Multi-pulse thermoreflectance imaging with structure function analyses for measuring thermophysical properties of microscale heterostructures
•A multi-pulse thermoreflectance thermal imaging (TTI) with a 50 ns temporal resolution is utilized combining with structure function algorithm.•The proposed scheme can simultaneously measure thermophysical properties in microscale heterostructures.•The proposed scheme achieves synchronous sensitivi...
        Saved in:
      
    
          | Published in | International journal of heat and mass transfer Vol. 229; p. 125737 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.09.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0017-9310 1879-2189  | 
| DOI | 10.1016/j.ijheatmasstransfer.2024.125737 | 
Cover
| Abstract | •A multi-pulse thermoreflectance thermal imaging (TTI) with a 50 ns temporal resolution is utilized combining with structure function algorithm.•The proposed scheme can simultaneously measure thermophysical properties in microscale heterostructures.•The proposed scheme achieves synchronous sensitivities to multiple parameters and eliminates the reliance on reference samples.•Experiments on a microscale Silicon-on-Insulator (SOI) sample exhibit a relative error of <10% compared to references.
The thermophysical properties of nano/microscale heterostructures play a crucial role in the performance and reliability of electronics. However, existing measurements encounter several challenges, including detecting multiple parameters synchronously and reliance on reference samples etc. In this study, we propose a multi-pulse thermoreflectance thermal imaging (TTI) combining with structure function algorithm, achieving simultaneous measurement of the thermal conductivities, specific heat capacities, and thermal boundary resistances (TBRs) of microscale heterostructures. A non-iterative methodology is established and the singular model parameter is evaluated through transient heat conduction modeling. We delineate criteria for thermal transient testing and achieve high-precision measurements over a broad time range by employing a multi-pulse strategy with a TTI system with a 50 ns temporal resolution. Our experimental measurements on a microscale Silicon-on-Insulator (SOI) sample validate the method's effectiveness. The measured thermophysical properties, including thermal conductivities of the device layer and handle wafer, TBR, and specific heat capacity of the device layer, exhibit a relative error of <10% compared to prior studies. Our approach presents an effective solution for precise thermal characterization within modern electronic devices. | 
    
|---|---|
| AbstractList | •A multi-pulse thermoreflectance thermal imaging (TTI) with a 50 ns temporal resolution is utilized combining with structure function algorithm.•The proposed scheme can simultaneously measure thermophysical properties in microscale heterostructures.•The proposed scheme achieves synchronous sensitivities to multiple parameters and eliminates the reliance on reference samples.•Experiments on a microscale Silicon-on-Insulator (SOI) sample exhibit a relative error of <10% compared to references.
The thermophysical properties of nano/microscale heterostructures play a crucial role in the performance and reliability of electronics. However, existing measurements encounter several challenges, including detecting multiple parameters synchronously and reliance on reference samples etc. In this study, we propose a multi-pulse thermoreflectance thermal imaging (TTI) combining with structure function algorithm, achieving simultaneous measurement of the thermal conductivities, specific heat capacities, and thermal boundary resistances (TBRs) of microscale heterostructures. A non-iterative methodology is established and the singular model parameter is evaluated through transient heat conduction modeling. We delineate criteria for thermal transient testing and achieve high-precision measurements over a broad time range by employing a multi-pulse strategy with a TTI system with a 50 ns temporal resolution. Our experimental measurements on a microscale Silicon-on-Insulator (SOI) sample validate the method's effectiveness. The measured thermophysical properties, including thermal conductivities of the device layer and handle wafer, TBR, and specific heat capacity of the device layer, exhibit a relative error of <10% compared to prior studies. Our approach presents an effective solution for precise thermal characterization within modern electronic devices. | 
    
| ArticleNumber | 125737 | 
    
| Author | Liu, Zhao-Yang Cao, Bing-Yang Yang, Guang Liu, Zhi-Ke  | 
    
| Author_xml | – sequence: 1 givenname: Zhao-Yang surname: Liu fullname: Liu, Zhao-Yang – sequence: 2 givenname: Zhi-Ke orcidid: 0000-0002-3513-0644 surname: Liu fullname: Liu, Zhi-Ke – sequence: 3 givenname: Guang surname: Yang fullname: Yang, Guang – sequence: 4 givenname: Bing-Yang orcidid: 0000-0002-6098-8351 surname: Cao fullname: Cao, Bing-Yang email: caoby@mail.tsinghua.edu.cn  | 
    
| BookMark | eNqVkclOwzAQhi1UJNrCO_jIJcGO0yw3UEVZVMQFztHUGTeOssl2QH0I3hlHhQtc4DReRp_n_7wgs67vkJBLzkLOeHJVh7quEFwL1joDnVVowohFccijVSrSEzLnWZoHEc_yGZkzxtMgF5ydkYW19bRlcTInH09j43QwjI1F6io0bW9QNSgddBKpbmGvuz19166i_p1RutEgVWMnne47Ch00B4uWqt7QFsGOZmo_gobqYLWEhg6mH9A47ft6RVstTW_9OdIKHfr1N9eek1MFfpKLr7okr5vbl_V9sH2-e1jfbAMp4sgFWELKVSnzHMpMJquMoYhT2AmeJHEGIlZcqBKARZhL3OW7nS8qU7EoV0mKiViSzZE7TWJ94EJqB1Mir1I3BWfFJLmoi9-Si0lycZTsQdc_QIPxzszhP4jHIwJ94Dftb63U6OWX2vhvKMpe_x32CUVbsn4 | 
    
| CitedBy_id | crossref_primary_10_1016_j_mejo_2024_106545 crossref_primary_10_1016_j_measurement_2024_115648 crossref_primary_10_1016_j_mejo_2024_106464  | 
    
| Cites_doi | 10.1109/31.135743 10.1021/acsami.9b16959 10.1016/S0026-2692(96)00031-6 10.1063/5.0020239 10.1063/1.5046944 10.1063/5.0120284 10.1109/TED.2020.3033259 10.1016/j.ijheatmasstransfer.2020.119751 10.1063/5.0039444 10.1063/1.1506784 10.1080/14786435908233340 10.1016/0038-1101(88)90099-8 10.1109/6144.974947 10.1109/TED.2007.913005 10.1016/j.microrel.2007.08.009 10.1021/acsami.1c09736 10.1007/s12598-023-02355-4 10.1063/1.5133105 10.1063/5.0187793 10.1038/nature12385 10.1063/1.1458057 10.1615/AnnualRevHeatTransfer.v16.20 10.1016/j.ijheatmasstransfer.2014.07.037 10.1088/1674-4926/36/8/084003 10.1149/1.2129394 10.1063/1.1713251 10.1109/84.946782 10.1109/TPEL.2018.2832042 10.1063/1.3212673 10.1103/PhysRevB.83.125202 10.1016/j.mejo.2012.07.006 10.1016/j.tsf.2013.10.005 10.1063/1.1558223 10.1109/TDMR.2016.2617458 10.1016/j.ijheatmasstransfer.2022.123497 10.1038/nnano.2007.121 10.1063/5.0155795 10.1063/1.5056182 10.1016/j.ijheatmasstransfer.2015.09.068 10.1063/5.0024476  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 | 
    
| Copyright_xml | – notice: 2024 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.ijheatmasstransfer.2024.125737 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1879-2189 | 
    
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2024_125737 S0017931024005684  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA K-O KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29J 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDMP ABDPE ABJNI ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 LY7 R2- SAC SET T9H VOH WUQ ZY4 ~HD  | 
    
| ID | FETCH-LOGICAL-c342t-eda71fdc99ad8c6580e347ab316648a34f13fdaa02e9ceb9bb9cef8f43d567e63 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0017-9310 | 
    
| IngestDate | Wed Oct 01 05:00:15 EDT 2025 Thu Apr 24 23:12:11 EDT 2025 Tue Jun 18 08:51:14 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Thermoreflectance thermal imaging Thermophysical property Thermal structure function Semiconductor heterostructure  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c342t-eda71fdc99ad8c6580e347ab316648a34f13fdaa02e9ceb9bb9cef8f43d567e63 | 
    
| ORCID | 0000-0002-3513-0644 0000-0002-6098-8351  | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijheatmasstransfer_2024_125737 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125737 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2024_125737  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-09-01 2024-09-00  | 
    
| PublicationDateYYYYMMDD | 2024-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International journal of heat and mass transfer | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Zhu, Olson, Hopkins, Zebarjadi (bib0025) 2020; 91 Li, Feng, Feng, Pan, Lv, Bai, Lu, Qin, Zhang (bib0036) 2023; 122 Szekely, Rencz, Torok, Ress (bib0035) 2001; 24 Pareek, Grosse, Sternberg, May, Ras, Wunderle (bib0039) 2020 Tian, Wu, Hu, Ma, Zhang (bib0007) 2024; 124 Xu, Fan, Wang, Zhang, Wang (bib0022) 2020; 154 Schmidt, Cheaito, Chiesa (bib0017) 2009; 80 Liu, Shen, Li, Cao (bib0044) 2024; 43 Braun, Olson, Gaskins, Hopkins (bib0019) 2019; 90 McConnell, Uma, Goodson (bib0013) 2001; 10 Yang, Feng, Shi, Yang (bib0046) 2015; 36 Tang, Qin, Hu, Cao (bib0014) 2020; 127 (bib0037) 2010 Hua, Cao (bib0028) 2021; 129 Székely (bib0040) 1991; 38 Gomès, Newby, Canut, Termentzidis, Marty, Fréchette, Chantrenne, Aimez, Bluet, Lysenko (bib0021) 2013; 44 Tang, Cao (bib0008) 2023; 200 Li, Feng, Liu, Zhang, Bai, Xiao, Zheng, He, Pan, Lin, Bai (bib0038) 2020; 67 Jiang, Qian, Yang (bib0016) 2018; 124 Zhang, Zhu, Hui, Lanza, Borca-Tasciuc, Rojo (bib0020) 2020; 30 McCray (bib0002) 2007; 2 Asheghi, Kurabayashi, Kasnavi, Goodson (bib0012) 2002; 91 Sandell, Chávez-Ángel, El Sachat, He, Sotomayor Torres, Maire (bib0045) 2020; 128 Székely (bib0031) 1997; 28 Sze, Lee (bib0001) 2012 Lee, Lee, Hwang (bib0015) 2011; 83 binti Hamzan, Bin Ng, Sadri, Lee, Chang, Tripathi, Dalton, Goh (bib0003) 2021; 851 Celler, Cristoloveanu (bib0004) 2003; 93 Özisik, Özışık (bib0043) 1993 Slack (bib0047) 2004; 35 Song, Shoemaker, Leach, McGray, Huang, Bhattacharyya, Zhang, Gonzalez-Valle, Hess, Zhukovsky, Ferri, Lavelle, Perez, Snyder, Maria, Ramos-Alvarado, Wang, Krishnamoorthy, Hwang, Foley, Choi (bib0005) 2021; 13 Cheng, Mu, Yates, Suga, Graham (bib0018) 2020; 12 Meng, Zhang, Duan, Zheng, Zhai, Feng, Zhang (bib0034) 2023; 72 Geim, Grigorieva (bib0006) 2013; 499 Flubacher, Leadbetter, Morrison (bib0050) 1959; 4 He, Liu, Tian, Li (bib0049) 2002; 81 Yang, Cao (bib0029) 2023; 133 Dames (bib0027) 2013; 16 Székely, Van Bien (bib0030) 1988; 31 Kim, Choi, Shin, Lee, Choi, Yi (bib0032) 2008; 48 Tadjer, Anderson (bib0009) 2022 Hua, Cao (bib0010) 2014; 78 Deng, Zhao, Zhang, Luo, Li, Huang (bib0033) 2019; 34 Hua, Cao (bib0011) 2016; 92 Liu, Yang, Cao (bib0026) 2023; 94 Maniscalco, Kaminski, Walls (bib0042) 2014; 550 Zhou, Apkarian, Wang, Joy (bib0041) 2007 Thurber, Mattis, Liu, Filliben (bib0048) 1980; 127 Kuball, Pomeroy (bib0024) 2016; 16 Simms, Pomeroy, Uren, Martin, Kuball (bib0023) 2008; 55 Liu (10.1016/j.ijheatmasstransfer.2024.125737_bib0044) 2024; 43 Sandell (10.1016/j.ijheatmasstransfer.2024.125737_bib0045) 2020; 128 Liu (10.1016/j.ijheatmasstransfer.2024.125737_bib0026) 2023; 94 Braun (10.1016/j.ijheatmasstransfer.2024.125737_bib0019) 2019; 90 (10.1016/j.ijheatmasstransfer.2024.125737_bib0037) 2010 binti Hamzan (10.1016/j.ijheatmasstransfer.2024.125737_bib0003) 2021; 851 Kuball (10.1016/j.ijheatmasstransfer.2024.125737_bib0024) 2016; 16 Tadjer (10.1016/j.ijheatmasstransfer.2024.125737_bib0009) 2022 Zhou (10.1016/j.ijheatmasstransfer.2024.125737_bib0041) 2007 Lee (10.1016/j.ijheatmasstransfer.2024.125737_bib0015) 2011; 83 Hua (10.1016/j.ijheatmasstransfer.2024.125737_bib0010) 2014; 78 McConnell (10.1016/j.ijheatmasstransfer.2024.125737_bib0013) 2001; 10 Li (10.1016/j.ijheatmasstransfer.2024.125737_bib0036) 2023; 122 Szekely (10.1016/j.ijheatmasstransfer.2024.125737_bib0035) 2001; 24 Flubacher (10.1016/j.ijheatmasstransfer.2024.125737_bib0050) 1959; 4 Hua (10.1016/j.ijheatmasstransfer.2024.125737_bib0011) 2016; 92 Kim (10.1016/j.ijheatmasstransfer.2024.125737_bib0032) 2008; 48 Hua (10.1016/j.ijheatmasstransfer.2024.125737_bib0028) 2021; 129 McCray (10.1016/j.ijheatmasstransfer.2024.125737_bib0002) 2007; 2 Tang (10.1016/j.ijheatmasstransfer.2024.125737_bib0008) 2023; 200 Yang (10.1016/j.ijheatmasstransfer.2024.125737_bib0029) 2023; 133 Asheghi (10.1016/j.ijheatmasstransfer.2024.125737_bib0012) 2002; 91 Meng (10.1016/j.ijheatmasstransfer.2024.125737_bib0034) 2023; 72 He (10.1016/j.ijheatmasstransfer.2024.125737_bib0049) 2002; 81 Gomès (10.1016/j.ijheatmasstransfer.2024.125737_bib0021) 2013; 44 Yang (10.1016/j.ijheatmasstransfer.2024.125737_bib0046) 2015; 36 Deng (10.1016/j.ijheatmasstransfer.2024.125737_bib0033) 2019; 34 Thurber (10.1016/j.ijheatmasstransfer.2024.125737_bib0048) 1980; 127 Xu (10.1016/j.ijheatmasstransfer.2024.125737_bib0022) 2020; 154 Zhang (10.1016/j.ijheatmasstransfer.2024.125737_bib0020) 2020; 30 Székely (10.1016/j.ijheatmasstransfer.2024.125737_bib0030) 1988; 31 Jiang (10.1016/j.ijheatmasstransfer.2024.125737_bib0016) 2018; 124 Székely (10.1016/j.ijheatmasstransfer.2024.125737_bib0040) 1991; 38 Pareek (10.1016/j.ijheatmasstransfer.2024.125737_bib0039) 2020 Sze (10.1016/j.ijheatmasstransfer.2024.125737_bib0001) 2012 Schmidt (10.1016/j.ijheatmasstransfer.2024.125737_bib0017) 2009; 80 Simms (10.1016/j.ijheatmasstransfer.2024.125737_bib0023) 2008; 55 Song (10.1016/j.ijheatmasstransfer.2024.125737_bib0005) 2021; 13 Li (10.1016/j.ijheatmasstransfer.2024.125737_bib0038) 2020; 67 Slack (10.1016/j.ijheatmasstransfer.2024.125737_bib0047) 2004; 35 Celler (10.1016/j.ijheatmasstransfer.2024.125737_bib0004) 2003; 93 Tang (10.1016/j.ijheatmasstransfer.2024.125737_bib0014) 2020; 127 Székely (10.1016/j.ijheatmasstransfer.2024.125737_bib0031) 1997; 28 Geim (10.1016/j.ijheatmasstransfer.2024.125737_bib0006) 2013; 499 Cheng (10.1016/j.ijheatmasstransfer.2024.125737_bib0018) 2020; 12 Dames (10.1016/j.ijheatmasstransfer.2024.125737_bib0027) 2013; 16 Maniscalco (10.1016/j.ijheatmasstransfer.2024.125737_bib0042) 2014; 550 Özisik (10.1016/j.ijheatmasstransfer.2024.125737_bib0043) 1993 Zhu (10.1016/j.ijheatmasstransfer.2024.125737_bib0025) 2020; 91 Tian (10.1016/j.ijheatmasstransfer.2024.125737_bib0007) 2024; 124  | 
    
| References_xml | – volume: 30 year: 2020 ident: bib0020 article-title: A review on principles and applications of scanning thermal microscopy (SThM) publication-title: Adv. Funct. Mater. – volume: 34 start-page: 1509 year: 2019 end-page: 1517 ident: bib0033 article-title: Study on the method to measure thermal contact resistance within press pack IGBTs publication-title: IEEE Trans. Power Electron. – volume: 83 year: 2011 ident: bib0015 article-title: Effects of vacancy defects on thermal conductivity in crystalline silicon: a nonequilibrium molecular dynamics study publication-title: Phys. Rev. B – start-page: 115 year: 1993 end-page: 117 ident: bib0043 article-title: Heat Conduction – year: 2010 ident: bib0037 article-title: JESD51-14 Standard: Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction-to-Case of Semiconductor Devices with Heat Flow Through a Single Path – volume: 91 start-page: 5079 year: 2002 end-page: 5088 ident: bib0012 article-title: Thermal conduction in doped single-crystal silicon films publication-title: J. Appl. Phys. – volume: 127 start-page: 2291 year: 1980 ident: bib0048 article-title: Resistivity-dopant density relationship for boron-doped silicon publication-title: J. Electrochem. Soc. – volume: 48 start-page: 445 year: 2008 end-page: 454 ident: bib0032 article-title: Thermal transient characteristics of die attach in high power LED PKG publication-title: Microelectronics Reliab. – volume: 67 start-page: 5454 year: 2020 end-page: 5459 ident: bib0038 article-title: A drain–source connection technique: thermal resistance measurement method for GaN HEMTs using TSEP at high voltage publication-title: IEEE Trans. Electron. Devices – volume: 31 start-page: 1363 year: 1988 end-page: 1368 ident: bib0030 article-title: Fine structure of heat flow path in semiconductor devices: a measurement and identification method publication-title: Solid. State Electron. – volume: 93 start-page: 4955 year: 2003 end-page: 4978 ident: bib0004 article-title: Frontiers of silicon-on-insulator publication-title: J. Appl. Phys. – volume: 55 start-page: 478 year: 2008 end-page: 482 ident: bib0023 article-title: Channel temperature determination in high-power AlGaN/GaN HFETs using electrical methods and Raman spectroscopy publication-title: IEEE Trans. Electron. Devices – volume: 28 start-page: 277 year: 1997 end-page: 292 ident: bib0031 article-title: A new evaluation method of thermal transient measurement results publication-title: Microelectronics J. – volume: 36 year: 2015 ident: bib0046 article-title: Thermal time-constant spectrum extraction method in AlGaN/GaN HEMTs publication-title: J. Semiconductors – volume: 4 start-page: 273 year: 1959 end-page: 294 ident: bib0050 article-title: The heat capacity of pure silicon and germanium and properties of their vibrational frequency spectra publication-title: Philos. Mag.: J. Theor. Exp. Appl. Phys. – year: 2022 ident: bib0009 article-title: Thermal Management of Gallium Nitride Electronics – volume: 35 start-page: 3460 year: 2004 end-page: 3466 ident: bib0047 article-title: Thermal conductivity of pure and impure silicon, silicon carbide, and diamond publication-title: J. Appl. Phys. – volume: 92 start-page: 995 year: 2016 end-page: 1003 ident: bib0011 article-title: The effective thermal conductivity of ballistic–diffusive heat conduction in nanostructures with internal heat source publication-title: Int. J. Heat. Mass Transf. – volume: 43 start-page: 389 year: 2024 end-page: 394 ident: bib0044 article-title: Observation of ballistic-diffusive thermal transport in GaN transistors using thermoreflectance thermal imaging publication-title: Rare Metals – volume: 128 year: 2020 ident: bib0045 article-title: Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures publication-title: J. Appl. Phys. – volume: 91 year: 2020 ident: bib0025 article-title: Heat diffusion imaging: in-plane thermal conductivity measurement of thin films in a broad temperature range publication-title: Rev. Sci. Instrum. – volume: 154 year: 2020 ident: bib0022 article-title: Raman-based nanoscale thermal transport characterization: a critical review publication-title: Int. J. Heat Mass Transf. – volume: 124 year: 2018 ident: bib0016 article-title: Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials publication-title: J. Appl. Phys. – start-page: 97 year: 2020 end-page: 104 ident: bib0039 article-title: Effect of different deconvolution methods on structure function calculation publication-title: 2020 26th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC) – volume: 10 start-page: 360 year: 2001 end-page: 369 ident: bib0013 article-title: Thermal conductivity of doped polysilicon layers publication-title: J. Microelectromech. Syst. – volume: 81 start-page: 1896 year: 2002 end-page: 1898 ident: bib0049 article-title: Measurement of thermal conductivity of buried oxides of silicon-on-insulator wafers fabricated by separation by implantation of oxygen technology publication-title: Appl. Phys. Lett. – volume: 122 year: 2023 ident: bib0036 article-title: A thermal boundary resistance measurement method based on a designed chip with the heat source separated from the temperature sensor publication-title: Appl. Phys. Lett. – start-page: 1 year: 2007 end-page: 40 ident: bib0041 article-title: Fundamentals of scanning electron microscopy (SEM) publication-title: Scanning Microscopy for Nanotechnology: Techniques and Applications – volume: 94 year: 2023 ident: bib0026 article-title: Pulsed thermoreflectance imaging for thermophysical properties measurement of GaN epitaxial heterostructures publication-title: Rev. Sci. Instrum. – volume: 124 year: 2024 ident: bib0007 article-title: Boosting phonon transport across AlN/SiC interface by fast annealing amorphous layers publication-title: Appl. Phys. Lett. – volume: 90 year: 2019 ident: bib0019 article-title: A steady-state thermoreflectance method to measure thermal conductivity publication-title: Rev. Sci. Instrum. – volume: 13 start-page: 40817 year: 2021 end-page: 40829 ident: bib0005 article-title: Ga2O3-on-SiC composite wafer for thermal management of ultrawide bandgap electronics publication-title: ACS. Appl. Mater. Interfaces – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: bib0006 article-title: Van der Waals heterostructures publication-title: Nature – volume: 550 start-page: 10 year: 2014 end-page: 16 ident: bib0042 article-title: Thin film thickness measurements using scanning white light interferometry publication-title: Thin Solid Films – volume: 80 year: 2009 ident: bib0017 article-title: A frequency-domain thermoreflectance method for the characterization of thermal properties publication-title: Rev. Sci. Instrum. – volume: 44 start-page: 1029 year: 2013 end-page: 1034 ident: bib0021 article-title: Characterization of the thermal conductivity of insulating thin films by scanning thermal microscopy publication-title: Microelectronics J. – year: 2012 ident: bib0001 article-title: Semiconductor Devices Physics and Technology – volume: 16 start-page: 7 year: 2013 end-page: 49 ident: bib0027 article-title: Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods publication-title: Ann. Rev. Heat Transfer – volume: 133 year: 2023 ident: bib0029 article-title: Three-sensor 3ω-2ω method for the simultaneous measurement of thermal conductivity and thermal boundary resistance in film-on-substrate heterostructures publication-title: J. Appl. Phys. – volume: 2 start-page: 259 year: 2007 end-page: 261 ident: bib0002 article-title: MBE deserves a place in the history books publication-title: Nat. Nanotechnol. – volume: 24 start-page: 605 year: 2001 end-page: 610 ident: bib0035 article-title: Calculating effective board thermal parameters from transient measurements publication-title: IEEE Trans. Components Packag. Technol. – volume: 851 year: 2021 ident: bib0003 article-title: Controlled physical properties and growth mechanism of manganese silicide nanorods publication-title: J. Alloys Compd. – volume: 12 start-page: 8376 year: 2020 end-page: 8384 ident: bib0018 article-title: Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices publication-title: ACS. Appl. Mater. Interfaces – volume: 38 start-page: 711 year: 1991 end-page: 719 ident: bib0040 article-title: On the representation of infinite-length distributed RC one-ports publication-title: IEEE Trans. Circuits Syst. – volume: 200 year: 2023 ident: bib0008 article-title: Phonon thermal transport and its tunability in GaN for near-junction thermal management of electronics: a review publication-title: Int. J. Heat. Mass Transf. – volume: 78 start-page: 755 year: 2014 end-page: 759 ident: bib0010 article-title: Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations publication-title: Int. J. Heat. Mass Transf. – volume: 127 year: 2020 ident: bib0014 article-title: Thermal transport properties of GaN with biaxial strain and electron-phonon coupling publication-title: J. Appl. Phys. – volume: 16 start-page: 667 year: 2016 end-page: 684 ident: bib0024 article-title: A review of Raman thermography for electronic and opto-electronic device measurement with submicron spatial and nanosecond temporal resolution publication-title: IEEE Trans. Device Mater. Reliab. – volume: 129 year: 2021 ident: bib0028 article-title: A two-sensor 3ω-2ω method for thermal boundary resistance measurement publication-title: J. Appl. Phys. – volume: 72 start-page: 1 year: 2023 end-page: 9 ident: bib0034 article-title: Research on transient temperature rise measurement method for semiconductor devices based on photothermal reflection publication-title: IEEE Trans. Instrum. Meas. – volume: 38 start-page: 711 year: 1991 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0040 article-title: On the representation of infinite-length distributed RC one-ports publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/31.135743 – volume: 12 start-page: 8376 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0018 article-title: Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices publication-title: ACS. Appl. Mater. Interfaces doi: 10.1021/acsami.9b16959 – volume: 28 start-page: 277 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0031 article-title: A new evaluation method of thermal transient measurement results publication-title: Microelectronics J. doi: 10.1016/S0026-2692(96)00031-6 – volume: 128 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0045 article-title: Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures publication-title: J. Appl. Phys. doi: 10.1063/5.0020239 – volume: 124 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0016 article-title: Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials publication-title: J. Appl. Phys. doi: 10.1063/1.5046944 – volume: 133 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0029 article-title: Three-sensor 3ω-2ω method for the simultaneous measurement of thermal conductivity and thermal boundary resistance in film-on-substrate heterostructures publication-title: J. Appl. Phys. doi: 10.1063/5.0120284 – volume: 67 start-page: 5454 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0038 article-title: A drain–source connection technique: thermal resistance measurement method for GaN HEMTs using TSEP at high voltage publication-title: IEEE Trans. Electron. Devices doi: 10.1109/TED.2020.3033259 – volume: 154 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0022 article-title: Raman-based nanoscale thermal transport characterization: a critical review publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119751 – volume: 129 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0028 article-title: A two-sensor 3ω-2ω method for thermal boundary resistance measurement publication-title: J. Appl. Phys. doi: 10.1063/5.0039444 – volume: 81 start-page: 1896 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0049 article-title: Measurement of thermal conductivity of buried oxides of silicon-on-insulator wafers fabricated by separation by implantation of oxygen technology publication-title: Appl. Phys. Lett. doi: 10.1063/1.1506784 – volume: 851 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0003 article-title: Controlled physical properties and growth mechanism of manganese silicide nanorods publication-title: J. Alloys Compd. – volume: 4 start-page: 273 year: 1959 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0050 article-title: The heat capacity of pure silicon and germanium and properties of their vibrational frequency spectra publication-title: Philos. Mag.: J. Theor. Exp. Appl. Phys. doi: 10.1080/14786435908233340 – volume: 122 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0036 article-title: A thermal boundary resistance measurement method based on a designed chip with the heat source separated from the temperature sensor publication-title: Appl. Phys. Lett. – volume: 31 start-page: 1363 year: 1988 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0030 article-title: Fine structure of heat flow path in semiconductor devices: a measurement and identification method publication-title: Solid. State Electron. doi: 10.1016/0038-1101(88)90099-8 – volume: 24 start-page: 605 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0035 article-title: Calculating effective board thermal parameters from transient measurements publication-title: IEEE Trans. Components Packag. Technol. doi: 10.1109/6144.974947 – volume: 55 start-page: 478 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0023 article-title: Channel temperature determination in high-power AlGaN/GaN HFETs using electrical methods and Raman spectroscopy publication-title: IEEE Trans. Electron. Devices doi: 10.1109/TED.2007.913005 – volume: 48 start-page: 445 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0032 article-title: Thermal transient characteristics of die attach in high power LED PKG publication-title: Microelectronics Reliab. doi: 10.1016/j.microrel.2007.08.009 – volume: 13 start-page: 40817 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0005 article-title: Ga2O3-on-SiC composite wafer for thermal management of ultrawide bandgap electronics publication-title: ACS. Appl. Mater. Interfaces doi: 10.1021/acsami.1c09736 – volume: 43 start-page: 389 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0044 article-title: Observation of ballistic-diffusive thermal transport in GaN transistors using thermoreflectance thermal imaging publication-title: Rare Metals doi: 10.1007/s12598-023-02355-4 – volume: 127 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0014 article-title: Thermal transport properties of GaN with biaxial strain and electron-phonon coupling publication-title: J. Appl. Phys. doi: 10.1063/1.5133105 – year: 2012 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0001 – start-page: 115 year: 1993 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0043 – volume: 124 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0007 article-title: Boosting phonon transport across AlN/SiC interface by fast annealing amorphous layers publication-title: Appl. Phys. Lett. doi: 10.1063/5.0187793 – volume: 499 start-page: 419 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0006 article-title: Van der Waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – start-page: 1 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0041 article-title: Fundamentals of scanning electron microscopy (SEM) – volume: 91 start-page: 5079 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0012 article-title: Thermal conduction in doped single-crystal silicon films publication-title: J. Appl. Phys. doi: 10.1063/1.1458057 – start-page: 97 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0039 article-title: Effect of different deconvolution methods on structure function calculation – volume: 16 start-page: 7 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0027 article-title: Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods publication-title: Ann. Rev. Heat Transfer doi: 10.1615/AnnualRevHeatTransfer.v16.20 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0034 article-title: Research on transient temperature rise measurement method for semiconductor devices based on photothermal reflection publication-title: IEEE Trans. Instrum. Meas. – year: 2010 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0037 – volume: 78 start-page: 755 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0010 article-title: Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.07.037 – volume: 36 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0046 article-title: Thermal time-constant spectrum extraction method in AlGaN/GaN HEMTs publication-title: J. Semiconductors doi: 10.1088/1674-4926/36/8/084003 – volume: 127 start-page: 2291 year: 1980 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0048 article-title: Resistivity-dopant density relationship for boron-doped silicon publication-title: J. Electrochem. Soc. doi: 10.1149/1.2129394 – volume: 35 start-page: 3460 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0047 article-title: Thermal conductivity of pure and impure silicon, silicon carbide, and diamond publication-title: J. Appl. Phys. doi: 10.1063/1.1713251 – volume: 10 start-page: 360 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0013 article-title: Thermal conductivity of doped polysilicon layers publication-title: J. Microelectromech. Syst. doi: 10.1109/84.946782 – volume: 34 start-page: 1509 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0033 article-title: Study on the method to measure thermal contact resistance within press pack IGBTs publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2018.2832042 – volume: 80 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0017 article-title: A frequency-domain thermoreflectance method for the characterization of thermal properties publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3212673 – volume: 83 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0015 article-title: Effects of vacancy defects on thermal conductivity in crystalline silicon: a nonequilibrium molecular dynamics study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.125202 – volume: 44 start-page: 1029 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0021 article-title: Characterization of the thermal conductivity of insulating thin films by scanning thermal microscopy publication-title: Microelectronics J. doi: 10.1016/j.mejo.2012.07.006 – volume: 550 start-page: 10 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0042 article-title: Thin film thickness measurements using scanning white light interferometry publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.10.005 – volume: 93 start-page: 4955 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0004 article-title: Frontiers of silicon-on-insulator publication-title: J. Appl. Phys. doi: 10.1063/1.1558223 – volume: 16 start-page: 667 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0024 article-title: A review of Raman thermography for electronic and opto-electronic device measurement with submicron spatial and nanosecond temporal resolution publication-title: IEEE Trans. Device Mater. Reliab. doi: 10.1109/TDMR.2016.2617458 – volume: 200 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0008 article-title: Phonon thermal transport and its tunability in GaN for near-junction thermal management of electronics: a review publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.123497 – volume: 2 start-page: 259 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0002 article-title: MBE deserves a place in the history books publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.121 – volume: 30 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0020 article-title: A review on principles and applications of scanning thermal microscopy (SThM) publication-title: Adv. Funct. Mater. – volume: 94 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0026 article-title: Pulsed thermoreflectance imaging for thermophysical properties measurement of GaN epitaxial heterostructures publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0155795 – volume: 90 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0019 article-title: A steady-state thermoreflectance method to measure thermal conductivity publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5056182 – year: 2022 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0009 – volume: 92 start-page: 995 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0011 article-title: The effective thermal conductivity of ballistic–diffusive heat conduction in nanostructures with internal heat source publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.09.068 – volume: 91 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2024.125737_bib0025 article-title: Heat diffusion imaging: in-plane thermal conductivity measurement of thin films in a broad temperature range publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0024476  | 
    
| SSID | ssj0017046 | 
    
| Score | 2.4679978 | 
    
| Snippet | •A multi-pulse thermoreflectance thermal imaging (TTI) with a 50 ns temporal resolution is utilized combining with structure function algorithm.•The proposed... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 125737 | 
    
| SubjectTerms | Semiconductor heterostructure Thermal structure function Thermophysical property Thermoreflectance thermal imaging  | 
    
| Title | Multi-pulse thermoreflectance imaging with structure function analyses for measuring thermophysical properties of microscale heterostructures | 
    
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2024.125737 | 
    
| Volume | 229 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AKRWK dateStart: 19600601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6longRn1gfJQcPXrbd3WQfOUkplmqxB7HY25JkE1xx26XbXv0H_mcz-6iKHhQ8LRuSYckXZmaHL98gdEG1JtoEcsvToWeBBLoltC0tEEXmnAmTQUC9427sDyf0dupNG6hf34UBWmXl-0ufXnjraqRb7WY3SxK44wuHywGRLhPFQ9AEpTSALgad1zXNwwns8rIOeGOYvYUuPzheyTN4vNSkqcsiTVSgEOrSjon6AXRG_ylUfQo_g120U-WNuFd-2h5qqNk-2iz4mzI_QG_FRVorW5nlGHI64M9qKMkDqjhJi2ZEGKquuJSMXS0UhqAGwGBeSJOoHJsUFqdF2RCml4ayCkqcQeF-AQqseK5xClS-3Iwr_AScmvnabn6IJoPrh_7QqjotWJJQd2mpmAeOjiVjPA6lSUpsRWjABXF8n4acUO0QHXNuu4pJJZgQ5qFDTUns-YHyyRFqzuYzdYywLTkR5rfSlgYSTQhn3A9FwKRkWgvXbqGrelMjWcmQQzeMl6jmmz1H32GJAJaohKWF2NpCVkpy_GFtv8Yx-nLMIhNBfm3l5F-snKJteCsJa2eoaUBS5ybDWYp2cYTbaKN3MxqO4Tm6fxy9A576CGM | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xiOWCWEVZfeDAJW0SO4tPCFWgsvXUSr1FtmOLVLSNulz5A_4ZT5IWEBxA4hTJsUeRnzUzGb15BrhgxlBjA7kTmDhwUALdkcZVDooiC8GlzSCw3vHUDltddt8LekvQnPfCIK2y8v2lTy-8dTXSqHazkWcZ9vji4fJQpMtG8ZgtwyoL_Aj_wOqvC56HF7lltw66Y5y-DpcfJK-sjy5vYPPUaZEnapQI9Vndhv0Ir0b_KVZ9ij-327BVJY7kuvy2HVjSw11YKwicarIHb0UnrZPP7HKCSR0SaA3W5BFWkg2K24gIll1JqRk7G2uCUQ2RIaLQJtETYnNYMijqhji9NJRXWJIcK_djlGAlI0MGyOWb2HFNnpFUM1rYnexD9_am02w51VULjqLMnzo6FZFnUsW5SGNlsxJXUxYJSb0wZLGgzHjUpEK4vuZKSy6lfZjYMJoGYaRDegArw9FQHwJxlaDS_le6ymJiKBVchLGMuFLcGOm7Nbiab2qiKh1yvA7jJZkTzvrJd1gShCUpYakBX1jIS02OP6xtznFMvpyzxIaQX1s5-hcr57DR6jw9Jo937Ydj2MQ3JXvtBFYsYPrUpjtTeVYc53dZHAhV | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-pulse+thermoreflectance+imaging+with+structure+function+analyses+for+measuring+thermophysical+properties+of+microscale+heterostructures&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Liu%2C+Zhao-Yang&rft.au=Liu%2C+Zhi-Ke&rft.au=Yang%2C+Guang&rft.au=Cao%2C+Bing-Yang&rft.date=2024-09-01&rft.issn=0017-9310&rft.volume=229&rft.spage=125737&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2024.125737&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2024_125737 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |