndhj3as6gTHpRqBdFelGyD_uzVzp57wze7rSlwn6cKOJNxK8ui6IPB50GXzx-S9j3D43egy83xwN1eXZ9sQVLKRlWU7W4Db3p07PfQfdlanYbE_0LWufkmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+aesthetic+quality+evaluation+using+convolution+neural+network+embedded+learning&rft.jtitle=%E5%85%89%E7%94%B5%E5%AD%90%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%9D%8E%E9%9B%A8%E9%91%AB%3B%E6%99%AE%E5%9B%AD%E5%AA%9B%3B%E5%BE%90%E4%B8%B9%3B%E9%92%B1%E6%96%87%E5%8D%8E%3B%E7%8E%8B%E7%AB%8B%E9%B9%8F&rft.date=2017-11-01&rft.issn=1673-1905&rft.eissn=1993-5013&rft.volume=13&rft.issue=6&rft.spage=471&rft.epage=475&rft_id=info:doi/10.1007%2Fs11801-017-7203-6&rft.externalDocID=673808504
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88368X%2F88368X.jpg