Aerothermodynamic design of 10 kW radial inflow turbine for an organic flashing cycle using low-enthalpy resources
Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as renewable thermal sources, or residual heat from industrial processes. One of the critical components that affect the performance and cost o...
Saved in:
Published in | Journal of cleaner production Vol. 251; p. 119713 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0959-6526 1879-1786 |
DOI | 10.1016/j.jclepro.2019.119713 |
Cover
Abstract | Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as renewable thermal sources, or residual heat from industrial processes. One of the critical components that affect the performance and cost of the system is the turbine; hence, its selection becomes relevant when studying these systems. From this approach, this paper presents the design of a 10 kW ’inflow’ radial turbine, operating at 30,000 rpm and using Isopentane as a working fluid for a low enthalpy ORC capable of harnessing the great potential of low and medium enthalpy geothermal resources available in Mexico. The turbine design is based on a theoretical one-dimensional model, from which the basic geometric dimensions of the impeller and the nozzle wheel are obtained. Subsequently, a numerical CFD model was performed to analyze the flow distribution using NUMECA’s Turbofine module with a Balwin-Lomax turbulence model, an HOH mesh topology, and a Runge-Kutta temporal discretization in order to validate the theoretical model results and to identify areas of entropy increase, pressure drops, and turbulent effects in the flow path at different mass flow rates (0.662 kg/s - 0.701 kg/s) and total pressure values ranging from 399 kPa to 438 kPa. Additionally, a structural analysis is conducted, evaluating the turbine at 30% overspeed (40,000 rpm), and considering 6061-T6 aluminum as the impeller manufacturing material, in order to obtain deformation zones, as well as maximum allowable stresses. The structural analysis of the impeller, subject to centrifugal force developed by operational conditions, shows acceptable values of stress (first main stress 46% lower than the elastic limit), which ensures reliable turbine operation. Finally, this paper presents the results of the machining of the radial impeller with the intent of knowing the necessary resources for its production, and of being able to propose medium and large scale manufacturing frameworks.
•A radial-inflow turbine was selected from varied parameters and process conditions.•High angular speed of the turbine is needed to attain high power density.•Zones prone to suffer losses are the interfaces between rotor and turbine’s case.•The rotor is the element involving the highest amount of losses.•The root of the blades is the zone where highest stresses occur. |
---|---|
AbstractList | Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as renewable thermal sources, or residual heat from industrial processes. One of the critical components that affect the performance and cost of the system is the turbine; hence, its selection becomes relevant when studying these systems. From this approach, this paper presents the design of a 10 kW ’inflow’ radial turbine, operating at 30,000 rpm and using Isopentane as a working fluid for a low enthalpy ORC capable of harnessing the great potential of low and medium enthalpy geothermal resources available in Mexico. The turbine design is based on a theoretical one-dimensional model, from which the basic geometric dimensions of the impeller and the nozzle wheel are obtained. Subsequently, a numerical CFD model was performed to analyze the flow distribution using NUMECA’s Turbofine module with a Balwin-Lomax turbulence model, an HOH mesh topology, and a Runge-Kutta temporal discretization in order to validate the theoretical model results and to identify areas of entropy increase, pressure drops, and turbulent effects in the flow path at different mass flow rates (0.662 kg/s - 0.701 kg/s) and total pressure values ranging from 399 kPa to 438 kPa. Additionally, a structural analysis is conducted, evaluating the turbine at 30% overspeed (40,000 rpm), and considering 6061-T6 aluminum as the impeller manufacturing material, in order to obtain deformation zones, as well as maximum allowable stresses. The structural analysis of the impeller, subject to centrifugal force developed by operational conditions, shows acceptable values of stress (first main stress 46% lower than the elastic limit), which ensures reliable turbine operation. Finally, this paper presents the results of the machining of the radial impeller with the intent of knowing the necessary resources for its production, and of being able to propose medium and large scale manufacturing frameworks.
•A radial-inflow turbine was selected from varied parameters and process conditions.•High angular speed of the turbine is needed to attain high power density.•Zones prone to suffer losses are the interfaces between rotor and turbine’s case.•The rotor is the element involving the highest amount of losses.•The root of the blades is the zone where highest stresses occur. Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as renewable thermal sources, or residual heat from industrial processes. One of the critical components that affect the performance and cost of the system is the turbine; hence, its selection becomes relevant when studying these systems. From this approach, this paper presents the design of a 10 kW ’inflow’ radial turbine, operating at 30,000 rpm and using Isopentane as a working fluid for a low enthalpy ORC capable of harnessing the great potential of low and medium enthalpy geothermal resources available in Mexico. The turbine design is based on a theoretical one-dimensional model, from which the basic geometric dimensions of the impeller and the nozzle wheel are obtained. Subsequently, a numerical CFD model was performed to analyze the flow distribution using NUMECA’s Turbofine module with a Balwin-Lomax turbulence model, an HOH mesh topology, and a Runge-Kutta temporal discretization in order to validate the theoretical model results and to identify areas of entropy increase, pressure drops, and turbulent effects in the flow path at different mass flow rates (0.662 kg/s - 0.701 kg/s) and total pressure values ranging from 399 kPa to 438 kPa. Additionally, a structural analysis is conducted, evaluating the turbine at 30% overspeed (40,000 rpm), and considering 6061-T6 aluminum as the impeller manufacturing material, in order to obtain deformation zones, as well as maximum allowable stresses. The structural analysis of the impeller, subject to centrifugal force developed by operational conditions, shows acceptable values of stress (first main stress 46% lower than the elastic limit), which ensures reliable turbine operation. Finally, this paper presents the results of the machining of the radial impeller with the intent of knowing the necessary resources for its production, and of being able to propose medium and large scale manufacturing frameworks. |
ArticleNumber | 119713 |
Author | González, Eduardo Pérez Aviña Jiménez, Héctor M. González Uribe, Luis A. Flores, Rodrigo Alarcón |
Author_xml | – sequence: 1 givenname: Rodrigo Alarcón surname: Flores fullname: Flores, Rodrigo Alarcón email: RAlarconF@iingen.unam.mx – sequence: 2 givenname: Héctor M. surname: Aviña Jiménez fullname: Aviña Jiménez, Héctor M. email: HAvinaJ@iingen.unam.mx – sequence: 3 givenname: Eduardo Pérez surname: González fullname: González, Eduardo Pérez email: EPerezG@iingen.unam.mx – sequence: 4 givenname: Luis A. surname: González Uribe fullname: González Uribe, Luis A. email: LGonzalezU@iingen.unam.mx |
BookMark | eNqFkM1qGzEQgEVJoM7PIxR07GU3kna12qWHYkKTFAK9JOQotNqRLVeWXEnb4rfJs-TJImOfeslp5vB9w_BdoDMfPCD0hZKaEtrdbOqNdrCLoWaEDjWlg6DNJ7SgvRgqKvruDC3IwIeq46z7jC5S2hBCBRHtAqUlxJDXELdh2nu1tRpPkOzK42AwJW-vv19wVJNVDltvXPiH8xxH6wGbELEqWFwpXyzjVFpbv8J6X57Bczrsha_A57Vyuz2OkMIcNaQrdG6US3B9mpfo-e7H0-1D9fjr_uft8rHSTctyZYQwqgfSGjLSUXema_VE2oFSzRs-Tno0rGOsJW3LKOdCM0VUM_K-cI1QfXOJvh7vljR_ZkhZbm3S4JzyEOYki0o4G1g_FJQfUR1DShGM3EW7VXEvKZGHyHIjT5HlIbI8Ri7et_88bbPKNvgclXUf2t-PNpQKfy1EmbQFr2GyEXSWU7AfXHgH5_igTQ |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_132274 crossref_primary_10_1016_j_jclepro_2021_126426 crossref_primary_10_3390_en14175277 crossref_primary_10_3390_jmse9030287 crossref_primary_10_1016_j_rineng_2024_103632 crossref_primary_10_1016_j_enconman_2021_114205 crossref_primary_10_3390_app10196639 crossref_primary_10_1016_j_renene_2021_12_016 crossref_primary_10_1016_j_energy_2023_127403 crossref_primary_10_1016_j_energy_2023_126631 crossref_primary_10_3389_fmech_2023_1291108 crossref_primary_10_1371_journal_pone_0310792 crossref_primary_10_17714_gumusfenbil_1224486 |
Cites_doi | 10.1016/j.apenergy.2012.02.033 10.1016/j.enconman.2014.08.058 10.1016/j.applthermaleng.2015.11.087 10.1016/j.egypro.2015.07.188 10.1016/j.apenergy.2014.10.052 10.1177/0957650916637966 10.3390/en5093233 10.1016/j.applthermaleng.2017.06.042 10.1115/1.4004162 10.1016/j.energy.2006.07.001 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2019.119713 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1786 |
ExternalDocumentID | 10_1016_j_jclepro_2019_119713 S0959652619345834 |
GeographicLocations | Mexico |
GeographicLocations_xml | – name: Mexico |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEN SEW SSH WUQ ZY4 7S9 ACLOT EFKBS L.6 ~HD |
ID | FETCH-LOGICAL-c342t-f77fa8e04f0b1bc6f64cd04911c535bdcbf2622404421557c2a0a3b5864c37a83 |
IEDL.DBID | AIKHN |
ISSN | 0959-6526 |
IngestDate | Sun Sep 28 09:37:09 EDT 2025 Tue Jul 01 03:03:24 EDT 2025 Thu Apr 24 22:56:28 EDT 2025 Fri Feb 23 02:49:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Binary cycle Low-enthalpy Microturbine Power generation Radial inflow turbine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-f77fa8e04f0b1bc6f64cd04911c535bdcbf2622404421557c2a0a3b5864c37a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2400529289 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2400529289 crossref_primary_10_1016_j_jclepro_2019_119713 crossref_citationtrail_10_1016_j_jclepro_2019_119713 elsevier_sciencedirect_doi_10_1016_j_jclepro_2019_119713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gao, Liu, He, Xu, Wu, y Li (bib12) 2012 Balje (bib2) 1962 Efstathiadis, Rivarolo, Kalfas, Traverso, Seferlis (bib6) 2013 Saleh, Koglbauer, Wendland, Fischer (bib20) 2007; 32 Nichols (bib18) 2013 Shao, Zhu, Meng, Wei, Ma (bib21) 2017; 124 Wang, Liu, Zhang (bib22) 2013 Jung, Krumdieck (bib15) 2016 Wheeler, Ong (bib24) 2014 Fiaschi, Lifshitz, Manfrida, Tempesti (bib8) 2014; 88 Bo, Sang, Zhang, Weng (bib4) 2015 Baskharone (bib3) 2006 Whitfield, Baines (bib25) 1989 Zhang, Zhuge, Zhang, Peng (bib26) 2015 Fu, Shi, Deng, Li, Feng (bib11) 2012 Wei (bib23) 2014 Alshammari, Karvountzis-Kontakiotis, Pesiridis, Minton (bib1) 2017 Fiaschi, Manfrida, Maraschiello (bib7) 2012; 97 Fiaschi, Manfrida, Maraschiello (bib9) 2015; 138 Fiaschi, Innocenti, Manfrida, Maraschiello (bib10) 2016; 99 Brasz, Bilbow (bib5) 2004 Rahbar (bib28) 2015; 75 Glassman (bib27) 1976 Alshammari (10.1016/j.jclepro.2019.119713_bib1) 2017 Balje (10.1016/j.jclepro.2019.119713_bib2) 1962 Fiaschi (10.1016/j.jclepro.2019.119713_bib10) 2016; 99 Rahbar (10.1016/j.jclepro.2019.119713_bib28) 2015; 75 Zhang (10.1016/j.jclepro.2019.119713_bib26) 2015 Brasz (10.1016/j.jclepro.2019.119713_bib5) 2004 Bo (10.1016/j.jclepro.2019.119713_bib4) 2015 Fiaschi (10.1016/j.jclepro.2019.119713_bib9) 2015; 138 Fu (10.1016/j.jclepro.2019.119713_bib11) 2012 Shao (10.1016/j.jclepro.2019.119713_bib21) 2017; 124 Nichols (10.1016/j.jclepro.2019.119713_bib18) 2013 Baskharone (10.1016/j.jclepro.2019.119713_bib3) 2006 Glassman (10.1016/j.jclepro.2019.119713_bib27) 1976 Fiaschi (10.1016/j.jclepro.2019.119713_bib7) 2012; 97 Wei (10.1016/j.jclepro.2019.119713_bib23) 2014 Jung (10.1016/j.jclepro.2019.119713_bib15) 2016 Fiaschi (10.1016/j.jclepro.2019.119713_bib8) 2014; 88 Wang (10.1016/j.jclepro.2019.119713_bib22) 2013 Saleh (10.1016/j.jclepro.2019.119713_bib20) 2007; 32 Gao (10.1016/j.jclepro.2019.119713_bib12) 2012 Efstathiadis (10.1016/j.jclepro.2019.119713_bib6) 2013 Wheeler (10.1016/j.jclepro.2019.119713_bib24) 2014 Whitfield (10.1016/j.jclepro.2019.119713_bib25) 1989 |
References_xml | – start-page: 415 year: 2006 ident: bib3 article-title: Principles of Turbomachinery in Air-Breathing Engines – year: 2004 ident: bib5 article-title: Ranking of working fluids for organic rankine cycle applications publication-title: International Refrigeration and Air Conditioning Conference – volume: 138 start-page: 517 year: 2015 end-page: 532 ident: bib9 article-title: Design and performance prediction of radial ORC turboexpanders publication-title: Appl. Energy – year: 2015 ident: bib4 article-title: Analysis of radial turbine of ORC power generation system for low temperature heat sources publication-title: Proceedings of the ASME 2015 Power Conference – volume: 97 start-page: 601 year: 2012 end-page: 608 ident: bib7 article-title: Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles publication-title: Appl. Energy – year: 2014 ident: bib24 article-title: A study of three-dimensional unsteady real-gas flows within a transonic ORC turbine publication-title: Proc. ASME Turbo Expo – year: 2012 ident: bib11 article-title: Integrated optimization design for a radial turbine wheel of a 100 kW-class microturbine publication-title: J. Eng. Gas Turbines Power – year: 2017 ident: bib1 article-title: Radial expander design for an engine organic rankine cycle waste heat recovery system publication-title: IV International Seminar on ORC Power Systems, ORC2017 13-15 September 2017, Milano, Italy – volume: 99 start-page: 402 year: 2016 end-page: 410 ident: bib10 article-title: Design of micro radial turboexpanders for ORC power cycles: from 0D to 3D publication-title: Appl. Therm. Eng. – year: 2016 ident: bib15 article-title: Meanline design of a 250kW radial inflow turbine stage using R245fa working fluid and waste heat from a refinery process publication-title: J. Power Energy – year: 2015 ident: bib26 article-title: Numerical study of organic rankine cycle radial-inflow turbines for heavy-duty diesel engine coolant heat recovery publication-title: 3rd International Seminar on ORC Power Systems – start-page: 397pp year: 1989 ident: bib25 article-title: Design of Radial Turbomachines – year: 2012 ident: bib12 article-title: Performance analysis and working fluid selection of a supercritical organic rankine cycle for low grade waste heat recovery publication-title: Energies – year: 1976 ident: bib27 article-title: Computer Program for the Design Analysis of Radial Input Turbines – volume: 32 start-page: 1210 year: 2007 end-page: 1221 ident: bib20 article-title: Working fluids for low-temperature organic rankine cycles publication-title: Energy – volume: 75 start-page: 860 year: 2015 end-page: 866 ident: bib28 article-title: Preliminary Mean-line Design and Optimization of a Radial Turbo-Expander for Waste Heat Recovery using Organic Rankine Cycle publication-title: Energy Procedia – year: 1962 ident: bib2 article-title: A Study on Design Criteria and Matching of Turbomachines-Part A: Similarity Relatives and Design Criteria of Turbines – year: 2013 ident: bib22 article-title: Performance Analysis of organic rankine Cycle with preliminary Design of radial Turbo Expander for binary-cycle geothermal plants publication-title: Proc. ASME Turbo Expo – year: 2014 ident: bib23 article-title: Meanline Analysis of Radial Inflow Turbines at Design and Off-Design Conditions – volume: 124 start-page: 940 year: 2017 end-page: 947 ident: bib21 article-title: Experimental study of an organic Rankine cycle system with radial inflow turbine and R123 publication-title: Appl. Therm. Eng. – year: 2013 ident: bib6 article-title: A preliminary turbine design for an organic rankine cycle publication-title: Proc. ASME Turbo Expo – year: 2013 ident: bib18 article-title: How to Select Turbomachinery for Your Application – volume: 88 start-page: 883 year: 2014 end-page: 893 ident: bib8 article-title: An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources publication-title: Energy Convers. Manag. – volume: 97 start-page: 601 year: 2012 ident: 10.1016/j.jclepro.2019.119713_bib7 article-title: Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.02.033 – volume: 88 start-page: 883 year: 2014 ident: 10.1016/j.jclepro.2019.119713_bib8 article-title: An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.08.058 – volume: 99 start-page: 402 year: 2016 ident: 10.1016/j.jclepro.2019.119713_bib10 article-title: Design of micro radial turboexpanders for ORC power cycles: from 0D to 3D publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.11.087 – year: 2013 ident: 10.1016/j.jclepro.2019.119713_bib18 – volume: 75 start-page: 860 year: 2015 ident: 10.1016/j.jclepro.2019.119713_bib28 article-title: Preliminary Mean-line Design and Optimization of a Radial Turbo-Expander for Waste Heat Recovery using Organic Rankine Cycle publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.188 – year: 2015 ident: 10.1016/j.jclepro.2019.119713_bib26 article-title: Numerical study of organic rankine cycle radial-inflow turbines for heavy-duty diesel engine coolant heat recovery – volume: 138 start-page: 517 year: 2015 ident: 10.1016/j.jclepro.2019.119713_bib9 article-title: Design and performance prediction of radial ORC turboexpanders publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.10.052 – year: 2017 ident: 10.1016/j.jclepro.2019.119713_bib1 article-title: Radial expander design for an engine organic rankine cycle waste heat recovery system – year: 2016 ident: 10.1016/j.jclepro.2019.119713_bib15 article-title: Meanline design of a 250kW radial inflow turbine stage using R245fa working fluid and waste heat from a refinery process publication-title: J. Power Energy doi: 10.1177/0957650916637966 – year: 2015 ident: 10.1016/j.jclepro.2019.119713_bib4 article-title: Analysis of radial turbine of ORC power generation system for low temperature heat sources – year: 2013 ident: 10.1016/j.jclepro.2019.119713_bib22 article-title: Performance Analysis of organic rankine Cycle with preliminary Design of radial Turbo Expander for binary-cycle geothermal plants publication-title: Proc. ASME Turbo Expo – year: 1962 ident: 10.1016/j.jclepro.2019.119713_bib2 – start-page: 415 year: 2006 ident: 10.1016/j.jclepro.2019.119713_bib3 – year: 2014 ident: 10.1016/j.jclepro.2019.119713_bib23 – year: 2012 ident: 10.1016/j.jclepro.2019.119713_bib12 article-title: Performance analysis and working fluid selection of a supercritical organic rankine cycle for low grade waste heat recovery publication-title: Energies doi: 10.3390/en5093233 – year: 2014 ident: 10.1016/j.jclepro.2019.119713_bib24 article-title: A study of three-dimensional unsteady real-gas flows within a transonic ORC turbine publication-title: Proc. ASME Turbo Expo – year: 1976 ident: 10.1016/j.jclepro.2019.119713_bib27 – volume: 124 start-page: 940 year: 2017 ident: 10.1016/j.jclepro.2019.119713_bib21 article-title: Experimental study of an organic Rankine cycle system with radial inflow turbine and R123 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.06.042 – year: 2004 ident: 10.1016/j.jclepro.2019.119713_bib5 article-title: Ranking of working fluids for organic rankine cycle applications – start-page: 397pp year: 1989 ident: 10.1016/j.jclepro.2019.119713_bib25 – year: 2012 ident: 10.1016/j.jclepro.2019.119713_bib11 article-title: Integrated optimization design for a radial turbine wheel of a 100 kW-class microturbine publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.4004162 – year: 2013 ident: 10.1016/j.jclepro.2019.119713_bib6 article-title: A preliminary turbine design for an organic rankine cycle publication-title: Proc. ASME Turbo Expo – volume: 32 start-page: 1210 issue: 7 year: 2007 ident: 10.1016/j.jclepro.2019.119713_bib20 article-title: Working fluids for low-temperature organic rankine cycles publication-title: Energy doi: 10.1016/j.energy.2006.07.001 |
SSID | ssj0017074 |
Score | 2.4013906 |
Snippet | Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as... Organic Rankine Cycles (ORC) have become a viable electric microgeneration framework option for the use of low enthalpy energy resources (90 °C–200 °C) such as... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119713 |
SubjectTerms | aluminum Binary cycle deformation energy resources enthalpy entropy heat impellers Low-enthalpy manufacturing mass flow Mexico Microturbine pentane Power generation Radial inflow turbine theoretical models topology turbulent flow |
Title | Aerothermodynamic design of 10 kW radial inflow turbine for an organic flashing cycle using low-enthalpy resources |
URI | https://dx.doi.org/10.1016/j.jclepro.2019.119713 https://www.proquest.com/docview/2400529289 |
Volume | 251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtwwcATLpT1UlFIVKMhIvWbXsZ3XcYVA21ZwoajcrNixW5awWe0uqrjwLf2WfllnEgdapAqplxwsjxN5JvN-AHywXhluRBx5h-qbqmwVmaJykauENKIoUxtTNfLpWTq5UJ8uk8s1OOprYSitMvD-jqe33DqsjMJtjuZXV6Nz8mClCVkAkoJ_ah02BEr7fAAb44-fJ2cPwYSMd82YyeNFAI-FPKPpcIrnIa-iJK9iSDG1WP5LRD1h1q0EOtmEV0F1ZOPu617Dmpttwcs_Ggq-geXYLdqSqpum6kbNs6pN0WCNZzH_9fP6K1tQN4KaIWXVzQ-GEgdtY8dQd2UlbmtLMy3zdTdkidk7fBej7PhvDPdHKKO-l_X8ji2C33-5DRcnx1-OJlEYqxBZqcQq8lnmy9xx5bmJjU19qmyFhkIc20QmprLGi5QkvVKoDySZFSUvpUly3CezMpdvYTBrZu4dMIvLHDFFD2WNKjj30qnE5xQmTv0OqP4mtQ09x2n0Ra375LKpDgjQhADdIWAHhg9g867pxnMAeY8m_Rf1aBQMz4Ee9mjV-GdRuKScueZ2qSm7NhFIUMXu_x-_By8EWehtrs97GKwWt24f1ZiVOYD14X18EIj1NwhK9YI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LDtUOyJZt1DA3Z1Ilvy6xgUK9I1zWUt1ptgydLWzI2DPDD03-y39JeVtOV0HTAU2MUHQZQNUeZD_EgCfDJOaq6jMHAWzTdZmjLQeWkDW0ZCR3mRmJCykU-nyfhcfrmIL3bgsMuFIVill_2tTG-ktR8Z-t0cLi4vh1_pBiuJyQMQFPyTj2BXUlPrHuyOjk_G020wIeVtMWa68SKCu0Se4Wwww_VQVhHIKx9QTC0U_1JRfwnrRgMdPYM9bzqyUft1z2HHzl_A0z8KCr6E1cgum5Sqq7psW82zsoFosNqxkN_8_vmNLakaQcXwZFX1L4YaB31jy9B2ZQVOa1IzDXNV22SJmWt8FyN0_HeG8wPUUT-KanHNlv7ef_UKzo8-nx2OA99WITBCRuvApakrMsul4zrUJnGJNCU6CmFoYhHr0mgXJaTppUR7IE5NVPBC6DjDeSItMvEaevN6bveBGRzmyCl6SKNlzrkTVsYuozBx4vogu51Uxtccp9YXlerAZTPlGaCIAaplQB8GW7JFW3TjIYKsY5O6d3oUKoaHSD92bFX4Z1G4pJjberNShK6Noxw90jf_v_wHeDw-O52oyfH05ACeROStN7ift9BbLzf2HZo0a_3eH9lb0mP3aA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerothermodynamic+design+of+10%C2%A0kW+radial+inflow+turbine+for+an+organic+flashing+cycle+using+low-enthalpy+resources&rft.jtitle=Journal+of+cleaner+production&rft.au=Flores%2C+Rodrigo+Alarc%C3%B3n&rft.au=Avi%C3%B1a+Jim%C3%A9nez%2C+H%C3%A9ctor+M.&rft.au=Gonz%C3%A1lez%2C+Eduardo+P%C3%A9rez&rft.au=Gonz%C3%A1lez+Uribe%2C+Luis+A.&rft.date=2020-04-01&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=251&rft_id=info:doi/10.1016%2Fj.jclepro.2019.119713&rft.externalDocID=S0959652619345834 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |