Ecological significance of standing dead phytomass: Marcescence as a puzzle piece to the nutrient cycle in temperate ecosystems
The plant economics spectrum (PES) drives nutrient cycling through effects on soil decomposers. However, dead phytomass may remain standing or unshed (marcescent), hardly accessible to decomposers and be photodegraded. In arid zones, the significant part of marcescent phytomass can be decomposed wit...
Saved in:
Published in | The Journal of ecology Vol. 111; no. 10; pp. 2245 - 2256 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-0477 1365-2745 |
DOI | 10.1111/1365-2745.14174 |
Cover
Abstract | The plant economics spectrum (PES) drives nutrient cycling through effects on soil decomposers. However, dead phytomass may remain standing or unshed (marcescent), hardly accessible to decomposers and be photodegraded. In arid zones, the significant part of marcescent phytomass can be decomposed without touching the ground. In temperate zones, photodegradation of marcescent phytomass is low but prompts important chemical changes, which affect its subsequent decomposability in the soil and alters the surrounding environment. It is unknown, however, how common marcescence is among different taxa and in which habitats, and how it is coordinated by PES traits.
We sampled standing (marcescent) and lying (shed) dead phytomass from a broad spectrum of 127 herbaceous temperate species in a common garden experiment and related these parameters to PES traits, species ecological preferences and phylogeny.
Nearly all species (97%) kept their phytomass marcescent. Tall species with a small leaf area and high leaf carbon had a high level of marcescence. Marcescent species also preferred sites affected by severe (but not necessarily frequent) disturbance. The degree of marcescence was considerably conserved in phylogeny.
Synthesis.
Marcescence extends PES trait effects on ecosystems, particularly in immature habitats, being a common but overlooked phenomenon of the temperate flora.
Ekonomické spektrum ekologie rostlin (PES) řídí koloběh živin prostřednictvím složení fytomasy a jejího vlivu na půdní dekompozitory. Odumřelá fytomasa však může zůstat stát nebo neopadat (zůstat marcescentní) a být tak těžko přístupná dekompozitorům ale zároveň vystavena fotodegradaci. V suchých oblastech může být významná část marcescentní fytomasy rozložena fotodegradací, aniž by se dotkla půdy. Naopak v regionech mírného pásma je ztráta marcescentní fytomasy v důsledku fotodegradace nízká. Fotodegradace ale vyvolává důležité chemické změny, které ovlivňují následnou rozložitelnost fytomasy v půdě a mění okolní prostředí. Není však známo, jak běžná je marcescence u různých taxonů a na kterých stanovištích a jak je koordinována s funkčními vlastnostmi PES.
V zahradním květináčovém experimentu jsme proto po vegetační sezóně odebrali vzorky stojící (marcescentní) a ležící odumřelé fytomasy ze širokého spektra 127 bylinných druhů mírného pásma. Míru marcescence jsme korelovali s funkčními vlastnostmi, ekologickými preferencemi druhů a fylogenezí.
Téměř všechny druhy rostlin (97%) udržovaly alespoň část své fytomasy v marcescentním stavu. Vysoké druhy s malou listovou plochou a vysokým obsahem uhlíku v listech měly vysokou úroveň marcescence. Marcescentní druhy také preferovaly místa postižená silným (ne však nutně častým) narušením. Stupeň marcescence byl ve fylogenezi poměrně silně konzervovaný.
Syntéza
. Marcescence rozšiřuje vliv PES funkčních vlastností na ekosystémy, zejména na narušených stanovištích, přičemž je běžným, ale přehlíženým jevem flóry mírného pásma. |
---|---|
AbstractList | The plant economics spectrum (PES) drives nutrient cycling through effects on soil decomposers. However, dead phytomass may remain standing or unshed (marcescent), hardly accessible to decomposers and be photodegraded. In arid zones, the significant part of marcescent phytomass can be decomposed without touching the ground. In temperate zones, photodegradation of marcescent phytomass is low but prompts important chemical changes, which affect its subsequent decomposability in the soil and alters the surrounding environment. It is unknown, however, how common marcescence is among different taxa and in which habitats, and how it is coordinated by PES traits. We sampled standing (marcescent) and lying (shed) dead phytomass from a broad spectrum of 127 herbaceous temperate species in a common garden experiment and related these parameters to PES traits, species ecological preferences and phylogeny. Nearly all species (97%) kept their phytomass marcescent. Tall species with a small leaf area and high leaf carbon had a high level of marcescence. Marcescent species also preferred sites affected by severe (but not necessarily frequent) disturbance. The degree of marcescence was considerably conserved in phylogeny. Synthesis. Marcescence extends PES trait effects on ecosystems, particularly in immature habitats, being a common but overlooked phenomenon of the temperate flora. The plant economics spectrum (PES) drives nutrient cycling through effects on soil decomposers. However, dead phytomass may remain standing or unshed (marcescent), hardly accessible to decomposers and be photodegraded. In arid zones, the significant part of marcescent phytomass can be decomposed without touching the ground. In temperate zones, photodegradation of marcescent phytomass is low but prompts important chemical changes, which affect its subsequent decomposability in the soil and alters the surrounding environment. It is unknown, however, how common marcescence is among different taxa and in which habitats, and how it is coordinated by PES traits. We sampled standing (marcescent) and lying (shed) dead phytomass from a broad spectrum of 127 herbaceous temperate species in a common garden experiment and related these parameters to PES traits, species ecological preferences and phylogeny. Nearly all species (97%) kept their phytomass marcescent. Tall species with a small leaf area and high leaf carbon had a high level of marcescence. Marcescent species also preferred sites affected by severe (but not necessarily frequent) disturbance. The degree of marcescence was considerably conserved in phylogeny. Synthesis. Marcescence extends PES trait effects on ecosystems, particularly in immature habitats, being a common but overlooked phenomenon of the temperate flora. Ekonomické spektrum ekologie rostlin (PES) řídí koloběh živin prostřednictvím složení fytomasy a jejího vlivu na půdní dekompozitory. Odumřelá fytomasa však může zůstat stát nebo neopadat (zůstat marcescentní) a být tak těžko přístupná dekompozitorům ale zároveň vystavena fotodegradaci. V suchých oblastech může být významná část marcescentní fytomasy rozložena fotodegradací, aniž by se dotkla půdy. Naopak v regionech mírného pásma je ztráta marcescentní fytomasy v důsledku fotodegradace nízká. Fotodegradace ale vyvolává důležité chemické změny, které ovlivňují následnou rozložitelnost fytomasy v půdě a mění okolní prostředí. Není však známo, jak běžná je marcescence u různých taxonů a na kterých stanovištích a jak je koordinována s funkčními vlastnostmi PES. V zahradním květináčovém experimentu jsme proto po vegetační sezóně odebrali vzorky stojící (marcescentní) a ležící odumřelé fytomasy ze širokého spektra 127 bylinných druhů mírného pásma. Míru marcescence jsme korelovali s funkčními vlastnostmi, ekologickými preferencemi druhů a fylogenezí. Téměř všechny druhy rostlin (97%) udržovaly alespoň část své fytomasy v marcescentním stavu. Vysoké druhy s malou listovou plochou a vysokým obsahem uhlíku v listech měly vysokou úroveň marcescence. Marcescentní druhy také preferovaly místa postižená silným (ne však nutně častým) narušením. Stupeň marcescence byl ve fylogenezi poměrně silně konzervovaný. Syntéza . Marcescence rozšiřuje vliv PES funkčních vlastností na ekosystémy, zejména na narušených stanovištích, přičemž je běžným, ale přehlíženým jevem flóry mírného pásma. |
Author | Angst, Šárka Mudrák, Ondřej Schnablová, Renáta Angst, Gerrit Veselá, Hana Herben, Tomáš Frouz, Jan |
Author_xml | – sequence: 1 givenname: Ondřej orcidid: 0000-0001-7775-0414 surname: Mudrák fullname: Mudrák, Ondřej organization: Institute for Environmental Studies, Faculty of Science Charles University Praha 2 Czech Republic, Institute of Botany Czech Academy of Sciences Průhonice Czech Republic – sequence: 2 givenname: Šárka orcidid: 0000-0002-5244-328X surname: Angst fullname: Angst, Šárka organization: Institute of Soil Biology & Biochemistry Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic – sequence: 3 givenname: Gerrit orcidid: 0000-0003-4421-5444 surname: Angst fullname: Angst, Gerrit organization: Institute of Soil Biology & Biochemistry Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic, German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany, Institute of Biology Leipzig University Leipzig Germany – sequence: 4 givenname: Hana orcidid: 0000-0002-7061-7263 surname: Veselá fullname: Veselá, Hana organization: Institute for Environmental Studies, Faculty of Science Charles University Praha 2 Czech Republic – sequence: 5 givenname: Renáta orcidid: 0000-0002-7427-7665 surname: Schnablová fullname: Schnablová, Renáta organization: Institute of Botany Czech Academy of Sciences Průhonice Czech Republic – sequence: 6 givenname: Tomáš orcidid: 0000-0002-6636-0012 surname: Herben fullname: Herben, Tomáš organization: Institute of Botany Czech Academy of Sciences Průhonice Czech Republic, Department of Botany, Faculty of Science Charles University Praha 2 Czech Republic – sequence: 7 givenname: Jan orcidid: 0000-0002-0908-8606 surname: Frouz fullname: Frouz, Jan organization: Institute for Environmental Studies, Faculty of Science Charles University Praha 2 Czech Republic, Institute of Soil Biology & Biochemistry Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic |
BookMark | eNp1UT1PHDEQtSKQchDqtJbS0CzYXn8tHUKQRALRhNryemcPoz17sb3F0eSv44UoBRLTzNd7o5l5R-ggxAAIfafkjFY7p60UDVNcnFFOFf-CNv8rB2hDCGMN4Up9RUc5PxFCpBJkg_5euzjFrXd2wtlvgx9rGBzgOOJcbBh82OIB7IDnx32JO5vzBb6zyUF2sOJsxhbPy8vLBHj2UCsl4vIIOCwleQgFu72rPR9wgd0MyRbA4GLe55rnb-hwtFOGk3_-GD3cXP-5-tXc3v_8fXV527iWt6WhUiju-gEoUVTIzlJtLXFcCi1410vNydgLqdpOy34clO5JzyTXpKPtSLRqj9Hp-9w5xecFcjE7Xy-YJhsgLtmwjjNKWq5lhf74AH2KSwp1O8O0YvWRjKwDxTvKpZhzgtE4X2zxMZRk_WQoMassZhXBrCKYN1kq7_wDb05-Z9P-U8Yr1imQHQ |
CitedBy_id | crossref_primary_10_1007_s44246_024_00148_7 crossref_primary_10_3390_d16080466 crossref_primary_10_1111_1365_2745_14174 crossref_primary_10_3390_life14050632 crossref_primary_10_1111_1365_2435_14589 |
Cites_doi | 10.2136/sssaj1972.03615995003600060020x 10.1007/s10532-011-9479-8 10.1111/j.1365-2745.2008.01430.x 10.1890/13-1000.1 10.1016/j.ejsobi.2007.09.002 10.1016/j.ecoleng.2021.106424 10.1007/s11104-017-3318-6 10.1111/nph.17022 10.1071/BT12225 10.1111/jvs.12384 10.1111/j.1399-3054.1996.tb00496.x 10.1016/S0003-2670(00)88444-5 10.1111/1365-2745.14174 10.1016/j.ppees.2016.09.002 10.1111/j.2041-210X.2011.00169.x 10.2307/3544497 10.1038/nmeth.2089 10.1093/aob/mcu233 10.1016/S0277-3791(00)00099-8 10.1046/j.1469-8137.1997.00628.x 10.3389/fevo.2018.00003 10.1016/j.agee.2016.03.013 10.1111/j.1654-1103.2011.01262.x 10.1139/x90-127 10.23855/preslia.2022.447 10.1093/aob/mcx113 10.23855/preslia.2018.083 10.1111/ele.12137 10.1073/pnas.1516157113 10.1038/nature05038 10.1111/j.1365-2435.2006.01221.x 10.1111/1365-2435.13287 10.1556/ComEc.9.2008.1.3 10.2307/3544134 10.1002/ecy.1745 10.1093/aob/mcn013 10.1007/s43630-020-00001-x 10.1006/anbo.1995.1004 10.23855/preslia.2021.001 10.1016/j.scitotenv.2018.07.032 10.1111/j.1600-0706.2008.17293.x 10.1016/j.geoderma.2017.08.039 10.1073/pnas.0909396107 10.3390/land10080840 10.1007/s11104-022-05341-4 |
ContentType | Journal Article |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
DOI | 10.1111/1365-2745.14174 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany |
EISSN | 1365-2745 |
EndPage | 2256 |
ExternalDocumentID | 10_1111_1365_2745_14174 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29K 2AX 2WC 3-9 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABAWQ ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHIC ACHJO ACNCT ACPOU ACPRK ACSCC ACSTJ ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFXHP AFZJQ AGHNM AGUYK AGYGG AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD CITATION COF CUYZI D-E D-F D-I DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD F00 F01 F04 F5P FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XIH Y6R YF5 YQT YXE YZZ ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT 7QG 7SN 7SS 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c343t-16574cbde1071569a18aa0c4658549b6840fb5673986bfd78b0b26480913f0873 |
ISSN | 0022-0477 |
IngestDate | Fri Jul 11 18:24:46 EDT 2025 Fri Jul 25 10:39:48 EDT 2025 Tue Jul 01 00:44:26 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c343t-16574cbde1071569a18aa0c4658549b6840fb5673986bfd78b0b26480913f0873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4421-5444 0000-0001-7775-0414 0000-0002-5244-328X 0000-0002-6636-0012 0000-0002-0908-8606 0000-0002-7061-7263 0000-0002-7427-7665 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.14174 |
PQID | 2872022207 |
PQPubID | 37508 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2942103486 proquest_journals_2872022207 crossref_citationtrail_10_1111_1365_2745_14174 crossref_primary_10_1111_1365_2745_14174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Odum E. P. (e_1_2_10_35_1) 1963 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_41_1 Pinheiro J. (e_1_2_10_43_1) 2020 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Bartoń K. (e_1_2_10_8_1) 2020 McFadden D. (e_1_2_10_27_1) 1973 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – ident: e_1_2_10_47_1 doi: 10.2136/sssaj1972.03615995003600060020x – ident: e_1_2_10_17_1 doi: 10.1007/s10532-011-9479-8 – start-page: 105 volume-title: Frontiers in econometrics year: 1973 ident: e_1_2_10_27_1 – ident: e_1_2_10_24_1 doi: 10.1111/j.1365-2745.2008.01430.x – ident: e_1_2_10_48_1 doi: 10.1890/13-1000.1 – ident: e_1_2_10_18_1 doi: 10.1016/j.ejsobi.2007.09.002 – ident: e_1_2_10_36_1 – ident: e_1_2_10_49_1 doi: 10.1016/j.ecoleng.2021.106424 – ident: e_1_2_10_2_1 doi: 10.1007/s11104-017-3318-6 – ident: e_1_2_10_52_1 doi: 10.1111/nph.17022 – ident: e_1_2_10_42_1 doi: 10.1071/BT12225 – ident: e_1_2_10_23_1 doi: 10.1111/jvs.12384 – ident: e_1_2_10_51_1 doi: 10.1111/j.1399-3054.1996.tb00496.x – ident: e_1_2_10_31_1 doi: 10.1016/S0003-2670(00)88444-5 – ident: e_1_2_10_29_1 doi: 10.1111/1365-2745.14174 – ident: e_1_2_10_26_1 doi: 10.1016/j.ppees.2016.09.002 – ident: e_1_2_10_45_1 doi: 10.1111/j.2041-210X.2011.00169.x – ident: e_1_2_10_15_1 doi: 10.2307/3544497 – ident: e_1_2_10_46_1 doi: 10.1038/nmeth.2089 – ident: e_1_2_10_21_1 doi: 10.1093/aob/mcu233 – ident: e_1_2_10_22_1 doi: 10.1016/S0277-3791(00)00099-8 – ident: e_1_2_10_14_1 doi: 10.1046/j.1469-8137.1997.00628.x – ident: e_1_2_10_9_1 doi: 10.3389/fevo.2018.00003 – ident: e_1_2_10_20_1 doi: 10.1016/j.agee.2016.03.013 – ident: e_1_2_10_7_1 doi: 10.1111/j.1654-1103.2011.01262.x – ident: e_1_2_10_41_1 doi: 10.1139/x90-127 – ident: e_1_2_10_44_1 doi: 10.23855/preslia.2022.447 – ident: e_1_2_10_11_1 doi: 10.1093/aob/mcx113 – ident: e_1_2_10_13_1 doi: 10.23855/preslia.2018.083 – ident: e_1_2_10_19_1 doi: 10.1111/ele.12137 – ident: e_1_2_10_5_1 doi: 10.1073/pnas.1516157113 – ident: e_1_2_10_6_1 doi: 10.1038/nature05038 – ident: e_1_2_10_33_1 doi: 10.1111/j.1365-2435.2006.01221.x – ident: e_1_2_10_30_1 doi: 10.1111/1365-2435.13287 – ident: e_1_2_10_38_1 – volume-title: R package MuMIn (version 1.43.17), Multi‐Model Inference year: 2020 ident: e_1_2_10_8_1 – ident: e_1_2_10_40_1 doi: 10.1556/ComEc.9.2008.1.3 – ident: e_1_2_10_39_1 doi: 10.2307/3544134 – ident: e_1_2_10_25_1 doi: 10.1002/ecy.1745 – ident: e_1_2_10_37_1 doi: 10.1093/aob/mcn013 – ident: e_1_2_10_32_1 doi: 10.1007/s43630-020-00001-x – ident: e_1_2_10_34_1 doi: 10.1006/anbo.1995.1004 – ident: e_1_2_10_12_1 doi: 10.23855/preslia.2021.001 – ident: e_1_2_10_50_1 doi: 10.1016/j.scitotenv.2018.07.032 – volume-title: R package nlme (version 3.1‐144), linear and nonlinear mixed effects models year: 2020 ident: e_1_2_10_43_1 – ident: e_1_2_10_28_1 doi: 10.1111/j.1600-0706.2008.17293.x – ident: e_1_2_10_16_1 doi: 10.1016/j.geoderma.2017.08.039 – ident: e_1_2_10_4_1 doi: 10.1073/pnas.0909396107 – ident: e_1_2_10_10_1 doi: 10.3390/land10080840 – ident: e_1_2_10_3_1 doi: 10.1007/s11104-022-05341-4 – volume-title: Ecology year: 1963 ident: e_1_2_10_35_1 |
SSID | ssj0006750 |
Score | 2.4662051 |
Snippet | The plant economics spectrum (PES) drives nutrient cycling through effects on soil decomposers. However, dead phytomass may remain standing or unshed... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2245 |
SubjectTerms | Arid zones carbon Decomposers Decomposition ecology Ecosystems Flora Habitats Leaf area Leaves Nutrient cycles Photodegradation photolysis Phylogeny phytomass soil Soils Species Temperate zones |
Title | Ecological significance of standing dead phytomass: Marcescence as a puzzle piece to the nutrient cycle in temperate ecosystems |
URI | https://www.proquest.com/docview/2872022207 https://www.proquest.com/docview/2942103486 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKYBIvCAaIwkBGYhJSlclOnMThbUyDCakgoQ3tLbIdF21UabWmD-0L_47fxV2cOOmg0uAlShPXSXNfz58vd58JeYOCMBx4chALGwUiYyaQIuNBIWRiiyILucaA_vhzcnouPl3EF4PBr17W0rLSh2b917qS_7EqHAO7YpXsP1jWdwoHYB_sC1uwMGxvZeMT410X5mFg1k9dAQAE0NerFGBEjF9UmAhU57-NsbwRRZywVmAxUqP5cr2e2tH80hrbctESVfoxT8Cs4KJ1NqQFho3CEiOYsS56QudXHeB69NaajYD9eFm4l_K8dr9fyuLgOD7IMnvVBSK-u_oTPHHEXOPrH-qP8x9RTNJn63yzCzt1jethVLnlwNtIRtjlxPUrC5holnWxziG7mjknOek9Nud9aLK-Aw6bprb56GTLtwwUvncYMLhbLWhTkvvGUOkTGNupE3aQYwd53cEdcjdMgcMhOf_ayZjBpIy1qvX4-xqJKcwou3EHm-xokxzUjOfsIXnQ2JIeOdw9IgNb7pFdt3jpao_cez8DjMHOroPh6jH52QGS9gFJZxPaApIiIKkH5DvagyNVC6qogyOt4UirGQU40haOtIYjvSyphyPt4PiEnH84OTs-DZoVPgITiagKeBKnwujCcmC6cZIpLpViRgAtjkWmUYhoouMkjTKZ6EmRSs00pmSimO2EyTR6SnbKWWmfEap1UmRMREJYfMRMmiRSKoyVmciCSzkkh-2TzU0jf4-rsEzzLbYckrf-C3On_LK96X5rqrxxD4s8lGmI0RSWDslrfxqcN76RU6WdLaFNJkLOIvCLz29_tRfkfvfv2Sc71fXSvgRmXOlXNex-AwL8r24 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecological+significance+of+standing+dead+phytomass%3A+Marcescence+as+a+puzzle+piece+to+the+nutrient+cycle+in+temperate+ecosystems&rft.jtitle=The+Journal+of+ecology&rft.au=Mudr%C3%A1k%2C+Ond%C5%99ej&rft.au=Angst%2C+%C5%A0%C3%A1rka&rft.au=Angst%2C+Gerrit&rft.au=Vesel%C3%A1%2C+Hana&rft.date=2023-10-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=111&rft.issue=10&rft.spage=2245&rft.epage=2256&rft_id=info:doi/10.1111%2F1365-2745.14174&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2745_14174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |