Image aesthetic quality evaluation using convolution neural network embedded learning
A way of embedded learning convolution neural network(ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to...
Saved in:
| Published in | Optoelectronics letters Vol. 13; no. 6; pp. 471 - 475 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Tianjin
Tianjin University of Technology
01.11.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1673-1905 1993-5013 |
| DOI | 10.1007/s11801-017-7203-6 |
Cover
| Abstract | A way of embedded learning convolution neural network(ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches. |
|---|---|
| AbstractList | A way of embedded learning convolution neural network(ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches. A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches. |
| Author | 李雨鑫;普园媛;徐丹;钱文华;王立鹏 |
| AuthorAffiliation | School of Information Science and Engineering, Yunnan University, Kunming 650504, China |
| Author_xml | – sequence: 1 fullname: 李雨鑫;普园媛;徐丹;钱文华;王立鹏 |
| BookMark | eNp9kUtPAjEUhRuDiYj8AHcTXY_2MdNOl4b4IDFxI-vm0unA4NBCO4Ph31sYYowL2sVtmvvdc3p6jQbWWYPQLcEPBGPxGAgpMEkxEamgmKX8Ag2JlCzNMWGDeOaCpUTi_AqNQ1jhuBgVRSaHaDZdw8IkYEK7NG2tk20HTd3uE7ODpoO2djbpQm0XiXZ255rueGNN56GJpf12_isx67kpS1MmjQFvY_MNuqygCWZ8qiM0e3n-nLyl7x-v08nTe6pZxtqUVpwCQAmQZ7TgOisFZGKemRxnRHOGqeCEirg1k8BKI7WMtjk2VcYqLNgI3fdzN95tu_gGtXKdt1FSEcnzOFMWRewifZf2LgRvKrXx9Rr8XhGsDgGqPkAVA1SHABWPjPjH6Lo9xtF6qJuzJO3JEFXswvg_ns5Adye5pbOLbeR-Pca_K3ARE2E_PICSFQ |
| CitedBy_id | crossref_primary_10_1155_2021_5540201 crossref_primary_10_1007_s00521_019_04065_4 crossref_primary_10_1007_s10586_020_03201_3 crossref_primary_10_18287_2412_6179_CO_515 crossref_primary_10_1007_s00521_020_05565_4 |
| Cites_doi | 10.1007/s11801-017-7086-6 10.1007/s11801-016-6179-y 10.1109/TMM.2015.2479916 |
| ContentType | Journal Article |
| Copyright | Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2017 Copyright Springer Science & Business Media 2017 |
| Copyright_xml | – notice: Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2017 – notice: Copyright Springer Science & Business Media 2017 |
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION |
| DOI | 10.1007/s11801-017-7203-6 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| DocumentTitleAlternate | Image aesthetic quality evaluation using convolution neural network embedded learning |
| EISSN | 1993-5013 |
| EndPage | 475 |
| ExternalDocumentID | 10_1007_s11801_017_7203_6 673808504 |
| GroupedDBID | -5F -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 29N 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5VR 5VS 6NX 8TC 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CCEZO CHBEP COF CQIGP CS3 CSCUP CUBFJ CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9T PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGT TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W92 WK8 YLTOR Z7R Z7X Z88 ZMTXR ~A9 ~WA -SI -S~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEI H13 Q-- SJYHP U1G U5S AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c343t-2f62aaadaa54286c4d7a47b4e5041c630276127272c39a3de9c978460ef43f073 |
| IEDL.DBID | U2A |
| ISSN | 1673-1905 |
| IngestDate | Thu Sep 25 00:50:50 EDT 2025 Wed Oct 01 02:51:50 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Fri Feb 21 02:37:00 EST 2025 Wed Feb 14 10:01:49 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Keywords | A |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-2f62aaadaa54286c4d7a47b4e5041c630276127272c39a3de9c978460ef43f073 |
| Notes | 12-1370/TN aesthetic,convolution,tuning,trained,label,continually,landscape,boost,chose,Night A way of embedded learning convolution neural network(ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1965286988 |
| PQPubID | 2044109 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_1965286988 crossref_primary_10_1007_s11801_017_7203_6 crossref_citationtrail_10_1007_s11801_017_7203_6 springer_journals_10_1007_s11801_017_7203_6 chongqing_primary_673808504 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Tianjin |
| PublicationPlace_xml | – name: Tianjin – name: Heidelberg |
| PublicationTitle | Optoelectronics letters |
| PublicationTitleAbbrev | Optoelectron. Lett |
| PublicationTitleAlternate | Opto-electronics Letters |
| PublicationYear | 2017 |
| Publisher | Tianjin University of Technology Springer Nature B.V |
| Publisher_xml | – name: Tianjin University of Technology – name: Springer Nature B.V |
| References | TianXDongZYangKMeiTIEEE Transactions on Multimedia201517203510.1109/TMM.2015.2479916 ShaoJZhouYJournal of Computational Information Systems201393209 KrizhevskyASutskeverIHintonGImageNet Classification with Deep Convolutional Neural Networks20121097 JiaYShelhamerEDonahueJKarayevSLongJGirshickRGuadarramaSDarrellTCaffe: Convolutional Architecture for Fast Feature Embedding2014675 ChatfieldKSimonyanKVedaldiAZissermanAReturn of the Devil in the Details: Delving Deep into Convolutional Nets2014 DattaRJoshiDLiJStudying Aesthetics in Photographic Images Using a Computational Approach2006288 LuoWWangXTangXContent-Based Photo Quality Assessment20112206 WangCPuYXuDEvaluating aesthetics quality in scenery images2015141 ObradorPSchmidt-HackenbergLOliverNThe role of Image Composition in Image Aesthetics20103185 GengH-qZhangHXueY-bZhouMXuG-pGaoZOptoelectronics Letters2017133812017OptEL..13..381G10.1007/s11801-017-7086-6 MurrayNMarchesottiLPerronninFAVA: A Large-Scale Database for Aesthetic Visual Analysis20122408 XuFLiuJ-hOptoelectronic Letters2016124732016OptEL..12..473X10.1007/s11801-016-6179-y ZhouYLuXZhangJWangJJoint Image and Text Representation for Aesthetics Analysis2016262 WangCPuYXuDZhuJTaoZJournal of Software20152620 LuXLinZJinHYangJWangJRAPID: Rating Pictorial Aesthetics using Deep Learning2014457 DongZShenXLiHTianXPhoto Quality Assessment with DCNN that Understands Image Well2015524 GuoLLiFImage Aesthetic Evaluation Using Paralleled Deep Convolution Neural Network2015 DharSOrdonezVBergL THigh Level Describable Attributes for Predicting Aesthetics and Interestingness20111657 L Guo (7203_CR9) 2015 X Lu (7203_CR8) 2014 Y Jia (7203_CR18) 2014 P Obrador (7203_CR5) 2010 X Tian (7203_CR12) 2015; 17 C Wang (7203_CR6) 2015 J Shao (7203_CR3) 2013; 9 W Luo (7203_CR2) 2011 N Murray (7203_CR13) 2012 A Krizhevsky (7203_CR16) 2012 H-q Geng (7203_CR14) 2017; 13 Y Zhou (7203_CR10) 2016 C Wang (7203_CR7) 2015; 26 S Dhar (7203_CR4) 2011 K Chatfield (7203_CR17) 2014 F Xu (7203_CR15) 2016; 12 Z Dong (7203_CR11) 2015 R Datta (7203_CR1) 2006 |
| References_xml | – reference: ChatfieldKSimonyanKVedaldiAZissermanAReturn of the Devil in the Details: Delving Deep into Convolutional Nets2014 – reference: DongZShenXLiHTianXPhoto Quality Assessment with DCNN that Understands Image Well2015524 – reference: DharSOrdonezVBergL THigh Level Describable Attributes for Predicting Aesthetics and Interestingness20111657 – reference: GuoLLiFImage Aesthetic Evaluation Using Paralleled Deep Convolution Neural Network2015 – reference: ObradorPSchmidt-HackenbergLOliverNThe role of Image Composition in Image Aesthetics20103185 – reference: TianXDongZYangKMeiTIEEE Transactions on Multimedia201517203510.1109/TMM.2015.2479916 – reference: MurrayNMarchesottiLPerronninFAVA: A Large-Scale Database for Aesthetic Visual Analysis20122408 – reference: LuoWWangXTangXContent-Based Photo Quality Assessment20112206 – reference: KrizhevskyASutskeverIHintonGImageNet Classification with Deep Convolutional Neural Networks20121097 – reference: XuFLiuJ-hOptoelectronic Letters2016124732016OptEL..12..473X10.1007/s11801-016-6179-y – reference: DattaRJoshiDLiJStudying Aesthetics in Photographic Images Using a Computational Approach2006288 – reference: GengH-qZhangHXueY-bZhouMXuG-pGaoZOptoelectronics Letters2017133812017OptEL..13..381G10.1007/s11801-017-7086-6 – reference: WangCPuYXuDZhuJTaoZJournal of Software20152620 – reference: LuXLinZJinHYangJWangJRAPID: Rating Pictorial Aesthetics using Deep Learning2014457 – reference: JiaYShelhamerEDonahueJKarayevSLongJGirshickRGuadarramaSDarrellTCaffe: Convolutional Architecture for Fast Feature Embedding2014675 – reference: ZhouYLuXZhangJWangJJoint Image and Text Representation for Aesthetics Analysis2016262 – reference: WangCPuYXuDEvaluating aesthetics quality in scenery images2015141 – reference: ShaoJZhouYJournal of Computational Information Systems201393209 – start-page: 675 volume-title: Caffe: Convolutional Architecture for Fast Feature Embedding year: 2014 ident: 7203_CR18 – start-page: 1657 volume-title: High Level Describable Attributes for Predicting Aesthetics and Interestingness year: 2011 ident: 7203_CR4 – start-page: 1097 volume-title: ImageNet Classification with Deep Convolutional Neural Networks year: 2012 ident: 7203_CR16 – start-page: 141 volume-title: Evaluating aesthetics quality in scenery images year: 2015 ident: 7203_CR6 – start-page: 288 volume-title: Studying Aesthetics in Photographic Images Using a Computational Approach year: 2006 ident: 7203_CR1 – start-page: 3185 volume-title: The role of Image Composition in Image Aesthetics year: 2010 ident: 7203_CR5 – start-page: 457 volume-title: RAPID: Rating Pictorial Aesthetics using Deep Learning year: 2014 ident: 7203_CR8 – volume: 13 start-page: 381 year: 2017 ident: 7203_CR14 publication-title: Optoelectronics Letters doi: 10.1007/s11801-017-7086-6 – start-page: 2408 volume-title: AVA: A Large-Scale Database for Aesthetic Visual Analysis year: 2012 ident: 7203_CR13 – volume-title: Image Aesthetic Evaluation Using Paralleled Deep Convolution Neural Network year: 2015 ident: 7203_CR9 – volume: 12 start-page: 473 year: 2016 ident: 7203_CR15 publication-title: Optoelectronic Letters doi: 10.1007/s11801-016-6179-y – start-page: 2206 volume-title: Content-Based Photo Quality Assessment year: 2011 ident: 7203_CR2 – start-page: 262 volume-title: Joint Image and Text Representation for Aesthetics Analysis year: 2016 ident: 7203_CR10 – volume: 9 start-page: 3209 year: 2013 ident: 7203_CR3 publication-title: Journal of Computational Information Systems – start-page: 524 volume-title: Photo Quality Assessment with DCNN that Understands Image Well year: 2015 ident: 7203_CR11 – volume: 26 start-page: 20 year: 2015 ident: 7203_CR7 publication-title: Journal of Software – volume: 17 start-page: 2035 year: 2015 ident: 7203_CR12 publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2015.2479916 – volume-title: Return of the Devil in the Details: Delving Deep into Convolutional Nets year: 2014 ident: 7203_CR17 |
| SSID | ssj0000327849 |
| Score | 2.1120324 |
| Snippet | A way of embedded learning convolution neural network(ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper.... A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our... |
| SourceID | proquest crossref springer chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 471 |
| SubjectTerms | Classification Convolution Image classification Image quality Lasers Neural networks Optical Devices Optics Photonics Physics Physics and Astronomy Quality Quality assessment Tuning |
| Title | Image aesthetic quality evaluation using convolution neural network embedded learning |
| URI | http://lib.cqvip.com/qk/88368X/201706/673808504.html https://link.springer.com/article/10.1007/s11801-017-7203-6 https://www.proquest.com/docview/1965286988 |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1993-5013 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327849 issn: 1673-1905 databaseCode: AFBBN dateStart: 20050701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1993-5013 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327849 issn: 1673-1905 databaseCode: AGYKE dateStart: 20050101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1993-5013 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000327849 issn: 1673-1905 databaseCode: U2A dateStart: 20050701 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCIkLb8QYoBw4gSq1TZq2xwnxFpyYBKcqr24H1gEbB_49dpdugACJc1NHjZ3Y7md_ATgKQ1fGsckClRDMqNGMtY5tkKdcGBlluVOUKN7eycueuH5IHnwf97ipdm8gyfqknje7RVmd-qYBQYeBXISlhNi80Ih7cXf2YyXkhKVR2BvJlAfo8JIGzfxJCnEqDEZV_wVn_Oqb5gHnN4y0dj3n67DqY0bWnSp5AxZctQlrPn5kfneON2G5Luc04y3oXQ3xnGAK5Q6oS5FNeyff2Zzcm1HFe59R1bm3PkbcljhPNa0MZ26oHR5LlvmbJfrb0Ds_uz-9DPwFCoHhgk-CuJSxUsoqlWCWIY2wqRKpFi4JRWQkQZYY4BAUa3iuuHW5waRSSNSf4CVu_h1oVaPK7QKzpSkjm3D0_0qUVmQa4wqrtZKJy7TjbejMlrF4nhJlUM1YRpR4og1hs7CF8dzjdAXGUzFnTSa9FKiXgvRSyDYcz15p5P0xeL_RVuH34LggrkT86jzL2nDSaPDT49-E7f1rdAdWYrKmuj1xH1qT1zd3gHHKRB_CUvfi8ebssLbPD65H3wY |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VRRVcSnlUbJcWH3oqCkpix0mOq6p0KY_TrgQny68sEiVAdzm0v74ziUNa1FbiHMd27LH9Tb6ZzwAf4thXaWqLSGdEMxo0Y2NSF5U5F1YmRek1OYpn53IyE18vsouQx73oot07SrLZqftkt6RoXN88IuowkiuwKtA_SQewOv5yedL_Wok5sWkEfBOZ8wiPvKzjM_9WD6kqXN3W83ts88_TqYecT1jS5vA52oBp1-025uT68GFpDu3PJ4qOz_yu1_AqgFE2bq1nE174egs2AjBlYdkvtuBlEydqF9swO77BDYhp7O4VpT-yNinzB-tVwxmF0s8ZhbMHs2Ykmont1G3IOfM3xuN-51i4smK-A7Ojz9NPkyjczBBZLvgySiuZaq2d1hm6L9IKl2uRG-GzWCRWEheKyIk4XstLzZ0vLXqrQqJhCF7hrvIGBvVt7XeBucpWics4AgstKicKg4DFGaNl5gvj-RBGj7Oj7loFDgpGK0hrTwwh7uZL2SBqTndrfFO9HDMNr8LhVTS8Sg7h4-MrXX3_KbzXGYEKi3uhSIQRv7osiiEcdHP62-N_Vfb2WaX3YW0yPTtVp8fnJyNYT8lAmhzIPRgsvz_4dwiGluZ9MP5fdM39Gg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRa24lGfFlpcPPYEikthxkiMqrHiLQ1fiZvmV5QBhyy6H_vvOJM4uRQWJc5yx4hnbM_lmvgH4Ece-SlNbRDojmNGgGRuTuqjMubAyKUqvKVC8upanQ3F-m92GPqeTLtu9gyTbmgZiaaqnh2NXHc4L35KiCYPziGDESH6CRUE8CWjQw_Ro9pMl5oSrkQucyJxHePllHbL5PynEr3D3WI9-4-z_3lNz5_MVXtpcQ4MV-Br8R3bUKnwVFny9BsvBl2Rhp07W4HOT2mkn6zA8e8Azg2mUe0cVi6yto_zD5kTfjLLfR4wy0IMlMuK5xHnqNkuc-Qfj8YhyLHSZGG3AcHDy6-dpFJopRJYLPo3SSqZaa6d1hhGHtMLlWuRG-CwWiZUEX6KzQ7Cs5aXmzpcWA0whUZeCV3gQfINe_Vj7TWCuslXiMo6-gBaVE4VBH8MZo2XmC-N5H7Zmy6jGLWkG5Y8VRI8n-hB3C6ts4CGndhj3as6gTHpRqBdFelGyD_uzVzp57wze7rSlwn6cKOJNxK8ui6IPB50GXzx-S9j3D43egy83xwN1eXZ9sQVLKRlWU7W4Db3p07PfQfdlanYbE_0LWufkmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+aesthetic+quality+evaluation+using+convolution+neural+network+embedded+learning&rft.jtitle=%E5%85%89%E7%94%B5%E5%AD%90%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%9D%8E%E9%9B%A8%E9%91%AB%3B%E6%99%AE%E5%9B%AD%E5%AA%9B%3B%E5%BE%90%E4%B8%B9%3B%E9%92%B1%E6%96%87%E5%8D%8E%3B%E7%8E%8B%E7%AB%8B%E9%B9%8F&rft.date=2017-11-01&rft.issn=1673-1905&rft.eissn=1993-5013&rft.volume=13&rft.issue=6&rft.spage=471&rft.epage=475&rft_id=info:doi/10.1007%2Fs11801-017-7203-6&rft.externalDocID=673808504 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88368X%2F88368X.jpg |