ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network

Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure. However, NDN is subject to congestion when the number of data packets that reach one or various routers in a certain period of time is so high...

Full description

Saved in:
Bibliographic Details
Published inJournal of network and computer applications Vol. 56; pp. 1 - 18
Main Author Karami, Amin
Format Journal Article Publication
LanguageEnglish
Published Elsevier Ltd 01.10.2015
Subjects
Online AccessGet full text
ISSN1084-8045
1095-8592
DOI10.1016/j.jnca.2015.05.017

Cover

Abstract Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure. However, NDN is subject to congestion when the number of data packets that reach one or various routers in a certain period of time is so high than its queue gets overflowed. To address this problem many congestion control protocols have been proposed in the literature which, however, they are highly sensitive to their control parameters as well as unable to predict congestion traffic well enough in advance. This paper develops an Adaptive Congestion Control Protocol in NDN (ACCPndn) by learning capacities in two phases to control congestion traffics before they start impacting the network performance. In the first phase – adaptive training – we propose a Time-Lagged Feedforward Network (TLFN) optimized by hybridization of particle swarm optimization and genetic algorithm to predict the source of congestion together with the amount of congestion. In the second phase -fuzzy avoidance- we employ a non-linear fuzzy logic-based control system to make a proactive decision based on the outcomes of first phase in each router per interface to control and/or prevent packet drop well enough in advance. Extensive simulations and results show that ACCPndn sufficiently satisfies the applied performance metrics and outperforms two previous proposals such as NACK and HoBHIS in terms of the minimal packet drop and high-utilization (retrying alternative paths) in bottleneck links to mitigate congestion traffics.
AbstractList Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure. However, NDN is subject to congestion when the number of data packets that reach one or various routers in a certain period of time is so high than its queue gets overflowed. To address this problem many congestion control protocols have been proposed in the literature which, however, they are highly sensitive to their control parameters as well as unable to predict congestion traffic well enough in advance. This paper develops an Adaptive Congestion Control Protocol in NON (ACCPndn) by learning capacities in two phases to control congestion traffics before they start impacting the network performance. In the first phase - adaptive training - we propose a Time-Lagged Feedforward Network (TLFN) optimized by hybridization of particle swarm optimization and genetic algorithm to predict the source of congestion together with the amount of congestion. In the second phase -fuzzy avoidance- we employ a non-linear fuzzy logic-based control system to make a proactive decision based on the outcomes of first phase in each router per interface to control and/or prevent packet drop well enough in advance. Extensive simulations and results show that ACCPndn sufficiently satisfies the applied performance metrics and outperforms two previous proposals such as NACK and HoBHIS in terms of the minimal packet drop and high-utilization (retrying alternative paths) in bottleneck links to mitigate congestion traffics.
Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure. However, NDN is subject to congestion when the number of data packets that reach one or various routers in a certain period of time is so high than its queue gets overflowed. To address this problem many congestion control protocols have been proposed in the literature which, however, they are highly sensitive to their control parameters as well as unable to predict congestion traffic well enough in advance. This paper develops an Adaptive Congestion Control Protocol in NDN (ACCPndn) by learning capacities in two phases to control congestion traffics before they start impacting the network performance. In the first phase – adaptive training – we propose a Time-Lagged Feedforward Network (TLFN) optimized by hybridization of particle swarm optimization and genetic algorithm to predict the source of congestion together with the amount of congestion. In the second phase -fuzzy avoidance- we employ a non-linear fuzzy logic-based control system to make a proactive decision based on the outcomes of first phase in each router per interface to control and/or prevent packet drop well enough in advance. Extensive simulations and results show that ACCPndn sufficiently satisfies the applied performance metrics and outperforms two previous proposals such as NACK and HoBHIS in terms of the minimal packet drop and high-utilization (retrying alternative paths) in bottleneck links to mitigate congestion traffics.
Author Karami, Amin
Author_xml – sequence: 1
  givenname: Amin
  orcidid: 0000-0003-3635-513X
  surname: Karami
  fullname: Karami, Amin
  email: amin@ac.upc.edu
  organization: Computer Architecture Department (DAC), Universitat Politècnica de Catalunya (UPC), Campus Nord, Jordi Girona 1-3, 08034 Barcelona, Spain
BookMark eNp9kd9qHCEUxqWk0GTbF-jVvMBs1fnjWHqzTJumsKS52Hs5o2cWt7O6qJuQPkcfuEoSCr0IHPFT-X14zndFLpx3SMhHRteMsv7TYX1wGtacsm5NczHxhlwyKrt66CS_KHpo64G23TtyFeOBUtq3srkkfzbjeOeM-1xtDJySvcdq9G6PMVnvikzBL9Vd8MnrLKyrbuGIpvoKCapbTA8-_LJuX02P1YIQXNEaTqBtshircywXPhsf7e-M7ewR6y3s91lfI5rZhwcIJjudAywvhu_J2xmWiB-e9xXZXX_bjTf19uf3H-NmW-um5anGvpnoAAKnATvetLknOUgGnZSzNChFz6aZmVawCXjfGSkEahy4FqLhvWxWhD3Z6njWKuS3oCEpD_bfoSxOBVdN24vMrcjwzAQfY8BZ5U6hDCsFsItiVJVA1EGVQFQJRNFcrKD8P_QU7BHC4-vQlycI8xzuLQYVtUWn0dj8x6SMt6_hfwEQlajd
CitedBy_id crossref_primary_10_1007_s12083_019_00845_w
crossref_primary_10_1016_j_comcom_2016_04_017
crossref_primary_10_1007_s00521_018_3408_2
crossref_primary_10_1109_OJCOMS_2021_3071496
crossref_primary_10_1080_02564602_2017_1281173
crossref_primary_10_1109_ACCESS_2021_3128814
crossref_primary_10_1016_j_eswa_2018_04_038
crossref_primary_10_1016_j_eswa_2021_115017
crossref_primary_10_1007_s11831_024_10110_w
crossref_primary_10_1109_COMST_2020_2975048
crossref_primary_10_1007_s11235_023_01015_3
crossref_primary_10_1002_itl2_195
crossref_primary_10_1109_ACCESS_2017_2778339
crossref_primary_10_1109_JIOT_2019_2929263
crossref_primary_10_1186_s13174_018_0087_2
crossref_primary_10_1016_j_jnca_2020_102574
crossref_primary_10_1080_02564602_2021_1957029
crossref_primary_10_3390_electronics10070806
crossref_primary_10_1002_ett_3577
crossref_primary_10_1080_0952813X_2022_2115141
Cites_doi 10.1109/TSMCC.2004.843217
10.1109/MCOM.2012.6231276
10.1016/j.compeleceng.2008.02.002
10.1016/0893-6080(89)90003-8
10.1016/j.jnca.2014.01.005
10.1080/00224065.1999.11979899
10.1016/j.comnet.2013.07.034
10.1016/j.asoc.2006.03.002
10.1016/j.ins.2013.10.035
10.1109/ICNN.1995.488968
10.1145/2413219.2413226
10.1016/j.ins.2011.09.036
10.1016/j.comcom.2013.01.005
10.1016/j.comcom.2013.01.009
10.1109/ICCP.2011.6047849
10.1007/s00500-009-0440-2
10.1016/S0019-9958(65)90241-X
10.1002/9780470017906
10.1109/WOCC.2013.6676409
10.1016/j.comcom.2007.11.007
10.1016/j.knosys.2013.11.015
10.1016/j.jngse.2013.06.002
10.1109/ICIINFS.2010.5578726
10.1109/ICC.2013.6655143
10.1016/j.swevo.2011.07.001
10.1016/j.comnet.2013.07.008
10.1111/j.1468-0394.2010.00568.x
10.1109/PDCAT.2012.43
10.1016/j.ins.2012.01.021
10.1016/j.ijepes.2011.08.023
10.1016/j.comcom.2013.01.008
10.1016/j.dss.2010.05.006
10.1117/12.610751
10.1109/INFCOM.2000.832539
10.1007/978-3-642-30955-7_5
10.1145/2001858.2001950
10.1109/ICNC.2009.673
10.1016/j.comnet.2008.11.002
10.1109/IJCNN.2006.247142
10.1016/j.econmod.2013.09.024
10.1016/0893-6080(89)90020-8
10.1016/j.comnet.2007.04.002
10.1016/j.eswa.2013.10.053
10.1016/j.fss.2007.10.011
10.1109/CEC.2000.870279
10.1016/j.neucom.2014.11.003
10.1109/ICSTE.2010.5608912
10.1016/j.jnca.2014.03.006
10.1023/A:1012074215150
10.1016/j.protcy.2012.10.034
10.1016/j.ejor.2010.05.022
10.1109/INFCOMW.2012.6193514
10.1016/j.neucom.2014.08.070
10.1109/ICFN.2010.73
10.1007/3-540-33019-4
10.1016/j.jnca.2014.02.011
10.1109/FUZZ-IEEE.2013.6622319
10.1016/j.eswa.2013.05.053
10.1109/INFCOMW.2013.6970718
10.7125/APAN.34.3
10.2991/icacsei.2013.160
10.1016/j.comnet.2015.01.020
10.1016/j.physd.2013.11.002
10.1145/1658939.1658941
ContentType Journal Article
Publication
Copyright 2015 Elsevier Ltd
info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
XX2
DOI 10.1016/j.jnca.2015.05.017
DatabaseName CrossRef
Recercat
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1095-8592
EndPage 18
ExternalDocumentID oai_recercat_cat_2072_346777
10_1016_j_jnca_2015_05_017
S1084804515001265
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WH7
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
XX2
ID FETCH-LOGICAL-c342t-e63b08a7eb8e52340069891a599f9de9761bf1d471ba265d977ece82c7732693
IEDL.DBID .~1
ISSN 1084-8045
IngestDate Fri Sep 26 12:27:16 EDT 2025
Wed Oct 01 03:43:37 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Fri Feb 23 02:12:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Time-lagged feedforward network
Named data networking
Congestion control
Fuzzy set
Genetic algorithm
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-e63b08a7eb8e52340069891a599f9de9761bf1d471ba265d977ece82c7732693
ORCID 0000-0003-3635-513X
OpenAccessLink https://recercat.cat/handle/2072/346777
PageCount 18
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_346777
crossref_citationtrail_10_1016_j_jnca_2015_05_017
crossref_primary_10_1016_j_jnca_2015_05_017
elsevier_sciencedirect_doi_10_1016_j_jnca_2015_05_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of network and computer applications
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kuo, Syu, Chen, Tien (bib47) 2012; 195
Ran J, Lv N, Zhang D, Ma Y, Xie Z. On performance of cache policies in named data networking. In: International conference on advanced science and electronics information (ICACSEI). Atlantis Press; 2013. p. 668–71.
Makridakis, Wheelwright, Hyndman (bib55) 1997
Lee, Lee (bib49) 2012; 186
Muscariello, Carofiglio, Gallo (bib200) 2011
Claveria, Torra (bib15) 2014; 36
Kuo, Hung, Cheng (bib48) 2014; 262
Cortez, Rio, Rocha, Sousa (bib18) 2012; 29
Chamkalani, Mae׳soumi, Sameni (bib11) 2013; 14
Jacobson V, Smetters DK, Thornton JD, Plass MF, Briggs NH, Braynard RL. Networking named content. In: Proceedings of the 5th international conference on Emerging networking experiments and technologies. New York, NY, USA: ACM; 2009.
Steiner (bib69) 1999; 31
Afanasyev A, Mahadevan P, Moiseenko I, Uzun E, Zhang L. Interest flooding attack and countermeasures in named data networking. In: IFIP networking conference; 2013. p. 1–9.
Karami, Johansson (bib40) 2014; 30
Xia C, Xu M, Wang Y. A loss-based tcp design in icn. In: Wireless and optical communication conference (WOCC); 2013. p. 449–54.
Malviya, Pratihar (bib56) 2011; 1
Urade, Patel (bib70) 2012; 6
Wong, Xia, Chu (bib71) 2010; 207
Dfn-verein: Dfn-noc. retrieved June 2013.
Zhao, Weng, Small (bib77) 2014; 268
Kuo, Lin (bib46) 2010; 49
Rozhnova N, Fdida S. An effective hop-by-hop interest shaping mechanism for ccn communications. In: IEEE conference on computer communications workshops (INFOCOM WKSHPS); 2012. p. 322–7.
Jain, Kumar (bib34) 2007; 7
Rossini, Rossi (bib62) 2013; 36
Ruan, Tan (bib64) 2009; 14
Carofiglio G, Gallo M, Papalini LM. Multipath Congestion control in content-centric networks. In: Proceedings of the IEEE INFOCOM NOMEN; 2013.
Qian, Jing, Tian (bib59) 2008; 31
Karami, Guerrero-Zapata (bib38) 2015; 149
Afanasyev A, Moiseenko I, Zhang L. ndnSIM: NDN simulator for NS-3. Technical Report NDN-0005; NDN; 2012.
.
Xu, Sun (bib73) 2014; 42
Lee, Nakao (bib50) 2013; 57
Funahashi (bib28) 1989; 2
Ding X, Canu S, Denoeux T. Neural network based models for forecasting. In: In proceedings of the applied decision technologies conference (ADT׳95). Uxbridge, UK; 1995. p. 243–52.
Gluszek A, Kekez M, Rudzinski F. Web traffic prediction with artificial neural networks. In: Photonics applications in astronomy, communications, industry, and high-energy physics experiments III, vol. 5775. Society of photo-optical instrumentation engineers (SPIE); 2005. p. 520–5.
Gomathy, Lakshmipathi (bib30) 2011; vol. 198
Karami A, Guerrero-Zapata M. Mining and visualizing uncertain data objects and named data networking traffics by fuzzy self-organizing map. In: Proceedings of the second international workshop on artificial intelligence and cognition (AIC), vol. 1315; 2014. p. 156–63.
Li C, Liu W, Okamura K. A greedy ant colony forwarding algorithm for named data networking. In: Proceedings of the Asia-Pacific advanced network, vol. 34l; 2012. p. 17–26.
Ren, An, Wang, Li, Hu, Shang (bib61) 2014; 56
Karami, Guerrero-Zapata (bib37) 2015; 80
Peralta Donate J, Cortez P, Sanchis de Miguel A, Gutierrez Sanchez G. Evolving time-lagged feedforward neural networks for time series forecasting. In: Proceedings of the 13th annual conference companion on genetic and evolutionary computation, GECCO ׳11. New York, NY, USA: ACM; 2011. p. 163–4.
Das, Pattnaik, Padhy (bib21) 2014; 41
Conti, Gasti, Teoli (bib16) 2013; 57
Saucez D, Grieco LA, Barakat C. Aimd and ccn: past and novel acronyms working together in the future internet. In: Proceedings of the ACM workshop on capacity sharing, CSWS ’12. New York, NY, USA; 2012. p. 21–6.
Lestas, Pitsillides, Ioannou, Hadjipollas (bib51) 2007; 51
Shivakumar U, Ravi V, Gangadharan G. Ranking cloud services using fuzzy multi-attribute decision making. In: IEEE international conference on fuzzy systems (FUZZ); 2013. p. 1-8.
Barabas M, Boanea G, Dobrota V. Multipath routing management using neural networks-based traffic prediction. In: Proceedings of the 3rd international conference on emerging network intelligence. IARIA; 2011b. p. 118–24.
Jin (bib36) 2006
Cortez P, Rio M, Rocha M, Sousa P. Internet traffic forecasting using neural networks. In: International joint conference on neural networks (IJCNN׳06); 2006. p. 4942–9.
Yi, Afanasyev, Moiseenko, Wang, Zhang, Zhang (bib74) 2013; 36
Alarcon-Aquino, Barria (bib4) 2006; 36
Khashei, Hejazi, Bijari (bib43) 2008; 159
Chrysostomou, Pitsillides, Sekercioglu (bib14) 2009; 53
Frank, Davey, Hunt (bib26) 2001; 31
Baig Z, Khan S. Fuzzy logic-based decision making for detecting distributed node exhaustion attacks in wireless sensor networks. In: Second international conference on future networks (ICFN ׳10); 2010. p. 185–9.
Hornik, Stinchcombe, White (bib32) 1989; 2
Chrysostomou C, Pitsillides A, Hadjipollas G, Sekercioglu A. Fuzzy logic congestion control in tcp/ip best-effort networks. In: Australian telecommunications networks and applications conference (ATNAC). Melbourne, Australia; 2003. p. 8-10.
Kirubavathi Venkatesh G, Anitha Nadarajan R. Http botnet detection using adaptive learning rate multilayer feed-forward neural network. In: International conference on information security theory and practice: security, privacy and trust in computing systems and ambient intelligent ecosystems. Berlin: Springer-Verlag; 2012. p. 38–48.
Moradi, Abedini (bib57) 2012; 34
Saino L, Cocora C, Pavlou G. Cctcp: a scalable receiver-driven congestion control protocol for content centric networking. In: 2013 IEEE international conference on communications (ICC); 2013. p. 3775–80.
Karami, Guerrero-Zapata (bib39) 2015; 151
Bonald T, Martin M, Bolot JC. Analytic evaluation of red performance. In: Proceedings in nineteenth annual joint conference of the ieee computer and communications societies; vol. 3; 2000. p. 1415– 24.
Zadeh (bib76) 1965; 8
Dannewitz, Kutscher, Ohlman, Farrell, Ahlgren, Karl (bib20) 2013; 36
Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the evolutionary computation, vol. 1; 2000. p. 84–8.
Fu T, Li Y, Lin T, Tan H, Tang H, Ci S. An effective congestion control scheme in content-centric networking. In: 13th international conference on parallel and distributed computing, applications and technologies (PDCAT); 2012. p. 245–8.
Heckmann O. The competitive Internet service provider: network architecture, interconnection, traffic engineering and network design. Wiley series in communications networking and distributed systems; J. Wiley; 2006. URL
Yogi S, Subhashini KR, Satapathy J. A pso based functional link artificial neural network training algorithm for equalization of digital communication channels. In: 2010 international conference on industrial and information systems (ICIIS); 2010. p. 107–12.
Dharmadhikari VB, Gavade JD. An nn approach for mpeg video traffic prediction. In: 2nd International conference on software technology and engineering (ICSTE), vol. 1; 2010. p. 57–61.
Shakibian, Charkari (bib67) 2014; 42
Li, Sun, Zukerman, Liu, Xu, Chan (bib54) 2014; 41
Barabas M, Boanea G, Rus AB, Dobrota V, Domingo-Pascual J. Evaluation of network traffic prediction based on neural networks with multi-task learning and multiresolution decomposition. In: IEEE international conference on intelligent computer communication and processing (ICCP); 2011a. p. 95–102.
Li Z, Lei Q, Kouying X, Xinyan Z. A novel bp neural network model for traffic prediction of next generation network. In: Fifth international conference on natural computation (ICNC׳09), vol. 1; 2009. p. 32–8.
Jiang X, Bi J. Named content delivery network. Technical report; 2013.
Cho, Fadali, Lee (bib12) 2008; 34
Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the IEEE international conference neural networks, vol. 4; 1995. p. 1942–48.
Ahlgren, Dannewitz, Imbrenda, Kutscher, Ohlman (bib3) 2012; 50
Gomes, Ludermir (bib201) 2013; 40
10.1016/j.jnca.2015.05.017_bib27
10.1016/j.jnca.2015.05.017_bib25
10.1016/j.jnca.2015.05.017_bib24
10.1016/j.jnca.2015.05.017_bib68
10.1016/j.jnca.2015.05.017_bib23
10.1016/j.jnca.2015.05.017_bib22
Qian (10.1016/j.jnca.2015.05.017_bib59) 2008; 31
10.1016/j.jnca.2015.05.017_bib66
Karami (10.1016/j.jnca.2015.05.017_bib39) 2015; 151
10.1016/j.jnca.2015.05.017_bib65
Ren (10.1016/j.jnca.2015.05.017_bib61) 2014; 56
10.1016/j.jnca.2015.05.017_bib63
10.1016/j.jnca.2015.05.017_bib1
10.1016/j.jnca.2015.05.017_bib2
Jin (10.1016/j.jnca.2015.05.017_bib36) 2006
Lestas (10.1016/j.jnca.2015.05.017_bib51) 2007; 51
10.1016/j.jnca.2015.05.017_bib7
10.1016/j.jnca.2015.05.017_bib60
Ruan (10.1016/j.jnca.2015.05.017_bib64) 2009; 14
10.1016/j.jnca.2015.05.017_bib8
10.1016/j.jnca.2015.05.017_bib5
Urade (10.1016/j.jnca.2015.05.017_bib70) 2012; 6
10.1016/j.jnca.2015.05.017_bib6
10.1016/j.jnca.2015.05.017_bib9
Jain (10.1016/j.jnca.2015.05.017_bib34) 2007; 7
Hornik (10.1016/j.jnca.2015.05.017_bib32) 1989; 2
Wong (10.1016/j.jnca.2015.05.017_bib71) 2010; 207
10.1016/j.jnca.2015.05.017_bib29
Yi (10.1016/j.jnca.2015.05.017_bib74) 2013; 36
10.1016/j.jnca.2015.05.017_bib35
Dannewitz (10.1016/j.jnca.2015.05.017_bib20) 2013; 36
10.1016/j.jnca.2015.05.017_bib33
10.1016/j.jnca.2015.05.017_bib31
10.1016/j.jnca.2015.05.017_bib75
10.1016/j.jnca.2015.05.017_bib72
Kuo (10.1016/j.jnca.2015.05.017_bib47) 2012; 195
Zhao (10.1016/j.jnca.2015.05.017_bib77) 2014; 268
Karami (10.1016/j.jnca.2015.05.017_bib37) 2015; 80
Li (10.1016/j.jnca.2015.05.017_bib54) 2014; 41
Malviya (10.1016/j.jnca.2015.05.017_bib56) 2011; 1
Cho (10.1016/j.jnca.2015.05.017_bib12) 2008; 34
Gomathy (10.1016/j.jnca.2015.05.017_bib30) 2011; vol. 198
Lee (10.1016/j.jnca.2015.05.017_bib49) 2012; 186
10.1016/j.jnca.2015.05.017_bib44
Kuo (10.1016/j.jnca.2015.05.017_bib48) 2014; 262
10.1016/j.jnca.2015.05.017_bib42
10.1016/j.jnca.2015.05.017_bib41
Alarcon-Aquino (10.1016/j.jnca.2015.05.017_bib4) 2006; 36
Claveria (10.1016/j.jnca.2015.05.017_bib15) 2014; 36
Karami (10.1016/j.jnca.2015.05.017_bib40) 2014; 30
Makridakis (10.1016/j.jnca.2015.05.017_bib55) 1997
Frank (10.1016/j.jnca.2015.05.017_bib26) 2001; 31
Zadeh (10.1016/j.jnca.2015.05.017_bib76) 1965; 8
Steiner (10.1016/j.jnca.2015.05.017_bib69) 1999; 31
Cortez (10.1016/j.jnca.2015.05.017_bib18) 2012; 29
Gomes (10.1016/j.jnca.2015.05.017_bib201) 2013; 40
Khashei (10.1016/j.jnca.2015.05.017_bib43) 2008; 159
Conti (10.1016/j.jnca.2015.05.017_bib16) 2013; 57
Xu (10.1016/j.jnca.2015.05.017_bib73) 2014; 42
10.1016/j.jnca.2015.05.017_bib17
Shakibian (10.1016/j.jnca.2015.05.017_bib67) 2014; 42
10.1016/j.jnca.2015.05.017_bib58
10.1016/j.jnca.2015.05.017_bib13
10.1016/j.jnca.2015.05.017_bib53
Muscariello (10.1016/j.jnca.2015.05.017_bib200) 2011
10.1016/j.jnca.2015.05.017_bib52
Chrysostomou (10.1016/j.jnca.2015.05.017_bib14) 2009; 53
Funahashi (10.1016/j.jnca.2015.05.017_bib28) 1989; 2
Moradi (10.1016/j.jnca.2015.05.017_bib57) 2012; 34
Rossini (10.1016/j.jnca.2015.05.017_bib62) 2013; 36
Lee (10.1016/j.jnca.2015.05.017_bib50) 2013; 57
Chamkalani (10.1016/j.jnca.2015.05.017_bib11) 2013; 14
Ahlgren (10.1016/j.jnca.2015.05.017_bib3) 2012; 50
Das (10.1016/j.jnca.2015.05.017_bib21) 2014; 41
Kuo (10.1016/j.jnca.2015.05.017_bib46) 2010; 49
Karami (10.1016/j.jnca.2015.05.017_bib38) 2015; 149
References_xml – reference: Barabas M, Boanea G, Dobrota V. Multipath routing management using neural networks-based traffic prediction. In: Proceedings of the 3rd international conference on emerging network intelligence. IARIA; 2011b. p. 118–24.
– reference: Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the evolutionary computation, vol. 1; 2000. p. 84–8.
– reference: Dfn-verein: Dfn-noc. retrieved June 2013. 〈
– reference: Chrysostomou C, Pitsillides A, Hadjipollas G, Sekercioglu A. Fuzzy logic congestion control in tcp/ip best-effort networks. In: Australian telecommunications networks and applications conference (ATNAC). Melbourne, Australia; 2003. p. 8-10.
– reference: Li Z, Lei Q, Kouying X, Xinyan Z. A novel bp neural network model for traffic prediction of next generation network. In: Fifth international conference on natural computation (ICNC׳09), vol. 1; 2009. p. 32–8.
– volume: 36
  start-page: 771
  year: 2013
  end-page: 778
  ident: bib62
  article-title: Evaluating ccn multi-path interest forwarding strategies
  publication-title: Comput Commun
– reference: Baig Z, Khan S. Fuzzy logic-based decision making for detecting distributed node exhaustion attacks in wireless sensor networks. In: Second international conference on future networks (ICFN ׳10); 2010. p. 185–9.
– volume: 29
  start-page: 143
  year: 2012
  end-page: 155
  ident: bib18
  article-title: Multi-scale internet traffic forecasting using neural networks and time series methods
  publication-title: Expert Syst
– volume: 14
  start-page: 139
  year: 2009
  end-page: 150
  ident: bib64
  article-title: A three-layer back-propagation neural network for spam detection using artificial immune concentration
  publication-title: Soft Comput
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib32
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
– reference: Gluszek A, Kekez M, Rudzinski F. Web traffic prediction with artificial neural networks. In: Photonics applications in astronomy, communications, industry, and high-energy physics experiments III, vol. 5775. Society of photo-optical instrumentation engineers (SPIE); 2005. p. 520–5.
– volume: 49
  start-page: 451
  year: 2010
  end-page: 462
  ident: bib46
  article-title: Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering
  publication-title: Decis Support Syst
– reference: Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the IEEE international conference neural networks, vol. 4; 1995. p. 1942–48.
– reference: Karami A, Guerrero-Zapata M. Mining and visualizing uncertain data objects and named data networking traffics by fuzzy self-organizing map. In: Proceedings of the second international workshop on artificial intelligence and cognition (AIC), vol. 1315; 2014. p. 156–63.
– reference: 〉.
– year: 1997
  ident: bib55
  publication-title: Forecasting: methods and applications
– reference: Heckmann O. The competitive Internet service provider: network architecture, interconnection, traffic engineering and network design. Wiley series in communications networking and distributed systems; J. Wiley; 2006. URL 〈
– volume: 51
  start-page: 3773
  year: 2007
  end-page: 3798
  ident: bib51
  article-title: Adaptive congestion protocol
  publication-title: Comput Netw
– start-page: 26
  year: 2011
  end-page: 31
  ident: bib200
  article-title: Bandwidth and storage sharing performance in information centric networking
  publication-title: In: Proceedings of the ACM SIGCOMM workshop on Information-centric networking, ACM
– reference: Saino L, Cocora C, Pavlou G. Cctcp: a scalable receiver-driven congestion control protocol for content centric networking. In: 2013 IEEE international conference on communications (ICC); 2013. p. 3775–80.
– volume: vol. 198
  start-page: 399
  year: 2011
  end-page: 408
  ident: bib30
  article-title: Advances in computing and information technology communications in computer and information science
  publication-title: Network intrusion detection using genetic algorithm and neural network
– volume: 50
  start-page: 26
  year: 2012
  end-page: 36
  ident: bib3
  article-title: A survey of information-centric networking
  publication-title: IEEE Commun Mag
– reference: Barabas M, Boanea G, Rus AB, Dobrota V, Domingo-Pascual J. Evaluation of network traffic prediction based on neural networks with multi-task learning and multiresolution decomposition. In: IEEE international conference on intelligent computer communication and processing (ICCP); 2011a. p. 95–102.
– volume: 1
  start-page: 223
  year: 2011
  end-page: 235
  ident: bib56
  article-title: Tuning of neural networks using particle swarm optimization to model {MIG} welding process
  publication-title: Swarm Evolut Comput
– volume: 207
  start-page: 807
  year: 2010
  end-page: 816
  ident: bib71
  article-title: Adaptive neural network model for time-series forecasting
  publication-title: Eur J Oper Res
– reference: Peralta Donate J, Cortez P, Sanchis de Miguel A, Gutierrez Sanchez G. Evolving time-lagged feedforward neural networks for time series forecasting. In: Proceedings of the 13th annual conference companion on genetic and evolutionary computation, GECCO ׳11. New York, NY, USA: ACM; 2011. p. 163–4.
– volume: 36
  start-page: 208
  year: 2006
  end-page: 220
  ident: bib4
  article-title: Multiresolution fir neural-network-based learning algorithm applied to network traffic prediction
  publication-title: IEEE Trans Syst, Man, Cybern, Part C
– volume: 41
  start-page: 274
  year: 2014
  end-page: 299
  ident: bib54
  article-title: A comparative simulation study of tcp/aqm systems for evaluating the potential of neuron-based {AQM} schemes
  publication-title: J Netw Comput Appl
– reference: Afanasyev A, Mahadevan P, Moiseenko I, Uzun E, Zhang L. Interest flooding attack and countermeasures in named data networking. In: IFIP networking conference; 2013. p. 1–9.
– reference: Fu T, Li Y, Lin T, Tan H, Tang H, Ci S. An effective congestion control scheme in content-centric networking. In: 13th international conference on parallel and distributed computing, applications and technologies (PDCAT); 2012. p. 245–8.
– reference: Shivakumar U, Ravi V, Gangadharan G. Ranking cloud services using fuzzy multi-attribute decision making. In: IEEE international conference on fuzzy systems (FUZZ); 2013. p. 1-8.
– reference: Xia C, Xu M, Wang Y. A loss-based tcp design in icn. In: Wireless and optical communication conference (WOCC); 2013. p. 449–54.
– reference: Afanasyev A, Moiseenko I, Zhang L. ndnSIM: NDN simulator for NS-3. Technical Report NDN-0005; NDN; 2012. 〈
– reference: Bonald T, Martin M, Bolot JC. Analytic evaluation of red performance. In: Proceedings in nineteenth annual joint conference of the ieee computer and communications societies; vol. 3; 2000. p. 1415– 24.
– volume: 7
  start-page: 585
  year: 2007
  end-page: 592
  ident: bib34
  article-title: Hybrid neural network models for hydrologic time series forecasting
  publication-title: Appl Soft Comput
– volume: 40
  start-page: 6438
  year: 2013
  end-page: 6446
  ident: bib201
  article-title: Optimization of the weights and asymmetric activation function family of neural network for time series forecasting
  publication-title: Expert Systems with Applications
– reference: Rozhnova N, Fdida S. An effective hop-by-hop interest shaping mechanism for ccn communications. In: IEEE conference on computer communications workshops (INFOCOM WKSHPS); 2012. p. 322–7.
– volume: 80
  start-page: 51
  year: 2015
  end-page: 65
  ident: bib37
  article-title: An anfis-based cache replacement method for mitigating cache pollution attacks in named data networking
  publication-title: Comput Netw
– volume: 30
  start-page: 519
  year: 2014
  end-page: 534
  ident: bib40
  article-title: Utilization of multi-attribute decision making techniques to integrate automatic and manual ranking of options
  publication-title: J Inf Sci Eng
– volume: 34
  start-page: 66
  year: 2012
  end-page: 74
  ident: bib57
  article-title: A combination of genetic algorithm and particle swarm optimization for optimal {DG} location and sizing in distribution systems
  publication-title: Int J Electr Power Energy Syst
– reference: Cortez P, Rio M, Rocha M, Sousa P. Internet traffic forecasting using neural networks. In: International joint conference on neural networks (IJCNN׳06); 2006. p. 4942–9.
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bib76
  article-title: Fuzzy sets
  publication-title: Inf Control
– volume: 57
  start-page: 3142
  year: 2013
  end-page: 3153
  ident: bib50
  article-title: User-assisted in-network caching in information-centric networking
  publication-title: Comput Netw
– volume: 53
  start-page: 650
  year: 2009
  end-page: 667
  ident: bib14
  article-title: Fuzzy explicit marking: A unified congestion controller for best-effort and diff-serv networks
  publication-title: Comput Netw
– volume: 2
  start-page: 183
  year: 1989
  end-page: 192
  ident: bib28
  article-title: On the approximate realization of continuous mappings by neural networks
  publication-title: Neural Netw
– volume: 34
  start-page: 447
  year: 2008
  end-page: 469
  ident: bib12
  article-title: Adaptive neural queue management for tcp networks
  publication-title: Comput Electr Eng
– volume: 36
  start-page: 220
  year: 2014
  end-page: 228
  ident: bib15
  article-title: Forecasting tourism demand to catalonia: neural networks vs. time series models
  publication-title: Econ Modell
– volume: 149
  start-page: 1253
  year: 2015
  end-page: 1269
  ident: bib38
  article-title: A fuzzy anomaly detection system based on hybrid pso-kmeans algorithm in content-centric networks
  publication-title: Neurocomputing
– volume: 56
  start-page: 226
  year: 2014
  end-page: 239
  ident: bib61
  article-title: Optimal parameters selection for {BP} neural network based on particle swarm optimization
  publication-title: Knowl-Based Syst
– reference: Ding X, Canu S, Denoeux T. Neural network based models for forecasting. In: In proceedings of the applied decision technologies conference (ADT׳95). Uxbridge, UK; 1995. p. 243–52.
– volume: 41
  start-page: 3491
  year: 2014
  end-page: 3496
  ident: bib21
  article-title: Artificial neural network trained by particle swarm optimization for non-linear channel equalization
  publication-title: Expert Syst Appl
– reference: Dharmadhikari VB, Gavade JD. An nn approach for mpeg video traffic prediction. In: 2nd International conference on software technology and engineering (ICSTE), vol. 1; 2010. p. 57–61.
– volume: 186
  start-page: 59
  year: 2012
  end-page: 72
  ident: bib49
  article-title: Nonlinear systems design by a novel fuzzy neural system via hybridization of electromagnetism-like mechanism and particle swarm optimisation algorithms
  publication-title: Inf Sci
– volume: 31
  year: 1999
  ident: bib69
  article-title: Exponentially weighted moving average control charts with time varying control limits and fast initial response
  publication-title: J Qual Technol
– volume: 6
  start-page: 283
  year: 2012
  end-page: 290
  ident: bib70
  article-title: Dynamic particle swarm optimization to solve multi-objective optimization problem
  publication-title: Procedia Technol
– volume: 268
  start-page: 79
  year: 2014
  end-page: 90
  ident: bib77
  article-title: Response of the parameters of a neural network to pseudoperiodic time series
  publication-title: Physica D: Nonlinear Phenom
– volume: 31
  start-page: 91
  year: 2001
  end-page: 103
  ident: bib26
  article-title: Time series prediction and neural networks
  publication-title: J Intell Robot Syst
– volume: 36
  start-page: 779
  year: 2013
  end-page: 791
  ident: bib74
  article-title: A case for stateful forwarding plane
  publication-title: Comput Commun
– reference: Yogi S, Subhashini KR, Satapathy J. A pso based functional link artificial neural network training algorithm for equalization of digital communication channels. In: 2010 international conference on industrial and information systems (ICIIS); 2010. p. 107–12.
– reference: Jacobson V, Smetters DK, Thornton JD, Plass MF, Briggs NH, Braynard RL. Networking named content. In: Proceedings of the 5th international conference on Emerging networking experiments and technologies. New York, NY, USA: ACM; 2009.
– volume: 42
  start-page: 12
  year: 2014
  end-page: 20
  ident: bib73
  article-title: A simple active queue management based on the prediction of the packet arrival rate
  publication-title: J Netw Comput Appl
– reference: Jiang X, Bi J. Named content delivery network. Technical report; 2013.
– volume: 31
  start-page: 1723
  year: 2008
  end-page: 1726
  ident: bib59
  article-title: Network congestion avoidance strategy with particle filter
  publication-title: Comput Commun
– reference: Li C, Liu W, Okamura K. A greedy ant colony forwarding algorithm for named data networking. In: Proceedings of the Asia-Pacific advanced network, vol. 34l; 2012. p. 17–26.
– volume: 195
  start-page: 124
  year: 2012
  end-page: 140
  ident: bib47
  article-title: Integration of particle swarm optimization and genetic algorithm for dynamic clustering
  publication-title: Inf Sci
– volume: 42
  start-page: 80
  year: 2014
  end-page: 91
  ident: bib67
  article-title: In-cluster vector evaluated particle swarm optimization for distributed regression in {WSNs}
  publication-title: J Netw Comput Appl
– volume: 36
  start-page: 721
  year: 2013
  end-page: 735
  ident: bib20
  article-title: Network of information (netinf) – an information-centric networking
  publication-title: Comput Commun
– volume: 57
  start-page: 3178
  year: 2013
  end-page: 3191
  ident: bib16
  article-title: A lightweight mechanism for detection of cache pollution attacks in named data networking
  publication-title: Comput Netw
– year: 2006
  ident: bib36
  article-title: Multi-objective machine learning
  publication-title: Studies in computational intelligence
– reference: Kirubavathi Venkatesh G, Anitha Nadarajan R. Http botnet detection using adaptive learning rate multilayer feed-forward neural network. In: International conference on information security theory and practice: security, privacy and trust in computing systems and ambient intelligent ecosystems. Berlin: Springer-Verlag; 2012. p. 38–48.
– volume: 14
  start-page: 132
  year: 2013
  end-page: 143
  ident: bib11
  article-title: An intelligent approach for optimal prediction of gas deviation factor using particle swarm optimization and genetic algorithm
  publication-title: J Nat Gas Sci Eng
– reference: Saucez D, Grieco LA, Barakat C. Aimd and ccn: past and novel acronyms working together in the future internet. In: Proceedings of the ACM workshop on capacity sharing, CSWS ’12. New York, NY, USA; 2012. p. 21–6.
– volume: 151
  start-page: 1262
  year: 2015
  end-page: 1282
  ident: bib39
  article-title: A hybrid multiobjective rbf-pso method for mitigating dos attacks in named data networking
  publication-title: Neurocomputing
– reference: Carofiglio G, Gallo M, Papalini LM. Multipath Congestion control in content-centric networks. In: Proceedings of the IEEE INFOCOM NOMEN; 2013.
– volume: 159
  start-page: 769
  year: 2008
  end-page: 786
  ident: bib43
  article-title: A new hybrid artificial neural networks and fuzzy regression model for time series forecasting
  publication-title: Fuzzy Sets Syst
– volume: 262
  start-page: 78
  year: 2014
  end-page: 98
  ident: bib48
  article-title: Application of an optimization artificial immune network and particle swarm optimization-based fuzzy neural network to an rfid-based positioning system
  publication-title: Inf Sci
– reference: Ran J, Lv N, Zhang D, Ma Y, Xie Z. On performance of cache policies in named data networking. In: International conference on advanced science and electronics information (ICACSEI). Atlantis Press; 2013. p. 668–71.
– volume: 36
  start-page: 208
  issue: 2
  year: 2006
  ident: 10.1016/j.jnca.2015.05.017_bib4
  article-title: Multiresolution fir neural-network-based learning algorithm applied to network traffic prediction
  publication-title: IEEE Trans Syst, Man, Cybern, Part C
  doi: 10.1109/TSMCC.2004.843217
– ident: 10.1016/j.jnca.2015.05.017_bib13
– volume: 30
  start-page: 519
  issue: 2
  year: 2014
  ident: 10.1016/j.jnca.2015.05.017_bib40
  article-title: Utilization of multi-attribute decision making techniques to integrate automatic and manual ranking of options
  publication-title: J Inf Sci Eng
– volume: 50
  start-page: 26
  issue: 7
  year: 2012
  ident: 10.1016/j.jnca.2015.05.017_bib3
  article-title: A survey of information-centric networking
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2012.6231276
– volume: 34
  start-page: 447
  year: 2008
  ident: 10.1016/j.jnca.2015.05.017_bib12
  article-title: Adaptive neural queue management for tcp networks
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2008.02.002
– volume: 2
  start-page: 183
  issue: 3
  year: 1989
  ident: 10.1016/j.jnca.2015.05.017_bib28
  article-title: On the approximate realization of continuous mappings by neural networks
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90003-8
– volume: 41
  start-page: 274
  year: 2014
  ident: 10.1016/j.jnca.2015.05.017_bib54
  article-title: A comparative simulation study of tcp/aqm systems for evaluating the potential of neuron-based {AQM} schemes
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2014.01.005
– volume: 31
  year: 1999
  ident: 10.1016/j.jnca.2015.05.017_bib69
  article-title: Exponentially weighted moving average control charts with time varying control limits and fast initial response
  publication-title: J Qual Technol
  doi: 10.1080/00224065.1999.11979899
– volume: 57
  start-page: 3178
  issue: 16
  year: 2013
  ident: 10.1016/j.jnca.2015.05.017_bib16
  article-title: A lightweight mechanism for detection of cache pollution attacks in named data networking
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2013.07.034
– volume: 7
  start-page: 585
  issue: 2
  year: 2007
  ident: 10.1016/j.jnca.2015.05.017_bib34
  article-title: Hybrid neural network models for hydrologic time series forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2006.03.002
– volume: 262
  start-page: 78
  year: 2014
  ident: 10.1016/j.jnca.2015.05.017_bib48
  article-title: Application of an optimization artificial immune network and particle swarm optimization-based fuzzy neural network to an rfid-based positioning system
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.10.035
– ident: 10.1016/j.jnca.2015.05.017_bib42
  doi: 10.1109/ICNN.1995.488968
– ident: 10.1016/j.jnca.2015.05.017_bib66
  doi: 10.1145/2413219.2413226
– volume: 186
  start-page: 59
  issue: 1
  year: 2012
  ident: 10.1016/j.jnca.2015.05.017_bib49
  article-title: Nonlinear systems design by a novel fuzzy neural system via hybridization of electromagnetism-like mechanism and particle swarm optimisation algorithms
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.09.036
– volume: 36
  start-page: 779
  issue: 7
  year: 2013
  ident: 10.1016/j.jnca.2015.05.017_bib74
  article-title: A case for stateful forwarding plane
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2013.01.005
– volume: 36
  start-page: 721
  issue: 7
  year: 2013
  ident: 10.1016/j.jnca.2015.05.017_bib20
  article-title: Network of information (netinf) – an information-centric networking
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2013.01.009
– ident: 10.1016/j.jnca.2015.05.017_bib6
  doi: 10.1109/ICCP.2011.6047849
– volume: 14
  start-page: 139
  issue: 2
  year: 2009
  ident: 10.1016/j.jnca.2015.05.017_bib64
  article-title: A three-layer back-propagation neural network for spam detection using artificial immune concentration
  publication-title: Soft Comput
  doi: 10.1007/s00500-009-0440-2
– volume: 8
  start-page: 338
  year: 1965
  ident: 10.1016/j.jnca.2015.05.017_bib76
  article-title: Fuzzy sets
  publication-title: Inf Control
  doi: 10.1016/S0019-9958(65)90241-X
– ident: 10.1016/j.jnca.2015.05.017_bib31
  doi: 10.1002/9780470017906
– ident: 10.1016/j.jnca.2015.05.017_bib72
  doi: 10.1109/WOCC.2013.6676409
– volume: 31
  start-page: 1723
  issue: 9
  year: 2008
  ident: 10.1016/j.jnca.2015.05.017_bib59
  article-title: Network congestion avoidance strategy with particle filter
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2007.11.007
– volume: 56
  start-page: 226
  year: 2014
  ident: 10.1016/j.jnca.2015.05.017_bib61
  article-title: Optimal parameters selection for {BP} neural network based on particle swarm optimization
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.11.015
– volume: 14
  start-page: 132
  year: 2013
  ident: 10.1016/j.jnca.2015.05.017_bib11
  article-title: An intelligent approach for optimal prediction of gas deviation factor using particle swarm optimization and genetic algorithm
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2013.06.002
– ident: 10.1016/j.jnca.2015.05.017_bib75
  doi: 10.1109/ICIINFS.2010.5578726
– ident: 10.1016/j.jnca.2015.05.017_bib65
  doi: 10.1109/ICC.2013.6655143
– ident: 10.1016/j.jnca.2015.05.017_bib7
– volume: 1
  start-page: 223
  issue: 4
  year: 2011
  ident: 10.1016/j.jnca.2015.05.017_bib56
  article-title: Tuning of neural networks using particle swarm optimization to model {MIG} welding process
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2011.07.001
– ident: 10.1016/j.jnca.2015.05.017_bib24
– volume: 57
  start-page: 3142
  issue: 16
  year: 2013
  ident: 10.1016/j.jnca.2015.05.017_bib50
  article-title: User-assisted in-network caching in information-centric networking
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2013.07.008
– ident: 10.1016/j.jnca.2015.05.017_bib41
– volume: 29
  start-page: 143
  year: 2012
  ident: 10.1016/j.jnca.2015.05.017_bib18
  article-title: Multi-scale internet traffic forecasting using neural networks and time series methods
  publication-title: Expert Syst
  doi: 10.1111/j.1468-0394.2010.00568.x
– year: 1997
  ident: 10.1016/j.jnca.2015.05.017_bib55
– ident: 10.1016/j.jnca.2015.05.017_bib27
  doi: 10.1109/PDCAT.2012.43
– volume: 195
  start-page: 124
  year: 2012
  ident: 10.1016/j.jnca.2015.05.017_bib47
  article-title: Integration of particle swarm optimization and genetic algorithm for dynamic clustering
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.01.021
– volume: 34
  start-page: 66
  issue: 1
  year: 2012
  ident: 10.1016/j.jnca.2015.05.017_bib57
  article-title: A combination of genetic algorithm and particle swarm optimization for optimal {DG} location and sizing in distribution systems
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2011.08.023
– start-page: 26
  year: 2011
  ident: 10.1016/j.jnca.2015.05.017_bib200
  article-title: Bandwidth and storage sharing performance in information centric networking
  publication-title: In: Proceedings of the ACM SIGCOMM workshop on Information-centric networking, ACM
– volume: 36
  start-page: 771
  issue: 7
  year: 2013
  ident: 10.1016/j.jnca.2015.05.017_bib62
  article-title: Evaluating ccn multi-path interest forwarding strategies
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2013.01.008
– volume: 49
  start-page: 451
  issue: 4
  year: 2010
  ident: 10.1016/j.jnca.2015.05.017_bib46
  article-title: Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2010.05.006
– ident: 10.1016/j.jnca.2015.05.017_bib29
  doi: 10.1117/12.610751
– ident: 10.1016/j.jnca.2015.05.017_bib8
  doi: 10.1109/INFCOM.2000.832539
– ident: 10.1016/j.jnca.2015.05.017_bib44
  doi: 10.1007/978-3-642-30955-7_5
– ident: 10.1016/j.jnca.2015.05.017_bib58
  doi: 10.1145/2001858.2001950
– ident: 10.1016/j.jnca.2015.05.017_bib52
  doi: 10.1109/ICNC.2009.673
– volume: 53
  start-page: 650
  issue: 5
  year: 2009
  ident: 10.1016/j.jnca.2015.05.017_bib14
  article-title: Fuzzy explicit marking: A unified congestion controller for best-effort and diff-serv networks
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2008.11.002
– ident: 10.1016/j.jnca.2015.05.017_bib17
  doi: 10.1109/IJCNN.2006.247142
– volume: 36
  start-page: 220
  year: 2014
  ident: 10.1016/j.jnca.2015.05.017_bib15
  article-title: Forecasting tourism demand to catalonia: neural networks vs. time series models
  publication-title: Econ Modell
  doi: 10.1016/j.econmod.2013.09.024
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.jnca.2015.05.017_bib32
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 51
  start-page: 3773
  issue: 13
  year: 2007
  ident: 10.1016/j.jnca.2015.05.017_bib51
  article-title: Adaptive congestion protocol
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2007.04.002
– ident: 10.1016/j.jnca.2015.05.017_bib2
– volume: 41
  start-page: 3491
  issue: 7
  year: 2014
  ident: 10.1016/j.jnca.2015.05.017_bib21
  article-title: Artificial neural network trained by particle swarm optimization for non-linear channel equalization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.10.053
– volume: 159
  start-page: 769
  issue: 7
  year: 2008
  ident: 10.1016/j.jnca.2015.05.017_bib43
  article-title: A new hybrid artificial neural networks and fuzzy regression model for time series forecasting
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2007.10.011
– ident: 10.1016/j.jnca.2015.05.017_bib25
  doi: 10.1109/CEC.2000.870279
– volume: 151
  start-page: 1262
  issue: Part 3
  year: 2015
  ident: 10.1016/j.jnca.2015.05.017_bib39
  article-title: A hybrid multiobjective rbf-pso method for mitigating dos attacks in named data networking
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.003
– ident: 10.1016/j.jnca.2015.05.017_bib23
  doi: 10.1109/ICSTE.2010.5608912
– volume: 42
  start-page: 12
  year: 2014
  ident: 10.1016/j.jnca.2015.05.017_bib73
  article-title: A simple active queue management based on the prediction of the packet arrival rate
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2014.03.006
– volume: 31
  start-page: 91
  issue: 1–3
  year: 2001
  ident: 10.1016/j.jnca.2015.05.017_bib26
  article-title: Time series prediction and neural networks
  publication-title: J Intell Robot Syst
  doi: 10.1023/A:1012074215150
– volume: vol. 198
  start-page: 399
  year: 2011
  ident: 10.1016/j.jnca.2015.05.017_bib30
  article-title: Advances in computing and information technology communications in computer and information science
– volume: 6
  start-page: 283
  year: 2012
  ident: 10.1016/j.jnca.2015.05.017_bib70
  article-title: Dynamic particle swarm optimization to solve multi-objective optimization problem
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2012.10.034
– volume: 207
  start-page: 807
  issue: 2
  year: 2010
  ident: 10.1016/j.jnca.2015.05.017_bib71
  article-title: Adaptive neural network model for time-series forecasting
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.05.022
– ident: 10.1016/j.jnca.2015.05.017_bib63
  doi: 10.1109/INFCOMW.2012.6193514
– volume: 149
  start-page: 1253
  issue: Part C
  year: 2015
  ident: 10.1016/j.jnca.2015.05.017_bib38
  article-title: A fuzzy anomaly detection system based on hybrid pso-kmeans algorithm in content-centric networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.070
– ident: 10.1016/j.jnca.2015.05.017_bib35
– ident: 10.1016/j.jnca.2015.05.017_bib5
  doi: 10.1109/ICFN.2010.73
– year: 2006
  ident: 10.1016/j.jnca.2015.05.017_bib36
  article-title: Multi-objective machine learning
  doi: 10.1007/3-540-33019-4
– volume: 42
  start-page: 80
  year: 2014
  ident: 10.1016/j.jnca.2015.05.017_bib67
  article-title: In-cluster vector evaluated particle swarm optimization for distributed regression in {WSNs}
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2014.02.011
– ident: 10.1016/j.jnca.2015.05.017_bib1
– ident: 10.1016/j.jnca.2015.05.017_bib68
  doi: 10.1109/FUZZ-IEEE.2013.6622319
– volume: 40
  start-page: 6438
  issue: 16
  year: 2013
  ident: 10.1016/j.jnca.2015.05.017_bib201
  article-title: Optimization of the weights and asymmetric activation function family of neural network for time series forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.05.053
– ident: 10.1016/j.jnca.2015.05.017_bib22
– ident: 10.1016/j.jnca.2015.05.017_bib9
  doi: 10.1109/INFCOMW.2013.6970718
– ident: 10.1016/j.jnca.2015.05.017_bib53
  doi: 10.7125/APAN.34.3
– ident: 10.1016/j.jnca.2015.05.017_bib60
  doi: 10.2991/icacsei.2013.160
– volume: 80
  start-page: 51
  year: 2015
  ident: 10.1016/j.jnca.2015.05.017_bib37
  article-title: An anfis-based cache replacement method for mitigating cache pollution attacks in named data networking
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2015.01.020
– volume: 268
  start-page: 79
  year: 2014
  ident: 10.1016/j.jnca.2015.05.017_bib77
  article-title: Response of the parameters of a neural network to pseudoperiodic time series
  publication-title: Physica D: Nonlinear Phenom
  doi: 10.1016/j.physd.2013.11.002
– ident: 10.1016/j.jnca.2015.05.017_bib33
  doi: 10.1145/1658939.1658941
SSID ssj0006493
Score 2.2393813
Snippet Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure....
SourceID csuc
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms CACHE POLLUTION ATTACKS
Congestion control
Future internet
Fuzzy set
Genetic algorithm
HYBRID
INFORMATION-CENTRIC NETWORKING
Internet del futur
MECHANISM
Named data networking
Particle swarm optimization
SERIES
SYSTEMS
Time-lagged feedforward network
TRAFFIC PREDICTION
Title ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network
URI https://dx.doi.org/10.1016/j.jnca.2015.05.017
https://recercat.cat/handle/2072/346777
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-8592
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006493
  issn: 1084-8045
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-8592
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006493
  issn: 1084-8045
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-8592
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006493
  issn: 1084-8045
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1095-8592
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006493
  issn: 1084-8045
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-8592
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006493
  issn: 1084-8045
  databaseCode: AKRWK
  dateStart: 19960101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLVGZQMLGAqIMkPlBSuQaR52HrOrAlV5VZUoUneW7ThVRkNSlXQxs5ivmA_m3sYp7aYLpESKI9uxfG98bpzjY0LeiTTVyhrOhPY4475STKtEMxEGRSoSkxY5znf8mEXTX_zrUizPSNathUFapRv72zF9N1q7OyPXm6N1WY5--igFj_IoAjE7woXmqP4FPv3x_h_NI-KpI9lzhrndwpmW43WN0wYAgaJV74yPwKln_mzNAUYd4M7knDx1ASMdt216Ts5s1SfPus0YqHs3--TJgbLgC_IwzrJ5lVdXdJyrNQ5pNKsr_JcEdsBL5KfT-aZuavAEWlZ0pgAX6SfVKDprqeFQEdW31O0rsaIGcNXsBFgpsuVXtIaKf5d3UAwXkrDvarWC6wngIUTCyMalKP0BjXcVviSLyedFNmVuAwZmQh40zEah9hIVW51Y-GDlKGucpL4CAxdpbiGS8XXh54BvWoEBcoglrbFJYOIYosI0fEV6VV3Z14SKXAMoRLzAuUvr2aSAyCexoRfYIgyFGRC_63hpnDg57pFxIzsW2rVEY0k0lvTg8OMB-bAvs26lOU7mfo_2lOBTdmNUI1FXe5_AM_DiQIYAHDFkFp3V5ZE3SgCaEw9585_lLshjTLUkwUvSazZb-xaCnUYPd948JI_GX75NZ38BQ3b_pg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QE4UChUlKcPnEDW5mHn0dsqZbWl26gSi9SbZTvOaitIVkt6gN_BD-5M46y2lx6QEikP27E8znwT5_NngE8yz412VnBpAsFFqDU3OjNcxlGdy8zmdUXjHRdlMvshvl3Jqz0ohrkwRKv0vr_36Xfe2l8Z-9Ycr1er8feQpOBJHkUSZifyEewLiT55BPuTs_NZuXXIicg9z15wyuDnzvQ0r2saOUAUlL2AZ3oPn0b2943dgakd6Jk-h2c-ZmSTvlovYM81h3AwrMfA_Ot5CE93xAVfwr9JUVw2VXPCJpVek1djRdvQ7yQ0BR0SRZ1dbtquxc7AVg0rNUIjO9WdZmXPDseCmPnD_NISS2YRWu2dBisjwvyStVjwr9VfzEZzSfhcL5d4PEVIxGCYCLmM1D-w8r7AV7CYfl0UM-7XYOA2FlHHXRKbINOpM5nDb1ZBysZZHmq0cZ1XDoOZ0NRhhRBnNNqgwnDSWZdFNk0xMMzjIxg1beNeA5OVQVxIRE3Dly5wWY3BT-biIHJ1HEt7DOHQ8Mp6fXJaJuOnGoho14qMpchYKsAtTI_hyzbPulfneDD1Z7Knwm7lNlZ3iqS1tye0R0EaqRixI8XEcrC6utchFWLNAw9585_5PsLj2eJiruZn5flbeEJ3es7gOxh1mxv3HmOfznzwffsW7loCYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACCPndn%3A+Adaptive+Congestion+Control+Protocol+in+Named+Data+Networking+by+learning+capacities+using+optimized+Time-Lagged+Feedforward+Neural+Network&rft.jtitle=Journal+of+network+and+computer+applications&rft.au=Karami%2C+Amin&rft.date=2015-10-01&rft.pub=Elsevier+Ltd&rft.issn=1084-8045&rft.eissn=1095-8592&rft.volume=56&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1016%2Fj.jnca.2015.05.017&rft.externalDocID=S1084804515001265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-8045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-8045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-8045&client=summon