EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms

Among seven multiclassification machine learning (ML) models taking optimized hyperparameters found by grid search, AdaBoost achieved the known highest equivalent circuit model (ECM) prediction accuracy, 0.571, and had a prediction basis that was consistent with a common chemical knowledge—the slowe...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 418; p. 140350
Main Authors Zhao, Zhaoyang, Zou, Yang, Liu, Peng, Lai, Zhaogui, Wen, Lei, Jin, Ying
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 20.06.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0013-4686
1873-3859
DOI10.1016/j.electacta.2022.140350

Cover

Abstract Among seven multiclassification machine learning (ML) models taking optimized hyperparameters found by grid search, AdaBoost achieved the known highest equivalent circuit model (ECM) prediction accuracy, 0.571, and had a prediction basis that was consistent with a common chemical knowledge—the slowest step usually is vital in the whole electrochemical process. Twenty global optimization algorithms (GOA)s were assessed on simulated and experimental impedance spectra belonging to nine different ECMs, which proved that GOAs obtained nearly the same identification accuracy as the artificial identification under no interference of obvious abnormal points. ML combining with GOA provides a new possibility to automatically process EIS. [Display omitted]
AbstractList Among seven multiclassification machine learning (ML) models taking optimized hyperparameters found by grid search, AdaBoost achieved the known highest equivalent circuit model (ECM) prediction accuracy, 0.571, and had a prediction basis that was consistent with a common chemical knowledge-the slowest step usually is vital in the whole electrochemical process. Twenty global optimization algorithms (GOA)s were assessed on simulated and experimental impedance spectra belonging to nine different ECMs, which proved that GOAs obtained nearly the same identification accuracy as the artificial identification under no interference of obvious abnormal points. ML combining with GOA provides a new possibility to automatically process EIS.
Among seven multiclassification machine learning (ML) models taking optimized hyperparameters found by grid search, AdaBoost achieved the known highest equivalent circuit model (ECM) prediction accuracy, 0.571, and had a prediction basis that was consistent with a common chemical knowledge—the slowest step usually is vital in the whole electrochemical process. Twenty global optimization algorithms (GOA)s were assessed on simulated and experimental impedance spectra belonging to nine different ECMs, which proved that GOAs obtained nearly the same identification accuracy as the artificial identification under no interference of obvious abnormal points. ML combining with GOA provides a new possibility to automatically process EIS. [Display omitted]
ArticleNumber 140350
Author Wen, Lei
Zou, Yang
Liu, Peng
Zhao, Zhaoyang
Lai, Zhaogui
Jin, Ying
Author_xml – sequence: 1
  givenname: Zhaoyang
  surname: Zhao
  fullname: Zhao, Zhaoyang
– sequence: 2
  givenname: Yang
  surname: Zou
  fullname: Zou, Yang
– sequence: 3
  givenname: Peng
  surname: Liu
  fullname: Liu, Peng
– sequence: 4
  givenname: Zhaogui
  surname: Lai
  fullname: Lai, Zhaogui
– sequence: 5
  givenname: Lei
  surname: Wen
  fullname: Wen, Lei
  email: wenlei@ustb.edu.cn
– sequence: 6
  givenname: Ying
  surname: Jin
  fullname: Jin, Ying
  email: yjin@ustb.edu.cn
BookMark eNqNkd1qFDEUx4NUcFt9BgNe73qSmUlmL7wopWqh4IV6HTKZM9uzZJJpJlPQh-gzm-0UEW8UAoH8P84hv3N2FmJAxt4K2AkQ6v1xhx5dtuXsJEi5EzVUDbxgG9Hqalu1zf6MbQBEta1Vq16x83k-AoBWGjbs8frmK8f7hR6sx5C5o-QWynyMPXo-JezJZYqBLzOFA6eQMZXXbDuPfLTujgJyjzaFk2xDzyeb7IjFxqkvjTSQs380HHzsrOdxyjTSz1Wx_hAT5btxfs1eDtbP-Ob5vmDfP15_u_q8vf3y6ebq8nbrqrrKW6lrEF3l9F7X_d5JFL0GpVzTaN02CLLbSwHK1nKABrGxbTfYVooOhWo60VcX7N3aO6V4v-CczTEuKZSRRiottWpBQXF9WF0uxXlOOBhH-WnlnCx5I8CcEJij-Y3AnBCYFUHJ67_yU6LRph__kbxck1g-4YEwmdkRBldwpOI3faR_dvwCdOGrkA
CitedBy_id crossref_primary_10_1016_j_est_2025_116287
crossref_primary_10_1021_acsaem_4c02618
crossref_primary_10_1109_TIA_2024_3365451
crossref_primary_10_1007_s11581_025_06084_9
crossref_primary_10_1007_s11664_024_11614_8
crossref_primary_10_1016_j_tsf_2024_140579
crossref_primary_10_1016_j_fuel_2025_134821
crossref_primary_10_1016_j_measurement_2025_116735
crossref_primary_10_1016_j_engappai_2023_107027
crossref_primary_10_1021_acsanm_4c06142
crossref_primary_10_1016_j_ijhydene_2023_07_053
crossref_primary_10_1016_j_jece_2024_114349
crossref_primary_10_1016_j_electacta_2024_144884
crossref_primary_10_1016_j_talanta_2025_127776
crossref_primary_10_1016_j_cemconres_2025_107827
crossref_primary_10_1016_j_ijbiomac_2025_142412
crossref_primary_10_1109_TIM_2024_3350117
crossref_primary_10_1039_D4TA04530K
crossref_primary_10_1155_2024_9657360
crossref_primary_10_3390_rs14174372
crossref_primary_10_1016_j_electacta_2024_144474
crossref_primary_10_1016_j_chemolab_2022_104677
crossref_primary_10_1016_j_jcis_2025_137328
crossref_primary_10_1016_j_jallcom_2023_170669
crossref_primary_10_1016_j_xcrp_2024_102134
crossref_primary_10_1016_j_ces_2025_121444
crossref_primary_10_1016_j_corcom_2023_01_005
crossref_primary_10_1016_j_synthmet_2024_117769
crossref_primary_10_1016_j_surfcoat_2024_131567
crossref_primary_10_1088_1361_6439_ad6329
crossref_primary_10_1149_1945_7111_acd8fb
crossref_primary_10_1002_aisy_202300085
crossref_primary_10_1016_j_conbuildmat_2025_140598
crossref_primary_10_1016_j_est_2023_106850
crossref_primary_10_3390_nano14100896
crossref_primary_10_1016_j_jallcom_2025_178599
crossref_primary_10_5796_denkikagaku_22_TE0004
crossref_primary_10_1016_j_electacta_2025_145732
crossref_primary_10_1016_j_ijhydene_2025_02_173
crossref_primary_10_1016_j_ceramint_2024_11_063
crossref_primary_10_1002_adma_202400165
crossref_primary_10_1016_j_jwpe_2025_107199
crossref_primary_10_1016_j_molliq_2025_126874
crossref_primary_10_1007_s12161_022_02442_9
crossref_primary_10_1016_j_cej_2024_157663
crossref_primary_10_1016_j_electacta_2023_142661
crossref_primary_10_1016_j_electacta_2023_142741
crossref_primary_10_1016_j_solmat_2025_113538
crossref_primary_10_1021_acs_analchem_3c02423
crossref_primary_10_3390_batteries10060189
crossref_primary_10_1021_acs_jpcc_4c06206
crossref_primary_10_1016_j_materresbull_2025_113344
crossref_primary_10_1002_celc_202300738
crossref_primary_10_3390_met13071204
crossref_primary_10_1007_s40843_024_3261_2
crossref_primary_10_1016_j_surfin_2025_106047
crossref_primary_10_1016_j_jelechem_2024_118812
Cites_doi 10.1007/s00521-015-1870-7
10.1149/1.2428496
10.1016/j.electacta.2018.11.134
10.1145/3065386
10.2109/jcersj2.16120
10.1016/j.ijhydene.2020.03.076
10.1016/0167-2738(86)90031-7
10.1016/j.electacta.2013.11.090
10.1007/s10854-017-8234-2
10.1177/003754970107600201
10.1016/j.isatra.2014.03.018
10.1016/j.advengsoft.2005.04.005
10.1038/nature17439
10.1109/TEVC.2009.2011992
10.1016/j.egyr.2020.05.024
10.1016/S0022-0728(01)00707-0
10.1016/j.advengsoft.2016.01.008
10.1016/j.tsf.2020.138066
10.1016/j.aca.2012.06.055
10.1016/j.electacta.2016.12.119
10.1016/j.advengsoft.2013.12.007
10.1109/TCST.2015.2502899
10.1016/j.jpowsour.2018.04.033
10.1016/0165-0114(95)00223-5
10.7566/JPSJ.87.034004
10.1016/j.jpowsour.2012.01.004
10.1016/j.energy.2018.10.038
10.1016/j.ins.2012.08.023
10.1016/j.epsr.2015.10.018
10.1016/j.ins.2009.03.004
10.1038/s41524-019-0221-0
10.1016/j.electacta.2013.12.183
10.1016/j.cad.2010.12.015
10.1016/S0013-4686(99)00065-1
10.1007/s00707-009-0270-4
10.1016/j.corsci.2019.04.021
10.1016/j.enconman.2019.112204
10.1016/j.electacta.2015.02.187
10.1177/001316446002000104
10.1016/j.apenergy.2016.10.059
10.1016/j.jelechem.2019.113627
10.1023/A:1008202821328
10.1023/A:1009626110229
10.1016/j.jpowsour.2016.06.119
10.21105/joss.02349
10.1149/2.1051908jes
10.5796/electrochemistry.19-00058
ContentType Journal Article
Copyright 2022
Copyright Elsevier BV Jun 20, 2022
Copyright_xml – notice: 2022
– notice: Copyright Elsevier BV Jun 20, 2022
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2022.140350
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2022_140350
S0013468622005126
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
T9H
VH1
WUQ
XOL
ZY4
~HD
7SR
7U5
8BQ
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JG9
L7M
SSH
ID FETCH-LOGICAL-c343t-27401b3c7974d9c2e1d7066c557785e02b92106a42f05ee5a8bfa821be165b1d3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Jul 25 02:07:34 EDT 2025
Wed Oct 01 05:17:34 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Fri Feb 23 02:39:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interpretable machine learning
Equivalent circuit model
Parameter identification
Classification
Global optimization algorithm
Electrochemical impedance spectroscopy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-27401b3c7974d9c2e1d7066c557785e02b92106a42f05ee5a8bfa821be165b1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2672768060
PQPubID 2045485
ParticipantIDs proquest_journals_2672768060
crossref_citationtrail_10_1016_j_electacta_2022_140350
crossref_primary_10_1016_j_electacta_2022_140350
elsevier_sciencedirect_doi_10_1016_j_electacta_2022_140350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-20
PublicationDateYYYYMMDD 2022-06-20
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-20
  day: 20
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References El-Hay, El-Hameed, El-Fergany (bib0023) 2019; 166
Zong, Kim, Loganathan (bib0037) 2001; 76
Zhang (bib0027) 2016; 194
Naderi, Ganjali, Dezfuli (bib0051) 2018; 29
Lin, Cunningham (bib0058) 1994
Zhang (bib0001) 2020; 11
Fogel, Fogel, Atmar (bib0033) 1991
Atashpaz-Gargari, Lucas (bib0038) 2008
Wei (bib0053) 2020; 707
Shi, Eberhart (bib0049) 1998
Pivac, Barbir (bib0062) 2016; 326
Xiong, Zhang, Shi, Yuan (bib0025) 2020; 203
Yuan (bib0061) 2014; 116
Schultze, Tsakova (bib0063) 1999; 44
Knudsen (bib0014) 2019
Krizhevsky, Sutskever, Hinton (bib0057) 2017; 60
Raccuglia, Elbert, Adler, Falk, Norquist (bib0006) 2016; 533
Schmidt, Marques, Botti, Marques (bib0007) 2019; 5
Mirjalili, Andrew (bib0029) 2016; 95
Modiba, Matoetoe, Crounch (bib0052) 2012; 205
(2015).
He, Wu, Saunders (bib0036) 2009; 13
Kobayashi, Suzuki (bib0009) 2018; 87
Bengoetxea, Larraaga, Bloch, Perchant (bib0032) 2001; 2134
Ribeiro, Singh, Guestrin (bib0028) 2016
Zou (bib0004) 2018; 390
Kobayashi, Sakka, Suzuki (bib0005) 2016; 124
Yu, Nakayama, Yasuo, Watanabe, Hitosugi (bib0008) 2020; 10
Motte, Basilico, Rémy, Kittel, Marcelin (bib0056) 2020
Kaveh, Talatahari (bib0043) 2010; 213
Shi, Li, Zafetti (bib0024) 2020; 6
Buteau, Dahn (bib0019) 2019; 166
Bondarenko (bib0020) 2012; 743
Zhu, Sun, Wang, Zhao, Sha (bib0010) 2019; 855
Dy, Hmh, Afc (bib0022) 2021; 228
Hatamlou (bib0042) 2013; 222
Erol, Eksin (bib0041) 2006; 37
Lai (bib0026) 2019; 295
Karaboga (bib0047) 2005
Boukamp (bib0012) 1986; 20
Engelbrecht (bib0034) 2007
Rao, Savsani, Vakharia (bib0040) 2011; 43
Ffm (bib0050) 2020; 45
Ding (bib0055) 2015; 164
Mirjalili, Mirjalili, Hatamlou (bib0045) 2016; 27
Ping, Lin (bib0046) 2012
Kobayashi, Suzuki (bib0016) 2019; 88
Benmayza, Lu, Ramani, Prakash (bib0054) 2014; 123
Stern, Geary (bib0060) 1957; 104
Zou, Manzie, Nešić (bib0003) 2016; 24
Gandomi, Amir (bib0039) 2014; 53
Storn, Price (bib0031) 1997; 11
Kobayashi, Suzuki (bib0015) 2021; 89
Sm, Smm, Al (bib0048) 2014; 69
Rashedi, Nezamabadi-Pour, Saryazdi (bib0044) 2009; 179
Mesbahi (bib0017) 2016; 131
Yang, Zhang, Li, Wu (bib0018) 2002; 519
Macdonald, J. R. LEVM/LEVMW (Version 8.13)
Lin, Cunningham, Coggeshall (bib0059) 1996; 82
Cohen (bib0030) 1960; 20
Chelouah, Siarry (bib0035) 2000; 6
Lai, Bi, Lei, Xue, Jin (bib0002) 2019; 155
Murbach, Gerwe, Dawson-Elli, Tsui (bib0013) 2020; 5
Tian, Li, Tian, Xia (bib0021) 2017; 225
Dy (10.1016/j.electacta.2022.140350_bib0022) 2021; 228
Yuan (10.1016/j.electacta.2022.140350_bib0061) 2014; 116
Chelouah (10.1016/j.electacta.2022.140350_bib0035) 2000; 6
Shi (10.1016/j.electacta.2022.140350_bib0024) 2020; 6
Ping (10.1016/j.electacta.2022.140350_bib0046) 2012
Karaboga (10.1016/j.electacta.2022.140350_bib0047) 2005
Ding (10.1016/j.electacta.2022.140350_bib0055) 2015; 164
Kobayashi (10.1016/j.electacta.2022.140350_bib0016) 2019; 88
Naderi (10.1016/j.electacta.2022.140350_bib0051) 2018; 29
Boukamp (10.1016/j.electacta.2022.140350_bib0012) 1986; 20
Raccuglia (10.1016/j.electacta.2022.140350_bib0006) 2016; 533
Shi (10.1016/j.electacta.2022.140350_bib0049) 1998
Kobayashi (10.1016/j.electacta.2022.140350_bib0015) 2021; 89
Atashpaz-Gargari (10.1016/j.electacta.2022.140350_bib0038) 2008
Zhang (10.1016/j.electacta.2022.140350_bib0001) 2020; 11
Fogel (10.1016/j.electacta.2022.140350_bib0033) 1991
Lin (10.1016/j.electacta.2022.140350_bib0059) 1996; 82
Sm (10.1016/j.electacta.2022.140350_bib0048) 2014; 69
Zong (10.1016/j.electacta.2022.140350_bib0037) 2001; 76
Kaveh (10.1016/j.electacta.2022.140350_bib0043) 2010; 213
Kobayashi (10.1016/j.electacta.2022.140350_bib0005) 2016; 124
Zou (10.1016/j.electacta.2022.140350_bib0003) 2016; 24
Ribeiro (10.1016/j.electacta.2022.140350_bib0028) 2016
Bengoetxea (10.1016/j.electacta.2022.140350_bib0032) 2001; 2134
Rao (10.1016/j.electacta.2022.140350_bib0040) 2011; 43
Yang (10.1016/j.electacta.2022.140350_bib0018) 2002; 519
Modiba (10.1016/j.electacta.2022.140350_bib0052) 2012; 205
Pivac (10.1016/j.electacta.2022.140350_bib0062) 2016; 326
Bondarenko (10.1016/j.electacta.2022.140350_bib0020) 2012; 743
Kobayashi (10.1016/j.electacta.2022.140350_bib0009) 2018; 87
Zhu (10.1016/j.electacta.2022.140350_bib0010) 2019; 855
Wei (10.1016/j.electacta.2022.140350_bib0053) 2020; 707
Xiong (10.1016/j.electacta.2022.140350_bib0025) 2020; 203
Yu (10.1016/j.electacta.2022.140350_bib0008) 2020; 10
Tian (10.1016/j.electacta.2022.140350_bib0021) 2017; 225
Lai (10.1016/j.electacta.2022.140350_bib0026) 2019; 295
Motte (10.1016/j.electacta.2022.140350_bib0056) 2020
Lin (10.1016/j.electacta.2022.140350_bib0058) 1994
Gandomi (10.1016/j.electacta.2022.140350_bib0039) 2014; 53
Mirjalili (10.1016/j.electacta.2022.140350_bib0029) 2016; 95
He (10.1016/j.electacta.2022.140350_bib0036) 2009; 13
Knudsen (10.1016/j.electacta.2022.140350_bib0014) 2019
Rashedi (10.1016/j.electacta.2022.140350_bib0044) 2009; 179
Mesbahi (10.1016/j.electacta.2022.140350_bib0017) 2016; 131
Zhang (10.1016/j.electacta.2022.140350_bib0027) 2016; 194
Cohen (10.1016/j.electacta.2022.140350_bib0030) 1960; 20
Erol (10.1016/j.electacta.2022.140350_bib0041) 2006; 37
Buteau (10.1016/j.electacta.2022.140350_bib0019) 2019; 166
10.1016/j.electacta.2022.140350_bib0011
Mirjalili (10.1016/j.electacta.2022.140350_bib0045) 2016; 27
Benmayza (10.1016/j.electacta.2022.140350_bib0054) 2014; 123
Storn (10.1016/j.electacta.2022.140350_bib0031) 1997; 11
Hatamlou (10.1016/j.electacta.2022.140350_bib0042) 2013; 222
Schultze (10.1016/j.electacta.2022.140350_bib0063) 1999; 44
Stern (10.1016/j.electacta.2022.140350_bib0060) 1957; 104
Schmidt (10.1016/j.electacta.2022.140350_bib0007) 2019; 5
Krizhevsky (10.1016/j.electacta.2022.140350_bib0057) 2017; 60
Zou (10.1016/j.electacta.2022.140350_bib0004) 2018; 390
Ffm (10.1016/j.electacta.2022.140350_bib0050) 2020; 45
Murbach (10.1016/j.electacta.2022.140350_bib0013) 2020; 5
Lai (10.1016/j.electacta.2022.140350_bib0002) 2019; 155
Engelbrecht (10.1016/j.electacta.2022.140350_bib0034) 2007
El-Hay (10.1016/j.electacta.2022.140350_bib0023) 2019; 166
References_xml – volume: 5
  start-page: 83
  year: 2019
  ident: bib0007
  article-title: Recent advances and applications of machine learning in solid-state materials science
  publication-title: npj Comput. Mater.
– volume: 20
  start-page: 31
  year: 1986
  end-page: 44
  ident: bib0012
  article-title: A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems
  publication-title: Solid State Ion
– year: 1994
  ident: bib0058
  article-title: A fuzzy approach to input variable identification
  publication-title: Proceedings of IEEE 3rd International Fuzzy Systems Conference
– volume: 131
  start-page: 195
  year: 2016
  end-page: 204
  ident: bib0017
  article-title: Dynamical modeling of li-ion batteries for electric vehicle applications based on hybrid particle swarm–nelder–mead (pso–nm) optimization algorithm
  publication-title: Electr. Power Syst. Res.
– start-page: 1135
  year: 2016
  end-page: 1144
  ident: bib0028
  article-title: why should i trust you?": explaining the predictions of any classifier
  publication-title: Proceedings of the 22
– volume: 13
  start-page: 973
  year: 2009
  end-page: 990
  ident: bib0036
  article-title: Group search optimizer: an optimization algorithm inspired by animal searching behavior
  publication-title: IEEE T. Evolut. Comput.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0031
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  ident: bib0030
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
– volume: 87
  year: 2018
  ident: bib0009
  article-title: Development of an algorithm for automatic analysis of the impedance spectrum based on a measurement model
  publication-title: J. Phys. Soc. Jpn.
– volume: 519
  start-page: 1
  year: 2002
  end-page: 8
  ident: bib0018
  article-title: A hybrid genetic algorithm for the fitting of models to electrochemical impedance data
  publication-title: J. Electroanal. Chem.
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib0049
  article-title: A modified particle Swarm optimizer
  publication-title: International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence
– volume: 24
  start-page: 1594
  year: 2016
  end-page: 1609
  ident: bib0003
  article-title: A framework for simplification of pde-based lithium-ion battery models
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 390
  start-page: 286
  year: 2018
  end-page: 296
  ident: bib0004
  article-title: A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors
  publication-title: J. Power Source.
– volume: 203
  year: 2020
  ident: bib0025
  article-title: A simplified competitive swarm optimizer for parameter identification of solid oxide fuel cells
  publication-title: Energy Conv. Manag.
– volume: 89
  start-page: 18
  year: 2021
  end-page: 22
  ident: bib0015
  article-title: Free analysis and visualization programs for electrochemical impedance spectroscopy coded in python
  publication-title: Electrochem
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: bib0037
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simul
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: bib0045
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
– volume: 2134
  start-page: 454
  year: 2001
  end-page: 469
  ident: bib0032
  article-title: Estimation of distribution algorithms: a new evolutionary computation approach for graph matching problems
  publication-title: Proceeding of the 3rd International Energy Minimization Methods in Computer Vision and Pattern Recognition
– volume: 295
  start-page: 1057
  year: 2019
  end-page: 1066
  ident: bib0026
  article-title: A comparative study of global optimization methods for parameter identification of different equivalent circuit models for li-ion batteries
  publication-title: Electrochim. Acta
– volume: 123
  start-page: 7
  year: 2014
  end-page: 13
  ident: bib0054
  article-title: Electrochemical and thermal studies of LiNi
  publication-title: Electrochim. Acta
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: bib0057
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 6
  start-page: 191
  year: 2000
  end-page: 213
  ident: bib0035
  article-title: A continuous genetic algorithm designed for the global optimization of multimodal functions
  publication-title: J. Heurist.
– year: 2007
  ident: bib0034
  article-title: Computational Intelligence: An Introduction
– volume: 95
  year: 2016
  ident: bib0029
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– year: 2008
  ident: bib0038
  article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 194
  start-page: 569
  year: 2016
  end-page: 577
  ident: bib0027
  article-title: Charging optimization in lithium-ion batteries based on temperature rise and charge time
  publication-title: Appl. Energy
– volume: 213
  start-page: 267
  year: 2010
  end-page: 289
  ident: bib0043
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech.
– start-page: 758
  year: 2012
  end-page: 762
  ident: bib0046
  article-title: Ant colony optimization for continuous domains
  publication-title: Proceeding of the 8th International Conference on Natural Computation
– volume: 116
  start-page: 404
  year: 2014
  end-page: 412
  ident: bib0061
  article-title: Investigation of the intercalation of polyvalent cations (Mg
  publication-title: Electrochim. Acta
– volume: 533
  start-page: 73
  year: 2016
  end-page: 76
  ident: bib0006
  article-title: Machine-learning-assisted materials discovery using failed experiments
  publication-title: Nature
– volume: 743
  start-page: 41
  year: 2012
  end-page: 50
  ident: bib0020
  article-title: Analysis of large experimental datasets in electrochemical impedance spectroscopy
  publication-title: Anal. Chim. Acta
– start-page: 540
  year: 1991
  end-page: 541
  ident: bib0033
  article-title: Meta-evolutionary programming
  publication-title: Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers IEEE
– volume: 37
  start-page: 106
  year: 2006
  end-page: 111
  ident: bib0041
  article-title: A new optimization method: big bang–big crunch
  publication-title: Adv. Eng. Softw.
– volume: 53
  start-page: 1168
  year: 2014
  end-page: 1183
  ident: bib0039
  article-title: Interior search algorithm (isa): a novel approach for global optimization
  publication-title: ISA Trans.
– volume: 10
  year: 2020
  ident: bib0008
  article-title: Bayesian statistics-based analysis of ac impedance spectra
  publication-title: AIP Adv.
– reference: Macdonald, J. R. LEVM/LEVMW (Version 8.13),
– volume: 82
  start-page: 65
  year: 1996
  end-page: 71
  ident: bib0059
  article-title: Input variable identification—fuzzy curves and fuzzy surfaces
  publication-title: Fuzzy Sets Syst
– volume: 155
  start-page: 75
  year: 2019
  end-page: 85
  ident: bib0002
  article-title: Local electrochemical properties of fusion boundary region in sa508-309l/308l overlay welded joint
  publication-title: Corros. Sci.
– volume: 45
  start-page: 20632
  year: 2020
  end-page: 20646
  ident: bib0050
  article-title: Evaluation of the corrosion resistance of ni(p)cr coatings for bipolar plates by electrochemical impedance spectroscopy
  publication-title: Int. J. Hydrog. Energy
– year: 2020
  ident: bib0056
  article-title: A study by electrochemical impedance spectroscopy and surface analysis of corrosion product layers formed during CO
  publication-title: Corros. Sci.
– volume: 225
  start-page: 225
  year: 2017
  end-page: 234
  ident: bib0021
  article-title: State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer
  publication-title: Electrochim. Acta
– volume: 222
  start-page: 175
  year: 2013
  end-page: 184
  ident: bib0042
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Inf. Sci.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib0044
  publication-title: Inf. Sci.
– volume: 707
  year: 2020
  ident: bib0053
  article-title: In-situ electrochemical study of plasma electrolytic oxidation treated Zr
  publication-title: Thin Solid Film.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 6
  ident: bib0001
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nat. Commun.
– volume: 326
  start-page: 112
  year: 2016
  end-page: 119
  ident: bib0062
  article-title: Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - a review
  publication-title: J. Power Source.
– volume: 104
  start-page: 56
  year: 1957
  end-page: 63
  ident: bib0060
  article-title: Electrochemical polarization: I . a theoretical analysis of the shape of polarization curves
  publication-title: J. Electrochem. Soc.
– reference: , (2015).
– volume: 166
  start-page: A1611
  year: 2019
  end-page: A1622
  ident: bib0019
  article-title: Analysis of thousands of electrochemical impedance spectra of lithium-ion cells through a machine learning inverse model
  publication-title: J. Electrochem. Soc.
– volume: 205
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib0052
  article-title: Electrochemical impedance spectroscopy study of Ce(IV) with aminopolycarboxylate ligands for redox flow batteries applications
  publication-title: J. Power Source.
– volume: 855
  year: 2019
  ident: bib0010
  article-title: Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning
  publication-title: J. Electroanal. Chem.
– volume: 6
  start-page: 1428
  year: 2020
  end-page: 1437
  ident: bib0024
  article-title: New optimized technique for unknown parameters selection of sofc using converged grass fibrous root optimization algorithm
  publication-title: Energy Rep.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib0040
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aid. Design
– volume: 29
  start-page: 3035
  year: 2018
  end-page: 3044
  ident: bib0051
  article-title: High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles
  publication-title: J. Mater. Sci-Mater. El.
– volume: 88
  start-page: 39
  year: 2019
  end-page: 44
  ident: bib0016
  article-title: Development of impedance analysis software implementing a support function to find good initial guess using an interactive graphical user interface
  publication-title: Electrochem
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib0048
  publication-title: Adv. Eng. Softw.
– year: 2005
  ident: bib0047
  article-title: Technical Report, Technical report-tr06
– volume: 124
  start-page: 943
  year: 2016
  end-page: 949
  ident: bib0005
  article-title: Development of an electrochemical impedance analysis program based on the expanded measurement model
  publication-title: J. Ceram. Soc. Jpn.
– volume: 5
  start-page: 2349
  year: 2020
  ident: bib0013
  article-title: Impedance.py: a python package for electrochemical impedance analysis
  publication-title: J. Open Source Softw.
– volume: 44
  start-page: 3605
  year: 1999
  end-page: 3627
  ident: bib0063
  article-title: Electrochemical microsystem technologies: from fundamental research to technical systems
  publication-title: Electrochim. Acta
– volume: 164
  start-page: 307
  year: 2015
  end-page: 314
  ident: bib0055
  article-title: Effects of phosphate additives on the stability of positive electrolytes for vanadium flow batteries
  publication-title: Electrochim. Acta
– volume: 228
  year: 2021
  ident: bib0022
  article-title: Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm
  publication-title: Energy Conv. Manag.
– year: 2019
  ident: bib0014
  article-title: PyEIS: a python-based electrochemical impedance spectroscopy simulator and analyzer (Version 1.0.3)
  publication-title: Zenodo
– volume: 166
  start-page: 451
  year: 2019
  end-page: 461
  ident: bib0023
  article-title: Optimized parameters of sofc for steady state and transient simulations using interior search algorithm
  publication-title: Energy
– ident: 10.1016/j.electacta.2022.140350_bib0011
– year: 2005
  ident: 10.1016/j.electacta.2022.140350_bib0047
– start-page: 1135
  year: 2016
  ident: 10.1016/j.electacta.2022.140350_bib0028
  article-title: why should i trust you?": explaining the predictions of any classifier
– volume: 27
  start-page: 495
  year: 2016
  ident: 10.1016/j.electacta.2022.140350_bib0045
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 104
  start-page: 56
  year: 1957
  ident: 10.1016/j.electacta.2022.140350_bib0060
  article-title: Electrochemical polarization: I . a theoretical analysis of the shape of polarization curves
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2428496
– volume: 295
  start-page: 1057
  year: 2019
  ident: 10.1016/j.electacta.2022.140350_bib0026
  article-title: A comparative study of global optimization methods for parameter identification of different equivalent circuit models for li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.134
– volume: 60
  start-page: 84
  year: 2017
  ident: 10.1016/j.electacta.2022.140350_bib0057
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 124
  start-page: 943
  year: 2016
  ident: 10.1016/j.electacta.2022.140350_bib0005
  article-title: Development of an electrochemical impedance analysis program based on the expanded measurement model
  publication-title: J. Ceram. Soc. Jpn.
  doi: 10.2109/jcersj2.16120
– volume: 45
  start-page: 20632
  year: 2020
  ident: 10.1016/j.electacta.2022.140350_bib0050
  article-title: Evaluation of the corrosion resistance of ni(p)cr coatings for bipolar plates by electrochemical impedance spectroscopy
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.03.076
– year: 1994
  ident: 10.1016/j.electacta.2022.140350_bib0058
  article-title: A fuzzy approach to input variable identification
– volume: 20
  start-page: 31
  year: 1986
  ident: 10.1016/j.electacta.2022.140350_bib0012
  article-title: A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems
  publication-title: Solid State Ion
  doi: 10.1016/0167-2738(86)90031-7
– volume: 116
  start-page: 404
  year: 2014
  ident: 10.1016/j.electacta.2022.140350_bib0061
  article-title: Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.11.090
– volume: 29
  start-page: 3035
  year: 2018
  ident: 10.1016/j.electacta.2022.140350_bib0051
  article-title: High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles
  publication-title: J. Mater. Sci-Mater. El.
  doi: 10.1007/s10854-017-8234-2
– start-page: 69
  year: 1998
  ident: 10.1016/j.electacta.2022.140350_bib0049
  article-title: A modified particle Swarm optimizer
– volume: 76
  start-page: 60
  year: 2001
  ident: 10.1016/j.electacta.2022.140350_bib0037
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simul
  doi: 10.1177/003754970107600201
– volume: 53
  start-page: 1168
  year: 2014
  ident: 10.1016/j.electacta.2022.140350_bib0039
  article-title: Interior search algorithm (isa): a novel approach for global optimization
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2014.03.018
– year: 2008
  ident: 10.1016/j.electacta.2022.140350_bib0038
  article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
– volume: 37
  start-page: 106
  year: 2006
  ident: 10.1016/j.electacta.2022.140350_bib0041
  article-title: A new optimization method: big bang–big crunch
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 533
  start-page: 73
  year: 2016
  ident: 10.1016/j.electacta.2022.140350_bib0006
  article-title: Machine-learning-assisted materials discovery using failed experiments
  publication-title: Nature
  doi: 10.1038/nature17439
– volume: 13
  start-page: 973
  year: 2009
  ident: 10.1016/j.electacta.2022.140350_bib0036
  article-title: Group search optimizer: an optimization algorithm inspired by animal searching behavior
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/TEVC.2009.2011992
– start-page: 540
  year: 1991
  ident: 10.1016/j.electacta.2022.140350_bib0033
  article-title: Meta-evolutionary programming
– volume: 89
  start-page: 18
  year: 2021
  ident: 10.1016/j.electacta.2022.140350_bib0015
  article-title: Free analysis and visualization programs for electrochemical impedance spectroscopy coded in python
  publication-title: Electrochem
– volume: 6
  start-page: 1428
  year: 2020
  ident: 10.1016/j.electacta.2022.140350_bib0024
  article-title: New optimized technique for unknown parameters selection of sofc using converged grass fibrous root optimization algorithm
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.05.024
– volume: 10
  year: 2020
  ident: 10.1016/j.electacta.2022.140350_bib0008
  article-title: Bayesian statistics-based analysis of ac impedance spectra
  publication-title: AIP Adv.
– volume: 519
  start-page: 1
  year: 2002
  ident: 10.1016/j.electacta.2022.140350_bib0018
  article-title: A hybrid genetic algorithm for the fitting of models to electrochemical impedance data
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(01)00707-0
– volume: 95
  year: 2016
  ident: 10.1016/j.electacta.2022.140350_bib0029
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 707
  year: 2020
  ident: 10.1016/j.electacta.2022.140350_bib0053
  article-title: In-situ electrochemical study of plasma electrolytic oxidation treated Zr3Al based alloy in 300°C/14 MPa lithium borate buffer solution
  publication-title: Thin Solid Film.
  doi: 10.1016/j.tsf.2020.138066
– volume: 743
  start-page: 41
  year: 2012
  ident: 10.1016/j.electacta.2022.140350_bib0020
  article-title: Analysis of large experimental datasets in electrochemical impedance spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.06.055
– volume: 228
  year: 2021
  ident: 10.1016/j.electacta.2022.140350_bib0022
  article-title: Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm
  publication-title: Energy Conv. Manag.
– year: 2007
  ident: 10.1016/j.electacta.2022.140350_bib0034
– volume: 225
  start-page: 225
  year: 2017
  ident: 10.1016/j.electacta.2022.140350_bib0021
  article-title: State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.119
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.electacta.2022.140350_bib0048
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 24
  start-page: 1594
  year: 2016
  ident: 10.1016/j.electacta.2022.140350_bib0003
  article-title: A framework for simplification of pde-based lithium-ion battery models
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2015.2502899
– volume: 390
  start-page: 286
  year: 2018
  ident: 10.1016/j.electacta.2022.140350_bib0004
  article-title: A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors
  publication-title: J. Power Source.
  doi: 10.1016/j.jpowsour.2018.04.033
– volume: 2134
  start-page: 454
  year: 2001
  ident: 10.1016/j.electacta.2022.140350_bib0032
  article-title: Estimation of distribution algorithms: a new evolutionary computation approach for graph matching problems
– volume: 82
  start-page: 65
  year: 1996
  ident: 10.1016/j.electacta.2022.140350_bib0059
  article-title: Input variable identification—fuzzy curves and fuzzy surfaces
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/0165-0114(95)00223-5
– start-page: 758
  year: 2012
  ident: 10.1016/j.electacta.2022.140350_bib0046
  article-title: Ant colony optimization for continuous domains
– volume: 87
  year: 2018
  ident: 10.1016/j.electacta.2022.140350_bib0009
  article-title: Development of an algorithm for automatic analysis of the impedance spectrum based on a measurement model
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.87.034004
– volume: 205
  start-page: 1
  year: 2012
  ident: 10.1016/j.electacta.2022.140350_bib0052
  article-title: Electrochemical impedance spectroscopy study of Ce(IV) with aminopolycarboxylate ligands for redox flow batteries applications
  publication-title: J. Power Source.
  doi: 10.1016/j.jpowsour.2012.01.004
– volume: 166
  start-page: 451
  year: 2019
  ident: 10.1016/j.electacta.2022.140350_bib0023
  article-title: Optimized parameters of sofc for steady state and transient simulations using interior search algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.038
– volume: 222
  start-page: 175
  year: 2013
  ident: 10.1016/j.electacta.2022.140350_bib0042
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.08.023
– year: 2019
  ident: 10.1016/j.electacta.2022.140350_bib0014
  article-title: PyEIS: a python-based electrochemical impedance spectroscopy simulator and analyzer (Version 1.0.3)
  publication-title: Zenodo
– volume: 131
  start-page: 195
  year: 2016
  ident: 10.1016/j.electacta.2022.140350_bib0017
  article-title: Dynamical modeling of li-ion batteries for electric vehicle applications based on hybrid particle swarm–nelder–mead (pso–nm) optimization algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.10.018
– volume: 179
  start-page: 2232
  year: 2009
  ident: 10.1016/j.electacta.2022.140350_bib0044
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 5
  start-page: 83
  year: 2019
  ident: 10.1016/j.electacta.2022.140350_bib0007
  article-title: Recent advances and applications of machine learning in solid-state materials science
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0221-0
– volume: 123
  start-page: 7
  year: 2014
  ident: 10.1016/j.electacta.2022.140350_bib0054
  article-title: Electrochemical and thermal studies of LiNi0.8Co0.15Al0.015O2 under fluorinated electrolytes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.12.183
– volume: 43
  start-page: 303
  year: 2011
  ident: 10.1016/j.electacta.2022.140350_bib0040
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aid. Design
  doi: 10.1016/j.cad.2010.12.015
– volume: 44
  start-page: 3605
  year: 1999
  ident: 10.1016/j.electacta.2022.140350_bib0063
  article-title: Electrochemical microsystem technologies: from fundamental research to technical systems
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(99)00065-1
– volume: 213
  start-page: 267
  year: 2010
  ident: 10.1016/j.electacta.2022.140350_bib0043
  article-title: A novel heuristic optimization method: charged system search
  publication-title: Acta Mech.
  doi: 10.1007/s00707-009-0270-4
– volume: 155
  start-page: 75
  year: 2019
  ident: 10.1016/j.electacta.2022.140350_bib0002
  article-title: Local electrochemical properties of fusion boundary region in sa508-309l/308l overlay welded joint
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.04.021
– volume: 203
  year: 2020
  ident: 10.1016/j.electacta.2022.140350_bib0025
  article-title: A simplified competitive swarm optimizer for parameter identification of solid oxide fuel cells
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2019.112204
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.electacta.2022.140350_bib0001
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nat. Commun.
– volume: 164
  start-page: 307
  year: 2015
  ident: 10.1016/j.electacta.2022.140350_bib0055
  article-title: Effects of phosphate additives on the stability of positive electrolytes for vanadium flow batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.02.187
– volume: 20
  start-page: 37
  year: 1960
  ident: 10.1016/j.electacta.2022.140350_bib0030
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 194
  start-page: 569
  year: 2016
  ident: 10.1016/j.electacta.2022.140350_bib0027
  article-title: Charging optimization in lithium-ion batteries based on temperature rise and charge time
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.059
– volume: 855
  year: 2019
  ident: 10.1016/j.electacta.2022.140350_bib0010
  article-title: Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.113627
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.electacta.2022.140350_bib0031
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 6
  start-page: 191
  year: 2000
  ident: 10.1016/j.electacta.2022.140350_bib0035
  article-title: A continuous genetic algorithm designed for the global optimization of multimodal functions
  publication-title: J. Heurist.
  doi: 10.1023/A:1009626110229
– volume: 326
  start-page: 112
  year: 2016
  ident: 10.1016/j.electacta.2022.140350_bib0062
  article-title: Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - a review
  publication-title: J. Power Source.
  doi: 10.1016/j.jpowsour.2016.06.119
– volume: 5
  start-page: 2349
  year: 2020
  ident: 10.1016/j.electacta.2022.140350_bib0013
  article-title: Impedance.py: a python package for electrochemical impedance analysis
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02349
– volume: 166
  start-page: A1611
  year: 2019
  ident: 10.1016/j.electacta.2022.140350_bib0019
  article-title: Analysis of thousands of electrochemical impedance spectra of lithium-ion cells through a machine learning inverse model
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1051908jes
– year: 2020
  ident: 10.1016/j.electacta.2022.140350_bib0056
  article-title: A study by electrochemical impedance spectroscopy and surface analysis of corrosion product layers formed during CO2 corrosion of low alloy steel
  publication-title: Corros. Sci.
– volume: 88
  start-page: 39
  year: 2019
  ident: 10.1016/j.electacta.2022.140350_bib0016
  article-title: Development of impedance analysis software implementing a support function to find good initial guess using an interactive graphical user interface
  publication-title: Electrochem
  doi: 10.5796/electrochemistry.19-00058
SSID ssj0007670
Score 2.6467543
Snippet Among seven multiclassification machine learning (ML) models taking optimized hyperparameters found by grid search, AdaBoost achieved the known highest...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 140350
SubjectTerms Algorithms
Classification
Electrochemical impedance spectroscopy
Equivalent circuit model
Equivalent circuits
Global optimization
Global optimization algorithm
Interpretable machine learning
Machine learning
Model accuracy
Parameter identification
Title EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms
URI https://dx.doi.org/10.1016/j.electacta.2022.140350
https://www.proquest.com/docview/2672768060
Volume 418
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB_UgPnF1lRy8VtM0TVJvsqysCl5U8BaSJrtW9uXavfoT_M1m2nR9IHgQemlpSslMZzLNN9-H0ImRfctsRiInNYuYTwKRkURG1nKdWBIb5yq0xS3vPbDrx_RxCXWaXhiAVYbYX8f0KlqHK2dhNs-mRQE9vnHCoMEBfozEFGi3gf3L-_Tp2yfMQ3BBGhUDuPsbxquSmtH-8IUipafAXQcN-L9nqB-xukpAl5toI6wc8UX9cltoyY230WqnEWzbRutfuAV30Hv36g67l3nhXcknFpwXs3xelLiSvsHTGWzQgFEwIN8HuFiAD83Q4VEFsXQ4aEoMsB5bDCzhI0DP4MIGjJH-8oSaWgRPfAwaheZOrIeDyawon0avu-jhsnvf6UVBfCHKE5aUEQWpPpPkwhccNsupi63wy5M8TYWQqSPUZL5a5JrRPkmdS7U0fS2pN27MUxPbZA8tjydjt48w0XnshPaFUz9jWZJJlog001oSkfHY0hbizYSrPDCTg0DGUDUQtGe1sJQCS6naUi1EFgOnNTnH30POG4uqb36mfAr5e3C78QEVPvVXRWEvm0vCycF_nn2I1uAMUGiUtNFyOZu7I7_eKc1x5dDHaOXi6qZ3-wF3KALW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFwQFBAFAr4wDXUcfwKt2rVapeWvdBKvVl27F1S7Ytt9m_wm_EkzqpFSD0g5ZRorMgzmUf8zXwAn52eeu5LmgVtecZjEMicpjrzXtrC09yF0KItJnJ0zb_diJs9GPa9MAirTL6_8-mtt053TtJunqzrGnt884JjgwP-GMmZfAL7XESfPID90_HFaLJzyEoq2hMZoMADmFfLNmPjFWtFxr7g-Drswf93kPrLXbcx6PwFPE_JIznt3u8l7IXlIRwMe862Q3h2b7zgK_h9Nv5Bwq9tHa0pxhZS1ZtqWzekZb8h6w2e0aBeCILfZ6Te4Q_dPJBFi7IMJNFKzIhdeoKDwhcIoCG1TzAje2-FbroIWUU3tEj9ncTOZ6tN3fxc3L2G6_Ozq-EoS_wLWVXwoskYsvW5olKx5vBlxULuVcxQKiGU0iJQ5spYMErL2ZSKEITVbmo1i_rNpXC5L97AYLlahrdAqK3yoGysnaYlL4tS80KJ0lpNVSlzz45A9htuqjScHDky5qZHod2anaYMasp0mjoCuhNcd_M5Hhf52mvUPDA1E6PI48LHvQ2Y9LXfGYbH2VJTSd_9z9qf4GB09f3SXI4nF-_hKT5BUBqjxzBoNtvwIaY_jfuYzPsPNrIFgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EIS+equivalent+circuit+model+prediction+using+interpretable+machine+learning+and+parameter+identification+using+global+optimization+algorithms&rft.jtitle=Electrochimica+acta&rft.au=Zhao%2C+Zhaoyang&rft.au=Zou%2C+Yang&rft.au=Liu%2C+Peng&rft.au=Lai%2C+Zhaogui&rft.date=2022-06-20&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=418&rft.spage=1&rft_id=info:doi/10.1016%2Fj.electacta.2022.140350&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon