Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting
•A modelling framework for multi-track, multi-layer and multi-material SLM.•Simulation of multi-material powder deposition in various patterns.•Effect of process parameters on balling effect, keyhole and lack of fusion.•Molten pool evolution of multi-material SLM on the same and across different lay...
Saved in:
| Published in | International journal of heat and mass transfer Vol. 151; p. 119458 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.04.2020
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0017-9310 1879-2189 1879-2189 |
| DOI | 10.1016/j.ijheatmasstransfer.2020.119458 |
Cover
| Abstract | •A modelling framework for multi-track, multi-layer and multi-material SLM.•Simulation of multi-material powder deposition in various patterns.•Effect of process parameters on balling effect, keyhole and lack of fusion.•Molten pool evolution of multi-material SLM on the same and across different layers.•Modelling of phase migration at the interface between two different materials.
Selective laser melting (SLM) is a promising powder-based additive manufacturing technology due to its capability to fabricate metallic components with complex geometries. While most previous investigations focus on printing with a single material, recent industry-orientated studies indicate the need for multi-material SLM in several high-value manufacturing sectors including medical devices, aerospace and automotive industries. However, understanding the underlying physics in multi-material SLM remains challenging due to the difficulties of experimental observation. In this paper, an integrated modelling framework for multi-track, multi-layer and multi-material SLM is developed to advance the in-depth understanding of this process. The main novelty is in modelling the molten pool evolvement and track morphology of multiple materials deposited on the same and across different layers. Discrete element method (DEM) is employed to reproduce the powder deposition process of multiple materials in different deposition patterns, with particle size distribution imported from a particle size analyser. Various phenomena including balling effect, keyhole depression, and lack of fusion between layers are investigated with different laser energy inputs. As a result of the different thermal properties, several process parameters including energy density and hatch spacing are optimised for different powder materials to obtain a continuous track profile and improved scanning efficiency. The interface between two layers of different materials is visualised by simulation; it was found that the phase migration at the interface is related to the convection flow inside the molten pool, which contributes to the mixing of the two materials and elemental diffusion. This study significantly contributes to the challenging area of multi-material additive manufacturing by providing a greater in-depth understanding of the SLM process from multi-material powder deposition to laser interaction with powders across multiple scanning tracks and different building layers than can be achieved by experimentation alone. |
|---|---|
| AbstractList | •A modelling framework for multi-track, multi-layer and multi-material SLM.•Simulation of multi-material powder deposition in various patterns.•Effect of process parameters on balling effect, keyhole and lack of fusion.•Molten pool evolution of multi-material SLM on the same and across different layers.•Modelling of phase migration at the interface between two different materials.
Selective laser melting (SLM) is a promising powder-based additive manufacturing technology due to its capability to fabricate metallic components with complex geometries. While most previous investigations focus on printing with a single material, recent industry-orientated studies indicate the need for multi-material SLM in several high-value manufacturing sectors including medical devices, aerospace and automotive industries. However, understanding the underlying physics in multi-material SLM remains challenging due to the difficulties of experimental observation. In this paper, an integrated modelling framework for multi-track, multi-layer and multi-material SLM is developed to advance the in-depth understanding of this process. The main novelty is in modelling the molten pool evolvement and track morphology of multiple materials deposited on the same and across different layers. Discrete element method (DEM) is employed to reproduce the powder deposition process of multiple materials in different deposition patterns, with particle size distribution imported from a particle size analyser. Various phenomena including balling effect, keyhole depression, and lack of fusion between layers are investigated with different laser energy inputs. As a result of the different thermal properties, several process parameters including energy density and hatch spacing are optimised for different powder materials to obtain a continuous track profile and improved scanning efficiency. The interface between two layers of different materials is visualised by simulation; it was found that the phase migration at the interface is related to the convection flow inside the molten pool, which contributes to the mixing of the two materials and elemental diffusion. This study significantly contributes to the challenging area of multi-material additive manufacturing by providing a greater in-depth understanding of the SLM process from multi-material powder deposition to laser interaction with powders across multiple scanning tracks and different building layers than can be achieved by experimentation alone. Selective laser melting (SLM) is a promising powder-based additive manufacturing technology due to its capability to fabricate metallic components with complex geometries. While most previous investigations focus on printing with a single material, recent industry-orientated studies indicate the need for multi-material SLM in several high-value manufacturing sectors including medical devices, aerospace and automotive industries. However, understanding the underlying physics in multi-material SLM remains challenging due to the difficulties of experimental observation. In this paper, an integrated modelling framework for multi-track, multi-layer and multi-material SLM is developed to advance the in-depth understanding of this process. The main novelty is in modelling the molten pool evolvement and track morphology of multiple materials deposited on the same and across different layers. Discrete element method (DEM) is employed to reproduce the powder deposition process of multiple materials in different deposition patterns, with particle size distribution imported from a particle size analyser. Various phenomena including balling effect, keyhole depression, and lack of fusion between layers are investigated with different laser energy inputs. As a result of the different thermal properties, several process parameters including energy density and hatch spacing are optimised for different powder materials to obtain a continuous track profile and improved scanning efficiency. The interface between two layers of different materials is visualised by simulation; it was found that the phase migration at the interface is related to the convection flow inside the molten pool, which contributes to the mixing of the two materials and elemental diffusion. This study significantly contributes to the challenging area of multi-material additive manufacturing by providing a greater in-depth understanding of the SLM process from multi-material powder deposition to laser interaction with powders across multiple scanning tracks and different building layers than can be achieved by experimentation alone. |
| ArticleNumber | 119458 |
| Author | Li, Qian Ryan, Michael Li, Lin Han, Quanquan Setchi, Rossitza Wei, Chao Gu, Heng |
| Author_xml | – sequence: 1 givenname: Heng surname: Gu fullname: Gu, Heng email: GuH5@cardiff.ac.uk organization: Cardiff School of Engineering, Cardiff University, Cardiff CF24 3AA, UK – sequence: 2 givenname: Chao surname: Wei fullname: Wei, Chao organization: Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK – sequence: 3 givenname: Lin surname: Li fullname: Li, Lin organization: Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK – sequence: 4 givenname: Quanquan surname: Han fullname: Han, Quanquan organization: Cardiff School of Engineering, Cardiff University, Cardiff CF24 3AA, UK – sequence: 5 givenname: Rossitza surname: Setchi fullname: Setchi, Rossitza email: Setchi@cardiff.ac.uk organization: Cardiff School of Engineering, Cardiff University, Cardiff CF24 3AA, UK – sequence: 6 givenname: Michael surname: Ryan fullname: Ryan, Michael organization: Cardiff School of Engineering, Cardiff University, Cardiff CF24 3AA, UK – sequence: 7 givenname: Qian surname: Li fullname: Li, Qian organization: Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK |
| BookMark | eNqdkUFP3DAQha0KpC4L_8FSLxyaxY4TJ74VoW4LAnGBs-U6E3Bw7NT2brU_ov-53g0nemk5jZ7e0zejNyfoyHkHCJ1TsqKE8othZYZnUGlUMaagXOwhrEpSZpuKqm4_oAVtG1GUtBVHaEEIbQrBKPmITmIc9pJUfIF-321sMsX0vItGRzz6Dqw17gn7PgubwOHJe4s72IL10wguYeU6nFfqF9z7MKpkvMPG4fFAOhifX4VVOwiH_KxzGIJRFkewoJPZArYq5sgI2XZPp-i4VzbC2etcosf114er78Xt_bfrq8vbQrOKtQUIxngjWM2ZAEFANy1XpARKhGgbKElN6Q_VNw3XhBNSVpwqwVve9nUlVE3ZEl3O3I2b1O6XslZOwYwq7CQlct-vHOTf_cp9v3LuNzM-zYwp-J8biEkOfhNcPluWFavrqhT52CX6Mqd08DEG6N-zaP0GoU06tJ7jxv4P6GYGQa52a7IbtQGnoTMhf0N23vw77A-tZs93 |
| CitedBy_id | crossref_primary_10_1016_j_matchar_2022_112195 crossref_primary_10_1016_j_optlastec_2023_109355 crossref_primary_10_1016_j_addma_2023_103658 crossref_primary_10_3390_ma17143559 crossref_primary_10_1016_j_jallcom_2023_169215 crossref_primary_10_1098_rspa_2022_0386 crossref_primary_10_1016_j_tws_2024_112326 crossref_primary_10_1016_j_tws_2023_111513 crossref_primary_10_1016_j_heliyon_2022_e11725 crossref_primary_10_1016_j_actamat_2021_117331 crossref_primary_10_1080_09506608_2023_2169501 crossref_primary_10_1080_17452759_2022_2028343 crossref_primary_10_1016_j_addma_2023_103783 crossref_primary_10_1007_s42235_022_00257_2 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124521 crossref_primary_10_1016_j_mtcomm_2025_111883 crossref_primary_10_1016_j_compositesb_2024_111203 crossref_primary_10_1016_j_jmapro_2021_11_041 crossref_primary_10_1016_j_molliq_2023_123620 crossref_primary_10_1016_j_commatsci_2021_110415 crossref_primary_10_1016_j_jmapro_2021_11_037 crossref_primary_10_3390_ma14030512 crossref_primary_10_1021_acs_iecr_3c00706 crossref_primary_10_1016_j_addma_2022_102840 crossref_primary_10_1108_RPJ_07_2020_0151 crossref_primary_10_3390_mi14091765 crossref_primary_10_3390_jmmp7010015 crossref_primary_10_1038_s41524_023_01058_9 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124115 crossref_primary_10_1016_j_cma_2024_116754 crossref_primary_10_1007_s40430_023_04174_1 crossref_primary_10_1089_3dp_2023_0051 crossref_primary_10_1007_s00170_024_13662_0 crossref_primary_10_1016_j_optlastec_2025_112503 crossref_primary_10_1016_j_matlet_2024_136846 crossref_primary_10_1016_j_jmapro_2024_09_078 crossref_primary_10_1109_TIM_2023_3341124 crossref_primary_10_1016_j_psep_2024_03_119 crossref_primary_10_1016_j_ijthermalsci_2023_108221 crossref_primary_10_1007_s00170_023_11541_8 crossref_primary_10_1007_s00170_025_15192_9 crossref_primary_10_3390_jmmp6060153 crossref_primary_10_1016_j_addma_2023_103562 crossref_primary_10_1016_j_jmrt_2020_06_016 crossref_primary_10_1016_j_optlastec_2023_109246 crossref_primary_10_1016_j_powtec_2022_117789 crossref_primary_10_1016_j_ijrmhm_2023_106484 crossref_primary_10_1016_j_powtec_2021_09_005 crossref_primary_10_1016_j_cnsns_2024_108239 crossref_primary_10_2351_7_0000955 crossref_primary_10_1016_j_jmrt_2024_01_237 crossref_primary_10_1007_s40571_025_00916_1 crossref_primary_10_1007_s10845_021_01845_5 crossref_primary_10_29026_oea_2022_210058 crossref_primary_10_1016_j_applthermaleng_2025_125876 crossref_primary_10_1016_j_optlaseng_2025_108814 crossref_primary_10_1016_j_apm_2023_10_024 crossref_primary_10_1016_j_matdes_2024_113442 crossref_primary_10_1016_j_optlastec_2022_108587 crossref_primary_10_1016_j_msea_2023_145336 crossref_primary_10_1016_j_powtec_2021_117096 crossref_primary_10_1016_j_powtec_2022_117533 crossref_primary_10_1016_j_wear_2024_205422 crossref_primary_10_1016_j_jmatprotec_2024_118673 crossref_primary_10_3390_modelling5010020 crossref_primary_10_1007_s40964_021_00205_2 crossref_primary_10_1016_j_mser_2024_100834 crossref_primary_10_1016_j_ijmecsci_2021_106957 crossref_primary_10_1016_j_jmrt_2024_06_233 crossref_primary_10_1016_j_addma_2022_103069 crossref_primary_10_1016_j_jmrt_2024_06_115 crossref_primary_10_1007_s40195_021_01297_z crossref_primary_10_1016_j_addma_2024_104157 crossref_primary_10_1016_j_addma_2020_101683 crossref_primary_10_1088_2631_7990_ac5f10 crossref_primary_10_1016_j_addma_2022_102913 crossref_primary_10_1016_j_addma_2023_103503 crossref_primary_10_1080_17452759_2024_2313661 crossref_primary_10_1080_17452759_2022_2052488 crossref_primary_10_1016_j_ijmachtools_2023_104077 crossref_primary_10_1007_s11182_023_02926_z crossref_primary_10_1007_s10845_022_02004_0 crossref_primary_10_1007_s00170_024_14516_5 crossref_primary_10_1108_RPJ_01_2022_0014 crossref_primary_10_1016_j_cjmeam_2021_100010 crossref_primary_10_1016_j_jmapro_2025_01_067 crossref_primary_10_3788_CJL240627 crossref_primary_10_1080_17452759_2023_2235324 crossref_primary_10_1016_j_matdes_2023_111661 crossref_primary_10_1016_j_jallcom_2021_163256 crossref_primary_10_1016_j_addma_2022_103358 crossref_primary_10_55713_jmmm_v34i3_1861 crossref_primary_10_1016_j_cirp_2021_03_005 crossref_primary_10_1016_j_matchemphys_2022_126245 crossref_primary_10_1016_j_icheatmasstransfer_2023_106833 crossref_primary_10_1016_j_powtec_2021_11_056 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126452 crossref_primary_10_1016_j_ijthermalsci_2023_108816 crossref_primary_10_3390_met13091588 crossref_primary_10_3390_ma16124287 crossref_primary_10_1016_j_pmatsci_2021_100795 crossref_primary_10_1007_s11663_024_03104_3 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122855 crossref_primary_10_1016_j_jmatprotec_2024_118335 crossref_primary_10_1016_j_ijmecsci_2022_107389 crossref_primary_10_1016_j_addma_2024_104530 crossref_primary_10_1016_j_optlastec_2021_106947 crossref_primary_10_3390_met11121972 crossref_primary_10_1016_j_heliyon_2023_e18301 crossref_primary_10_3788_CJL231414 crossref_primary_10_1080_17452759_2021_1928520 crossref_primary_10_1016_j_optlastec_2022_107880 crossref_primary_10_1016_j_addma_2022_102654 crossref_primary_10_1016_j_apt_2021_09_036 crossref_primary_10_1016_j_jmapro_2021_02_044 crossref_primary_10_1016_j_mfglet_2024_09_120 crossref_primary_10_1016_j_cjmeam_2022_100017 crossref_primary_10_1016_j_ijplas_2023_103591 crossref_primary_10_1016_j_apmt_2021_101123 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121477 crossref_primary_10_1016_j_addma_2024_104365 crossref_primary_10_1016_j_jmatprotec_2021_117439 |
| Cites_doi | 10.1002/latj.201390001 10.1016/j.cirp.2018.04.096 10.1016/j.jmatprotec.2014.06.001 10.1016/0017-9310(87)90317-6 10.1016/0021-9991(92)90240-Y 10.1063/1.4937905 10.1016/j.powtec.2019.04.057 10.1016/0021-9991(81)90145-5 10.1007/s00170-018-1697-3 10.1016/j.proeng.2018.02.088 10.1533/9781845690144 10.1007/s00170-011-3566-1 10.1016/j.matdes.2018.10.043 10.1016/j.actamat.2016.06.022 10.1016/S0007-8506(07)60206-6 10.1179/1743284714Y.0000000728 10.1016/j.ijheatmasstransfer.2017.07.011 10.1016/0017-9310(89)90054-9 10.1016/j.jmatprotec.2003.11.051 10.1063/1.4935926 10.1016/j.matchar.2014.05.001 10.1016/j.actamat.2016.02.014 10.1007/s11665-018-3574-5 10.1016/j.proeng.2015.11.330 10.1115/1.4043983 10.1016/j.optlastec.2012.09.014 10.1086/146849 10.1016/j.phpro.2011.03.142 10.1016/j.jmatprotec.2017.11.032 10.1016/j.mfglet.2017.01.002 10.1016/j.actamat.2017.05.061 10.1007/s10035-016-0626-0 10.1016/j.ijheatmasstransfer.2019.07.053 10.1016/j.matchar.2015.07.007 10.1115/1.4043536 10.2320/jinstmet1952.37.6_668 10.1098/rspa.1971.0141 10.1016/j.actamat.2017.11.033 10.1016/j.actamat.2016.05.017 10.1016/j.apmt.2017.08.006 10.1007/s00466-018-1614-5 10.1016/j.matdes.2017.12.031 10.1016/j.procir.2018.08.160 10.1016/j.ijheatmasstransfer.2018.06.073 10.1016/j.actamat.2010.02.004 10.1016/j.commatsci.2016.10.011 10.1016/j.ijheatmasstransfer.2019.05.003 10.1016/j.ijheatmasstransfer.2019.06.038 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright Elsevier BV Apr 2020 |
| Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Apr 2020 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M ADTOC UNPAY |
| DOI | 10.1016/j.ijheatmasstransfer.2020.119458 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | oai:http://orca-dev.cardiff.ac.uk:129466 10_1016_j_ijheatmasstransfer_2020_119458 S0017931019358302 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 H8D KR7 L7M SSH ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3438-e93367935639e90ec786a02e109987e20511baf776c06002461a96868f549a513 |
| IEDL.DBID | .~1 |
| ISSN | 0017-9310 1879-2189 |
| IngestDate | Sun Oct 26 03:47:59 EDT 2025 Sat Jul 26 00:28:05 EDT 2025 Wed Oct 01 05:26:11 EDT 2025 Thu Apr 24 22:59:13 EDT 2025 Fri Feb 23 02:48:31 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Discrete element method (DEM) Additive manufacturing Selective laser melting (SLM) Heat transfer Computational fluid dynamics (CFD) Multi-material |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3438-e93367935639e90ec786a02e109987e20511baf776c06002461a96868f549a513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://orca.cardiff.ac.uk/id/eprint/129466/ |
| PQID | 2435542934 |
| PQPubID | 2045464 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ijheatmasstransfer_2020_119458 proquest_journals_2435542934 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119458 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119458 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119458 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 2020-04-00 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Matthews, Guss, Khairallah, Rubenchik, Depond, King (bib0015) 2016; 114 Tang, Tan, Wong (bib0023) 2018; 126 Levich (bib0057) 1962 Levy, Schindel, Kruth (bib0002) 2003; 52 Voller, Prakash (bib0040) 1987; 30 Shrestha, Rauniyar, Chou (bib0026) 2019; 28 Wei, Chueh, Zhang, Huang, Chen, Li (bib0010) 2019; 141 Khairallah, Anderson, Rubenchik, King (bib0014) 2016; 108 Demir, Previtali (bib0006) 2017; 11 Yan, Ge, Smith, Lin, Kafka, Lin (bib0044) 2016; 115 Sing, Lam, Zhang, Liu, Chua (bib0008) 2015; 107 Batchelor (bib0041) 2000 Trapp, Rubenchik, Guss, Matthews (bib0046) 2017; 9 Lee, Zhang (bib0032) 2016; 12 Li, Liu, Shi, Wang, Jiang (bib0056) 2012; 59 Zhang, Yang, Wang, Song, Chen (bib0009) 2019; 165 EDEM 2019 User Guide: DEM Solutions Ltd., Edinburgh, Scotland, UK. Copyright ©; 2018. Panwisawas, Qiu, Anderson, Sovani, Turner, Attallah (bib0022) 2017; 126 Arrizubieta, Lamikiz, Klocke, Martínez, Arntz, Ukar (bib0051) 2017; 115 Naeem (bib0047) 2013; 10 Han, Gu, Soe, Setchi, Lacan, Hill (bib0059) 2018; 160 Sorkin, Tan, Wong (bib0029) 2017; 216 Lu, Sridhar, Zhang (bib0020) 2018; 144 Yan, Ge, Qian, Lin, Zhou, Liu (bib0027) 2017; 134 Wei, Li, Zhang, Chueh (bib0011) 2018; 67 Zheng, Wei, Chen, Zhang, Zhong, Lin (bib0019) 2019; 140 K.C. Mills. Recommended values of thermophysical properties for selected commercial alloys: woodhead publishing; 2002. Spiegel, Veronis (bib0052) 1960; 131 Kawai, Kishimoto, Tsuru (bib0054) 1973; 37 Bayat, Mohanty, Hattel (bib0024) 2019; 139 King, Anderson, Ferencz, Hodge, Kamath, Khairallah (bib0018) 2015; 31 Eclipse Combustion Engineering Guide., 8th, United States of America: Eclipse, Inc., 1986 editor. Surface energy and the contact of elastic solids, in: Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 324, 1971, p. 301. Tseng, Aoh (bib0045) 2013; 48 Zhang, Zhang (bib0021) 2019; 28 Moharana, Sahu, Sahoo, Bathe (bib0036) 2016; 19 Voller, Brent, Prakash (bib0039) 1989; 32 Engler, Ramsayer, Poprawe (bib0048) 2011; 12 Yap, Chua, Dong, Liu, Zhang, Loh (bib0004) 2015; 2 Mannucci, Tomashchuk, Vignal, Sallamand, Duband (bib0037) 2018; 74 Brackbill, Kothe, Zemach (bib0050) 1992; 100 Gu, Yuan (bib0058) 2015; 118 Wei, Sun, Huang, Li (bib0012) 2018; 24 Yan, Qian, Ge, Lin, Liu, Lin (bib0028) 2018; 141 Liu, Zhang, Sing, Chua, Loh (bib0007) 2014; 94 Wu, San, Chang, Lin, Marwan, Baba (bib0017) 2018; 254 Jung-Ho, Dave, John, Kendall (bib0049) 2009; 42 Wang, Yan, Liu, Liu (bib0025) 2019; 63 Han, Gu, Setchi, Lacan, Johnston, Evans (bib0005) 2019; 30 Hirt, Nichols (bib0042) 1981; 39 Lee, Nandwana, Zhang (bib0033) 2018; 96 Kruth, Froyen, Van Vaerenbergh, Mercelis, Rombouts, Lauwers (bib0001) 2004; 149 Thijs, Verhaeghe, Craeghs, Humbeeck, Kruth (bib0003) 2010; 58 Han, Gu, Setchi (bib0030) 2019; 352 Cao (bib0038) 2019; 141 Shaibu, Sahoo, Kumar (bib0060) 2015; 127 Khairallah, Anderson (bib0016) 2014; 214 Wei, Sun, Chen, Liu, Li (bib0013) 2019; 141 Cho, Lim, Farson (bib0043) 2006; 85 Ganeriwala, Zohdi (bib0031) 2016; 18 Zheng (10.1016/j.ijheatmasstransfer.2020.119458_bib0019) 2019; 140 Hirt (10.1016/j.ijheatmasstransfer.2020.119458_bib0042) 1981; 39 Wu (10.1016/j.ijheatmasstransfer.2020.119458_bib0017) 2018; 254 Gu (10.1016/j.ijheatmasstransfer.2020.119458_bib0058) 2015; 118 Demir (10.1016/j.ijheatmasstransfer.2020.119458_bib0006) 2017; 11 Bayat (10.1016/j.ijheatmasstransfer.2020.119458_bib0024) 2019; 139 Thijs (10.1016/j.ijheatmasstransfer.2020.119458_bib0003) 2010; 58 Tang (10.1016/j.ijheatmasstransfer.2020.119458_bib0023) 2018; 126 Han (10.1016/j.ijheatmasstransfer.2020.119458_bib0059) 2018; 160 Naeem (10.1016/j.ijheatmasstransfer.2020.119458_bib0047) 2013; 10 Lee (10.1016/j.ijheatmasstransfer.2020.119458_bib0032) 2016; 12 10.1016/j.ijheatmasstransfer.2020.119458_bib0034 Sing (10.1016/j.ijheatmasstransfer.2020.119458_bib0008) 2015; 107 Ganeriwala (10.1016/j.ijheatmasstransfer.2020.119458_bib0031) 2016; 18 Arrizubieta (10.1016/j.ijheatmasstransfer.2020.119458_bib0051) 2017; 115 Kruth (10.1016/j.ijheatmasstransfer.2020.119458_bib0001) 2004; 149 Zhang (10.1016/j.ijheatmasstransfer.2020.119458_bib0009) 2019; 165 Cho (10.1016/j.ijheatmasstransfer.2020.119458_bib0043) 2006; 85 Levy (10.1016/j.ijheatmasstransfer.2020.119458_bib0002) 2003; 52 Yan (10.1016/j.ijheatmasstransfer.2020.119458_bib0028) 2018; 141 10.1016/j.ijheatmasstransfer.2020.119458_bib0035 Yan (10.1016/j.ijheatmasstransfer.2020.119458_bib0027) 2017; 134 Han (10.1016/j.ijheatmasstransfer.2020.119458_bib0005) 2019; 30 Khairallah (10.1016/j.ijheatmasstransfer.2020.119458_bib0016) 2014; 214 Zhang (10.1016/j.ijheatmasstransfer.2020.119458_bib0021) 2019; 28 Wei (10.1016/j.ijheatmasstransfer.2020.119458_bib0010) 2019; 141 Jung-Ho (10.1016/j.ijheatmasstransfer.2020.119458_bib0049) 2009; 42 Wei (10.1016/j.ijheatmasstransfer.2020.119458_bib0011) 2018; 67 King (10.1016/j.ijheatmasstransfer.2020.119458_bib0018) 2015; 31 Lu (10.1016/j.ijheatmasstransfer.2020.119458_bib0020) 2018; 144 Trapp (10.1016/j.ijheatmasstransfer.2020.119458_bib0046) 2017; 9 Kawai (10.1016/j.ijheatmasstransfer.2020.119458_bib0054) 1973; 37 Matthews (10.1016/j.ijheatmasstransfer.2020.119458_bib0015) 2016; 114 Liu (10.1016/j.ijheatmasstransfer.2020.119458_bib0007) 2014; 94 Tseng (10.1016/j.ijheatmasstransfer.2020.119458_bib0045) 2013; 48 Wei (10.1016/j.ijheatmasstransfer.2020.119458_bib0013) 2019; 141 Panwisawas (10.1016/j.ijheatmasstransfer.2020.119458_bib0022) 2017; 126 Moharana (10.1016/j.ijheatmasstransfer.2020.119458_bib0036) 2016; 19 Wang (10.1016/j.ijheatmasstransfer.2020.119458_bib0025) 2019; 63 Spiegel (10.1016/j.ijheatmasstransfer.2020.119458_bib0052) 1960; 131 Batchelor (10.1016/j.ijheatmasstransfer.2020.119458_bib0041) 2000 Engler (10.1016/j.ijheatmasstransfer.2020.119458_bib0048) 2011; 12 Khairallah (10.1016/j.ijheatmasstransfer.2020.119458_bib0014) 2016; 108 Mannucci (10.1016/j.ijheatmasstransfer.2020.119458_bib0037) 2018; 74 Levich (10.1016/j.ijheatmasstransfer.2020.119458_bib0057) 1962 10.1016/j.ijheatmasstransfer.2020.119458_bib0055 Lee (10.1016/j.ijheatmasstransfer.2020.119458_bib0033) 2018; 96 Shaibu (10.1016/j.ijheatmasstransfer.2020.119458_bib0060) 2015; 127 10.1016/j.ijheatmasstransfer.2020.119458_bib0053 Shrestha (10.1016/j.ijheatmasstransfer.2020.119458_bib0026) 2019; 28 Voller (10.1016/j.ijheatmasstransfer.2020.119458_bib0039) 1989; 32 Yap (10.1016/j.ijheatmasstransfer.2020.119458_bib0004) 2015; 2 Wei (10.1016/j.ijheatmasstransfer.2020.119458_bib0012) 2018; 24 Han (10.1016/j.ijheatmasstransfer.2020.119458_bib0030) 2019; 352 Voller (10.1016/j.ijheatmasstransfer.2020.119458_bib0040) 1987; 30 Cao (10.1016/j.ijheatmasstransfer.2020.119458_bib0038) 2019; 141 Sorkin (10.1016/j.ijheatmasstransfer.2020.119458_bib0029) 2017; 216 Li (10.1016/j.ijheatmasstransfer.2020.119458_bib0056) 2012; 59 Brackbill (10.1016/j.ijheatmasstransfer.2020.119458_bib0050) 1992; 100 Yan (10.1016/j.ijheatmasstransfer.2020.119458_bib0044) 2016; 115 |
| References_xml | – volume: 63 start-page: 649 year: 2019 end-page: 661 ident: bib0025 article-title: Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method publication-title: Comput. Mech. – year: 2000 ident: bib0041 article-title: An Introduction to Fluid Dynamics – volume: 67 start-page: 245 year: 2018 end-page: 248 ident: bib0011 article-title: 3D printing of multiple metallic materials via modified selective laser melting publication-title: CIRP Annals. – volume: 160 start-page: 1080 year: 2018 end-page: 1095 ident: bib0059 article-title: Manufacturability of AlSi10Mg overhang structures fabricated by laser powder bed fusion publication-title: Mater. Des. – volume: 12 start-page: 339 year: 2011 end-page: 346 ident: bib0048 article-title: Process studies on laser welding of copper with brilliant green and infrared lasers publication-title: Phys. Proc. – volume: 127 start-page: 208 year: 2015 end-page: 214 ident: bib0060 article-title: Computational modeling of dissimilar metal CO2 laser welding: applied to copper and 304 stainless steel publication-title: Proc. Eng. – volume: 18 start-page: 21 year: 2016 ident: bib0031 article-title: A coupled discrete element-finite difference model of selective laser sintering publication-title: Granular Matter. – volume: 52 start-page: 589 year: 2003 end-page: 609 ident: bib0002 article-title: RAPID manufacturing and rapid tooling with layer manufacturing (LM) TECHNOLOGIES, state of the art and future perspectives publication-title: CIRP Annals. – volume: 32 start-page: 1719 year: 1989 end-page: 1731 ident: bib0039 article-title: The modelling of heat, mass and solute transport in solidification systems publication-title: Int. J. Heat Mass Transfer. – volume: 216 start-page: 51 year: 2017 end-page: 57 ident: bib0029 article-title: Multi-material modelling for selective laser melting publication-title: Proc. Eng. – volume: 115 start-page: 403 year: 2016 end-page: 412 ident: bib0044 article-title: Multi-scale modeling of electron beam melting of functionally graded materials publication-title: Acta Mater. – volume: 28 start-page: 611 year: 2019 end-page: 619 ident: bib0026 article-title: Thermo-Fluid modeling of selective laser melting: single-Track formation incorporating metallic powder publication-title: J. Materials Eng. Perform. – reference: Surface energy and the contact of elastic solids, in: Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 324, 1971, p. 301. – volume: 10 start-page: 18 year: 2013 end-page: 20 ident: bib0047 article-title: Laser processing of reflective materials: a new technology managing reflection effects publication-title: Laser Technik J. – volume: 28 start-page: 750 year: 2019 end-page: 765 ident: bib0021 article-title: Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316 L stainless steel using combined computational fluid dynamics and cellular automata publication-title: Addit. Manuf. – volume: 141 start-page: 210 year: 2018 end-page: 219 ident: bib0028 article-title: Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation publication-title: Mater Des – volume: 107 start-page: 220 year: 2015 end-page: 227 ident: bib0008 article-title: Interfacial characterization of SLM parts in multi-material processing: intermetallic phase formation between alsi10mg and C18400 copper alloy publication-title: Materials Characteriz. – reference: K.C. Mills. Recommended values of thermophysical properties for selected commercial alloys: woodhead publishing; 2002. – volume: 149 start-page: 616 year: 2004 end-page: 622 ident: bib0001 article-title: Selective laser melting of iron-based powder publication-title: J. Materials Process. Technol. – volume: 144 start-page: 801 year: 2018 end-page: 809 ident: bib0020 article-title: Phase field simulation of powder bed-based additive manufacturing publication-title: Acta Mater. – volume: 139 start-page: 95 year: 2019 end-page: 114 ident: bib0024 article-title: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer publication-title: Int. J. Heat Mass Transfer. – reference: EDEM 2019 User Guide: DEM Solutions Ltd., Edinburgh, Scotland, UK. Copyright ©; 2018. – volume: 94 start-page: 116 year: 2014 end-page: 125 ident: bib0007 article-title: Interfacial characterization of SLM parts in multi-material processing: metallurgical diffusion between 316 L stainless steel and C18400 copper alloy publication-title: Materials Characteriz. – year: 1962 ident: bib0057 article-title: Physicochemical Hydrodynamics – volume: 352 start-page: 91 year: 2019 end-page: 102 ident: bib0030 article-title: Discrete element simulation of powder layer thickness in laser additive manufacturing publication-title: Powder Technol. – volume: 9 start-page: 341 year: 2017 end-page: 349 ident: bib0046 article-title: In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing publication-title: Appl. Materials Today. – volume: 2 year: 2015 ident: bib0004 article-title: Review of selective laser melting: materials and applications publication-title: Appl. Phys. Rev. – volume: 108 start-page: 36 year: 2016 end-page: 45 ident: bib0014 article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. – volume: 31 start-page: 957 year: 2015 end-page: 968 ident: bib0018 article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory publication-title: Materials Sci. Technol. – volume: 141 year: 2019 ident: bib0010 article-title: Easy-To-Remove composite support material and procedure in additive manufacturing of metallic components using multiple material laser-based powder bed fusion publication-title: J. Manuf. Sci. Eng. – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: bib0042 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. – volume: 59 start-page: 1025 year: 2012 end-page: 1035 ident: bib0056 article-title: Balling behavior of stainless steel and nickel powder during selective laser melting process publication-title: Int. J. Adv. Manuf. Technol. – volume: 214 start-page: 2627 year: 2014 end-page: 2636 ident: bib0016 article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder publication-title: J. Materials Process. Technol. – volume: 30 year: 2019 ident: bib0005 article-title: Additive manufacturing of high-strength crack-free Ni-based hastelloy X superalloy publication-title: Addit. Manuf. – volume: 96 start-page: 1507 year: 2018 end-page: 1520 ident: bib0033 article-title: Dynamic simulation of powder packing structure for powder bed additive manufacturing publication-title: Int. J.Adv. Manuf. Technol. – volume: 24 start-page: 1 year: 2018 end-page: 12 ident: bib0012 article-title: Embedding anti-counterfeiting features in metallic components via multiple material additive manufacturing publication-title: Addit. Manuf. – volume: 48 start-page: 141 year: 2013 end-page: 152 ident: bib0045 article-title: Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source publication-title: Optics Laser Technol. – volume: 141 year: 2019 ident: bib0013 article-title: Additive manufacturing of horizontal and 3D functionally graded 316 L/Cu10Sn components via multiple material selective laser melting publication-title: J. Manuf. Sci. Eng. – volume: 100 start-page: 335 year: 1992 end-page: 354 ident: bib0050 article-title: A continuum method for modeling surface tension publication-title: J. Comput. Phys. – volume: 165 year: 2019 ident: bib0009 article-title: Microstructure and mechanical properties of CuSn/18Ni300 bimetallic porous structures manufactured by selective laser melting publication-title: Materials Des. – volume: 74 start-page: 450 year: 2018 end-page: 455 ident: bib0037 article-title: Parametric study of laser welding of copper to austenitic stainless steel publication-title: Proc. CIRP. – volume: 85 start-page: 271 year: 2006 ident: bib0043 article-title: Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape publication-title: Weld J. – volume: 131 start-page: 442 year: 1960 end-page: 447 ident: bib0052 article-title: On the boussinesq approximation for a compressible fluid publication-title: Astrophys. J. – volume: 126 start-page: 957 year: 2018 end-page: 968 ident: bib0023 article-title: A numerical investigation on the physical mechanisms of single track defects in selective laser melting publication-title: Int. J. Heat Mass Transfer. – volume: 126 start-page: 479 year: 2017 end-page: 490 ident: bib0022 article-title: Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution publication-title: Comput. Materials Sci.. – volume: 11 start-page: 8 year: 2017 end-page: 11 ident: bib0006 article-title: Multi-material selective laser melting of Fe/Al-12Si components publication-title: Manuf. Lett. – volume: 19 start-page: 684 year: 2016 end-page: 690 ident: bib0036 article-title: Experimental investigation on mechanical and microstructural properties of AISI 304 to Cu joints by CO2 laser publication-title: Eng. Sci. Technol. Int. J. – volume: 42 year: 2009 ident: bib0049 article-title: Weld pool flows during initial stages of keyhole formation in laser welding publication-title: J. Phys. D – volume: 141 start-page: 1036 year: 2019 end-page: 1048 ident: bib0038 article-title: Numerical simulation of the impact of laying powder on selective laser melting single-pass formation publication-title: Int. J. Heat Mass Transfer. – volume: 115 start-page: 80 year: 2017 end-page: 91 ident: bib0051 article-title: Evaluation of the relevance of melt pool dynamics in laser material deposition process modeling publication-title: Int. J. Heat Mass Transfer. – volume: 118 year: 2015 ident: bib0058 article-title: Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: underlying role of reinforcement weight fraction publication-title: J. Appl. Phys. – volume: 12 start-page: 178 year: 2016 end-page: 188 ident: bib0032 article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion publication-title: Addit. Manuf. – volume: 58 start-page: 3303 year: 2010 end-page: 3312 ident: bib0003 article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V publication-title: Acta Material. – volume: 254 start-page: 72 year: 2018 end-page: 78 ident: bib0017 article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation publication-title: J. Materials Process. Technol. – volume: 37 start-page: 668 year: 1973 end-page: 672 ident: bib0054 article-title: Surface tension and density of liquid Cu-Sn alloys publication-title: J. Japan Inst. Metals. – reference: Eclipse Combustion Engineering Guide., 8th, United States of America: Eclipse, Inc., 1986 editor. – volume: 134 start-page: 324 year: 2017 end-page: 333 ident: bib0027 article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting publication-title: Acta Mater. – volume: 140 start-page: 1091 year: 2019 end-page: 1105 ident: bib0019 article-title: A novel method for the molten pool and porosity formation modelling in selective laser melting publication-title: Int. J. Heat Mass Transfer. – volume: 114 start-page: 33 year: 2016 end-page: 42 ident: bib0015 article-title: Denudation of metal powder layers in laser powder bed fusion processes publication-title: Acta Mater. – volume: 30 start-page: 1709 year: 1987 end-page: 1719 ident: bib0040 article-title: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems publication-title: Int. J. Heat Mass Transfer. – volume: 10 start-page: 18 issue: 1 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0047 article-title: Laser processing of reflective materials: a new technology managing reflection effects publication-title: Laser Technik J. doi: 10.1002/latj.201390001 – volume: 67 start-page: 245 issue: 1 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0011 article-title: 3D printing of multiple metallic materials via modified selective laser melting publication-title: CIRP Annals. doi: 10.1016/j.cirp.2018.04.096 – volume: 214 start-page: 2627 issue: 11 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0016 article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder publication-title: J. Materials Process. Technol. doi: 10.1016/j.jmatprotec.2014.06.001 – volume: 30 start-page: 1709 issue: 8 year: 1987 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0040 article-title: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems publication-title: Int. J. Heat Mass Transfer. doi: 10.1016/0017-9310(87)90317-6 – volume: 100 start-page: 335 issue: 2 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0050 article-title: A continuum method for modeling surface tension publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90240-Y – volume: 118 issue: 23 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0058 article-title: Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: underlying role of reinforcement weight fraction publication-title: J. Appl. Phys. doi: 10.1063/1.4937905 – volume: 352 start-page: 91 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0030 article-title: Discrete element simulation of powder layer thickness in laser additive manufacturing publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.04.057 – volume: 12 start-page: 178 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0032 article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion publication-title: Addit. Manuf. – volume: 39 start-page: 201 issue: 1 year: 1981 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0042 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume: 96 start-page: 1507 issue: 1 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0033 article-title: Dynamic simulation of powder packing structure for powder bed additive manufacturing publication-title: Int. J.Adv. Manuf. Technol. doi: 10.1007/s00170-018-1697-3 – volume: 165 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0009 article-title: Microstructure and mechanical properties of CuSn/18Ni300 bimetallic porous structures manufactured by selective laser melting publication-title: Materials Des. – volume: 216 start-page: 51 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0029 article-title: Multi-material modelling for selective laser melting publication-title: Proc. Eng. doi: 10.1016/j.proeng.2018.02.088 – volume: 85 start-page: 271 issue: 12 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0043 article-title: Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape publication-title: Weld J. – ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0053 doi: 10.1533/9781845690144 – volume: 59 start-page: 1025 issue: 9 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0056 article-title: Balling behavior of stainless steel and nickel powder during selective laser melting process publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3566-1 – volume: 160 start-page: 1080 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0059 article-title: Manufacturability of AlSi10Mg overhang structures fabricated by laser powder bed fusion publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.10.043 – volume: 28 start-page: 750 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0021 article-title: Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316 L stainless steel using combined computational fluid dynamics and cellular automata publication-title: Addit. Manuf. – volume: 115 start-page: 403 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0044 article-title: Multi-scale modeling of electron beam melting of functionally graded materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.06.022 – volume: 30 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0005 article-title: Additive manufacturing of high-strength crack-free Ni-based hastelloy X superalloy publication-title: Addit. Manuf. – volume: 52 start-page: 589 issue: 2 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0002 article-title: RAPID manufacturing and rapid tooling with layer manufacturing (LM) TECHNOLOGIES, state of the art and future perspectives publication-title: CIRP Annals. doi: 10.1016/S0007-8506(07)60206-6 – volume: 31 start-page: 957 issue: 8 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0018 article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory publication-title: Materials Sci. Technol. doi: 10.1179/1743284714Y.0000000728 – year: 1962 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0057 – volume: 115 start-page: 80 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0051 article-title: Evaluation of the relevance of melt pool dynamics in laser material deposition process modeling publication-title: Int. J. Heat Mass Transfer. doi: 10.1016/j.ijheatmasstransfer.2017.07.011 – volume: 32 start-page: 1719 issue: 9 year: 1989 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0039 article-title: The modelling of heat, mass and solute transport in solidification systems publication-title: Int. J. Heat Mass Transfer. doi: 10.1016/0017-9310(89)90054-9 – volume: 149 start-page: 616 issue: 1 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0001 article-title: Selective laser melting of iron-based powder publication-title: J. Materials Process. Technol. doi: 10.1016/j.jmatprotec.2003.11.051 – ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0034 – volume: 2 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0004 article-title: Review of selective laser melting: materials and applications publication-title: Appl. Phys. Rev. doi: 10.1063/1.4935926 – volume: 94 start-page: 116 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0007 article-title: Interfacial characterization of SLM parts in multi-material processing: metallurgical diffusion between 316 L stainless steel and C18400 copper alloy publication-title: Materials Characteriz. doi: 10.1016/j.matchar.2014.05.001 – volume: 108 start-page: 36 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0014 article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.02.014 – volume: 28 start-page: 611 issue: 2 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0026 article-title: Thermo-Fluid modeling of selective laser melting: single-Track formation incorporating metallic powder publication-title: J. Materials Eng. Perform. doi: 10.1007/s11665-018-3574-5 – year: 2000 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0041 – volume: 127 start-page: 208 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0060 article-title: Computational modeling of dissimilar metal CO2 laser welding: applied to copper and 304 stainless steel publication-title: Proc. Eng. doi: 10.1016/j.proeng.2015.11.330 – ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0055 – volume: 141 issue: 8 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0013 article-title: Additive manufacturing of horizontal and 3D functionally graded 316 L/Cu10Sn components via multiple material selective laser melting publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4043983 – volume: 48 start-page: 141 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0045 article-title: Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source publication-title: Optics Laser Technol. doi: 10.1016/j.optlastec.2012.09.014 – volume: 131 start-page: 442 issue: 2 year: 1960 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0052 article-title: On the boussinesq approximation for a compressible fluid publication-title: Astrophys. J. doi: 10.1086/146849 – volume: 24 start-page: 1 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0012 article-title: Embedding anti-counterfeiting features in metallic components via multiple material additive manufacturing publication-title: Addit. Manuf. – volume: 12 start-page: 339 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0048 article-title: Process studies on laser welding of copper with brilliant green and infrared lasers publication-title: Phys. Proc. doi: 10.1016/j.phpro.2011.03.142 – volume: 42 issue: 17 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0049 article-title: Weld pool flows during initial stages of keyhole formation in laser welding publication-title: J. Phys. D – volume: 254 start-page: 72 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0017 article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation publication-title: J. Materials Process. Technol. doi: 10.1016/j.jmatprotec.2017.11.032 – volume: 11 start-page: 8 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0006 article-title: Multi-material selective laser melting of Fe/Al-12Si components publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2017.01.002 – volume: 134 start-page: 324 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0027 article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.05.061 – volume: 19 start-page: 684 issue: 2 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0036 article-title: Experimental investigation on mechanical and microstructural properties of AISI 304 to Cu joints by CO2 laser publication-title: Eng. Sci. Technol. Int. J. – volume: 18 start-page: 21 issue: 2 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0031 article-title: A coupled discrete element-finite difference model of selective laser sintering publication-title: Granular Matter. doi: 10.1007/s10035-016-0626-0 – volume: 141 start-page: 1036 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0038 article-title: Numerical simulation of the impact of laying powder on selective laser melting single-pass formation publication-title: Int. J. Heat Mass Transfer. doi: 10.1016/j.ijheatmasstransfer.2019.07.053 – volume: 107 start-page: 220 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0008 article-title: Interfacial characterization of SLM parts in multi-material processing: intermetallic phase formation between alsi10mg and C18400 copper alloy publication-title: Materials Characteriz. doi: 10.1016/j.matchar.2015.07.007 – volume: 141 issue: 7 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0010 article-title: Easy-To-Remove composite support material and procedure in additive manufacturing of metallic components using multiple material laser-based powder bed fusion publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4043536 – volume: 37 start-page: 668 issue: 6 year: 1973 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0054 article-title: Surface tension and density of liquid Cu-Sn alloys publication-title: J. Japan Inst. Metals. doi: 10.2320/jinstmet1952.37.6_668 – ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0035 doi: 10.1098/rspa.1971.0141 – volume: 144 start-page: 801 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0020 article-title: Phase field simulation of powder bed-based additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.11.033 – volume: 114 start-page: 33 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0015 article-title: Denudation of metal powder layers in laser powder bed fusion processes publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.017 – volume: 9 start-page: 341 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0046 article-title: In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing publication-title: Appl. Materials Today. doi: 10.1016/j.apmt.2017.08.006 – volume: 63 start-page: 649 issue: 4 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0025 article-title: Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method publication-title: Comput. Mech. doi: 10.1007/s00466-018-1614-5 – volume: 141 start-page: 210 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0028 article-title: Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation publication-title: Mater Des doi: 10.1016/j.matdes.2017.12.031 – volume: 74 start-page: 450 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0037 article-title: Parametric study of laser welding of copper to austenitic stainless steel publication-title: Proc. CIRP. doi: 10.1016/j.procir.2018.08.160 – volume: 126 start-page: 957 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0023 article-title: A numerical investigation on the physical mechanisms of single track defects in selective laser melting publication-title: Int. J. Heat Mass Transfer. doi: 10.1016/j.ijheatmasstransfer.2018.06.073 – volume: 58 start-page: 3303 issue: 9 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0003 article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V publication-title: Acta Material. doi: 10.1016/j.actamat.2010.02.004 – volume: 126 start-page: 479 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0022 article-title: Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution publication-title: Comput. Materials Sci.. doi: 10.1016/j.commatsci.2016.10.011 – volume: 139 start-page: 95 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0024 article-title: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer l-PBF publication-title: Int. J. Heat Mass Transfer. doi: 10.1016/j.ijheatmasstransfer.2019.05.003 – volume: 140 start-page: 1091 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0019 article-title: A novel method for the molten pool and porosity formation modelling in selective laser melting publication-title: Int. J. Heat Mass Transfer. doi: 10.1016/j.ijheatmasstransfer.2019.06.038 |
| SSID | ssj0017046 |
| Score | 2.6479263 |
| Snippet | •A modelling framework for multi-track, multi-layer and multi-material SLM.•Simulation of multi-material powder deposition in various patterns.•Effect of... Selective laser melting (SLM) is a promising powder-based additive manufacturing technology due to its capability to fabricate metallic components with complex... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119458 |
| SubjectTerms | Additive manufacturing Aerospace industry Computational fluid dynamics (CFD) Computer simulation Convection Deposition Discrete element method Discrete element method (DEM) Experimentation Flux density Heat transfer Laser beam melting Lasers Melt pools Modelling Multi-material Multilayers Particle size Particle size distribution Process parameters Scanning Selective laser melting (SLM) Thermodynamic properties |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIuBU3mIrWvnAoQcM2cRx7F4qhEAICdRDV6Iny_E6EhCyaDerqv0P_c-dcZIFlR66QjlZGVu2Zjzz2Z4HwGHqohF-BS8KkXHhneDWWcWLnPBylHhn6aB4fSMvh-LqNr1dgqMuFmY8cZTwYULlQdpoKmSKp0uu-gRtk5DyZBlWZIoj9WBlePP19HunbHXSJB9QmeZoufQafHp257q7J-X2iIi0DojQUzLQmFSGFlTv_d9W6QXqXJ9VT_bnD1uWLwzQxQZcd1Nv_E4ejmd1fux-_ZXV8X_XtgnvWiTKThvR2YIlX23DavAIddMd-B1Cc3lz8zFloWIOha6zcYGNEqE2o_JcbPTsdcRsNWK4bvfA5jGR7K5iwWmRhx9HbaO0CPUDfdNG4rAV2DTU5UEVzBDWI8mjL8kxexeGF-ffzi55W7uBu0SgDvU6SSTu_RQRkNeRd5mSNoo9PcSpzMeoCwa5LbJMuoieBoUcWC2VVAUeWG06SPagV40rvw8stRaPAQhcklyJkXVaDVKn41j7rPDKqT586XhnXJvYnOprlKbzYLs3r7lviPum4X4f9HyEpybJxwJ9zzpxMS1oacCIQZu0wCgHnaSZVolMTSwIDCIeE334PJe-hWf4_i2dD6BXT2b-AyKvOv_Ybrg_IAc12A priority: 102 providerName: Unpaywall |
| Title | Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119458 https://www.proquest.com/docview/2435542934 https://orca.cardiff.ac.uk/id/eprint/129466/ |
| UnpaywallVersion | submittedVersion |
| Volume | 151 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AKRWK dateStart: 19600601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFH6Ejm69jK3baLY06LBDD_XqH7It91JCWMgaFsZoWHYSiiKDU9cNTcLYpf9B_-e-J9tJRnsJDB-EbFkI6fnTJ-t7egCfQ-1O8UqdNOWxw43mjtJKOOmE-LIbGK1oofh9GPVH_HIcjhvQrX1hSFZZYX-J6RatqztnVW-ezbOMfHzJuNCkaCsvsAdKch5TFIMv92uZhxe7pbMOoTGVfgknG41XNiPEu0GaurQ00dAJoT7hSMIpCPzzU9UWFX21Kubq7x-V51uzUu8NvK7oJOuULX4LDVMcwr6VderFO3iw_rVO-ftiwWzYG_I_Z7cpZnLky4xibLHpRjrEVDFl2E59zdaOjSwrmFUeOvbBaZXJFfJ1W77MY2Frz2xhg-sgjjLk5ljkxuSkrn4Po97Xq27fqQIwODrgCIQmCYII-zhEGmMS1-hYRMr1De2midj4-EF7E5XGcaRd2t_jkaeSSEQixVWnCr3gA-wVt4U5AhYqhVwe2UcwEXyqdCK8UCe-n5g4NUKLJlzUfS11dTo5BcnIZS1Dm8mnoyVptGQ5Wk1I1jXMy5M6dni3Ww-v_Mf6JE4sO9TSqi1DVkiwkD4nRoekijfhfG0tO7fw439p4Sc4oFypPGrB3vJuZY6RVC0nbfvVtOFF59ugP6R08PPXANPR8Efn9yP0_SvG |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4hEI8F8RTl6YGBgUAeTuKwIFRRFShMILFZrutILWla0SLEwj_gP3PnJAUESyWUybFjWfb58-f4Ox_AYajdDj6pk6Y8drjR3FFaCSdtE192A6MVbRRv76LmA79-DB9noF75wpCsssT-AtMtWpdvTsvePB12u-TjS8aFJkVHeQFdKDnHQz-mHdjJ-0Tn4cVu4a1DcEzFF-DoS-TV7RHk9ZGnji1PNHRFqE9AknCKAv_3WvWNiy6-5EP19qqy7Nuy1FiB5ZJPsouiyaswY_I1mLe6Tj1ahw_rYOsU_y9GzMa9IQd0NkgxkSFhZhRki3W-tENM5R2G7dRPbOLZyLo5s9JDx2Ycl4lMIWG35Ys0FrYGzUY2ug4CKUNyjkX6JiN59QY8NC7v602njMDg6IAjEpokCCLs5BB5jElco2MRKdc3dJwmYuPjjPbaKo3jSLt0wMcjTyWRiESK204VesEmzOaD3GwBC5VCMo_0I2gL3lE6EV6oE99PTJwaoUUNzqu-lrq8npyiZGSy0qH15O_RkjRashitGiSTGobFVR1TfFuvhlf-MD-JK8sUtexWliFLKBhJnxOlQ1bFa3A2sZapW7j9Ly08gMXm_W1Ltq7ubnZgiXIKGdIuzI6fX8weMqxxe9_OoE_s3SoI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIuBU3mIrWvnAoQcM2cRx7F4qhEAICdRDV6Iny_E6EhCyaDerqv0P_c-dcZIFlR66QjlZGVu2Zjzz2Z4HwGHqohF-BS8KkXHhneDWWcWLnPBylHhn6aB4fSMvh-LqNr1dgqMuFmY8cZTwYULlQdpoKmSKp0uu-gRtk5DyZBlWZIoj9WBlePP19HunbHXSJB9QmeZoufQafHp257q7J-X2iIi0DojQUzLQmFSGFlTv_d9W6QXqXJ9VT_bnD1uWLwzQxQZcd1Nv_E4ejmd1fux-_ZXV8X_XtgnvWiTKThvR2YIlX23DavAIddMd-B1Cc3lz8zFloWIOha6zcYGNEqE2o_JcbPTsdcRsNWK4bvfA5jGR7K5iwWmRhx9HbaO0CPUDfdNG4rAV2DTU5UEVzBDWI8mjL8kxexeGF-ffzi55W7uBu0SgDvU6SSTu_RQRkNeRd5mSNoo9PcSpzMeoCwa5LbJMuoieBoUcWC2VVAUeWG06SPagV40rvw8stRaPAQhcklyJkXVaDVKn41j7rPDKqT586XhnXJvYnOprlKbzYLs3r7lviPum4X4f9HyEpybJxwJ9zzpxMS1oacCIQZu0wCgHnaSZVolMTSwIDCIeE334PJe-hWf4_i2dD6BXT2b-AyKvOv_Ybrg_IAc12A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-physics+modelling+of+molten+pool+development+and+track+formation+in+multi-track%2C+multi-layer+and+multi-material+selective+laser+melting&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Gu%2C+Heng&rft.au=Wei%2C+Chao&rft.au=Li%2C+Lin&rft.au=Han%2C+Quanquan&rft.date=2020-04-01&rft.issn=0017-9310&rft.volume=151&rft.spage=119458&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119458&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_119458 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |