Multivariate Shannon's entropy for adaptive IIR filtering via kernel density estimators
In supervised infinite impulse response adaptive filtering, approximate gradient-based approaches are the usual option among optimisation methods. When based on the mean squared error (MSE) criterion, however, these approaches may present biased solutions in noisy scenarios. In that sense, instead o...
Saved in:
| Published in | Electronics letters Vol. 55; no. 15; pp. 859 - 861 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
The Institution of Engineering and Technology
25.07.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0013-5194 1350-911X 1350-911X |
| DOI | 10.1049/el.2019.1430 |
Cover
| Abstract | In supervised infinite impulse response adaptive filtering, approximate gradient-based approaches are the usual option among optimisation methods. When based on the mean squared error (MSE) criterion, however, these approaches may present biased solutions in noisy scenarios. In that sense, instead of the MSE, the authors propose the use of Shannon's error entropy, an information theoretic learning criterion, which is able to extract higher order statistics from the underlying signals. In particular, a multivariate entropy definition is considered, which is applied to derive a Recursive Prediction Error-based algorithm. The performance analyses are carried out in the context of the supervised channel equalisation problem, with results very favourable to the proposal, in high and low noise level environments. |
|---|---|
| AbstractList | In supervised infinite impulse response adaptive filtering, approximate gradient-based approaches are the usual option among optimisation methods. When based on the mean squared error (MSE) criterion, however, these approaches may present biased solutions in noisy scenarios. In that sense, instead of the MSE, the authors propose the use of Shannon's error entropy, an information theoretic learning criterion, which is able to extract higher order statistics from the underlying signals. In particular, a multivariate entropy definition is considered, which is applied to derive a Recursive Prediction Error-based algorithm. The performance analyses are carried out in the context of the supervised channel equalisation problem, with results very favourable to the proposal, in high and low noise level environments. |
| Author | Fantinato, D.G Neves, A Silva, D.G Attux, R |
| Author_xml | – sequence: 1 givenname: D.G surname: Fantinato fullname: Fantinato, D.G email: denis.fantinato@ufabc.edu.br organization: Federal University of ABC, Santo André, SP, Brazil – sequence: 2 givenname: D.G surname: Silva fullname: Silva, D.G organization: University of Brasília, Brasília, DF, Brazil – sequence: 3 givenname: R surname: Attux fullname: Attux, R organization: University of Campinas, Campinas, SP, Brazil – sequence: 4 givenname: A surname: Neves fullname: Neves, A organization: Federal University of ABC, Santo André, SP, Brazil |
| BookMark | eNp9kD1PwzAURS1UJErpxg_wgAQDKX6209QjVC1UCkLiQ7BFTvwChpBUtluUf0-qMiAETG85976rs096dVMjIYfARsCkOsNqxBmoEUjBdkgfRMwiBfDUI33GQEQxKLlHht7bnIEEOWYS-uTxelUFu9bO6oD07kXXXe2xp1gH1yxbWjaOaqOXHYN0sbilpa0COls_07XV9A1djRU1WHsbWoo-2HcdGucPyG6pK4_DrzsgD_PZ_fQqSm8uF9PzNCqEFHEUF4lieZkXmBgGJkkKM0k4qDwGbsaotSyU4jxRIBSfKGO0UUZwXkwEJLk0YkD4trdwjfcOy6ywQQfbdPu1rTJg2cZOhlW2sZNt7HSh0x-hpet2u_YvPN7iH7bC9l82m6Upv5izcSziLneyzVkM2WuzcnVn4q8XR7-gs_Rb89KU4hPQdpGX |
| CitedBy_id | crossref_primary_10_1049_el_2020_0698 |
| Cites_doi | 10.1007/s00034-017-0543-4 10.1109/TIT.1984.1056883 10.1109/TSP.2002.1011217 10.1109/SP-M.2006.248709 10.1007/978-1-4419-1570-2 10.1109/53.29644 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/el.2019.1430 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | 861 |
| ExternalDocumentID | 10_1049_el_2019_1430 ELL2BF06535 |
| Genre | rapidPublication |
| GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2017/11488-5 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 305621/2015-17 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 305621/2015‐17 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo funderid: 2017/11488‐5 |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3435-5c790bfbce7d01d77cd87219b512d6eaa4c992279139289ddad9d322c8317b4d3 |
| IEDL.DBID | IDLOA |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Thu Apr 24 23:00:10 EDT 2025 Wed Oct 29 21:26:05 EDT 2025 Wed Jan 22 16:59:09 EST 2025 Tue Jan 05 21:45:33 EST 2021 Fri Jul 26 18:41:03 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | mean squared error criterion IIR filters kernel density estimators Shannon's error entropy multivariate entropy definition optimisation entropy adaptive IIR supervised infinite impulse response adaptive filtering Recursive Prediction Error-based algorithm equalisers learning (artificial intelligence) mean square error methods gradient methods noisy scenarios MSE approximate gradient-based approaches adaptive filters optimisation methods filtering theory information theoretic learning criterion higher order statistics usual option underlying signals Shannon's entropy supervised channel equalisation problem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3435-5c790bfbce7d01d77cd87219b512d6eaa4c992279139289ddad9d322c8317b4d3 |
| PageCount | 3 |
| ParticipantIDs | iet_journals_10_1049_el_2019_1430 crossref_citationtrail_10_1049_el_2019_1430 crossref_primary_10_1049_el_2019_1430 wiley_primary_10_1049_el_2019_1430_ELL2BF06535 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-25 |
| PublicationDateYYYYMMDD | 2019-07-25 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2019 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Erdogmus, D.; Principe, J. (C8) 2006; 23 Lai, C.-A. (C10) 2006; 1 Erdogmus, D.; Principe, J.C. (C15) 2002; 50 Fantinato, D.G.; Neves, A.; Attux, R. (C7) 2018; 23 Johnson, C. (C2) 1984; 30 Shynk, J. (C1) 1989; 6 1984; 30 1994; 90 2006; 23 2011 2010 2002; 50 1989; 6 1985 2005 2003 2006; 1 2014 2018; 23 Treichler J. (e_1_2_7_4_1) 1985 e_1_2_7_3_1 Lai C.‐A. (e_1_2_7_6_1) 2003 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Romano J.M.T. (e_1_2_7_14_1) 2010 e_1_2_7_16_1 e_1_2_7_2_1 Regalia P. (e_1_2_7_5_1) 1994 Lai C.‐A. (e_1_2_7_11_1) 2006; 1 Comon P. (e_1_2_7_12_1) 2010 Fantinato D. (e_1_2_7_13_1) 2014 Silva L. (e_1_2_7_10_1) 2005 Hongxing Y. (e_1_2_7_15_1) 2011 |
| References_xml | – volume: 23 start-page: 203 issue: 1 year: 2018 end-page: 231 ident: C7 article-title: Analysis of a novel density matching criterion within the ITL framework for blind channel equalization publication-title: Circ. Syst. Signal Process. – volume: 50 start-page: 1780 issue: 7 year: 2002 end-page: 1786 ident: C15 article-title: An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems publication-title: Trans. Signal Process. – volume: 23 start-page: 14 issue: 6 year: 2006 end-page: 33 ident: C8 article-title: From linear adaptive filtering to nonlinear information processing publication-title: Signal Process. Mag. – volume: 30 start-page: 237 issue: 2 year: 1984 end-page: 250 ident: C2 article-title: Adaptive IIR filtering: current results and open issues publication-title: Trans. Inf. Theory – volume: 1 start-page: 67 issue: 2 year: 2006 end-page: 72 ident: C10 article-title: Global optimization of adaptive IIR filters using Renyi's quadratic entropy publication-title: J. Adv. Eng. – volume: 6 start-page: 4 issue: 2 year: 1989 end-page: 21 ident: C1 article-title: Adaptive IIR filtering publication-title: ASSP Mag. – volume: 30 start-page: 237 issue: 2 year: 1984 end-page: 250 article-title: Adaptive IIR filtering: current results and open issues publication-title: Trans. Inf. Theory – year: 1985 – volume: 90 year: 1994 – volume: 50 start-page: 1780 issue: 7 year: 2002 end-page: 1786 article-title: An error‐entropy minimization algorithm for supervised training of nonlinear adaptive systems publication-title: Trans. Signal Process. – volume: 23 start-page: 203 issue: 1 year: 2018 end-page: 231 article-title: Analysis of a novel density matching criterion within the ITL framework for blind channel equalization publication-title: Circ. Syst. Signal Process. – volume: 6 start-page: 4 issue: 2 year: 1989 end-page: 21 article-title: Adaptive IIR filtering publication-title: ASSP Mag. – start-page: 217 year: 2005 end-page: 222 – volume: 23 start-page: 14 issue: 6 year: 2006 end-page: 33 article-title: From linear adaptive filtering to nonlinear information processing publication-title: Signal Process. Mag. – volume: 1 start-page: 67 issue: 2 year: 2006 end-page: 72 article-title: Global optimization of adaptive IIR filters using Renyi's quadratic entropy publication-title: J. Adv. Eng. – start-page: 197 year: 2003 end-page: 200 – start-page: 699 year: 2011 end-page: 701 – year: 2010 – start-page: 1 year: 2014 end-page: 18 – volume-title: Handbook of blind source separation: independent component analysis and applications year: 2010 ident: e_1_2_7_12_1 – ident: e_1_2_7_8_1 doi: 10.1007/s00034-017-0543-4 – volume: 1 start-page: 67 issue: 2 year: 2006 ident: e_1_2_7_11_1 article-title: Global optimization of adaptive IIR filters using Renyi's quadratic entropy publication-title: J. Adv. Eng. – volume-title: Adaptive IIR filtering in signal processing and control year: 1994 ident: e_1_2_7_5_1 – start-page: 1 volume-title: Multivariate PDF matching via kernel density estimation year: 2014 ident: e_1_2_7_13_1 – ident: e_1_2_7_3_1 doi: 10.1109/TIT.1984.1056883 – start-page: 699 volume-title: Simplified RPE algorithm and its fixed‐point implementation year: 2011 ident: e_1_2_7_15_1 – ident: e_1_2_7_16_1 doi: 10.1109/TSP.2002.1011217 – ident: e_1_2_7_9_1 doi: 10.1109/SP-M.2006.248709 – volume-title: Unsupervised signal processing: channel equalization and source separation year: 2010 ident: e_1_2_7_14_1 – volume-title: Adaptive algorithms for infinite impulse response filters, Adaptive filters year: 1985 ident: e_1_2_7_4_1 – ident: e_1_2_7_7_1 doi: 10.1007/978-1-4419-1570-2 – start-page: 197 volume-title: Echo cancellation by global optimization of kautz filters using an information theoretic criterion year: 2003 ident: e_1_2_7_6_1 – ident: e_1_2_7_2_1 doi: 10.1109/53.29644 – start-page: 217 volume-title: Neural network classification using Shannon's entropy year: 2005 ident: e_1_2_7_10_1 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.2911935 |
| Snippet | In supervised infinite impulse response adaptive filtering, approximate gradient-based approaches are the usual option among optimisation methods. When based... In supervised infinite impulse response adaptive filtering, approximate gradient‐based approaches are the usual option among optimisation methods. When based... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 859 |
| SubjectTerms | adaptive filters adaptive IIR approximate gradient‐based approaches entropy equalisers filtering theory gradient methods higher order statistics IIR filters information theoretic learning criterion kernel density estimators learning (artificial intelligence) mean square error methods mean squared error criterion MSE multivariate entropy definition noisy scenarios optimisation optimisation methods Recursive Prediction Error‐based algorithm Shannon's entropy Shannon's error entropy Signal processing supervised channel equalisation problem supervised infinite impulse response adaptive filtering underlying signals usual option |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPrFqZQXFgwTz2DTJUaWllSqiFnsLuzsbLNYa2ljov3cmibU9VPCazJBksrPzfbO7M4ydRdJ3pROCpTE2WiLxXUuZUFpSRRopdggi34x5_1BvdcVdz--VCTc6C1PUh5gl3Mgz8vmaHFyqogsJglr6ibRw4ETo6h5S9jUHoQyNcFc8zlYRcKrNm6t4vk1O3Ss3vqP-1bz2Qkha7ZtsEajmkaa5xTZLiMivi3-6zVbMcIdtzBUO3GWv-bnZCfJchIr8-U0OkcVfjDmlaj_TKUckyiXIlOYy3m4_8aRPq-Koyyd9yd_NCL-eA21ez6acCm18EPke77Fus_Fy27LKFgmW9hDoWL4OIlslSpsAbAeCQEOInC5SGMehbqQUmgrPBlT8E6kVgIQI0Id1iLhBCfD2WQVf0BwwbjyF5CzxUFIjJ1HSscNEuSCNSOwE7Cq7_LFSrMv64dTGYhDn69giis0gJpvGZNMqO59Jp0XdjCVyp2jwuHSc8RKZ2oJMo_N7L04hqbJioPz5INTquDdNKsXrH_5X4Yit03XK6br-Matkoy9TQzCSqZN8xH0De2PVUg priority: 102 providerName: Wiley-Blackwell |
| Title | Multivariate Shannon's entropy for adaptive IIR filtering via kernel density estimators |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2019.1430 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2019.1430 |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: IDLOA dateStart: 20130103 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEB5q-6IP4on1KCsoPkg0x8Ykj17FShXxQN_C7s5Gi7UWrYL_3pk0qVZQfAtkNhtmj_m-2dkZgI1Ehb7yYnQM2UZHZqHvaBsrR-nEEMWOUebBmGfneyc38vQuvKtAWYwTO_dcK8MpPW7sLbfDmwccuk378G6h42FBEsK3u5ZPELyE1nxA3L3mEzH3q1BrHbULdkVTy5O0I7hyFP1BVi6JyuIGBGJkERP_83tj1mqCfmUcw-ZGqDkD0wV6FPvD4Z6Fiu3NwdS3nILzcJtfqX0nCkwoUlw9qB4R_K1XwV7c5_6HIJAqFKo-b3Oi1boUWYcPzKmteO8o8WhferYrkOPaBx-Cc3A8MS9_XYCb5vH14YlTVE9wTEAYyAlNlLg608ZG6HoYRQZjonuJJhOPe1YpaTgnbcR5QYl1ISpMkJa3iQlSaInBIlTpB-0SCBto4m1ZQJKG6IpWnhtn2kdlZeZm6NZhu9RSaorU4lzhopvmR9wySW03ZZ2mrNM6bI6k-8OUGr_IrZPC03K8f5FZG5M5bn-9S_uY1WEnH64_O6JWbf-gyVl6w-V_dLoCk_zMHl4_XIXq4OXNrhE0GegGTPjyolFMvk9LMdt3 |
| linkProvider | Institution of Engineering and Technology |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oHtSD8RlR0TXReDCNfWxpe1QDAS3EKERuzb4aiYgNVBL-vTNtRThg4rkzaTvt7Mw3s_sNIRcBd21u-cqQEBsNFru2IbTPDS4CCRDbVyzbjNlqVxtd9tBze8WcUzwLk_NDzApu6BnZeo0OjgXpHHAyJMnU2DmwAvB1BzD7GqtaVURfNnuatRFgrc2mqziuiV7dK3a-g_7NvPZCTFrt63QxU81CTX2bbBU5Ir3NP-oOWdHDXbI5xxy4R16zg7MTALqQK9KXNz4EGH81plir_UymFFJRyhVPcDGjzeYzjfvYFgddOulz-q5H8PpU4e71dEqRaeMD0fd4n3Trtc59wyhmJBjSgUzHcKUXmCIWUnvKtJTnSeUDqAsEBHJV1ZwzicyzHrJ_ArZSiqtAgRNLHxIHwZRzQErwgPqQUO0IQGexA5ISQInglunHwlZcs9iMlVkm1z9WimRBII5zLAZR1shmQaQHEdo0QpuWyeVMOsmJM5bInYPBo8JzxktkKgsytfD3WpSouEzyP-XPG4FWaN_VkYvXPfqvwhlZb3RaYRQ224_HZANlsMBruyeklI6-dAUyk1ScZn_fNxDa2L4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGLV6gqKBwnmsWmSo4-GVmsparG3sK9gsdbQxkL_vTNJrO2hgufMkGR2Z2e-nd1vCDkLuGtzy1eGhNhosNi1DaF9bnARSIDYvmLZYczHVrXeYfddt1v0OcW7MDk_xHTDDT0jW6_RwXWi4hxwMiTJ1Fg5sALwdQcw-wpzIRgitTNrT8sIsNZm3VUc10Sv7hYn30H_alZ7LiYt93Q6n6lmoSbcJBtFjkiv80HdIkt6sE3WZ5gDd8hrdnF2DEAXckX6_MYHAOMvRhT3aj-TCYVUlHLFE1zMaKPxROMelsVBl457nL7rIfw-VXh6PZ1QZNr4QPQ92iWdsPZyWzeKHgmGdCDTMVzpBaaIhdSeMi3leVL5AOoCAYFcVTXnTCLzrIfsn4CtlOIqUODE0ofEQTDl7JESfKDeJ1Q7AtBZ7ICkBFAiuGX6sbAV1yw2Y2WWyeWPlSJZEIhjH4t-lBWyWRDpfoQ2jdCmZXI-lU5y4owFcqdg8KjwnNECmcqcTK35-yyCSVEm-Uz580Wg1bRvQuTidQ_-q3BCVtt3YdRstB4OyRqK4P6u7R6RUjr80hVITFJxnE2-b_sZ2E0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Shannon%27s+entropy+for+adaptive+IIR+filtering+via+kernel+density+estimators&rft.jtitle=Electronics+letters&rft.au=Fantinato%2C+D.G&rft.au=Silva%2C+D.G&rft.au=Attux%2C+R&rft.au=Neves%2C+A&rft.date=2019-07-25&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=55&rft.issue=15&rft.spage=859&rft.epage=861&rft_id=info:doi/10.1049%2Fel.2019.1430&rft.externalDocID=10_1049_el_2019_1430 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |