Aerothermodynamic design of 10 kW radial inflow turbine for an organic flashing cycle using low-enthalpy resources

Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as renewable thermal sources, or residual heat from industrial processes. One of the critical components that affect the performance and cost o...

Full description

Saved in:
Bibliographic Details
Published inJournal of cleaner production Vol. 251; p. 119713
Main Authors Flores, Rodrigo Alarcón, Aviña Jiménez, Héctor M., González, Eduardo Pérez, González Uribe, Luis A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2020
Subjects
Online AccessGet full text
ISSN0959-6526
1879-1786
DOI10.1016/j.jclepro.2019.119713

Cover

Abstract Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as renewable thermal sources, or residual heat from industrial processes. One of the critical components that affect the performance and cost of the system is the turbine; hence, its selection becomes relevant when studying these systems. From this approach, this paper presents the design of a 10 kW ’inflow’ radial turbine, operating at 30,000 rpm and using Isopentane as a working fluid for a low enthalpy ORC capable of harnessing the great potential of low and medium enthalpy geothermal resources available in Mexico. The turbine design is based on a theoretical one-dimensional model, from which the basic geometric dimensions of the impeller and the nozzle wheel are obtained. Subsequently, a numerical CFD model was performed to analyze the flow distribution using NUMECA’s Turbofine module with a Balwin-Lomax turbulence model, an HOH mesh topology, and a Runge-Kutta temporal discretization in order to validate the theoretical model results and to identify areas of entropy increase, pressure drops, and turbulent effects in the flow path at different mass flow rates (0.662 kg/s - 0.701 kg/s) and total pressure values ranging from 399 kPa to 438 kPa. Additionally, a structural analysis is conducted, evaluating the turbine at 30% overspeed (40,000 rpm), and considering 6061-T6 aluminum as the impeller manufacturing material, in order to obtain deformation zones, as well as maximum allowable stresses. The structural analysis of the impeller, subject to centrifugal force developed by operational conditions, shows acceptable values of stress (first main stress 46% lower than the elastic limit), which ensures reliable turbine operation. Finally, this paper presents the results of the machining of the radial impeller with the intent of knowing the necessary resources for its production, and of being able to propose medium and large scale manufacturing frameworks. •A radial-inflow turbine was selected from varied parameters and process conditions.•High angular speed of the turbine is needed to attain high power density.•Zones prone to suffer losses are the interfaces between rotor and turbine’s case.•The rotor is the element involving the highest amount of losses.•The root of the blades is the zone where highest stresses occur.
AbstractList Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as renewable thermal sources, or residual heat from industrial processes. One of the critical components that affect the performance and cost of the system is the turbine; hence, its selection becomes relevant when studying these systems. From this approach, this paper presents the design of a 10 kW ’inflow’ radial turbine, operating at 30,000 rpm and using Isopentane as a working fluid for a low enthalpy ORC capable of harnessing the great potential of low and medium enthalpy geothermal resources available in Mexico. The turbine design is based on a theoretical one-dimensional model, from which the basic geometric dimensions of the impeller and the nozzle wheel are obtained. Subsequently, a numerical CFD model was performed to analyze the flow distribution using NUMECA’s Turbofine module with a Balwin-Lomax turbulence model, an HOH mesh topology, and a Runge-Kutta temporal discretization in order to validate the theoretical model results and to identify areas of entropy increase, pressure drops, and turbulent effects in the flow path at different mass flow rates (0.662 kg/s - 0.701 kg/s) and total pressure values ranging from 399 kPa to 438 kPa. Additionally, a structural analysis is conducted, evaluating the turbine at 30% overspeed (40,000 rpm), and considering 6061-T6 aluminum as the impeller manufacturing material, in order to obtain deformation zones, as well as maximum allowable stresses. The structural analysis of the impeller, subject to centrifugal force developed by operational conditions, shows acceptable values of stress (first main stress 46% lower than the elastic limit), which ensures reliable turbine operation. Finally, this paper presents the results of the machining of the radial impeller with the intent of knowing the necessary resources for its production, and of being able to propose medium and large scale manufacturing frameworks. •A radial-inflow turbine was selected from varied parameters and process conditions.•High angular speed of the turbine is needed to attain high power density.•Zones prone to suffer losses are the interfaces between rotor and turbine’s case.•The rotor is the element involving the highest amount of losses.•The root of the blades is the zone where highest stresses occur.
Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as renewable thermal sources, or residual heat from industrial processes. One of the critical components that affect the performance and cost of the system is the turbine; hence, its selection becomes relevant when studying these systems. From this approach, this paper presents the design of a 10 kW ’inflow’ radial turbine, operating at 30,000 rpm and using Isopentane as a working fluid for a low enthalpy ORC capable of harnessing the great potential of low and medium enthalpy geothermal resources available in Mexico. The turbine design is based on a theoretical one-dimensional model, from which the basic geometric dimensions of the impeller and the nozzle wheel are obtained. Subsequently, a numerical CFD model was performed to analyze the flow distribution using NUMECA’s Turbofine module with a Balwin-Lomax turbulence model, an HOH mesh topology, and a Runge-Kutta temporal discretization in order to validate the theoretical model results and to identify areas of entropy increase, pressure drops, and turbulent effects in the flow path at different mass flow rates (0.662 kg/s - 0.701 kg/s) and total pressure values ranging from 399 kPa to 438 kPa. Additionally, a structural analysis is conducted, evaluating the turbine at 30% overspeed (40,000 rpm), and considering 6061-T6 aluminum as the impeller manufacturing material, in order to obtain deformation zones, as well as maximum allowable stresses. The structural analysis of the impeller, subject to centrifugal force developed by operational conditions, shows acceptable values of stress (first main stress 46% lower than the elastic limit), which ensures reliable turbine operation. Finally, this paper presents the results of the machining of the radial impeller with the intent of knowing the necessary resources for its production, and of being able to propose medium and large scale manufacturing frameworks.
ArticleNumber 119713
Author González, Eduardo Pérez
Aviña Jiménez, Héctor M.
González Uribe, Luis A.
Flores, Rodrigo Alarcón
Author_xml – sequence: 1
  givenname: Rodrigo Alarcón
  surname: Flores
  fullname: Flores, Rodrigo Alarcón
  email: RAlarconF@iingen.unam.mx
– sequence: 2
  givenname: Héctor M.
  surname: Aviña Jiménez
  fullname: Aviña Jiménez, Héctor M.
  email: HAvinaJ@iingen.unam.mx
– sequence: 3
  givenname: Eduardo Pérez
  surname: González
  fullname: González, Eduardo Pérez
  email: EPerezG@iingen.unam.mx
– sequence: 4
  givenname: Luis A.
  surname: González Uribe
  fullname: González Uribe, Luis A.
  email: LGonzalezU@iingen.unam.mx
BookMark eNqFkM1qGzEQgEVJoM7PIxR07GU3kna12qWHYkKTFAK9JOQotNqRLVeWXEnb4rfJs-TJImOfeslp5vB9w_BdoDMfPCD0hZKaEtrdbOqNdrCLoWaEDjWlg6DNJ7SgvRgqKvruDC3IwIeq46z7jC5S2hBCBRHtAqUlxJDXELdh2nu1tRpPkOzK42AwJW-vv19wVJNVDltvXPiH8xxH6wGbELEqWFwpXyzjVFpbv8J6X57Bczrsha_A57Vyuz2OkMIcNaQrdG6US3B9mpfo-e7H0-1D9fjr_uft8rHSTctyZYQwqgfSGjLSUXema_VE2oFSzRs-Tno0rGOsJW3LKOdCM0VUM_K-cI1QfXOJvh7vljR_ZkhZbm3S4JzyEOYki0o4G1g_FJQfUR1DShGM3EW7VXEvKZGHyHIjT5HlIbI8Ri7et_88bbPKNvgclXUf2t-PNpQKfy1EmbQFr2GyEXSWU7AfXHgH5_igTQ
CitedBy_id crossref_primary_10_1016_j_energy_2024_132274
crossref_primary_10_1016_j_jclepro_2021_126426
crossref_primary_10_3390_en14175277
crossref_primary_10_3390_jmse9030287
crossref_primary_10_1016_j_rineng_2024_103632
crossref_primary_10_1016_j_enconman_2021_114205
crossref_primary_10_3390_app10196639
crossref_primary_10_1016_j_renene_2021_12_016
crossref_primary_10_1016_j_energy_2023_127403
crossref_primary_10_1016_j_energy_2023_126631
crossref_primary_10_3389_fmech_2023_1291108
crossref_primary_10_1371_journal_pone_0310792
crossref_primary_10_17714_gumusfenbil_1224486
Cites_doi 10.1016/j.apenergy.2012.02.033
10.1016/j.enconman.2014.08.058
10.1016/j.applthermaleng.2015.11.087
10.1016/j.egypro.2015.07.188
10.1016/j.apenergy.2014.10.052
10.1177/0957650916637966
10.3390/en5093233
10.1016/j.applthermaleng.2017.06.042
10.1115/1.4004162
10.1016/j.energy.2006.07.001
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2019.119713
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2019_119713
S0959652619345834
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
ZY4
7S9
ACLOT
EFKBS
L.6
~HD
ID FETCH-LOGICAL-c342t-f77fa8e04f0b1bc6f64cd04911c535bdcbf2622404421557c2a0a3b5864c37a83
IEDL.DBID AIKHN
ISSN 0959-6526
IngestDate Sun Sep 28 09:37:09 EDT 2025
Tue Jul 01 03:03:24 EDT 2025
Thu Apr 24 22:56:28 EDT 2025
Fri Feb 23 02:49:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Binary cycle
Low-enthalpy
Microturbine
Power generation
Radial inflow turbine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-f77fa8e04f0b1bc6f64cd04911c535bdcbf2622404421557c2a0a3b5864c37a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2400529289
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2400529289
crossref_primary_10_1016_j_jclepro_2019_119713
crossref_citationtrail_10_1016_j_jclepro_2019_119713
elsevier_sciencedirect_doi_10_1016_j_jclepro_2019_119713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gao, Liu, He, Xu, Wu, y Li (bib12) 2012
Balje (bib2) 1962
Efstathiadis, Rivarolo, Kalfas, Traverso, Seferlis (bib6) 2013
Saleh, Koglbauer, Wendland, Fischer (bib20) 2007; 32
Nichols (bib18) 2013
Shao, Zhu, Meng, Wei, Ma (bib21) 2017; 124
Wang, Liu, Zhang (bib22) 2013
Jung, Krumdieck (bib15) 2016
Wheeler, Ong (bib24) 2014
Fiaschi, Lifshitz, Manfrida, Tempesti (bib8) 2014; 88
Bo, Sang, Zhang, Weng (bib4) 2015
Baskharone (bib3) 2006
Whitfield, Baines (bib25) 1989
Zhang, Zhuge, Zhang, Peng (bib26) 2015
Fu, Shi, Deng, Li, Feng (bib11) 2012
Wei (bib23) 2014
Alshammari, Karvountzis-Kontakiotis, Pesiridis, Minton (bib1) 2017
Fiaschi, Manfrida, Maraschiello (bib7) 2012; 97
Fiaschi, Manfrida, Maraschiello (bib9) 2015; 138
Fiaschi, Innocenti, Manfrida, Maraschiello (bib10) 2016; 99
Brasz, Bilbow (bib5) 2004
Rahbar (bib28) 2015; 75
Glassman (bib27) 1976
Alshammari (10.1016/j.jclepro.2019.119713_bib1) 2017
Balje (10.1016/j.jclepro.2019.119713_bib2) 1962
Fiaschi (10.1016/j.jclepro.2019.119713_bib10) 2016; 99
Rahbar (10.1016/j.jclepro.2019.119713_bib28) 2015; 75
Zhang (10.1016/j.jclepro.2019.119713_bib26) 2015
Brasz (10.1016/j.jclepro.2019.119713_bib5) 2004
Bo (10.1016/j.jclepro.2019.119713_bib4) 2015
Fiaschi (10.1016/j.jclepro.2019.119713_bib9) 2015; 138
Fu (10.1016/j.jclepro.2019.119713_bib11) 2012
Shao (10.1016/j.jclepro.2019.119713_bib21) 2017; 124
Nichols (10.1016/j.jclepro.2019.119713_bib18) 2013
Baskharone (10.1016/j.jclepro.2019.119713_bib3) 2006
Glassman (10.1016/j.jclepro.2019.119713_bib27) 1976
Fiaschi (10.1016/j.jclepro.2019.119713_bib7) 2012; 97
Wei (10.1016/j.jclepro.2019.119713_bib23) 2014
Jung (10.1016/j.jclepro.2019.119713_bib15) 2016
Fiaschi (10.1016/j.jclepro.2019.119713_bib8) 2014; 88
Wang (10.1016/j.jclepro.2019.119713_bib22) 2013
Saleh (10.1016/j.jclepro.2019.119713_bib20) 2007; 32
Gao (10.1016/j.jclepro.2019.119713_bib12) 2012
Efstathiadis (10.1016/j.jclepro.2019.119713_bib6) 2013
Wheeler (10.1016/j.jclepro.2019.119713_bib24) 2014
Whitfield (10.1016/j.jclepro.2019.119713_bib25) 1989
References_xml – start-page: 415
  year: 2006
  ident: bib3
  article-title: Principles of Turbomachinery in Air-Breathing Engines
– year: 2004
  ident: bib5
  article-title: Ranking of working fluids for organic rankine cycle applications
  publication-title: International Refrigeration and Air Conditioning Conference
– volume: 138
  start-page: 517
  year: 2015
  end-page: 532
  ident: bib9
  article-title: Design and performance prediction of radial ORC turboexpanders
  publication-title: Appl. Energy
– year: 2015
  ident: bib4
  article-title: Analysis of radial turbine of ORC power generation system for low temperature heat sources
  publication-title: Proceedings of the ASME 2015 Power Conference
– volume: 97
  start-page: 601
  year: 2012
  end-page: 608
  ident: bib7
  article-title: Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles
  publication-title: Appl. Energy
– year: 2014
  ident: bib24
  article-title: A study of three-dimensional unsteady real-gas flows within a transonic ORC turbine
  publication-title: Proc. ASME Turbo Expo
– year: 2012
  ident: bib11
  article-title: Integrated optimization design for a radial turbine wheel of a 100 kW-class microturbine
  publication-title: J. Eng. Gas Turbines Power
– year: 2017
  ident: bib1
  article-title: Radial expander design for an engine organic rankine cycle waste heat recovery system
  publication-title: IV International Seminar on ORC Power Systems, ORC2017 13-15 September 2017, Milano, Italy
– volume: 99
  start-page: 402
  year: 2016
  end-page: 410
  ident: bib10
  article-title: Design of micro radial turboexpanders for ORC power cycles: from 0D to 3D
  publication-title: Appl. Therm. Eng.
– year: 2016
  ident: bib15
  article-title: Meanline design of a 250kW radial inflow turbine stage using R245fa working fluid and waste heat from a refinery process
  publication-title: J. Power Energy
– year: 2015
  ident: bib26
  article-title: Numerical study of organic rankine cycle radial-inflow turbines for heavy-duty diesel engine coolant heat recovery
  publication-title: 3rd International Seminar on ORC Power Systems
– start-page: 397pp
  year: 1989
  ident: bib25
  article-title: Design of Radial Turbomachines
– year: 2012
  ident: bib12
  article-title: Performance analysis and working fluid selection of a supercritical organic rankine cycle for low grade waste heat recovery
  publication-title: Energies
– year: 1976
  ident: bib27
  article-title: Computer Program for the Design Analysis of Radial Input Turbines
– volume: 32
  start-page: 1210
  year: 2007
  end-page: 1221
  ident: bib20
  article-title: Working fluids for low-temperature organic rankine cycles
  publication-title: Energy
– volume: 75
  start-page: 860
  year: 2015
  end-page: 866
  ident: bib28
  article-title: Preliminary Mean-line Design and Optimization of a Radial Turbo-Expander for Waste Heat Recovery using Organic Rankine Cycle
  publication-title: Energy Procedia
– year: 1962
  ident: bib2
  article-title: A Study on Design Criteria and Matching of Turbomachines-Part A: Similarity Relatives and Design Criteria of Turbines
– year: 2013
  ident: bib22
  article-title: Performance Analysis of organic rankine Cycle with preliminary Design of radial Turbo Expander for binary-cycle geothermal plants
  publication-title: Proc. ASME Turbo Expo
– year: 2014
  ident: bib23
  article-title: Meanline Analysis of Radial Inflow Turbines at Design and Off-Design Conditions
– volume: 124
  start-page: 940
  year: 2017
  end-page: 947
  ident: bib21
  article-title: Experimental study of an organic Rankine cycle system with radial inflow turbine and R123
  publication-title: Appl. Therm. Eng.
– year: 2013
  ident: bib6
  article-title: A preliminary turbine design for an organic rankine cycle
  publication-title: Proc. ASME Turbo Expo
– year: 2013
  ident: bib18
  article-title: How to Select Turbomachinery for Your Application
– volume: 88
  start-page: 883
  year: 2014
  end-page: 893
  ident: bib8
  article-title: An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources
  publication-title: Energy Convers. Manag.
– volume: 97
  start-page: 601
  year: 2012
  ident: 10.1016/j.jclepro.2019.119713_bib7
  article-title: Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.02.033
– volume: 88
  start-page: 883
  year: 2014
  ident: 10.1016/j.jclepro.2019.119713_bib8
  article-title: An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.08.058
– volume: 99
  start-page: 402
  year: 2016
  ident: 10.1016/j.jclepro.2019.119713_bib10
  article-title: Design of micro radial turboexpanders for ORC power cycles: from 0D to 3D
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.11.087
– year: 2013
  ident: 10.1016/j.jclepro.2019.119713_bib18
– volume: 75
  start-page: 860
  year: 2015
  ident: 10.1016/j.jclepro.2019.119713_bib28
  article-title: Preliminary Mean-line Design and Optimization of a Radial Turbo-Expander for Waste Heat Recovery using Organic Rankine Cycle
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.188
– year: 2015
  ident: 10.1016/j.jclepro.2019.119713_bib26
  article-title: Numerical study of organic rankine cycle radial-inflow turbines for heavy-duty diesel engine coolant heat recovery
– volume: 138
  start-page: 517
  year: 2015
  ident: 10.1016/j.jclepro.2019.119713_bib9
  article-title: Design and performance prediction of radial ORC turboexpanders
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.10.052
– year: 2017
  ident: 10.1016/j.jclepro.2019.119713_bib1
  article-title: Radial expander design for an engine organic rankine cycle waste heat recovery system
– year: 2016
  ident: 10.1016/j.jclepro.2019.119713_bib15
  article-title: Meanline design of a 250kW radial inflow turbine stage using R245fa working fluid and waste heat from a refinery process
  publication-title: J. Power Energy
  doi: 10.1177/0957650916637966
– year: 2015
  ident: 10.1016/j.jclepro.2019.119713_bib4
  article-title: Analysis of radial turbine of ORC power generation system for low temperature heat sources
– year: 2013
  ident: 10.1016/j.jclepro.2019.119713_bib22
  article-title: Performance Analysis of organic rankine Cycle with preliminary Design of radial Turbo Expander for binary-cycle geothermal plants
  publication-title: Proc. ASME Turbo Expo
– year: 1962
  ident: 10.1016/j.jclepro.2019.119713_bib2
– start-page: 415
  year: 2006
  ident: 10.1016/j.jclepro.2019.119713_bib3
– year: 2014
  ident: 10.1016/j.jclepro.2019.119713_bib23
– year: 2012
  ident: 10.1016/j.jclepro.2019.119713_bib12
  article-title: Performance analysis and working fluid selection of a supercritical organic rankine cycle for low grade waste heat recovery
  publication-title: Energies
  doi: 10.3390/en5093233
– year: 2014
  ident: 10.1016/j.jclepro.2019.119713_bib24
  article-title: A study of three-dimensional unsteady real-gas flows within a transonic ORC turbine
  publication-title: Proc. ASME Turbo Expo
– year: 1976
  ident: 10.1016/j.jclepro.2019.119713_bib27
– volume: 124
  start-page: 940
  year: 2017
  ident: 10.1016/j.jclepro.2019.119713_bib21
  article-title: Experimental study of an organic Rankine cycle system with radial inflow turbine and R123
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.06.042
– year: 2004
  ident: 10.1016/j.jclepro.2019.119713_bib5
  article-title: Ranking of working fluids for organic rankine cycle applications
– start-page: 397pp
  year: 1989
  ident: 10.1016/j.jclepro.2019.119713_bib25
– year: 2012
  ident: 10.1016/j.jclepro.2019.119713_bib11
  article-title: Integrated optimization design for a radial turbine wheel of a 100 kW-class microturbine
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4004162
– year: 2013
  ident: 10.1016/j.jclepro.2019.119713_bib6
  article-title: A preliminary turbine design for an organic rankine cycle
  publication-title: Proc. ASME Turbo Expo
– volume: 32
  start-page: 1210
  issue: 7
  year: 2007
  ident: 10.1016/j.jclepro.2019.119713_bib20
  article-title: Working fluids for low-temperature organic rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2006.07.001
SSID ssj0017074
Score 2.4013906
Snippet Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as...
Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119713
SubjectTerms aluminum
Binary cycle
deformation
energy resources
enthalpy
entropy
heat
impellers
Low-enthalpy
manufacturing
mass flow
Mexico
Microturbine
pentane
Power generation
Radial inflow turbine
theoretical models
topology
turbulent flow
Title Aerothermodynamic design of 10 kW radial inflow turbine for an organic flashing cycle using low-enthalpy resources
URI https://dx.doi.org/10.1016/j.jclepro.2019.119713
https://www.proquest.com/docview/2400529289
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtwwcATLpT1UlFIVKMhIvWbXsZ3XcYVA21ZwoajcrNixW5awWe0uqrjwLf2WfllnEgdapAqplxwsjxN5JvN-AHywXhluRBx5h-qbqmwVmaJykauENKIoUxtTNfLpWTq5UJ8uk8s1OOprYSitMvD-jqe33DqsjMJtjuZXV6Nz8mClCVkAkoJ_ah02BEr7fAAb44-fJ2cPwYSMd82YyeNFAI-FPKPpcIrnIa-iJK9iSDG1WP5LRD1h1q0EOtmEV0F1ZOPu617Dmpttwcs_Ggq-geXYLdqSqpum6kbNs6pN0WCNZzH_9fP6K1tQN4KaIWXVzQ-GEgdtY8dQd2UlbmtLMy3zdTdkidk7fBej7PhvDPdHKKO-l_X8ji2C33-5DRcnx1-OJlEYqxBZqcQq8lnmy9xx5bmJjU19qmyFhkIc20QmprLGi5QkvVKoDySZFSUvpUly3CezMpdvYTBrZu4dMIvLHDFFD2WNKjj30qnE5xQmTv0OqP4mtQ09x2n0Ra375LKpDgjQhADdIWAHhg9g867pxnMAeY8m_Rf1aBQMz4Ee9mjV-GdRuKScueZ2qSm7NhFIUMXu_x-_By8EWehtrs97GKwWt24f1ZiVOYD14X18EIj1NwhK9YI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LDtUOyJZt1DA3Z1Ilvy6xgUK9I1zWUt1ptgydLWzI2DPDD03-y39JeVtOV0HTAU2MUHQZQNUeZD_EgCfDJOaq6jMHAWzTdZmjLQeWkDW0ZCR3mRmJCykU-nyfhcfrmIL3bgsMuFIVill_2tTG-ktR8Z-t0cLi4vh1_pBiuJyQMQFPyTj2BXUlPrHuyOjk_G020wIeVtMWa68SKCu0Se4Wwww_VQVhHIKx9QTC0U_1JRfwnrRgMdPYM9bzqyUft1z2HHzl_A0z8KCr6E1cgum5Sqq7psW82zsoFosNqxkN_8_vmNLakaQcXwZFX1L4YaB31jy9B2ZQVOa1IzDXNV22SJmWt8FyN0_HeG8wPUUT-KanHNlv7ef_UKzo8-nx2OA99WITBCRuvApakrMsul4zrUJnGJNCU6CmFoYhHr0mgXJaTppUR7IE5NVPBC6DjDeSItMvEaevN6bveBGRzmyCl6SKNlzrkTVsYuozBx4vogu51Uxtccp9YXlerAZTPlGaCIAaplQB8GW7JFW3TjIYKsY5O6d3oUKoaHSD92bFX4Z1G4pJjberNShK6Noxw90jf_v_wHeDw-O52oyfH05ACeROStN7ift9BbLzf2HZo0a_3eH9lb0mP3aA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerothermodynamic+design+of+10%C2%A0kW+radial+inflow+turbine+for+an+organic+flashing+cycle+using+low-enthalpy+resources&rft.jtitle=Journal+of+cleaner+production&rft.au=Flores%2C+Rodrigo+Alarc%C3%B3n&rft.au=Avi%C3%B1a+Jim%C3%A9nez%2C+H%C3%A9ctor+M.&rft.au=Gonz%C3%A1lez%2C+Eduardo+P%C3%A9rez&rft.au=Gonz%C3%A1lez+Uribe%2C+Luis+A.&rft.date=2020-04-01&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=251&rft_id=info:doi/10.1016%2Fj.jclepro.2019.119713&rft.externalDocID=S0959652619345834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon