Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting

•A modelling framework for multi-track, multi-layer and multi-material SLM.•Simulation of multi-material powder deposition in various patterns.•Effect of process parameters on balling effect, keyhole and lack of fusion.•Molten pool evolution of multi-material SLM on the same and across different lay...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 151; p. 119458
Main Authors Gu, Heng, Wei, Chao, Li, Lin, Han, Quanquan, Setchi, Rossitza, Ryan, Michael, Li, Qian
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.04.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
1879-2189
DOI10.1016/j.ijheatmasstransfer.2020.119458

Cover

Abstract •A modelling framework for multi-track, multi-layer and multi-material SLM.•Simulation of multi-material powder deposition in various patterns.•Effect of process parameters on balling effect, keyhole and lack of fusion.•Molten pool evolution of multi-material SLM on the same and across different layers.•Modelling of phase migration at the interface between two different materials. Selective laser melting (SLM) is a promising powder-based additive manufacturing technology due to its capability to fabricate metallic components with complex geometries. While most previous investigations focus on printing with a single material, recent industry-orientated studies indicate the need for multi-material SLM in several high-value manufacturing sectors including medical devices, aerospace and automotive industries. However, understanding the underlying physics in multi-material SLM remains challenging due to the difficulties of experimental observation. In this paper, an integrated modelling framework for multi-track, multi-layer and multi-material SLM is developed to advance the in-depth understanding of this process. The main novelty is in modelling the molten pool evolvement and track morphology of multiple materials deposited on the same and across different layers. Discrete element method (DEM) is employed to reproduce the powder deposition process of multiple materials in different deposition patterns, with particle size distribution imported from a particle size analyser. Various phenomena including balling effect, keyhole depression, and lack of fusion between layers are investigated with different laser energy inputs. As a result of the different thermal properties, several process parameters including energy density and hatch spacing are optimised for different powder materials to obtain a continuous track profile and improved scanning efficiency. The interface between two layers of different materials is visualised by simulation; it was found that the phase migration at the interface is related to the convection flow inside the molten pool, which contributes to the mixing of the two materials and elemental diffusion. This study significantly contributes to the challenging area of multi-material additive manufacturing by providing a greater in-depth understanding of the SLM process from multi-material powder deposition to laser interaction with powders across multiple scanning tracks and different building layers than can be achieved by experimentation alone.
AbstractList •A modelling framework for multi-track, multi-layer and multi-material SLM.•Simulation of multi-material powder deposition in various patterns.•Effect of process parameters on balling effect, keyhole and lack of fusion.•Molten pool evolution of multi-material SLM on the same and across different layers.•Modelling of phase migration at the interface between two different materials. Selective laser melting (SLM) is a promising powder-based additive manufacturing technology due to its capability to fabricate metallic components with complex geometries. While most previous investigations focus on printing with a single material, recent industry-orientated studies indicate the need for multi-material SLM in several high-value manufacturing sectors including medical devices, aerospace and automotive industries. However, understanding the underlying physics in multi-material SLM remains challenging due to the difficulties of experimental observation. In this paper, an integrated modelling framework for multi-track, multi-layer and multi-material SLM is developed to advance the in-depth understanding of this process. The main novelty is in modelling the molten pool evolvement and track morphology of multiple materials deposited on the same and across different layers. Discrete element method (DEM) is employed to reproduce the powder deposition process of multiple materials in different deposition patterns, with particle size distribution imported from a particle size analyser. Various phenomena including balling effect, keyhole depression, and lack of fusion between layers are investigated with different laser energy inputs. As a result of the different thermal properties, several process parameters including energy density and hatch spacing are optimised for different powder materials to obtain a continuous track profile and improved scanning efficiency. The interface between two layers of different materials is visualised by simulation; it was found that the phase migration at the interface is related to the convection flow inside the molten pool, which contributes to the mixing of the two materials and elemental diffusion. This study significantly contributes to the challenging area of multi-material additive manufacturing by providing a greater in-depth understanding of the SLM process from multi-material powder deposition to laser interaction with powders across multiple scanning tracks and different building layers than can be achieved by experimentation alone.
Selective laser melting (SLM) is a promising powder-based additive manufacturing technology due to its capability to fabricate metallic components with complex geometries. While most previous investigations focus on printing with a single material, recent industry-orientated studies indicate the need for multi-material SLM in several high-value manufacturing sectors including medical devices, aerospace and automotive industries. However, understanding the underlying physics in multi-material SLM remains challenging due to the difficulties of experimental observation. In this paper, an integrated modelling framework for multi-track, multi-layer and multi-material SLM is developed to advance the in-depth understanding of this process. The main novelty is in modelling the molten pool evolvement and track morphology of multiple materials deposited on the same and across different layers. Discrete element method (DEM) is employed to reproduce the powder deposition process of multiple materials in different deposition patterns, with particle size distribution imported from a particle size analyser. Various phenomena including balling effect, keyhole depression, and lack of fusion between layers are investigated with different laser energy inputs. As a result of the different thermal properties, several process parameters including energy density and hatch spacing are optimised for different powder materials to obtain a continuous track profile and improved scanning efficiency. The interface between two layers of different materials is visualised by simulation; it was found that the phase migration at the interface is related to the convection flow inside the molten pool, which contributes to the mixing of the two materials and elemental diffusion. This study significantly contributes to the challenging area of multi-material additive manufacturing by providing a greater in-depth understanding of the SLM process from multi-material powder deposition to laser interaction with powders across multiple scanning tracks and different building layers than can be achieved by experimentation alone.
ArticleNumber 119458
Author Li, Qian
Ryan, Michael
Li, Lin
Han, Quanquan
Setchi, Rossitza
Wei, Chao
Gu, Heng
Author_xml – sequence: 1
  givenname: Heng
  surname: Gu
  fullname: Gu, Heng
  email: GuH5@cardiff.ac.uk
  organization: Cardiff School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
– sequence: 2
  givenname: Chao
  surname: Wei
  fullname: Wei, Chao
  organization: Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
– sequence: 3
  givenname: Lin
  surname: Li
  fullname: Li, Lin
  organization: Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
– sequence: 4
  givenname: Quanquan
  surname: Han
  fullname: Han, Quanquan
  organization: Cardiff School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
– sequence: 5
  givenname: Rossitza
  surname: Setchi
  fullname: Setchi, Rossitza
  email: Setchi@cardiff.ac.uk
  organization: Cardiff School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
– sequence: 6
  givenname: Michael
  surname: Ryan
  fullname: Ryan, Michael
  organization: Cardiff School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
– sequence: 7
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
BookMark eNqdkUFP3DAQha0KpC4L_8FSLxyaxY4TJ74VoW4LAnGBs-U6E3Bw7NT2brU_ov-53g0nemk5jZ7e0zejNyfoyHkHCJ1TsqKE8othZYZnUGlUMaagXOwhrEpSZpuKqm4_oAVtG1GUtBVHaEEIbQrBKPmITmIc9pJUfIF-321sMsX0vItGRzz6Dqw17gn7PgubwOHJe4s72IL10wguYeU6nFfqF9z7MKpkvMPG4fFAOhifX4VVOwiH_KxzGIJRFkewoJPZArYq5sgI2XZPp-i4VzbC2etcosf114er78Xt_bfrq8vbQrOKtQUIxngjWM2ZAEFANy1XpARKhGgbKElN6Q_VNw3XhBNSVpwqwVve9nUlVE3ZEl3O3I2b1O6XslZOwYwq7CQlct-vHOTf_cp9v3LuNzM-zYwp-J8biEkOfhNcPluWFavrqhT52CX6Mqd08DEG6N-zaP0GoU06tJ7jxv4P6GYGQa52a7IbtQGnoTMhf0N23vw77A-tZs93
CitedBy_id crossref_primary_10_1016_j_matchar_2022_112195
crossref_primary_10_1016_j_optlastec_2023_109355
crossref_primary_10_1016_j_addma_2023_103658
crossref_primary_10_3390_ma17143559
crossref_primary_10_1016_j_jallcom_2023_169215
crossref_primary_10_1098_rspa_2022_0386
crossref_primary_10_1016_j_tws_2024_112326
crossref_primary_10_1016_j_tws_2023_111513
crossref_primary_10_1016_j_heliyon_2022_e11725
crossref_primary_10_1016_j_actamat_2021_117331
crossref_primary_10_1080_09506608_2023_2169501
crossref_primary_10_1080_17452759_2022_2028343
crossref_primary_10_1016_j_addma_2023_103783
crossref_primary_10_1007_s42235_022_00257_2
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124521
crossref_primary_10_1016_j_mtcomm_2025_111883
crossref_primary_10_1016_j_compositesb_2024_111203
crossref_primary_10_1016_j_jmapro_2021_11_041
crossref_primary_10_1016_j_molliq_2023_123620
crossref_primary_10_1016_j_commatsci_2021_110415
crossref_primary_10_1016_j_jmapro_2021_11_037
crossref_primary_10_3390_ma14030512
crossref_primary_10_1021_acs_iecr_3c00706
crossref_primary_10_1016_j_addma_2022_102840
crossref_primary_10_1108_RPJ_07_2020_0151
crossref_primary_10_3390_mi14091765
crossref_primary_10_3390_jmmp7010015
crossref_primary_10_1038_s41524_023_01058_9
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124115
crossref_primary_10_1016_j_cma_2024_116754
crossref_primary_10_1007_s40430_023_04174_1
crossref_primary_10_1089_3dp_2023_0051
crossref_primary_10_1007_s00170_024_13662_0
crossref_primary_10_1016_j_optlastec_2025_112503
crossref_primary_10_1016_j_matlet_2024_136846
crossref_primary_10_1016_j_jmapro_2024_09_078
crossref_primary_10_1109_TIM_2023_3341124
crossref_primary_10_1016_j_psep_2024_03_119
crossref_primary_10_1016_j_ijthermalsci_2023_108221
crossref_primary_10_1007_s00170_023_11541_8
crossref_primary_10_1007_s00170_025_15192_9
crossref_primary_10_3390_jmmp6060153
crossref_primary_10_1016_j_addma_2023_103562
crossref_primary_10_1016_j_jmrt_2020_06_016
crossref_primary_10_1016_j_optlastec_2023_109246
crossref_primary_10_1016_j_powtec_2022_117789
crossref_primary_10_1016_j_ijrmhm_2023_106484
crossref_primary_10_1016_j_powtec_2021_09_005
crossref_primary_10_1016_j_cnsns_2024_108239
crossref_primary_10_2351_7_0000955
crossref_primary_10_1016_j_jmrt_2024_01_237
crossref_primary_10_1007_s40571_025_00916_1
crossref_primary_10_1007_s10845_021_01845_5
crossref_primary_10_29026_oea_2022_210058
crossref_primary_10_1016_j_applthermaleng_2025_125876
crossref_primary_10_1016_j_optlaseng_2025_108814
crossref_primary_10_1016_j_apm_2023_10_024
crossref_primary_10_1016_j_matdes_2024_113442
crossref_primary_10_1016_j_optlastec_2022_108587
crossref_primary_10_1016_j_msea_2023_145336
crossref_primary_10_1016_j_powtec_2021_117096
crossref_primary_10_1016_j_powtec_2022_117533
crossref_primary_10_1016_j_wear_2024_205422
crossref_primary_10_1016_j_jmatprotec_2024_118673
crossref_primary_10_3390_modelling5010020
crossref_primary_10_1007_s40964_021_00205_2
crossref_primary_10_1016_j_mser_2024_100834
crossref_primary_10_1016_j_ijmecsci_2021_106957
crossref_primary_10_1016_j_jmrt_2024_06_233
crossref_primary_10_1016_j_addma_2022_103069
crossref_primary_10_1016_j_jmrt_2024_06_115
crossref_primary_10_1007_s40195_021_01297_z
crossref_primary_10_1016_j_addma_2024_104157
crossref_primary_10_1016_j_addma_2020_101683
crossref_primary_10_1088_2631_7990_ac5f10
crossref_primary_10_1016_j_addma_2022_102913
crossref_primary_10_1016_j_addma_2023_103503
crossref_primary_10_1080_17452759_2024_2313661
crossref_primary_10_1080_17452759_2022_2052488
crossref_primary_10_1016_j_ijmachtools_2023_104077
crossref_primary_10_1007_s11182_023_02926_z
crossref_primary_10_1007_s10845_022_02004_0
crossref_primary_10_1007_s00170_024_14516_5
crossref_primary_10_1108_RPJ_01_2022_0014
crossref_primary_10_1016_j_cjmeam_2021_100010
crossref_primary_10_1016_j_jmapro_2025_01_067
crossref_primary_10_3788_CJL240627
crossref_primary_10_1080_17452759_2023_2235324
crossref_primary_10_1016_j_matdes_2023_111661
crossref_primary_10_1016_j_jallcom_2021_163256
crossref_primary_10_1016_j_addma_2022_103358
crossref_primary_10_55713_jmmm_v34i3_1861
crossref_primary_10_1016_j_cirp_2021_03_005
crossref_primary_10_1016_j_matchemphys_2022_126245
crossref_primary_10_1016_j_icheatmasstransfer_2023_106833
crossref_primary_10_1016_j_powtec_2021_11_056
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126452
crossref_primary_10_1016_j_ijthermalsci_2023_108816
crossref_primary_10_3390_met13091588
crossref_primary_10_3390_ma16124287
crossref_primary_10_1016_j_pmatsci_2021_100795
crossref_primary_10_1007_s11663_024_03104_3
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122855
crossref_primary_10_1016_j_jmatprotec_2024_118335
crossref_primary_10_1016_j_ijmecsci_2022_107389
crossref_primary_10_1016_j_addma_2024_104530
crossref_primary_10_1016_j_optlastec_2021_106947
crossref_primary_10_3390_met11121972
crossref_primary_10_1016_j_heliyon_2023_e18301
crossref_primary_10_3788_CJL231414
crossref_primary_10_1080_17452759_2021_1928520
crossref_primary_10_1016_j_optlastec_2022_107880
crossref_primary_10_1016_j_addma_2022_102654
crossref_primary_10_1016_j_apt_2021_09_036
crossref_primary_10_1016_j_jmapro_2021_02_044
crossref_primary_10_1016_j_mfglet_2024_09_120
crossref_primary_10_1016_j_cjmeam_2022_100017
crossref_primary_10_1016_j_ijplas_2023_103591
crossref_primary_10_1016_j_apmt_2021_101123
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121477
crossref_primary_10_1016_j_addma_2024_104365
crossref_primary_10_1016_j_jmatprotec_2021_117439
Cites_doi 10.1002/latj.201390001
10.1016/j.cirp.2018.04.096
10.1016/j.jmatprotec.2014.06.001
10.1016/0017-9310(87)90317-6
10.1016/0021-9991(92)90240-Y
10.1063/1.4937905
10.1016/j.powtec.2019.04.057
10.1016/0021-9991(81)90145-5
10.1007/s00170-018-1697-3
10.1016/j.proeng.2018.02.088
10.1533/9781845690144
10.1007/s00170-011-3566-1
10.1016/j.matdes.2018.10.043
10.1016/j.actamat.2016.06.022
10.1016/S0007-8506(07)60206-6
10.1179/1743284714Y.0000000728
10.1016/j.ijheatmasstransfer.2017.07.011
10.1016/0017-9310(89)90054-9
10.1016/j.jmatprotec.2003.11.051
10.1063/1.4935926
10.1016/j.matchar.2014.05.001
10.1016/j.actamat.2016.02.014
10.1007/s11665-018-3574-5
10.1016/j.proeng.2015.11.330
10.1115/1.4043983
10.1016/j.optlastec.2012.09.014
10.1086/146849
10.1016/j.phpro.2011.03.142
10.1016/j.jmatprotec.2017.11.032
10.1016/j.mfglet.2017.01.002
10.1016/j.actamat.2017.05.061
10.1007/s10035-016-0626-0
10.1016/j.ijheatmasstransfer.2019.07.053
10.1016/j.matchar.2015.07.007
10.1115/1.4043536
10.2320/jinstmet1952.37.6_668
10.1098/rspa.1971.0141
10.1016/j.actamat.2017.11.033
10.1016/j.actamat.2016.05.017
10.1016/j.apmt.2017.08.006
10.1007/s00466-018-1614-5
10.1016/j.matdes.2017.12.031
10.1016/j.procir.2018.08.160
10.1016/j.ijheatmasstransfer.2018.06.073
10.1016/j.actamat.2010.02.004
10.1016/j.commatsci.2016.10.011
10.1016/j.ijheatmasstransfer.2019.05.003
10.1016/j.ijheatmasstransfer.2019.06.038
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Apr 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Apr 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
ADTOC
UNPAY
DOI 10.1016/j.ijheatmasstransfer.2020.119458
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID oai:http://orca-dev.cardiff.ac.uk:129466
10_1016_j_ijheatmasstransfer_2020_119458
S0017931019358302
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
H8D
KR7
L7M
SSH
ADTOC
UNPAY
ID FETCH-LOGICAL-c3438-e93367935639e90ec786a02e109987e20511baf776c06002461a96868f549a513
IEDL.DBID .~1
ISSN 0017-9310
1879-2189
IngestDate Sun Oct 26 03:47:59 EDT 2025
Sat Jul 26 00:28:05 EDT 2025
Wed Oct 01 05:26:11 EDT 2025
Thu Apr 24 22:59:13 EDT 2025
Fri Feb 23 02:48:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Discrete element method (DEM)
Additive manufacturing
Selective laser melting (SLM)
Heat transfer
Computational fluid dynamics (CFD)
Multi-material
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3438-e93367935639e90ec786a02e109987e20511baf776c06002461a96868f549a513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://orca.cardiff.ac.uk/id/eprint/129466/
PQID 2435542934
PQPubID 2045464
ParticipantIDs unpaywall_primary_10_1016_j_ijheatmasstransfer_2020_119458
proquest_journals_2435542934
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119458
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119458
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119458
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Matthews, Guss, Khairallah, Rubenchik, Depond, King (bib0015) 2016; 114
Tang, Tan, Wong (bib0023) 2018; 126
Levich (bib0057) 1962
Levy, Schindel, Kruth (bib0002) 2003; 52
Voller, Prakash (bib0040) 1987; 30
Shrestha, Rauniyar, Chou (bib0026) 2019; 28
Wei, Chueh, Zhang, Huang, Chen, Li (bib0010) 2019; 141
Khairallah, Anderson, Rubenchik, King (bib0014) 2016; 108
Demir, Previtali (bib0006) 2017; 11
Yan, Ge, Smith, Lin, Kafka, Lin (bib0044) 2016; 115
Sing, Lam, Zhang, Liu, Chua (bib0008) 2015; 107
Batchelor (bib0041) 2000
Trapp, Rubenchik, Guss, Matthews (bib0046) 2017; 9
Lee, Zhang (bib0032) 2016; 12
Li, Liu, Shi, Wang, Jiang (bib0056) 2012; 59
Zhang, Yang, Wang, Song, Chen (bib0009) 2019; 165
EDEM 2019 User Guide: DEM Solutions Ltd., Edinburgh, Scotland, UK. Copyright ©; 2018.
Panwisawas, Qiu, Anderson, Sovani, Turner, Attallah (bib0022) 2017; 126
Arrizubieta, Lamikiz, Klocke, Martínez, Arntz, Ukar (bib0051) 2017; 115
Naeem (bib0047) 2013; 10
Han, Gu, Soe, Setchi, Lacan, Hill (bib0059) 2018; 160
Sorkin, Tan, Wong (bib0029) 2017; 216
Lu, Sridhar, Zhang (bib0020) 2018; 144
Yan, Ge, Qian, Lin, Zhou, Liu (bib0027) 2017; 134
Wei, Li, Zhang, Chueh (bib0011) 2018; 67
Zheng, Wei, Chen, Zhang, Zhong, Lin (bib0019) 2019; 140
K.C. Mills. Recommended values of thermophysical properties for selected commercial alloys: woodhead publishing; 2002.
Spiegel, Veronis (bib0052) 1960; 131
Kawai, Kishimoto, Tsuru (bib0054) 1973; 37
Bayat, Mohanty, Hattel (bib0024) 2019; 139
King, Anderson, Ferencz, Hodge, Kamath, Khairallah (bib0018) 2015; 31
Eclipse Combustion Engineering Guide., 8th, United States of America: Eclipse, Inc., 1986 editor.
Surface energy and the contact of elastic solids, in: Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 324, 1971, p. 301.
Tseng, Aoh (bib0045) 2013; 48
Zhang, Zhang (bib0021) 2019; 28
Moharana, Sahu, Sahoo, Bathe (bib0036) 2016; 19
Voller, Brent, Prakash (bib0039) 1989; 32
Engler, Ramsayer, Poprawe (bib0048) 2011; 12
Yap, Chua, Dong, Liu, Zhang, Loh (bib0004) 2015; 2
Mannucci, Tomashchuk, Vignal, Sallamand, Duband (bib0037) 2018; 74
Brackbill, Kothe, Zemach (bib0050) 1992; 100
Gu, Yuan (bib0058) 2015; 118
Wei, Sun, Huang, Li (bib0012) 2018; 24
Yan, Qian, Ge, Lin, Liu, Lin (bib0028) 2018; 141
Liu, Zhang, Sing, Chua, Loh (bib0007) 2014; 94
Wu, San, Chang, Lin, Marwan, Baba (bib0017) 2018; 254
Jung-Ho, Dave, John, Kendall (bib0049) 2009; 42
Wang, Yan, Liu, Liu (bib0025) 2019; 63
Han, Gu, Setchi, Lacan, Johnston, Evans (bib0005) 2019; 30
Hirt, Nichols (bib0042) 1981; 39
Lee, Nandwana, Zhang (bib0033) 2018; 96
Kruth, Froyen, Van Vaerenbergh, Mercelis, Rombouts, Lauwers (bib0001) 2004; 149
Thijs, Verhaeghe, Craeghs, Humbeeck, Kruth (bib0003) 2010; 58
Han, Gu, Setchi (bib0030) 2019; 352
Cao (bib0038) 2019; 141
Shaibu, Sahoo, Kumar (bib0060) 2015; 127
Khairallah, Anderson (bib0016) 2014; 214
Wei, Sun, Chen, Liu, Li (bib0013) 2019; 141
Cho, Lim, Farson (bib0043) 2006; 85
Ganeriwala, Zohdi (bib0031) 2016; 18
Zheng (10.1016/j.ijheatmasstransfer.2020.119458_bib0019) 2019; 140
Hirt (10.1016/j.ijheatmasstransfer.2020.119458_bib0042) 1981; 39
Wu (10.1016/j.ijheatmasstransfer.2020.119458_bib0017) 2018; 254
Gu (10.1016/j.ijheatmasstransfer.2020.119458_bib0058) 2015; 118
Demir (10.1016/j.ijheatmasstransfer.2020.119458_bib0006) 2017; 11
Bayat (10.1016/j.ijheatmasstransfer.2020.119458_bib0024) 2019; 139
Thijs (10.1016/j.ijheatmasstransfer.2020.119458_bib0003) 2010; 58
Tang (10.1016/j.ijheatmasstransfer.2020.119458_bib0023) 2018; 126
Han (10.1016/j.ijheatmasstransfer.2020.119458_bib0059) 2018; 160
Naeem (10.1016/j.ijheatmasstransfer.2020.119458_bib0047) 2013; 10
Lee (10.1016/j.ijheatmasstransfer.2020.119458_bib0032) 2016; 12
10.1016/j.ijheatmasstransfer.2020.119458_bib0034
Sing (10.1016/j.ijheatmasstransfer.2020.119458_bib0008) 2015; 107
Ganeriwala (10.1016/j.ijheatmasstransfer.2020.119458_bib0031) 2016; 18
Arrizubieta (10.1016/j.ijheatmasstransfer.2020.119458_bib0051) 2017; 115
Kruth (10.1016/j.ijheatmasstransfer.2020.119458_bib0001) 2004; 149
Zhang (10.1016/j.ijheatmasstransfer.2020.119458_bib0009) 2019; 165
Cho (10.1016/j.ijheatmasstransfer.2020.119458_bib0043) 2006; 85
Levy (10.1016/j.ijheatmasstransfer.2020.119458_bib0002) 2003; 52
Yan (10.1016/j.ijheatmasstransfer.2020.119458_bib0028) 2018; 141
10.1016/j.ijheatmasstransfer.2020.119458_bib0035
Yan (10.1016/j.ijheatmasstransfer.2020.119458_bib0027) 2017; 134
Han (10.1016/j.ijheatmasstransfer.2020.119458_bib0005) 2019; 30
Khairallah (10.1016/j.ijheatmasstransfer.2020.119458_bib0016) 2014; 214
Zhang (10.1016/j.ijheatmasstransfer.2020.119458_bib0021) 2019; 28
Wei (10.1016/j.ijheatmasstransfer.2020.119458_bib0010) 2019; 141
Jung-Ho (10.1016/j.ijheatmasstransfer.2020.119458_bib0049) 2009; 42
Wei (10.1016/j.ijheatmasstransfer.2020.119458_bib0011) 2018; 67
King (10.1016/j.ijheatmasstransfer.2020.119458_bib0018) 2015; 31
Lu (10.1016/j.ijheatmasstransfer.2020.119458_bib0020) 2018; 144
Trapp (10.1016/j.ijheatmasstransfer.2020.119458_bib0046) 2017; 9
Kawai (10.1016/j.ijheatmasstransfer.2020.119458_bib0054) 1973; 37
Matthews (10.1016/j.ijheatmasstransfer.2020.119458_bib0015) 2016; 114
Liu (10.1016/j.ijheatmasstransfer.2020.119458_bib0007) 2014; 94
Tseng (10.1016/j.ijheatmasstransfer.2020.119458_bib0045) 2013; 48
Wei (10.1016/j.ijheatmasstransfer.2020.119458_bib0013) 2019; 141
Panwisawas (10.1016/j.ijheatmasstransfer.2020.119458_bib0022) 2017; 126
Moharana (10.1016/j.ijheatmasstransfer.2020.119458_bib0036) 2016; 19
Wang (10.1016/j.ijheatmasstransfer.2020.119458_bib0025) 2019; 63
Spiegel (10.1016/j.ijheatmasstransfer.2020.119458_bib0052) 1960; 131
Batchelor (10.1016/j.ijheatmasstransfer.2020.119458_bib0041) 2000
Engler (10.1016/j.ijheatmasstransfer.2020.119458_bib0048) 2011; 12
Khairallah (10.1016/j.ijheatmasstransfer.2020.119458_bib0014) 2016; 108
Mannucci (10.1016/j.ijheatmasstransfer.2020.119458_bib0037) 2018; 74
Levich (10.1016/j.ijheatmasstransfer.2020.119458_bib0057) 1962
10.1016/j.ijheatmasstransfer.2020.119458_bib0055
Lee (10.1016/j.ijheatmasstransfer.2020.119458_bib0033) 2018; 96
Shaibu (10.1016/j.ijheatmasstransfer.2020.119458_bib0060) 2015; 127
10.1016/j.ijheatmasstransfer.2020.119458_bib0053
Shrestha (10.1016/j.ijheatmasstransfer.2020.119458_bib0026) 2019; 28
Voller (10.1016/j.ijheatmasstransfer.2020.119458_bib0039) 1989; 32
Yap (10.1016/j.ijheatmasstransfer.2020.119458_bib0004) 2015; 2
Wei (10.1016/j.ijheatmasstransfer.2020.119458_bib0012) 2018; 24
Han (10.1016/j.ijheatmasstransfer.2020.119458_bib0030) 2019; 352
Voller (10.1016/j.ijheatmasstransfer.2020.119458_bib0040) 1987; 30
Cao (10.1016/j.ijheatmasstransfer.2020.119458_bib0038) 2019; 141
Sorkin (10.1016/j.ijheatmasstransfer.2020.119458_bib0029) 2017; 216
Li (10.1016/j.ijheatmasstransfer.2020.119458_bib0056) 2012; 59
Brackbill (10.1016/j.ijheatmasstransfer.2020.119458_bib0050) 1992; 100
Yan (10.1016/j.ijheatmasstransfer.2020.119458_bib0044) 2016; 115
References_xml – volume: 63
  start-page: 649
  year: 2019
  end-page: 661
  ident: bib0025
  article-title: Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method
  publication-title: Comput. Mech.
– year: 2000
  ident: bib0041
  article-title: An Introduction to Fluid Dynamics
– volume: 67
  start-page: 245
  year: 2018
  end-page: 248
  ident: bib0011
  article-title: 3D printing of multiple metallic materials via modified selective laser melting
  publication-title: CIRP Annals.
– volume: 160
  start-page: 1080
  year: 2018
  end-page: 1095
  ident: bib0059
  article-title: Manufacturability of AlSi10Mg overhang structures fabricated by laser powder bed fusion
  publication-title: Mater. Des.
– volume: 12
  start-page: 339
  year: 2011
  end-page: 346
  ident: bib0048
  article-title: Process studies on laser welding of copper with brilliant green and infrared lasers
  publication-title: Phys. Proc.
– volume: 127
  start-page: 208
  year: 2015
  end-page: 214
  ident: bib0060
  article-title: Computational modeling of dissimilar metal CO2 laser welding: applied to copper and 304 stainless steel
  publication-title: Proc. Eng.
– volume: 18
  start-page: 21
  year: 2016
  ident: bib0031
  article-title: A coupled discrete element-finite difference model of selective laser sintering
  publication-title: Granular Matter.
– volume: 52
  start-page: 589
  year: 2003
  end-page: 609
  ident: bib0002
  article-title: RAPID manufacturing and rapid tooling with layer manufacturing (LM) TECHNOLOGIES, state of the art and future perspectives
  publication-title: CIRP Annals.
– volume: 32
  start-page: 1719
  year: 1989
  end-page: 1731
  ident: bib0039
  article-title: The modelling of heat, mass and solute transport in solidification systems
  publication-title: Int. J. Heat Mass Transfer.
– volume: 216
  start-page: 51
  year: 2017
  end-page: 57
  ident: bib0029
  article-title: Multi-material modelling for selective laser melting
  publication-title: Proc. Eng.
– volume: 115
  start-page: 403
  year: 2016
  end-page: 412
  ident: bib0044
  article-title: Multi-scale modeling of electron beam melting of functionally graded materials
  publication-title: Acta Mater.
– volume: 28
  start-page: 611
  year: 2019
  end-page: 619
  ident: bib0026
  article-title: Thermo-Fluid modeling of selective laser melting: single-Track formation incorporating metallic powder
  publication-title: J. Materials Eng. Perform.
– reference: Surface energy and the contact of elastic solids, in: Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 324, 1971, p. 301.
– volume: 10
  start-page: 18
  year: 2013
  end-page: 20
  ident: bib0047
  article-title: Laser processing of reflective materials: a new technology managing reflection effects
  publication-title: Laser Technik J.
– volume: 28
  start-page: 750
  year: 2019
  end-page: 765
  ident: bib0021
  article-title: Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316 L stainless steel using combined computational fluid dynamics and cellular automata
  publication-title: Addit. Manuf.
– volume: 141
  start-page: 210
  year: 2018
  end-page: 219
  ident: bib0028
  article-title: Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation
  publication-title: Mater Des
– volume: 107
  start-page: 220
  year: 2015
  end-page: 227
  ident: bib0008
  article-title: Interfacial characterization of SLM parts in multi-material processing: intermetallic phase formation between alsi10mg and C18400 copper alloy
  publication-title: Materials Characteriz.
– reference: K.C. Mills. Recommended values of thermophysical properties for selected commercial alloys: woodhead publishing; 2002.
– volume: 149
  start-page: 616
  year: 2004
  end-page: 622
  ident: bib0001
  article-title: Selective laser melting of iron-based powder
  publication-title: J. Materials Process. Technol.
– volume: 144
  start-page: 801
  year: 2018
  end-page: 809
  ident: bib0020
  article-title: Phase field simulation of powder bed-based additive manufacturing
  publication-title: Acta Mater.
– volume: 139
  start-page: 95
  year: 2019
  end-page: 114
  ident: bib0024
  article-title: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer
  publication-title: Int. J. Heat Mass Transfer.
– reference: EDEM 2019 User Guide: DEM Solutions Ltd., Edinburgh, Scotland, UK. Copyright ©; 2018.
– volume: 94
  start-page: 116
  year: 2014
  end-page: 125
  ident: bib0007
  article-title: Interfacial characterization of SLM parts in multi-material processing: metallurgical diffusion between 316 L stainless steel and C18400 copper alloy
  publication-title: Materials Characteriz.
– year: 1962
  ident: bib0057
  article-title: Physicochemical Hydrodynamics
– volume: 352
  start-page: 91
  year: 2019
  end-page: 102
  ident: bib0030
  article-title: Discrete element simulation of powder layer thickness in laser additive manufacturing
  publication-title: Powder Technol.
– volume: 9
  start-page: 341
  year: 2017
  end-page: 349
  ident: bib0046
  article-title: In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing
  publication-title: Appl. Materials Today.
– volume: 2
  year: 2015
  ident: bib0004
  article-title: Review of selective laser melting: materials and applications
  publication-title: Appl. Phys. Rev.
– volume: 108
  start-page: 36
  year: 2016
  end-page: 45
  ident: bib0014
  article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
– volume: 31
  start-page: 957
  year: 2015
  end-page: 968
  ident: bib0018
  article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory
  publication-title: Materials Sci. Technol.
– volume: 141
  year: 2019
  ident: bib0010
  article-title: Easy-To-Remove composite support material and procedure in additive manufacturing of metallic components using multiple material laser-based powder bed fusion
  publication-title: J. Manuf. Sci. Eng.
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: bib0042
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
– volume: 59
  start-page: 1025
  year: 2012
  end-page: 1035
  ident: bib0056
  article-title: Balling behavior of stainless steel and nickel powder during selective laser melting process
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 214
  start-page: 2627
  year: 2014
  end-page: 2636
  ident: bib0016
  article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder
  publication-title: J. Materials Process. Technol.
– volume: 30
  year: 2019
  ident: bib0005
  article-title: Additive manufacturing of high-strength crack-free Ni-based hastelloy X superalloy
  publication-title: Addit. Manuf.
– volume: 96
  start-page: 1507
  year: 2018
  end-page: 1520
  ident: bib0033
  article-title: Dynamic simulation of powder packing structure for powder bed additive manufacturing
  publication-title: Int. J.Adv. Manuf. Technol.
– volume: 24
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0012
  article-title: Embedding anti-counterfeiting features in metallic components via multiple material additive manufacturing
  publication-title: Addit. Manuf.
– volume: 48
  start-page: 141
  year: 2013
  end-page: 152
  ident: bib0045
  article-title: Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source
  publication-title: Optics Laser Technol.
– volume: 141
  year: 2019
  ident: bib0013
  article-title: Additive manufacturing of horizontal and 3D functionally graded 316 L/Cu10Sn components via multiple material selective laser melting
  publication-title: J. Manuf. Sci. Eng.
– volume: 100
  start-page: 335
  year: 1992
  end-page: 354
  ident: bib0050
  article-title: A continuum method for modeling surface tension
  publication-title: J. Comput. Phys.
– volume: 165
  year: 2019
  ident: bib0009
  article-title: Microstructure and mechanical properties of CuSn/18Ni300 bimetallic porous structures manufactured by selective laser melting
  publication-title: Materials Des.
– volume: 74
  start-page: 450
  year: 2018
  end-page: 455
  ident: bib0037
  article-title: Parametric study of laser welding of copper to austenitic stainless steel
  publication-title: Proc. CIRP.
– volume: 85
  start-page: 271
  year: 2006
  ident: bib0043
  article-title: Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape
  publication-title: Weld J.
– volume: 131
  start-page: 442
  year: 1960
  end-page: 447
  ident: bib0052
  article-title: On the boussinesq approximation for a compressible fluid
  publication-title: Astrophys. J.
– volume: 126
  start-page: 957
  year: 2018
  end-page: 968
  ident: bib0023
  article-title: A numerical investigation on the physical mechanisms of single track defects in selective laser melting
  publication-title: Int. J. Heat Mass Transfer.
– volume: 126
  start-page: 479
  year: 2017
  end-page: 490
  ident: bib0022
  article-title: Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution
  publication-title: Comput. Materials Sci..
– volume: 11
  start-page: 8
  year: 2017
  end-page: 11
  ident: bib0006
  article-title: Multi-material selective laser melting of Fe/Al-12Si components
  publication-title: Manuf. Lett.
– volume: 19
  start-page: 684
  year: 2016
  end-page: 690
  ident: bib0036
  article-title: Experimental investigation on mechanical and microstructural properties of AISI 304 to Cu joints by CO2 laser
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 42
  year: 2009
  ident: bib0049
  article-title: Weld pool flows during initial stages of keyhole formation in laser welding
  publication-title: J. Phys. D
– volume: 141
  start-page: 1036
  year: 2019
  end-page: 1048
  ident: bib0038
  article-title: Numerical simulation of the impact of laying powder on selective laser melting single-pass formation
  publication-title: Int. J. Heat Mass Transfer.
– volume: 115
  start-page: 80
  year: 2017
  end-page: 91
  ident: bib0051
  article-title: Evaluation of the relevance of melt pool dynamics in laser material deposition process modeling
  publication-title: Int. J. Heat Mass Transfer.
– volume: 118
  year: 2015
  ident: bib0058
  article-title: Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: underlying role of reinforcement weight fraction
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 178
  year: 2016
  end-page: 188
  ident: bib0032
  article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 58
  start-page: 3303
  year: 2010
  end-page: 3312
  ident: bib0003
  article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V
  publication-title: Acta Material.
– volume: 254
  start-page: 72
  year: 2018
  end-page: 78
  ident: bib0017
  article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation
  publication-title: J. Materials Process. Technol.
– volume: 37
  start-page: 668
  year: 1973
  end-page: 672
  ident: bib0054
  article-title: Surface tension and density of liquid Cu-Sn alloys
  publication-title: J. Japan Inst. Metals.
– reference: Eclipse Combustion Engineering Guide., 8th, United States of America: Eclipse, Inc., 1986 editor.
– volume: 134
  start-page: 324
  year: 2017
  end-page: 333
  ident: bib0027
  article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting
  publication-title: Acta Mater.
– volume: 140
  start-page: 1091
  year: 2019
  end-page: 1105
  ident: bib0019
  article-title: A novel method for the molten pool and porosity formation modelling in selective laser melting
  publication-title: Int. J. Heat Mass Transfer.
– volume: 114
  start-page: 33
  year: 2016
  end-page: 42
  ident: bib0015
  article-title: Denudation of metal powder layers in laser powder bed fusion processes
  publication-title: Acta Mater.
– volume: 30
  start-page: 1709
  year: 1987
  end-page: 1719
  ident: bib0040
  article-title: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems
  publication-title: Int. J. Heat Mass Transfer.
– volume: 10
  start-page: 18
  issue: 1
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0047
  article-title: Laser processing of reflective materials: a new technology managing reflection effects
  publication-title: Laser Technik J.
  doi: 10.1002/latj.201390001
– volume: 67
  start-page: 245
  issue: 1
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0011
  article-title: 3D printing of multiple metallic materials via modified selective laser melting
  publication-title: CIRP Annals.
  doi: 10.1016/j.cirp.2018.04.096
– volume: 214
  start-page: 2627
  issue: 11
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0016
  article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder
  publication-title: J. Materials Process. Technol.
  doi: 10.1016/j.jmatprotec.2014.06.001
– volume: 30
  start-page: 1709
  issue: 8
  year: 1987
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0040
  article-title: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems
  publication-title: Int. J. Heat Mass Transfer.
  doi: 10.1016/0017-9310(87)90317-6
– volume: 100
  start-page: 335
  issue: 2
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0050
  article-title: A continuum method for modeling surface tension
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90240-Y
– volume: 118
  issue: 23
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0058
  article-title: Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: underlying role of reinforcement weight fraction
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4937905
– volume: 352
  start-page: 91
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0030
  article-title: Discrete element simulation of powder layer thickness in laser additive manufacturing
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.04.057
– volume: 12
  start-page: 178
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0032
  article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 39
  start-page: 201
  issue: 1
  year: 1981
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0042
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– volume: 96
  start-page: 1507
  issue: 1
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0033
  article-title: Dynamic simulation of powder packing structure for powder bed additive manufacturing
  publication-title: Int. J.Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-1697-3
– volume: 165
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0009
  article-title: Microstructure and mechanical properties of CuSn/18Ni300 bimetallic porous structures manufactured by selective laser melting
  publication-title: Materials Des.
– volume: 216
  start-page: 51
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0029
  article-title: Multi-material modelling for selective laser melting
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2018.02.088
– volume: 85
  start-page: 271
  issue: 12
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0043
  article-title: Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape
  publication-title: Weld J.
– ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0053
  doi: 10.1533/9781845690144
– volume: 59
  start-page: 1025
  issue: 9
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0056
  article-title: Balling behavior of stainless steel and nickel powder during selective laser melting process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3566-1
– volume: 160
  start-page: 1080
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0059
  article-title: Manufacturability of AlSi10Mg overhang structures fabricated by laser powder bed fusion
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.10.043
– volume: 28
  start-page: 750
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0021
  article-title: Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316 L stainless steel using combined computational fluid dynamics and cellular automata
  publication-title: Addit. Manuf.
– volume: 115
  start-page: 403
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0044
  article-title: Multi-scale modeling of electron beam melting of functionally graded materials
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.06.022
– volume: 30
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0005
  article-title: Additive manufacturing of high-strength crack-free Ni-based hastelloy X superalloy
  publication-title: Addit. Manuf.
– volume: 52
  start-page: 589
  issue: 2
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0002
  article-title: RAPID manufacturing and rapid tooling with layer manufacturing (LM) TECHNOLOGIES, state of the art and future perspectives
  publication-title: CIRP Annals.
  doi: 10.1016/S0007-8506(07)60206-6
– volume: 31
  start-page: 957
  issue: 8
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0018
  article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory
  publication-title: Materials Sci. Technol.
  doi: 10.1179/1743284714Y.0000000728
– year: 1962
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0057
– volume: 115
  start-page: 80
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0051
  article-title: Evaluation of the relevance of melt pool dynamics in laser material deposition process modeling
  publication-title: Int. J. Heat Mass Transfer.
  doi: 10.1016/j.ijheatmasstransfer.2017.07.011
– volume: 32
  start-page: 1719
  issue: 9
  year: 1989
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0039
  article-title: The modelling of heat, mass and solute transport in solidification systems
  publication-title: Int. J. Heat Mass Transfer.
  doi: 10.1016/0017-9310(89)90054-9
– volume: 149
  start-page: 616
  issue: 1
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0001
  article-title: Selective laser melting of iron-based powder
  publication-title: J. Materials Process. Technol.
  doi: 10.1016/j.jmatprotec.2003.11.051
– ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0034
– volume: 2
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0004
  article-title: Review of selective laser melting: materials and applications
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4935926
– volume: 94
  start-page: 116
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0007
  article-title: Interfacial characterization of SLM parts in multi-material processing: metallurgical diffusion between 316 L stainless steel and C18400 copper alloy
  publication-title: Materials Characteriz.
  doi: 10.1016/j.matchar.2014.05.001
– volume: 108
  start-page: 36
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0014
  article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.02.014
– volume: 28
  start-page: 611
  issue: 2
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0026
  article-title: Thermo-Fluid modeling of selective laser melting: single-Track formation incorporating metallic powder
  publication-title: J. Materials Eng. Perform.
  doi: 10.1007/s11665-018-3574-5
– year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0041
– volume: 127
  start-page: 208
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0060
  article-title: Computational modeling of dissimilar metal CO2 laser welding: applied to copper and 304 stainless steel
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2015.11.330
– ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0055
– volume: 141
  issue: 8
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0013
  article-title: Additive manufacturing of horizontal and 3D functionally graded 316 L/Cu10Sn components via multiple material selective laser melting
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4043983
– volume: 48
  start-page: 141
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0045
  article-title: Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source
  publication-title: Optics Laser Technol.
  doi: 10.1016/j.optlastec.2012.09.014
– volume: 131
  start-page: 442
  issue: 2
  year: 1960
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0052
  article-title: On the boussinesq approximation for a compressible fluid
  publication-title: Astrophys. J.
  doi: 10.1086/146849
– volume: 24
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0012
  article-title: Embedding anti-counterfeiting features in metallic components via multiple material additive manufacturing
  publication-title: Addit. Manuf.
– volume: 12
  start-page: 339
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0048
  article-title: Process studies on laser welding of copper with brilliant green and infrared lasers
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2011.03.142
– volume: 42
  issue: 17
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0049
  article-title: Weld pool flows during initial stages of keyhole formation in laser welding
  publication-title: J. Phys. D
– volume: 254
  start-page: 72
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0017
  article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation
  publication-title: J. Materials Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.11.032
– volume: 11
  start-page: 8
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0006
  article-title: Multi-material selective laser melting of Fe/Al-12Si components
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2017.01.002
– volume: 134
  start-page: 324
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0027
  article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.05.061
– volume: 19
  start-page: 684
  issue: 2
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0036
  article-title: Experimental investigation on mechanical and microstructural properties of AISI 304 to Cu joints by CO2 laser
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 18
  start-page: 21
  issue: 2
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0031
  article-title: A coupled discrete element-finite difference model of selective laser sintering
  publication-title: Granular Matter.
  doi: 10.1007/s10035-016-0626-0
– volume: 141
  start-page: 1036
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0038
  article-title: Numerical simulation of the impact of laying powder on selective laser melting single-pass formation
  publication-title: Int. J. Heat Mass Transfer.
  doi: 10.1016/j.ijheatmasstransfer.2019.07.053
– volume: 107
  start-page: 220
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0008
  article-title: Interfacial characterization of SLM parts in multi-material processing: intermetallic phase formation between alsi10mg and C18400 copper alloy
  publication-title: Materials Characteriz.
  doi: 10.1016/j.matchar.2015.07.007
– volume: 141
  issue: 7
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0010
  article-title: Easy-To-Remove composite support material and procedure in additive manufacturing of metallic components using multiple material laser-based powder bed fusion
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4043536
– volume: 37
  start-page: 668
  issue: 6
  year: 1973
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0054
  article-title: Surface tension and density of liquid Cu-Sn alloys
  publication-title: J. Japan Inst. Metals.
  doi: 10.2320/jinstmet1952.37.6_668
– ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0035
  doi: 10.1098/rspa.1971.0141
– volume: 144
  start-page: 801
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0020
  article-title: Phase field simulation of powder bed-based additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.11.033
– volume: 114
  start-page: 33
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0015
  article-title: Denudation of metal powder layers in laser powder bed fusion processes
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.017
– volume: 9
  start-page: 341
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0046
  article-title: In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing
  publication-title: Appl. Materials Today.
  doi: 10.1016/j.apmt.2017.08.006
– volume: 63
  start-page: 649
  issue: 4
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0025
  article-title: Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1614-5
– volume: 141
  start-page: 210
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0028
  article-title: Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.12.031
– volume: 74
  start-page: 450
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0037
  article-title: Parametric study of laser welding of copper to austenitic stainless steel
  publication-title: Proc. CIRP.
  doi: 10.1016/j.procir.2018.08.160
– volume: 126
  start-page: 957
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0023
  article-title: A numerical investigation on the physical mechanisms of single track defects in selective laser melting
  publication-title: Int. J. Heat Mass Transfer.
  doi: 10.1016/j.ijheatmasstransfer.2018.06.073
– volume: 58
  start-page: 3303
  issue: 9
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0003
  article-title: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V
  publication-title: Acta Material.
  doi: 10.1016/j.actamat.2010.02.004
– volume: 126
  start-page: 479
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0022
  article-title: Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution
  publication-title: Comput. Materials Sci..
  doi: 10.1016/j.commatsci.2016.10.011
– volume: 139
  start-page: 95
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0024
  article-title: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer l-PBF
  publication-title: Int. J. Heat Mass Transfer.
  doi: 10.1016/j.ijheatmasstransfer.2019.05.003
– volume: 140
  start-page: 1091
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119458_bib0019
  article-title: A novel method for the molten pool and porosity formation modelling in selective laser melting
  publication-title: Int. J. Heat Mass Transfer.
  doi: 10.1016/j.ijheatmasstransfer.2019.06.038
SSID ssj0017046
Score 2.6479263
Snippet •A modelling framework for multi-track, multi-layer and multi-material SLM.•Simulation of multi-material powder deposition in various patterns.•Effect of...
Selective laser melting (SLM) is a promising powder-based additive manufacturing technology due to its capability to fabricate metallic components with complex...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119458
SubjectTerms Additive manufacturing
Aerospace industry
Computational fluid dynamics (CFD)
Computer simulation
Convection
Deposition
Discrete element method
Discrete element method (DEM)
Experimentation
Flux density
Heat transfer
Laser beam melting
Lasers
Melt pools
Modelling
Multi-material
Multilayers
Particle size
Particle size distribution
Process parameters
Scanning
Selective laser melting (SLM)
Thermodynamic properties
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIuBU3mIrWvnAoQcM2cRx7F4qhEAICdRDV6Iny_E6EhCyaDerqv0P_c-dcZIFlR66QjlZGVu2Zjzz2Z4HwGHqohF-BS8KkXHhneDWWcWLnPBylHhn6aB4fSMvh-LqNr1dgqMuFmY8cZTwYULlQdpoKmSKp0uu-gRtk5DyZBlWZIoj9WBlePP19HunbHXSJB9QmeZoufQafHp257q7J-X2iIi0DojQUzLQmFSGFlTv_d9W6QXqXJ9VT_bnD1uWLwzQxQZcd1Nv_E4ejmd1fux-_ZXV8X_XtgnvWiTKThvR2YIlX23DavAIddMd-B1Cc3lz8zFloWIOha6zcYGNEqE2o_JcbPTsdcRsNWK4bvfA5jGR7K5iwWmRhx9HbaO0CPUDfdNG4rAV2DTU5UEVzBDWI8mjL8kxexeGF-ffzi55W7uBu0SgDvU6SSTu_RQRkNeRd5mSNoo9PcSpzMeoCwa5LbJMuoieBoUcWC2VVAUeWG06SPagV40rvw8stRaPAQhcklyJkXVaDVKn41j7rPDKqT586XhnXJvYnOprlKbzYLs3r7lviPum4X4f9HyEpybJxwJ9zzpxMS1oacCIQZu0wCgHnaSZVolMTSwIDCIeE334PJe-hWf4_i2dD6BXT2b-AyKvOv_Ybrg_IAc12A
  priority: 102
  providerName: Unpaywall
Title Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119458
https://www.proquest.com/docview/2435542934
https://orca.cardiff.ac.uk/id/eprint/129466/
UnpaywallVersion submittedVersion
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AKRWK
  dateStart: 19600601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFH6Ejm69jK3baLY06LBDD_XqH7It91JCWMgaFsZoWHYSiiKDU9cNTcLYpf9B_-e-J9tJRnsJDB-EbFkI6fnTJ-t7egCfQ-1O8UqdNOWxw43mjtJKOOmE-LIbGK1oofh9GPVH_HIcjhvQrX1hSFZZYX-J6RatqztnVW-ezbOMfHzJuNCkaCsvsAdKch5TFIMv92uZhxe7pbMOoTGVfgknG41XNiPEu0GaurQ00dAJoT7hSMIpCPzzU9UWFX21Kubq7x-V51uzUu8NvK7oJOuULX4LDVMcwr6VderFO3iw_rVO-ftiwWzYG_I_Z7cpZnLky4xibLHpRjrEVDFl2E59zdaOjSwrmFUeOvbBaZXJFfJ1W77MY2Frz2xhg-sgjjLk5ljkxuSkrn4Po97Xq27fqQIwODrgCIQmCYII-zhEGmMS1-hYRMr1De2midj4-EF7E5XGcaRd2t_jkaeSSEQixVWnCr3gA-wVt4U5AhYqhVwe2UcwEXyqdCK8UCe-n5g4NUKLJlzUfS11dTo5BcnIZS1Dm8mnoyVptGQ5Wk1I1jXMy5M6dni3Ww-v_Mf6JE4sO9TSqi1DVkiwkD4nRoekijfhfG0tO7fw439p4Sc4oFypPGrB3vJuZY6RVC0nbfvVtOFF59ugP6R08PPXANPR8Efn9yP0_SvG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4hEI8F8RTl6YGBgUAeTuKwIFRRFShMILFZrutILWla0SLEwj_gP3PnJAUESyWUybFjWfb58-f4Ox_AYajdDj6pk6Y8drjR3FFaCSdtE192A6MVbRRv76LmA79-DB9noF75wpCsssT-AtMtWpdvTsvePB12u-TjS8aFJkVHeQFdKDnHQz-mHdjJ-0Tn4cVu4a1DcEzFF-DoS-TV7RHk9ZGnji1PNHRFqE9AknCKAv_3WvWNiy6-5EP19qqy7Nuy1FiB5ZJPsouiyaswY_I1mLe6Tj1ahw_rYOsU_y9GzMa9IQd0NkgxkSFhZhRki3W-tENM5R2G7dRPbOLZyLo5s9JDx2Ycl4lMIWG35Ys0FrYGzUY2ug4CKUNyjkX6JiN59QY8NC7v602njMDg6IAjEpokCCLs5BB5jElco2MRKdc3dJwmYuPjjPbaKo3jSLt0wMcjTyWRiESK204VesEmzOaD3GwBC5VCMo_0I2gL3lE6EV6oE99PTJwaoUUNzqu-lrq8npyiZGSy0qH15O_RkjRashitGiSTGobFVR1TfFuvhlf-MD-JK8sUtexWliFLKBhJnxOlQ1bFa3A2sZapW7j9Ly08gMXm_W1Ltq7ubnZgiXIKGdIuzI6fX8weMqxxe9_OoE_s3SoI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIuBU3mIrWvnAoQcM2cRx7F4qhEAICdRDV6Iny_E6EhCyaDerqv0P_c-dcZIFlR66QjlZGVu2Zjzz2Z4HwGHqohF-BS8KkXHhneDWWcWLnPBylHhn6aB4fSMvh-LqNr1dgqMuFmY8cZTwYULlQdpoKmSKp0uu-gRtk5DyZBlWZIoj9WBlePP19HunbHXSJB9QmeZoufQafHp257q7J-X2iIi0DojQUzLQmFSGFlTv_d9W6QXqXJ9VT_bnD1uWLwzQxQZcd1Nv_E4ejmd1fux-_ZXV8X_XtgnvWiTKThvR2YIlX23DavAIddMd-B1Cc3lz8zFloWIOha6zcYGNEqE2o_JcbPTsdcRsNWK4bvfA5jGR7K5iwWmRhx9HbaO0CPUDfdNG4rAV2DTU5UEVzBDWI8mjL8kxexeGF-ffzi55W7uBu0SgDvU6SSTu_RQRkNeRd5mSNoo9PcSpzMeoCwa5LbJMuoieBoUcWC2VVAUeWG06SPagV40rvw8stRaPAQhcklyJkXVaDVKn41j7rPDKqT586XhnXJvYnOprlKbzYLs3r7lviPum4X4f9HyEpybJxwJ9zzpxMS1oacCIQZu0wCgHnaSZVolMTSwIDCIeE334PJe-hWf4_i2dD6BXT2b-AyKvOv_Ybrg_IAc12A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-physics+modelling+of+molten+pool+development+and+track+formation+in+multi-track%2C+multi-layer+and+multi-material+selective+laser+melting&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Gu%2C+Heng&rft.au=Wei%2C+Chao&rft.au=Li%2C+Lin&rft.au=Han%2C+Quanquan&rft.date=2020-04-01&rft.issn=0017-9310&rft.volume=151&rft.spage=119458&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119458&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_119458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon