EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms
Among seven multiclassification machine learning (ML) models taking optimized hyperparameters found by grid search, AdaBoost achieved the known highest equivalent circuit model (ECM) prediction accuracy, 0.571, and had a prediction basis that was consistent with a common chemical knowledge—the slowe...
Saved in:
Published in | Electrochimica acta Vol. 418; p. 140350 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
20.06.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0013-4686 1873-3859 |
DOI | 10.1016/j.electacta.2022.140350 |
Cover
Abstract | Among seven multiclassification machine learning (ML) models taking optimized hyperparameters found by grid search, AdaBoost achieved the known highest equivalent circuit model (ECM) prediction accuracy, 0.571, and had a prediction basis that was consistent with a common chemical knowledge—the slowest step usually is vital in the whole electrochemical process. Twenty global optimization algorithms (GOA)s were assessed on simulated and experimental impedance spectra belonging to nine different ECMs, which proved that GOAs obtained nearly the same identification accuracy as the artificial identification under no interference of obvious abnormal points. ML combining with GOA provides a new possibility to automatically process EIS.
[Display omitted] |
---|---|
AbstractList | Among seven multiclassification machine learning (ML) models taking optimized hyperparameters found by grid search, AdaBoost achieved the known highest equivalent circuit model (ECM) prediction accuracy, 0.571, and had a prediction basis that was consistent with a common chemical knowledge-the slowest step usually is vital in the whole electrochemical process. Twenty global optimization algorithms (GOA)s were assessed on simulated and experimental impedance spectra belonging to nine different ECMs, which proved that GOAs obtained nearly the same identification accuracy as the artificial identification under no interference of obvious abnormal points. ML combining with GOA provides a new possibility to automatically process EIS. Among seven multiclassification machine learning (ML) models taking optimized hyperparameters found by grid search, AdaBoost achieved the known highest equivalent circuit model (ECM) prediction accuracy, 0.571, and had a prediction basis that was consistent with a common chemical knowledge—the slowest step usually is vital in the whole electrochemical process. Twenty global optimization algorithms (GOA)s were assessed on simulated and experimental impedance spectra belonging to nine different ECMs, which proved that GOAs obtained nearly the same identification accuracy as the artificial identification under no interference of obvious abnormal points. ML combining with GOA provides a new possibility to automatically process EIS. [Display omitted] |
ArticleNumber | 140350 |
Author | Wen, Lei Zou, Yang Liu, Peng Zhao, Zhaoyang Lai, Zhaogui Jin, Ying |
Author_xml | – sequence: 1 givenname: Zhaoyang surname: Zhao fullname: Zhao, Zhaoyang – sequence: 2 givenname: Yang surname: Zou fullname: Zou, Yang – sequence: 3 givenname: Peng surname: Liu fullname: Liu, Peng – sequence: 4 givenname: Zhaogui surname: Lai fullname: Lai, Zhaogui – sequence: 5 givenname: Lei surname: Wen fullname: Wen, Lei email: wenlei@ustb.edu.cn – sequence: 6 givenname: Ying surname: Jin fullname: Jin, Ying email: yjin@ustb.edu.cn |
BookMark | eNqNkd1qFDEUx4NUcFt9BgNe73qSmUlmL7wopWqh4IV6HTKZM9uzZJJpJlPQh-gzm-0UEW8UAoH8P84hv3N2FmJAxt4K2AkQ6v1xhx5dtuXsJEi5EzVUDbxgG9Hqalu1zf6MbQBEta1Vq16x83k-AoBWGjbs8frmK8f7hR6sx5C5o-QWynyMPXo-JezJZYqBLzOFA6eQMZXXbDuPfLTujgJyjzaFk2xDzyeb7IjFxqkvjTSQs380HHzsrOdxyjTSz1Wx_hAT5btxfs1eDtbP-Ob5vmDfP15_u_q8vf3y6ebq8nbrqrrKW6lrEF3l9F7X_d5JFL0GpVzTaN02CLLbSwHK1nKABrGxbTfYVooOhWo60VcX7N3aO6V4v-CczTEuKZSRRiottWpBQXF9WF0uxXlOOBhH-WnlnCx5I8CcEJij-Y3AnBCYFUHJ67_yU6LRph__kbxck1g-4YEwmdkRBldwpOI3faR_dvwCdOGrkA |
CitedBy_id | crossref_primary_10_1016_j_est_2025_116287 crossref_primary_10_1021_acsaem_4c02618 crossref_primary_10_1109_TIA_2024_3365451 crossref_primary_10_1007_s11581_025_06084_9 crossref_primary_10_1007_s11664_024_11614_8 crossref_primary_10_1016_j_tsf_2024_140579 crossref_primary_10_1016_j_fuel_2025_134821 crossref_primary_10_1016_j_measurement_2025_116735 crossref_primary_10_1016_j_engappai_2023_107027 crossref_primary_10_1021_acsanm_4c06142 crossref_primary_10_1016_j_ijhydene_2023_07_053 crossref_primary_10_1016_j_jece_2024_114349 crossref_primary_10_1016_j_electacta_2024_144884 crossref_primary_10_1016_j_talanta_2025_127776 crossref_primary_10_1016_j_cemconres_2025_107827 crossref_primary_10_1016_j_ijbiomac_2025_142412 crossref_primary_10_1109_TIM_2024_3350117 crossref_primary_10_1039_D4TA04530K crossref_primary_10_1155_2024_9657360 crossref_primary_10_3390_rs14174372 crossref_primary_10_1016_j_electacta_2024_144474 crossref_primary_10_1016_j_chemolab_2022_104677 crossref_primary_10_1016_j_jcis_2025_137328 crossref_primary_10_1016_j_jallcom_2023_170669 crossref_primary_10_1016_j_xcrp_2024_102134 crossref_primary_10_1016_j_ces_2025_121444 crossref_primary_10_1016_j_corcom_2023_01_005 crossref_primary_10_1016_j_synthmet_2024_117769 crossref_primary_10_1016_j_surfcoat_2024_131567 crossref_primary_10_1088_1361_6439_ad6329 crossref_primary_10_1149_1945_7111_acd8fb crossref_primary_10_1002_aisy_202300085 crossref_primary_10_1016_j_conbuildmat_2025_140598 crossref_primary_10_1016_j_est_2023_106850 crossref_primary_10_3390_nano14100896 crossref_primary_10_1016_j_jallcom_2025_178599 crossref_primary_10_5796_denkikagaku_22_TE0004 crossref_primary_10_1016_j_electacta_2025_145732 crossref_primary_10_1016_j_ijhydene_2025_02_173 crossref_primary_10_1016_j_ceramint_2024_11_063 crossref_primary_10_1002_adma_202400165 crossref_primary_10_1016_j_jwpe_2025_107199 crossref_primary_10_1016_j_molliq_2025_126874 crossref_primary_10_1007_s12161_022_02442_9 crossref_primary_10_1016_j_cej_2024_157663 crossref_primary_10_1016_j_electacta_2023_142661 crossref_primary_10_1016_j_electacta_2023_142741 crossref_primary_10_1016_j_solmat_2025_113538 crossref_primary_10_1021_acs_analchem_3c02423 crossref_primary_10_3390_batteries10060189 crossref_primary_10_1021_acs_jpcc_4c06206 crossref_primary_10_1016_j_materresbull_2025_113344 crossref_primary_10_1002_celc_202300738 crossref_primary_10_3390_met13071204 crossref_primary_10_1007_s40843_024_3261_2 crossref_primary_10_1016_j_surfin_2025_106047 crossref_primary_10_1016_j_jelechem_2024_118812 |
Cites_doi | 10.1007/s00521-015-1870-7 10.1149/1.2428496 10.1016/j.electacta.2018.11.134 10.1145/3065386 10.2109/jcersj2.16120 10.1016/j.ijhydene.2020.03.076 10.1016/0167-2738(86)90031-7 10.1016/j.electacta.2013.11.090 10.1007/s10854-017-8234-2 10.1177/003754970107600201 10.1016/j.isatra.2014.03.018 10.1016/j.advengsoft.2005.04.005 10.1038/nature17439 10.1109/TEVC.2009.2011992 10.1016/j.egyr.2020.05.024 10.1016/S0022-0728(01)00707-0 10.1016/j.advengsoft.2016.01.008 10.1016/j.tsf.2020.138066 10.1016/j.aca.2012.06.055 10.1016/j.electacta.2016.12.119 10.1016/j.advengsoft.2013.12.007 10.1109/TCST.2015.2502899 10.1016/j.jpowsour.2018.04.033 10.1016/0165-0114(95)00223-5 10.7566/JPSJ.87.034004 10.1016/j.jpowsour.2012.01.004 10.1016/j.energy.2018.10.038 10.1016/j.ins.2012.08.023 10.1016/j.epsr.2015.10.018 10.1016/j.ins.2009.03.004 10.1038/s41524-019-0221-0 10.1016/j.electacta.2013.12.183 10.1016/j.cad.2010.12.015 10.1016/S0013-4686(99)00065-1 10.1007/s00707-009-0270-4 10.1016/j.corsci.2019.04.021 10.1016/j.enconman.2019.112204 10.1016/j.electacta.2015.02.187 10.1177/001316446002000104 10.1016/j.apenergy.2016.10.059 10.1016/j.jelechem.2019.113627 10.1023/A:1008202821328 10.1023/A:1009626110229 10.1016/j.jpowsour.2016.06.119 10.21105/joss.02349 10.1149/2.1051908jes 10.5796/electrochemistry.19-00058 |
ContentType | Journal Article |
Copyright | 2022 Copyright Elsevier BV Jun 20, 2022 |
Copyright_xml | – notice: 2022 – notice: Copyright Elsevier BV Jun 20, 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2022.140350 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2022_140350 S0013468622005126 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW T9H VH1 WUQ XOL ZY4 ~HD 7SR 7U5 8BQ 8FD AFXIZ AGCQF AGRNS BNPGV JG9 L7M SSH |
ID | FETCH-LOGICAL-c343t-27401b3c7974d9c2e1d7066c557785e02b92106a42f05ee5a8bfa821be165b1d3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 25 02:07:34 EDT 2025 Wed Oct 01 05:17:34 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Fri Feb 23 02:39:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Interpretable machine learning Equivalent circuit model Parameter identification Classification Global optimization algorithm Electrochemical impedance spectroscopy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-27401b3c7974d9c2e1d7066c557785e02b92106a42f05ee5a8bfa821be165b1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2672768060 |
PQPubID | 2045485 |
ParticipantIDs | proquest_journals_2672768060 crossref_citationtrail_10_1016_j_electacta_2022_140350 crossref_primary_10_1016_j_electacta_2022_140350 elsevier_sciencedirect_doi_10_1016_j_electacta_2022_140350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-20 |
PublicationDateYYYYMMDD | 2022-06-20 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | El-Hay, El-Hameed, El-Fergany (bib0023) 2019; 166 Zong, Kim, Loganathan (bib0037) 2001; 76 Zhang (bib0027) 2016; 194 Naderi, Ganjali, Dezfuli (bib0051) 2018; 29 Lin, Cunningham (bib0058) 1994 Zhang (bib0001) 2020; 11 Fogel, Fogel, Atmar (bib0033) 1991 Atashpaz-Gargari, Lucas (bib0038) 2008 Wei (bib0053) 2020; 707 Shi, Eberhart (bib0049) 1998 Pivac, Barbir (bib0062) 2016; 326 Xiong, Zhang, Shi, Yuan (bib0025) 2020; 203 Yuan (bib0061) 2014; 116 Schultze, Tsakova (bib0063) 1999; 44 Knudsen (bib0014) 2019 Krizhevsky, Sutskever, Hinton (bib0057) 2017; 60 Raccuglia, Elbert, Adler, Falk, Norquist (bib0006) 2016; 533 Schmidt, Marques, Botti, Marques (bib0007) 2019; 5 Mirjalili, Andrew (bib0029) 2016; 95 Modiba, Matoetoe, Crounch (bib0052) 2012; 205 (2015). He, Wu, Saunders (bib0036) 2009; 13 Kobayashi, Suzuki (bib0009) 2018; 87 Bengoetxea, Larraaga, Bloch, Perchant (bib0032) 2001; 2134 Ribeiro, Singh, Guestrin (bib0028) 2016 Zou (bib0004) 2018; 390 Kobayashi, Sakka, Suzuki (bib0005) 2016; 124 Yu, Nakayama, Yasuo, Watanabe, Hitosugi (bib0008) 2020; 10 Motte, Basilico, Rémy, Kittel, Marcelin (bib0056) 2020 Kaveh, Talatahari (bib0043) 2010; 213 Shi, Li, Zafetti (bib0024) 2020; 6 Buteau, Dahn (bib0019) 2019; 166 Bondarenko (bib0020) 2012; 743 Zhu, Sun, Wang, Zhao, Sha (bib0010) 2019; 855 Dy, Hmh, Afc (bib0022) 2021; 228 Hatamlou (bib0042) 2013; 222 Erol, Eksin (bib0041) 2006; 37 Lai (bib0026) 2019; 295 Karaboga (bib0047) 2005 Boukamp (bib0012) 1986; 20 Engelbrecht (bib0034) 2007 Rao, Savsani, Vakharia (bib0040) 2011; 43 Ffm (bib0050) 2020; 45 Ding (bib0055) 2015; 164 Mirjalili, Mirjalili, Hatamlou (bib0045) 2016; 27 Ping, Lin (bib0046) 2012 Kobayashi, Suzuki (bib0016) 2019; 88 Benmayza, Lu, Ramani, Prakash (bib0054) 2014; 123 Stern, Geary (bib0060) 1957; 104 Zou, Manzie, Nešić (bib0003) 2016; 24 Gandomi, Amir (bib0039) 2014; 53 Storn, Price (bib0031) 1997; 11 Kobayashi, Suzuki (bib0015) 2021; 89 Sm, Smm, Al (bib0048) 2014; 69 Rashedi, Nezamabadi-Pour, Saryazdi (bib0044) 2009; 179 Mesbahi (bib0017) 2016; 131 Yang, Zhang, Li, Wu (bib0018) 2002; 519 Macdonald, J. R. LEVM/LEVMW (Version 8.13) Lin, Cunningham, Coggeshall (bib0059) 1996; 82 Cohen (bib0030) 1960; 20 Chelouah, Siarry (bib0035) 2000; 6 Lai, Bi, Lei, Xue, Jin (bib0002) 2019; 155 Murbach, Gerwe, Dawson-Elli, Tsui (bib0013) 2020; 5 Tian, Li, Tian, Xia (bib0021) 2017; 225 Dy (10.1016/j.electacta.2022.140350_bib0022) 2021; 228 Yuan (10.1016/j.electacta.2022.140350_bib0061) 2014; 116 Chelouah (10.1016/j.electacta.2022.140350_bib0035) 2000; 6 Shi (10.1016/j.electacta.2022.140350_bib0024) 2020; 6 Ping (10.1016/j.electacta.2022.140350_bib0046) 2012 Karaboga (10.1016/j.electacta.2022.140350_bib0047) 2005 Ding (10.1016/j.electacta.2022.140350_bib0055) 2015; 164 Kobayashi (10.1016/j.electacta.2022.140350_bib0016) 2019; 88 Naderi (10.1016/j.electacta.2022.140350_bib0051) 2018; 29 Boukamp (10.1016/j.electacta.2022.140350_bib0012) 1986; 20 Raccuglia (10.1016/j.electacta.2022.140350_bib0006) 2016; 533 Shi (10.1016/j.electacta.2022.140350_bib0049) 1998 Kobayashi (10.1016/j.electacta.2022.140350_bib0015) 2021; 89 Atashpaz-Gargari (10.1016/j.electacta.2022.140350_bib0038) 2008 Zhang (10.1016/j.electacta.2022.140350_bib0001) 2020; 11 Fogel (10.1016/j.electacta.2022.140350_bib0033) 1991 Lin (10.1016/j.electacta.2022.140350_bib0059) 1996; 82 Sm (10.1016/j.electacta.2022.140350_bib0048) 2014; 69 Zong (10.1016/j.electacta.2022.140350_bib0037) 2001; 76 Kaveh (10.1016/j.electacta.2022.140350_bib0043) 2010; 213 Kobayashi (10.1016/j.electacta.2022.140350_bib0005) 2016; 124 Zou (10.1016/j.electacta.2022.140350_bib0003) 2016; 24 Ribeiro (10.1016/j.electacta.2022.140350_bib0028) 2016 Bengoetxea (10.1016/j.electacta.2022.140350_bib0032) 2001; 2134 Rao (10.1016/j.electacta.2022.140350_bib0040) 2011; 43 Yang (10.1016/j.electacta.2022.140350_bib0018) 2002; 519 Modiba (10.1016/j.electacta.2022.140350_bib0052) 2012; 205 Pivac (10.1016/j.electacta.2022.140350_bib0062) 2016; 326 Bondarenko (10.1016/j.electacta.2022.140350_bib0020) 2012; 743 Kobayashi (10.1016/j.electacta.2022.140350_bib0009) 2018; 87 Zhu (10.1016/j.electacta.2022.140350_bib0010) 2019; 855 Wei (10.1016/j.electacta.2022.140350_bib0053) 2020; 707 Xiong (10.1016/j.electacta.2022.140350_bib0025) 2020; 203 Yu (10.1016/j.electacta.2022.140350_bib0008) 2020; 10 Tian (10.1016/j.electacta.2022.140350_bib0021) 2017; 225 Lai (10.1016/j.electacta.2022.140350_bib0026) 2019; 295 Motte (10.1016/j.electacta.2022.140350_bib0056) 2020 Lin (10.1016/j.electacta.2022.140350_bib0058) 1994 Gandomi (10.1016/j.electacta.2022.140350_bib0039) 2014; 53 Mirjalili (10.1016/j.electacta.2022.140350_bib0029) 2016; 95 He (10.1016/j.electacta.2022.140350_bib0036) 2009; 13 Knudsen (10.1016/j.electacta.2022.140350_bib0014) 2019 Rashedi (10.1016/j.electacta.2022.140350_bib0044) 2009; 179 Mesbahi (10.1016/j.electacta.2022.140350_bib0017) 2016; 131 Zhang (10.1016/j.electacta.2022.140350_bib0027) 2016; 194 Cohen (10.1016/j.electacta.2022.140350_bib0030) 1960; 20 Erol (10.1016/j.electacta.2022.140350_bib0041) 2006; 37 Buteau (10.1016/j.electacta.2022.140350_bib0019) 2019; 166 10.1016/j.electacta.2022.140350_bib0011 Mirjalili (10.1016/j.electacta.2022.140350_bib0045) 2016; 27 Benmayza (10.1016/j.electacta.2022.140350_bib0054) 2014; 123 Storn (10.1016/j.electacta.2022.140350_bib0031) 1997; 11 Hatamlou (10.1016/j.electacta.2022.140350_bib0042) 2013; 222 Schultze (10.1016/j.electacta.2022.140350_bib0063) 1999; 44 Stern (10.1016/j.electacta.2022.140350_bib0060) 1957; 104 Schmidt (10.1016/j.electacta.2022.140350_bib0007) 2019; 5 Krizhevsky (10.1016/j.electacta.2022.140350_bib0057) 2017; 60 Zou (10.1016/j.electacta.2022.140350_bib0004) 2018; 390 Ffm (10.1016/j.electacta.2022.140350_bib0050) 2020; 45 Murbach (10.1016/j.electacta.2022.140350_bib0013) 2020; 5 Lai (10.1016/j.electacta.2022.140350_bib0002) 2019; 155 Engelbrecht (10.1016/j.electacta.2022.140350_bib0034) 2007 El-Hay (10.1016/j.electacta.2022.140350_bib0023) 2019; 166 |
References_xml | – volume: 5 start-page: 83 year: 2019 ident: bib0007 article-title: Recent advances and applications of machine learning in solid-state materials science publication-title: npj Comput. Mater. – volume: 20 start-page: 31 year: 1986 end-page: 44 ident: bib0012 article-title: A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems publication-title: Solid State Ion – year: 1994 ident: bib0058 article-title: A fuzzy approach to input variable identification publication-title: Proceedings of IEEE 3rd International Fuzzy Systems Conference – volume: 131 start-page: 195 year: 2016 end-page: 204 ident: bib0017 article-title: Dynamical modeling of li-ion batteries for electric vehicle applications based on hybrid particle swarm–nelder–mead (pso–nm) optimization algorithm publication-title: Electr. Power Syst. Res. – start-page: 1135 year: 2016 end-page: 1144 ident: bib0028 article-title: why should i trust you?": explaining the predictions of any classifier publication-title: Proceedings of the 22 – volume: 13 start-page: 973 year: 2009 end-page: 990 ident: bib0036 article-title: Group search optimizer: an optimization algorithm inspired by animal searching behavior publication-title: IEEE T. Evolut. Comput. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0031 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – volume: 20 start-page: 37 year: 1960 end-page: 46 ident: bib0030 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. – volume: 87 year: 2018 ident: bib0009 article-title: Development of an algorithm for automatic analysis of the impedance spectrum based on a measurement model publication-title: J. Phys. Soc. Jpn. – volume: 519 start-page: 1 year: 2002 end-page: 8 ident: bib0018 article-title: A hybrid genetic algorithm for the fitting of models to electrochemical impedance data publication-title: J. Electroanal. Chem. – start-page: 69 year: 1998 end-page: 73 ident: bib0049 article-title: A modified particle Swarm optimizer publication-title: International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence – volume: 24 start-page: 1594 year: 2016 end-page: 1609 ident: bib0003 article-title: A framework for simplification of pde-based lithium-ion battery models publication-title: IEEE Trans. Control Syst. Technol. – volume: 390 start-page: 286 year: 2018 end-page: 296 ident: bib0004 article-title: A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors publication-title: J. Power Source. – volume: 203 year: 2020 ident: bib0025 article-title: A simplified competitive swarm optimizer for parameter identification of solid oxide fuel cells publication-title: Energy Conv. Manag. – volume: 89 start-page: 18 year: 2021 end-page: 22 ident: bib0015 article-title: Free analysis and visualization programs for electrochemical impedance spectroscopy coded in python publication-title: Electrochem – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: bib0037 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simul – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: bib0045 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 2134 start-page: 454 year: 2001 end-page: 469 ident: bib0032 article-title: Estimation of distribution algorithms: a new evolutionary computation approach for graph matching problems publication-title: Proceeding of the 3rd International Energy Minimization Methods in Computer Vision and Pattern Recognition – volume: 295 start-page: 1057 year: 2019 end-page: 1066 ident: bib0026 article-title: A comparative study of global optimization methods for parameter identification of different equivalent circuit models for li-ion batteries publication-title: Electrochim. Acta – volume: 123 start-page: 7 year: 2014 end-page: 13 ident: bib0054 article-title: Electrochemical and thermal studies of LiNi publication-title: Electrochim. Acta – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: bib0057 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM – volume: 6 start-page: 191 year: 2000 end-page: 213 ident: bib0035 article-title: A continuous genetic algorithm designed for the global optimization of multimodal functions publication-title: J. Heurist. – year: 2007 ident: bib0034 article-title: Computational Intelligence: An Introduction – volume: 95 year: 2016 ident: bib0029 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – year: 2008 ident: bib0038 article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition publication-title: IEEE Congress on Evolutionary Computation – volume: 194 start-page: 569 year: 2016 end-page: 577 ident: bib0027 article-title: Charging optimization in lithium-ion batteries based on temperature rise and charge time publication-title: Appl. Energy – volume: 213 start-page: 267 year: 2010 end-page: 289 ident: bib0043 article-title: A novel heuristic optimization method: charged system search publication-title: Acta Mech. – start-page: 758 year: 2012 end-page: 762 ident: bib0046 article-title: Ant colony optimization for continuous domains publication-title: Proceeding of the 8th International Conference on Natural Computation – volume: 116 start-page: 404 year: 2014 end-page: 412 ident: bib0061 article-title: Investigation of the intercalation of polyvalent cations (Mg publication-title: Electrochim. Acta – volume: 533 start-page: 73 year: 2016 end-page: 76 ident: bib0006 article-title: Machine-learning-assisted materials discovery using failed experiments publication-title: Nature – volume: 743 start-page: 41 year: 2012 end-page: 50 ident: bib0020 article-title: Analysis of large experimental datasets in electrochemical impedance spectroscopy publication-title: Anal. Chim. Acta – start-page: 540 year: 1991 end-page: 541 ident: bib0033 article-title: Meta-evolutionary programming publication-title: Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers IEEE – volume: 37 start-page: 106 year: 2006 end-page: 111 ident: bib0041 article-title: A new optimization method: big bang–big crunch publication-title: Adv. Eng. Softw. – volume: 53 start-page: 1168 year: 2014 end-page: 1183 ident: bib0039 article-title: Interior search algorithm (isa): a novel approach for global optimization publication-title: ISA Trans. – volume: 10 year: 2020 ident: bib0008 article-title: Bayesian statistics-based analysis of ac impedance spectra publication-title: AIP Adv. – reference: Macdonald, J. R. LEVM/LEVMW (Version 8.13), – volume: 82 start-page: 65 year: 1996 end-page: 71 ident: bib0059 article-title: Input variable identification—fuzzy curves and fuzzy surfaces publication-title: Fuzzy Sets Syst – volume: 155 start-page: 75 year: 2019 end-page: 85 ident: bib0002 article-title: Local electrochemical properties of fusion boundary region in sa508-309l/308l overlay welded joint publication-title: Corros. Sci. – volume: 45 start-page: 20632 year: 2020 end-page: 20646 ident: bib0050 article-title: Evaluation of the corrosion resistance of ni(p)cr coatings for bipolar plates by electrochemical impedance spectroscopy publication-title: Int. J. Hydrog. Energy – year: 2020 ident: bib0056 article-title: A study by electrochemical impedance spectroscopy and surface analysis of corrosion product layers formed during CO publication-title: Corros. Sci. – volume: 225 start-page: 225 year: 2017 end-page: 234 ident: bib0021 article-title: State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer publication-title: Electrochim. Acta – volume: 222 start-page: 175 year: 2013 end-page: 184 ident: bib0042 article-title: Black hole: A new heuristic optimization approach for data clustering publication-title: Inf. Sci. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: bib0044 publication-title: Inf. Sci. – volume: 707 year: 2020 ident: bib0053 article-title: In-situ electrochemical study of plasma electrolytic oxidation treated Zr publication-title: Thin Solid Film. – volume: 11 start-page: 1 year: 2020 end-page: 6 ident: bib0001 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nat. Commun. – volume: 326 start-page: 112 year: 2016 end-page: 119 ident: bib0062 article-title: Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - a review publication-title: J. Power Source. – volume: 104 start-page: 56 year: 1957 end-page: 63 ident: bib0060 article-title: Electrochemical polarization: I . a theoretical analysis of the shape of polarization curves publication-title: J. Electrochem. Soc. – reference: , (2015). – volume: 166 start-page: A1611 year: 2019 end-page: A1622 ident: bib0019 article-title: Analysis of thousands of electrochemical impedance spectra of lithium-ion cells through a machine learning inverse model publication-title: J. Electrochem. Soc. – volume: 205 start-page: 1 year: 2012 end-page: 9 ident: bib0052 article-title: Electrochemical impedance spectroscopy study of Ce(IV) with aminopolycarboxylate ligands for redox flow batteries applications publication-title: J. Power Source. – volume: 855 year: 2019 ident: bib0010 article-title: Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning publication-title: J. Electroanal. Chem. – volume: 6 start-page: 1428 year: 2020 end-page: 1437 ident: bib0024 article-title: New optimized technique for unknown parameters selection of sofc using converged grass fibrous root optimization algorithm publication-title: Energy Rep. – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: bib0040 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aid. Design – volume: 29 start-page: 3035 year: 2018 end-page: 3044 ident: bib0051 article-title: High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles publication-title: J. Mater. Sci-Mater. El. – volume: 88 start-page: 39 year: 2019 end-page: 44 ident: bib0016 article-title: Development of impedance analysis software implementing a support function to find good initial guess using an interactive graphical user interface publication-title: Electrochem – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib0048 publication-title: Adv. Eng. Softw. – year: 2005 ident: bib0047 article-title: Technical Report, Technical report-tr06 – volume: 124 start-page: 943 year: 2016 end-page: 949 ident: bib0005 article-title: Development of an electrochemical impedance analysis program based on the expanded measurement model publication-title: J. Ceram. Soc. Jpn. – volume: 5 start-page: 2349 year: 2020 ident: bib0013 article-title: Impedance.py: a python package for electrochemical impedance analysis publication-title: J. Open Source Softw. – volume: 44 start-page: 3605 year: 1999 end-page: 3627 ident: bib0063 article-title: Electrochemical microsystem technologies: from fundamental research to technical systems publication-title: Electrochim. Acta – volume: 164 start-page: 307 year: 2015 end-page: 314 ident: bib0055 article-title: Effects of phosphate additives on the stability of positive electrolytes for vanadium flow batteries publication-title: Electrochim. Acta – volume: 228 year: 2021 ident: bib0022 article-title: Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm publication-title: Energy Conv. Manag. – year: 2019 ident: bib0014 article-title: PyEIS: a python-based electrochemical impedance spectroscopy simulator and analyzer (Version 1.0.3) publication-title: Zenodo – volume: 166 start-page: 451 year: 2019 end-page: 461 ident: bib0023 article-title: Optimized parameters of sofc for steady state and transient simulations using interior search algorithm publication-title: Energy – ident: 10.1016/j.electacta.2022.140350_bib0011 – year: 2005 ident: 10.1016/j.electacta.2022.140350_bib0047 – start-page: 1135 year: 2016 ident: 10.1016/j.electacta.2022.140350_bib0028 article-title: why should i trust you?": explaining the predictions of any classifier – volume: 27 start-page: 495 year: 2016 ident: 10.1016/j.electacta.2022.140350_bib0045 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 104 start-page: 56 year: 1957 ident: 10.1016/j.electacta.2022.140350_bib0060 article-title: Electrochemical polarization: I . a theoretical analysis of the shape of polarization curves publication-title: J. Electrochem. Soc. doi: 10.1149/1.2428496 – volume: 295 start-page: 1057 year: 2019 ident: 10.1016/j.electacta.2022.140350_bib0026 article-title: A comparative study of global optimization methods for parameter identification of different equivalent circuit models for li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.134 – volume: 60 start-page: 84 year: 2017 ident: 10.1016/j.electacta.2022.140350_bib0057 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 124 start-page: 943 year: 2016 ident: 10.1016/j.electacta.2022.140350_bib0005 article-title: Development of an electrochemical impedance analysis program based on the expanded measurement model publication-title: J. Ceram. Soc. Jpn. doi: 10.2109/jcersj2.16120 – volume: 45 start-page: 20632 year: 2020 ident: 10.1016/j.electacta.2022.140350_bib0050 article-title: Evaluation of the corrosion resistance of ni(p)cr coatings for bipolar plates by electrochemical impedance spectroscopy publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.03.076 – year: 1994 ident: 10.1016/j.electacta.2022.140350_bib0058 article-title: A fuzzy approach to input variable identification – volume: 20 start-page: 31 year: 1986 ident: 10.1016/j.electacta.2022.140350_bib0012 article-title: A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems publication-title: Solid State Ion doi: 10.1016/0167-2738(86)90031-7 – volume: 116 start-page: 404 year: 2014 ident: 10.1016/j.electacta.2022.140350_bib0061 article-title: Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.11.090 – volume: 29 start-page: 3035 year: 2018 ident: 10.1016/j.electacta.2022.140350_bib0051 article-title: High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles publication-title: J. Mater. Sci-Mater. El. doi: 10.1007/s10854-017-8234-2 – start-page: 69 year: 1998 ident: 10.1016/j.electacta.2022.140350_bib0049 article-title: A modified particle Swarm optimizer – volume: 76 start-page: 60 year: 2001 ident: 10.1016/j.electacta.2022.140350_bib0037 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simul doi: 10.1177/003754970107600201 – volume: 53 start-page: 1168 year: 2014 ident: 10.1016/j.electacta.2022.140350_bib0039 article-title: Interior search algorithm (isa): a novel approach for global optimization publication-title: ISA Trans. doi: 10.1016/j.isatra.2014.03.018 – year: 2008 ident: 10.1016/j.electacta.2022.140350_bib0038 article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition – volume: 37 start-page: 106 year: 2006 ident: 10.1016/j.electacta.2022.140350_bib0041 article-title: A new optimization method: big bang–big crunch publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2005.04.005 – volume: 533 start-page: 73 year: 2016 ident: 10.1016/j.electacta.2022.140350_bib0006 article-title: Machine-learning-assisted materials discovery using failed experiments publication-title: Nature doi: 10.1038/nature17439 – volume: 13 start-page: 973 year: 2009 ident: 10.1016/j.electacta.2022.140350_bib0036 article-title: Group search optimizer: an optimization algorithm inspired by animal searching behavior publication-title: IEEE T. Evolut. Comput. doi: 10.1109/TEVC.2009.2011992 – start-page: 540 year: 1991 ident: 10.1016/j.electacta.2022.140350_bib0033 article-title: Meta-evolutionary programming – volume: 89 start-page: 18 year: 2021 ident: 10.1016/j.electacta.2022.140350_bib0015 article-title: Free analysis and visualization programs for electrochemical impedance spectroscopy coded in python publication-title: Electrochem – volume: 6 start-page: 1428 year: 2020 ident: 10.1016/j.electacta.2022.140350_bib0024 article-title: New optimized technique for unknown parameters selection of sofc using converged grass fibrous root optimization algorithm publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.05.024 – volume: 10 year: 2020 ident: 10.1016/j.electacta.2022.140350_bib0008 article-title: Bayesian statistics-based analysis of ac impedance spectra publication-title: AIP Adv. – volume: 519 start-page: 1 year: 2002 ident: 10.1016/j.electacta.2022.140350_bib0018 article-title: A hybrid genetic algorithm for the fitting of models to electrochemical impedance data publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(01)00707-0 – volume: 95 year: 2016 ident: 10.1016/j.electacta.2022.140350_bib0029 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 707 year: 2020 ident: 10.1016/j.electacta.2022.140350_bib0053 article-title: In-situ electrochemical study of plasma electrolytic oxidation treated Zr3Al based alloy in 300°C/14 MPa lithium borate buffer solution publication-title: Thin Solid Film. doi: 10.1016/j.tsf.2020.138066 – volume: 743 start-page: 41 year: 2012 ident: 10.1016/j.electacta.2022.140350_bib0020 article-title: Analysis of large experimental datasets in electrochemical impedance spectroscopy publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.06.055 – volume: 228 year: 2021 ident: 10.1016/j.electacta.2022.140350_bib0022 article-title: Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm publication-title: Energy Conv. Manag. – year: 2007 ident: 10.1016/j.electacta.2022.140350_bib0034 – volume: 225 start-page: 225 year: 2017 ident: 10.1016/j.electacta.2022.140350_bib0021 article-title: State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.119 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.electacta.2022.140350_bib0048 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 24 start-page: 1594 year: 2016 ident: 10.1016/j.electacta.2022.140350_bib0003 article-title: A framework for simplification of pde-based lithium-ion battery models publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2015.2502899 – volume: 390 start-page: 286 year: 2018 ident: 10.1016/j.electacta.2022.140350_bib0004 article-title: A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors publication-title: J. Power Source. doi: 10.1016/j.jpowsour.2018.04.033 – volume: 2134 start-page: 454 year: 2001 ident: 10.1016/j.electacta.2022.140350_bib0032 article-title: Estimation of distribution algorithms: a new evolutionary computation approach for graph matching problems – volume: 82 start-page: 65 year: 1996 ident: 10.1016/j.electacta.2022.140350_bib0059 article-title: Input variable identification—fuzzy curves and fuzzy surfaces publication-title: Fuzzy Sets Syst doi: 10.1016/0165-0114(95)00223-5 – start-page: 758 year: 2012 ident: 10.1016/j.electacta.2022.140350_bib0046 article-title: Ant colony optimization for continuous domains – volume: 87 year: 2018 ident: 10.1016/j.electacta.2022.140350_bib0009 article-title: Development of an algorithm for automatic analysis of the impedance spectrum based on a measurement model publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.87.034004 – volume: 205 start-page: 1 year: 2012 ident: 10.1016/j.electacta.2022.140350_bib0052 article-title: Electrochemical impedance spectroscopy study of Ce(IV) with aminopolycarboxylate ligands for redox flow batteries applications publication-title: J. Power Source. doi: 10.1016/j.jpowsour.2012.01.004 – volume: 166 start-page: 451 year: 2019 ident: 10.1016/j.electacta.2022.140350_bib0023 article-title: Optimized parameters of sofc for steady state and transient simulations using interior search algorithm publication-title: Energy doi: 10.1016/j.energy.2018.10.038 – volume: 222 start-page: 175 year: 2013 ident: 10.1016/j.electacta.2022.140350_bib0042 article-title: Black hole: A new heuristic optimization approach for data clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.08.023 – year: 2019 ident: 10.1016/j.electacta.2022.140350_bib0014 article-title: PyEIS: a python-based electrochemical impedance spectroscopy simulator and analyzer (Version 1.0.3) publication-title: Zenodo – volume: 131 start-page: 195 year: 2016 ident: 10.1016/j.electacta.2022.140350_bib0017 article-title: Dynamical modeling of li-ion batteries for electric vehicle applications based on hybrid particle swarm–nelder–mead (pso–nm) optimization algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2015.10.018 – volume: 179 start-page: 2232 year: 2009 ident: 10.1016/j.electacta.2022.140350_bib0044 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 5 start-page: 83 year: 2019 ident: 10.1016/j.electacta.2022.140350_bib0007 article-title: Recent advances and applications of machine learning in solid-state materials science publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0221-0 – volume: 123 start-page: 7 year: 2014 ident: 10.1016/j.electacta.2022.140350_bib0054 article-title: Electrochemical and thermal studies of LiNi0.8Co0.15Al0.015O2 under fluorinated electrolytes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.12.183 – volume: 43 start-page: 303 year: 2011 ident: 10.1016/j.electacta.2022.140350_bib0040 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aid. Design doi: 10.1016/j.cad.2010.12.015 – volume: 44 start-page: 3605 year: 1999 ident: 10.1016/j.electacta.2022.140350_bib0063 article-title: Electrochemical microsystem technologies: from fundamental research to technical systems publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(99)00065-1 – volume: 213 start-page: 267 year: 2010 ident: 10.1016/j.electacta.2022.140350_bib0043 article-title: A novel heuristic optimization method: charged system search publication-title: Acta Mech. doi: 10.1007/s00707-009-0270-4 – volume: 155 start-page: 75 year: 2019 ident: 10.1016/j.electacta.2022.140350_bib0002 article-title: Local electrochemical properties of fusion boundary region in sa508-309l/308l overlay welded joint publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.04.021 – volume: 203 year: 2020 ident: 10.1016/j.electacta.2022.140350_bib0025 article-title: A simplified competitive swarm optimizer for parameter identification of solid oxide fuel cells publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2019.112204 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.electacta.2022.140350_bib0001 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nat. Commun. – volume: 164 start-page: 307 year: 2015 ident: 10.1016/j.electacta.2022.140350_bib0055 article-title: Effects of phosphate additives on the stability of positive electrolytes for vanadium flow batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.02.187 – volume: 20 start-page: 37 year: 1960 ident: 10.1016/j.electacta.2022.140350_bib0030 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – volume: 194 start-page: 569 year: 2016 ident: 10.1016/j.electacta.2022.140350_bib0027 article-title: Charging optimization in lithium-ion batteries based on temperature rise and charge time publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.059 – volume: 855 year: 2019 ident: 10.1016/j.electacta.2022.140350_bib0010 article-title: Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.113627 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.electacta.2022.140350_bib0031 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 6 start-page: 191 year: 2000 ident: 10.1016/j.electacta.2022.140350_bib0035 article-title: A continuous genetic algorithm designed for the global optimization of multimodal functions publication-title: J. Heurist. doi: 10.1023/A:1009626110229 – volume: 326 start-page: 112 year: 2016 ident: 10.1016/j.electacta.2022.140350_bib0062 article-title: Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - a review publication-title: J. Power Source. doi: 10.1016/j.jpowsour.2016.06.119 – volume: 5 start-page: 2349 year: 2020 ident: 10.1016/j.electacta.2022.140350_bib0013 article-title: Impedance.py: a python package for electrochemical impedance analysis publication-title: J. Open Source Softw. doi: 10.21105/joss.02349 – volume: 166 start-page: A1611 year: 2019 ident: 10.1016/j.electacta.2022.140350_bib0019 article-title: Analysis of thousands of electrochemical impedance spectra of lithium-ion cells through a machine learning inverse model publication-title: J. Electrochem. Soc. doi: 10.1149/2.1051908jes – year: 2020 ident: 10.1016/j.electacta.2022.140350_bib0056 article-title: A study by electrochemical impedance spectroscopy and surface analysis of corrosion product layers formed during CO2 corrosion of low alloy steel publication-title: Corros. Sci. – volume: 88 start-page: 39 year: 2019 ident: 10.1016/j.electacta.2022.140350_bib0016 article-title: Development of impedance analysis software implementing a support function to find good initial guess using an interactive graphical user interface publication-title: Electrochem doi: 10.5796/electrochemistry.19-00058 |
SSID | ssj0007670 |
Score | 2.6467543 |
Snippet | Among seven multiclassification machine learning (ML) models taking optimized hyperparameters found by grid search, AdaBoost achieved the known highest... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 140350 |
SubjectTerms | Algorithms Classification Electrochemical impedance spectroscopy Equivalent circuit model Equivalent circuits Global optimization Global optimization algorithm Interpretable machine learning Machine learning Model accuracy Parameter identification |
Title | EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms |
URI | https://dx.doi.org/10.1016/j.electacta.2022.140350 https://www.proquest.com/docview/2672768060 |
Volume | 418 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB_UgPnF1lRy8VtM0TVJvsqysCl5U8BaSJrtW9uXavfoT_M1m2nR9IHgQemlpSslMZzLNN9-H0ImRfctsRiInNYuYTwKRkURG1nKdWBIb5yq0xS3vPbDrx_RxCXWaXhiAVYbYX8f0KlqHK2dhNs-mRQE9vnHCoMEBfozEFGi3gf3L-_Tp2yfMQ3BBGhUDuPsbxquSmtH-8IUipafAXQcN-L9nqB-xukpAl5toI6wc8UX9cltoyY230WqnEWzbRutfuAV30Hv36g67l3nhXcknFpwXs3xelLiSvsHTGWzQgFEwIN8HuFiAD83Q4VEFsXQ4aEoMsB5bDCzhI0DP4MIGjJH-8oSaWgRPfAwaheZOrIeDyawon0avu-jhsnvf6UVBfCHKE5aUEQWpPpPkwhccNsupi63wy5M8TYWQqSPUZL5a5JrRPkmdS7U0fS2pN27MUxPbZA8tjydjt48w0XnshPaFUz9jWZJJlog001oSkfHY0hbizYSrPDCTg0DGUDUQtGe1sJQCS6naUi1EFgOnNTnH30POG4uqb36mfAr5e3C78QEVPvVXRWEvm0vCycF_nn2I1uAMUGiUtNFyOZu7I7_eKc1x5dDHaOXi6qZ3-wF3KALW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFwQFBAFAr4wDXUcfwKt2rVapeWvdBKvVl27F1S7Ytt9m_wm_EkzqpFSD0g5ZRorMgzmUf8zXwAn52eeu5LmgVtecZjEMicpjrzXtrC09yF0KItJnJ0zb_diJs9GPa9MAirTL6_8-mtt053TtJunqzrGnt884JjgwP-GMmZfAL7XESfPID90_HFaLJzyEoq2hMZoMADmFfLNmPjFWtFxr7g-Drswf93kPrLXbcx6PwFPE_JIznt3u8l7IXlIRwMe862Q3h2b7zgK_h9Nv5Bwq9tHa0pxhZS1ZtqWzekZb8h6w2e0aBeCILfZ6Te4Q_dPJBFi7IMJNFKzIhdeoKDwhcIoCG1TzAje2-FbroIWUU3tEj9ncTOZ6tN3fxc3L2G6_Ozq-EoS_wLWVXwoskYsvW5olKx5vBlxULuVcxQKiGU0iJQ5spYMErL2ZSKEITVbmo1i_rNpXC5L97AYLlahrdAqK3yoGysnaYlL4tS80KJ0lpNVSlzz45A9htuqjScHDky5qZHod2anaYMasp0mjoCuhNcd_M5Hhf52mvUPDA1E6PI48LHvQ2Y9LXfGYbH2VJTSd_9z9qf4GB09f3SXI4nF-_hKT5BUBqjxzBoNtvwIaY_jfuYzPsPNrIFgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EIS+equivalent+circuit+model+prediction+using+interpretable+machine+learning+and+parameter+identification+using+global+optimization+algorithms&rft.jtitle=Electrochimica+acta&rft.au=Zhao%2C+Zhaoyang&rft.au=Zou%2C+Yang&rft.au=Liu%2C+Peng&rft.au=Lai%2C+Zhaogui&rft.date=2022-06-20&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=418&rft.spage=1&rft_id=info:doi/10.1016%2Fj.electacta.2022.140350&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |