ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network
Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure. However, NDN is subject to congestion when the number of data packets that reach one or various routers in a certain period of time is so high...
Saved in:
Published in | Journal of network and computer applications Vol. 56; pp. 1 - 18 |
---|---|
Main Author | |
Format | Journal Article Publication |
Language | English |
Published |
Elsevier Ltd
01.10.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1084-8045 1095-8592 |
DOI | 10.1016/j.jnca.2015.05.017 |
Cover
Abstract | Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure. However, NDN is subject to congestion when the number of data packets that reach one or various routers in a certain period of time is so high than its queue gets overflowed. To address this problem many congestion control protocols have been proposed in the literature which, however, they are highly sensitive to their control parameters as well as unable to predict congestion traffic well enough in advance. This paper develops an Adaptive Congestion Control Protocol in NDN (ACCPndn) by learning capacities in two phases to control congestion traffics before they start impacting the network performance. In the first phase – adaptive training – we propose a Time-Lagged Feedforward Network (TLFN) optimized by hybridization of particle swarm optimization and genetic algorithm to predict the source of congestion together with the amount of congestion. In the second phase -fuzzy avoidance- we employ a non-linear fuzzy logic-based control system to make a proactive decision based on the outcomes of first phase in each router per interface to control and/or prevent packet drop well enough in advance. Extensive simulations and results show that ACCPndn sufficiently satisfies the applied performance metrics and outperforms two previous proposals such as NACK and HoBHIS in terms of the minimal packet drop and high-utilization (retrying alternative paths) in bottleneck links to mitigate congestion traffics. |
---|---|
AbstractList | Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure. However, NDN is subject to congestion when the number of data packets that reach one or various routers in a certain period of time is so high than its queue gets overflowed. To address this problem many congestion control protocols have been proposed in the literature which, however, they are highly sensitive to their control parameters as well as unable to predict congestion traffic well enough in advance. This paper develops an Adaptive Congestion Control Protocol in NON (ACCPndn) by learning capacities in two phases to control congestion traffics before they start impacting the network performance. In the first phase - adaptive training - we propose a Time-Lagged Feedforward Network (TLFN) optimized by hybridization of particle swarm optimization and genetic algorithm to predict the source of congestion together with the amount of congestion. In the second phase -fuzzy avoidance- we employ a non-linear fuzzy logic-based control system to make a proactive decision based on the outcomes of first phase in each router per interface to control and/or prevent packet drop well enough in advance. Extensive simulations and results show that ACCPndn sufficiently satisfies the applied performance metrics and outperforms two previous proposals such as NACK and HoBHIS in terms of the minimal packet drop and high-utilization (retrying alternative paths) in bottleneck links to mitigate congestion traffics. Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure. However, NDN is subject to congestion when the number of data packets that reach one or various routers in a certain period of time is so high than its queue gets overflowed. To address this problem many congestion control protocols have been proposed in the literature which, however, they are highly sensitive to their control parameters as well as unable to predict congestion traffic well enough in advance. This paper develops an Adaptive Congestion Control Protocol in NDN (ACCPndn) by learning capacities in two phases to control congestion traffics before they start impacting the network performance. In the first phase – adaptive training – we propose a Time-Lagged Feedforward Network (TLFN) optimized by hybridization of particle swarm optimization and genetic algorithm to predict the source of congestion together with the amount of congestion. In the second phase -fuzzy avoidance- we employ a non-linear fuzzy logic-based control system to make a proactive decision based on the outcomes of first phase in each router per interface to control and/or prevent packet drop well enough in advance. Extensive simulations and results show that ACCPndn sufficiently satisfies the applied performance metrics and outperforms two previous proposals such as NACK and HoBHIS in terms of the minimal packet drop and high-utilization (retrying alternative paths) in bottleneck links to mitigate congestion traffics. |
Author | Karami, Amin |
Author_xml | – sequence: 1 givenname: Amin orcidid: 0000-0003-3635-513X surname: Karami fullname: Karami, Amin email: amin@ac.upc.edu organization: Computer Architecture Department (DAC), Universitat Politècnica de Catalunya (UPC), Campus Nord, Jordi Girona 1-3, 08034 Barcelona, Spain |
BookMark | eNp9kd9qHCEUxqWk0GTbF-jVvMBs1fnjWHqzTJumsKS52Hs5o2cWt7O6qJuQPkcfuEoSCr0IHPFT-X14zndFLpx3SMhHRteMsv7TYX1wGtacsm5NczHxhlwyKrt66CS_KHpo64G23TtyFeOBUtq3srkkfzbjeOeM-1xtDJySvcdq9G6PMVnvikzBL9Vd8MnrLKyrbuGIpvoKCapbTA8-_LJuX02P1YIQXNEaTqBtshircywXPhsf7e-M7ewR6y3s91lfI5rZhwcIJjudAywvhu_J2xmWiB-e9xXZXX_bjTf19uf3H-NmW-um5anGvpnoAAKnATvetLknOUgGnZSzNChFz6aZmVawCXjfGSkEahy4FqLhvWxWhD3Z6njWKuS3oCEpD_bfoSxOBVdN24vMrcjwzAQfY8BZ5U6hDCsFsItiVJVA1EGVQFQJRNFcrKD8P_QU7BHC4-vQlycI8xzuLQYVtUWn0dj8x6SMt6_hfwEQlajd |
CitedBy_id | crossref_primary_10_1007_s12083_019_00845_w crossref_primary_10_1016_j_comcom_2016_04_017 crossref_primary_10_1007_s00521_018_3408_2 crossref_primary_10_1109_OJCOMS_2021_3071496 crossref_primary_10_1080_02564602_2017_1281173 crossref_primary_10_1109_ACCESS_2021_3128814 crossref_primary_10_1016_j_eswa_2018_04_038 crossref_primary_10_1016_j_eswa_2021_115017 crossref_primary_10_1007_s11831_024_10110_w crossref_primary_10_1109_COMST_2020_2975048 crossref_primary_10_1007_s11235_023_01015_3 crossref_primary_10_1002_itl2_195 crossref_primary_10_1109_ACCESS_2017_2778339 crossref_primary_10_1109_JIOT_2019_2929263 crossref_primary_10_1186_s13174_018_0087_2 crossref_primary_10_1016_j_jnca_2020_102574 crossref_primary_10_1080_02564602_2021_1957029 crossref_primary_10_3390_electronics10070806 crossref_primary_10_1002_ett_3577 crossref_primary_10_1080_0952813X_2022_2115141 |
Cites_doi | 10.1109/TSMCC.2004.843217 10.1109/MCOM.2012.6231276 10.1016/j.compeleceng.2008.02.002 10.1016/0893-6080(89)90003-8 10.1016/j.jnca.2014.01.005 10.1080/00224065.1999.11979899 10.1016/j.comnet.2013.07.034 10.1016/j.asoc.2006.03.002 10.1016/j.ins.2013.10.035 10.1109/ICNN.1995.488968 10.1145/2413219.2413226 10.1016/j.ins.2011.09.036 10.1016/j.comcom.2013.01.005 10.1016/j.comcom.2013.01.009 10.1109/ICCP.2011.6047849 10.1007/s00500-009-0440-2 10.1016/S0019-9958(65)90241-X 10.1002/9780470017906 10.1109/WOCC.2013.6676409 10.1016/j.comcom.2007.11.007 10.1016/j.knosys.2013.11.015 10.1016/j.jngse.2013.06.002 10.1109/ICIINFS.2010.5578726 10.1109/ICC.2013.6655143 10.1016/j.swevo.2011.07.001 10.1016/j.comnet.2013.07.008 10.1111/j.1468-0394.2010.00568.x 10.1109/PDCAT.2012.43 10.1016/j.ins.2012.01.021 10.1016/j.ijepes.2011.08.023 10.1016/j.comcom.2013.01.008 10.1016/j.dss.2010.05.006 10.1117/12.610751 10.1109/INFCOM.2000.832539 10.1007/978-3-642-30955-7_5 10.1145/2001858.2001950 10.1109/ICNC.2009.673 10.1016/j.comnet.2008.11.002 10.1109/IJCNN.2006.247142 10.1016/j.econmod.2013.09.024 10.1016/0893-6080(89)90020-8 10.1016/j.comnet.2007.04.002 10.1016/j.eswa.2013.10.053 10.1016/j.fss.2007.10.011 10.1109/CEC.2000.870279 10.1016/j.neucom.2014.11.003 10.1109/ICSTE.2010.5608912 10.1016/j.jnca.2014.03.006 10.1023/A:1012074215150 10.1016/j.protcy.2012.10.034 10.1016/j.ejor.2010.05.022 10.1109/INFCOMW.2012.6193514 10.1016/j.neucom.2014.08.070 10.1109/ICFN.2010.73 10.1007/3-540-33019-4 10.1016/j.jnca.2014.02.011 10.1109/FUZZ-IEEE.2013.6622319 10.1016/j.eswa.2013.05.053 10.1109/INFCOMW.2013.6970718 10.7125/APAN.34.3 10.2991/icacsei.2013.160 10.1016/j.comnet.2015.01.020 10.1016/j.physd.2013.11.002 10.1145/1658939.1658941 |
ContentType | Journal Article Publication |
Copyright | 2015 Elsevier Ltd info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: info:eu-repo/semantics/openAccess |
DBID | AAYXX CITATION XX2 |
DOI | 10.1016/j.jnca.2015.05.017 |
DatabaseName | CrossRef Recercat |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1095-8592 |
EndPage | 18 |
ExternalDocumentID | oai_recercat_cat_2072_346777 10_1016_j_jnca_2015_05_017 S1084804515001265 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS WH7 XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD XX2 |
ID | FETCH-LOGICAL-c342t-e63b08a7eb8e52340069891a599f9de9761bf1d471ba265d977ece82c7732693 |
IEDL.DBID | .~1 |
ISSN | 1084-8045 |
IngestDate | Fri Sep 26 12:27:16 EDT 2025 Wed Oct 01 03:43:37 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Fri Feb 23 02:12:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Time-lagged feedforward network Named data networking Congestion control Fuzzy set Genetic algorithm Particle swarm optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-e63b08a7eb8e52340069891a599f9de9761bf1d471ba265d977ece82c7732693 |
ORCID | 0000-0003-3635-513X |
OpenAccessLink | https://recercat.cat/handle/2072/346777 |
PageCount | 18 |
ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_346777 crossref_citationtrail_10_1016_j_jnca_2015_05_017 crossref_primary_10_1016_j_jnca_2015_05_017 elsevier_sciencedirect_doi_10_1016_j_jnca_2015_05_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of network and computer applications |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kuo, Syu, Chen, Tien (bib47) 2012; 195 Ran J, Lv N, Zhang D, Ma Y, Xie Z. On performance of cache policies in named data networking. In: International conference on advanced science and electronics information (ICACSEI). Atlantis Press; 2013. p. 668–71. Makridakis, Wheelwright, Hyndman (bib55) 1997 Lee, Lee (bib49) 2012; 186 Muscariello, Carofiglio, Gallo (bib200) 2011 Claveria, Torra (bib15) 2014; 36 Kuo, Hung, Cheng (bib48) 2014; 262 Cortez, Rio, Rocha, Sousa (bib18) 2012; 29 Chamkalani, Mae׳soumi, Sameni (bib11) 2013; 14 Jacobson V, Smetters DK, Thornton JD, Plass MF, Briggs NH, Braynard RL. Networking named content. In: Proceedings of the 5th international conference on Emerging networking experiments and technologies. New York, NY, USA: ACM; 2009. Steiner (bib69) 1999; 31 Afanasyev A, Mahadevan P, Moiseenko I, Uzun E, Zhang L. Interest flooding attack and countermeasures in named data networking. In: IFIP networking conference; 2013. p. 1–9. Karami, Johansson (bib40) 2014; 30 Xia C, Xu M, Wang Y. A loss-based tcp design in icn. In: Wireless and optical communication conference (WOCC); 2013. p. 449–54. Malviya, Pratihar (bib56) 2011; 1 Urade, Patel (bib70) 2012; 6 Wong, Xia, Chu (bib71) 2010; 207 Dfn-verein: Dfn-noc. retrieved June 2013. Zhao, Weng, Small (bib77) 2014; 268 Kuo, Lin (bib46) 2010; 49 Rozhnova N, Fdida S. An effective hop-by-hop interest shaping mechanism for ccn communications. In: IEEE conference on computer communications workshops (INFOCOM WKSHPS); 2012. p. 322–7. Jain, Kumar (bib34) 2007; 7 Rossini, Rossi (bib62) 2013; 36 Ruan, Tan (bib64) 2009; 14 Carofiglio G, Gallo M, Papalini LM. Multipath Congestion control in content-centric networks. In: Proceedings of the IEEE INFOCOM NOMEN; 2013. Qian, Jing, Tian (bib59) 2008; 31 Karami, Guerrero-Zapata (bib38) 2015; 149 Afanasyev A, Moiseenko I, Zhang L. ndnSIM: NDN simulator for NS-3. Technical Report NDN-0005; NDN; 2012. . Xu, Sun (bib73) 2014; 42 Lee, Nakao (bib50) 2013; 57 Funahashi (bib28) 1989; 2 Ding X, Canu S, Denoeux T. Neural network based models for forecasting. In: In proceedings of the applied decision technologies conference (ADT׳95). Uxbridge, UK; 1995. p. 243–52. Gluszek A, Kekez M, Rudzinski F. Web traffic prediction with artificial neural networks. In: Photonics applications in astronomy, communications, industry, and high-energy physics experiments III, vol. 5775. Society of photo-optical instrumentation engineers (SPIE); 2005. p. 520–5. Gomathy, Lakshmipathi (bib30) 2011; vol. 198 Karami A, Guerrero-Zapata M. Mining and visualizing uncertain data objects and named data networking traffics by fuzzy self-organizing map. In: Proceedings of the second international workshop on artificial intelligence and cognition (AIC), vol. 1315; 2014. p. 156–63. Li C, Liu W, Okamura K. A greedy ant colony forwarding algorithm for named data networking. In: Proceedings of the Asia-Pacific advanced network, vol. 34l; 2012. p. 17–26. Ren, An, Wang, Li, Hu, Shang (bib61) 2014; 56 Karami, Guerrero-Zapata (bib37) 2015; 80 Peralta Donate J, Cortez P, Sanchis de Miguel A, Gutierrez Sanchez G. Evolving time-lagged feedforward neural networks for time series forecasting. In: Proceedings of the 13th annual conference companion on genetic and evolutionary computation, GECCO ׳11. New York, NY, USA: ACM; 2011. p. 163–4. Das, Pattnaik, Padhy (bib21) 2014; 41 Conti, Gasti, Teoli (bib16) 2013; 57 Saucez D, Grieco LA, Barakat C. Aimd and ccn: past and novel acronyms working together in the future internet. In: Proceedings of the ACM workshop on capacity sharing, CSWS ’12. New York, NY, USA; 2012. p. 21–6. Lestas, Pitsillides, Ioannou, Hadjipollas (bib51) 2007; 51 Shivakumar U, Ravi V, Gangadharan G. Ranking cloud services using fuzzy multi-attribute decision making. In: IEEE international conference on fuzzy systems (FUZZ); 2013. p. 1-8. Barabas M, Boanea G, Dobrota V. Multipath routing management using neural networks-based traffic prediction. In: Proceedings of the 3rd international conference on emerging network intelligence. IARIA; 2011b. p. 118–24. Jin (bib36) 2006 Cortez P, Rio M, Rocha M, Sousa P. Internet traffic forecasting using neural networks. In: International joint conference on neural networks (IJCNN׳06); 2006. p. 4942–9. Yi, Afanasyev, Moiseenko, Wang, Zhang, Zhang (bib74) 2013; 36 Alarcon-Aquino, Barria (bib4) 2006; 36 Khashei, Hejazi, Bijari (bib43) 2008; 159 Chrysostomou, Pitsillides, Sekercioglu (bib14) 2009; 53 Frank, Davey, Hunt (bib26) 2001; 31 Baig Z, Khan S. Fuzzy logic-based decision making for detecting distributed node exhaustion attacks in wireless sensor networks. In: Second international conference on future networks (ICFN ׳10); 2010. p. 185–9. Hornik, Stinchcombe, White (bib32) 1989; 2 Chrysostomou C, Pitsillides A, Hadjipollas G, Sekercioglu A. Fuzzy logic congestion control in tcp/ip best-effort networks. In: Australian telecommunications networks and applications conference (ATNAC). Melbourne, Australia; 2003. p. 8-10. Kirubavathi Venkatesh G, Anitha Nadarajan R. Http botnet detection using adaptive learning rate multilayer feed-forward neural network. In: International conference on information security theory and practice: security, privacy and trust in computing systems and ambient intelligent ecosystems. Berlin: Springer-Verlag; 2012. p. 38–48. Moradi, Abedini (bib57) 2012; 34 Saino L, Cocora C, Pavlou G. Cctcp: a scalable receiver-driven congestion control protocol for content centric networking. In: 2013 IEEE international conference on communications (ICC); 2013. p. 3775–80. Karami, Guerrero-Zapata (bib39) 2015; 151 Bonald T, Martin M, Bolot JC. Analytic evaluation of red performance. In: Proceedings in nineteenth annual joint conference of the ieee computer and communications societies; vol. 3; 2000. p. 1415– 24. Zadeh (bib76) 1965; 8 Dannewitz, Kutscher, Ohlman, Farrell, Ahlgren, Karl (bib20) 2013; 36 Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the evolutionary computation, vol. 1; 2000. p. 84–8. Fu T, Li Y, Lin T, Tan H, Tang H, Ci S. An effective congestion control scheme in content-centric networking. In: 13th international conference on parallel and distributed computing, applications and technologies (PDCAT); 2012. p. 245–8. Heckmann O. The competitive Internet service provider: network architecture, interconnection, traffic engineering and network design. Wiley series in communications networking and distributed systems; J. Wiley; 2006. URL Yogi S, Subhashini KR, Satapathy J. A pso based functional link artificial neural network training algorithm for equalization of digital communication channels. In: 2010 international conference on industrial and information systems (ICIIS); 2010. p. 107–12. Dharmadhikari VB, Gavade JD. An nn approach for mpeg video traffic prediction. In: 2nd International conference on software technology and engineering (ICSTE), vol. 1; 2010. p. 57–61. Shakibian, Charkari (bib67) 2014; 42 Li, Sun, Zukerman, Liu, Xu, Chan (bib54) 2014; 41 Barabas M, Boanea G, Rus AB, Dobrota V, Domingo-Pascual J. Evaluation of network traffic prediction based on neural networks with multi-task learning and multiresolution decomposition. In: IEEE international conference on intelligent computer communication and processing (ICCP); 2011a. p. 95–102. Li Z, Lei Q, Kouying X, Xinyan Z. A novel bp neural network model for traffic prediction of next generation network. In: Fifth international conference on natural computation (ICNC׳09), vol. 1; 2009. p. 32–8. Jiang X, Bi J. Named content delivery network. Technical report; 2013. Cho, Fadali, Lee (bib12) 2008; 34 Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the IEEE international conference neural networks, vol. 4; 1995. p. 1942–48. Ahlgren, Dannewitz, Imbrenda, Kutscher, Ohlman (bib3) 2012; 50 Gomes, Ludermir (bib201) 2013; 40 10.1016/j.jnca.2015.05.017_bib27 10.1016/j.jnca.2015.05.017_bib25 10.1016/j.jnca.2015.05.017_bib24 10.1016/j.jnca.2015.05.017_bib68 10.1016/j.jnca.2015.05.017_bib23 10.1016/j.jnca.2015.05.017_bib22 Qian (10.1016/j.jnca.2015.05.017_bib59) 2008; 31 10.1016/j.jnca.2015.05.017_bib66 Karami (10.1016/j.jnca.2015.05.017_bib39) 2015; 151 10.1016/j.jnca.2015.05.017_bib65 Ren (10.1016/j.jnca.2015.05.017_bib61) 2014; 56 10.1016/j.jnca.2015.05.017_bib63 10.1016/j.jnca.2015.05.017_bib1 10.1016/j.jnca.2015.05.017_bib2 Jin (10.1016/j.jnca.2015.05.017_bib36) 2006 Lestas (10.1016/j.jnca.2015.05.017_bib51) 2007; 51 10.1016/j.jnca.2015.05.017_bib7 10.1016/j.jnca.2015.05.017_bib60 Ruan (10.1016/j.jnca.2015.05.017_bib64) 2009; 14 10.1016/j.jnca.2015.05.017_bib8 10.1016/j.jnca.2015.05.017_bib5 Urade (10.1016/j.jnca.2015.05.017_bib70) 2012; 6 10.1016/j.jnca.2015.05.017_bib6 10.1016/j.jnca.2015.05.017_bib9 Jain (10.1016/j.jnca.2015.05.017_bib34) 2007; 7 Hornik (10.1016/j.jnca.2015.05.017_bib32) 1989; 2 Wong (10.1016/j.jnca.2015.05.017_bib71) 2010; 207 10.1016/j.jnca.2015.05.017_bib29 Yi (10.1016/j.jnca.2015.05.017_bib74) 2013; 36 10.1016/j.jnca.2015.05.017_bib35 Dannewitz (10.1016/j.jnca.2015.05.017_bib20) 2013; 36 10.1016/j.jnca.2015.05.017_bib33 10.1016/j.jnca.2015.05.017_bib31 10.1016/j.jnca.2015.05.017_bib75 10.1016/j.jnca.2015.05.017_bib72 Kuo (10.1016/j.jnca.2015.05.017_bib47) 2012; 195 Zhao (10.1016/j.jnca.2015.05.017_bib77) 2014; 268 Karami (10.1016/j.jnca.2015.05.017_bib37) 2015; 80 Li (10.1016/j.jnca.2015.05.017_bib54) 2014; 41 Malviya (10.1016/j.jnca.2015.05.017_bib56) 2011; 1 Cho (10.1016/j.jnca.2015.05.017_bib12) 2008; 34 Gomathy (10.1016/j.jnca.2015.05.017_bib30) 2011; vol. 198 Lee (10.1016/j.jnca.2015.05.017_bib49) 2012; 186 10.1016/j.jnca.2015.05.017_bib44 Kuo (10.1016/j.jnca.2015.05.017_bib48) 2014; 262 10.1016/j.jnca.2015.05.017_bib42 10.1016/j.jnca.2015.05.017_bib41 Alarcon-Aquino (10.1016/j.jnca.2015.05.017_bib4) 2006; 36 Claveria (10.1016/j.jnca.2015.05.017_bib15) 2014; 36 Karami (10.1016/j.jnca.2015.05.017_bib40) 2014; 30 Makridakis (10.1016/j.jnca.2015.05.017_bib55) 1997 Frank (10.1016/j.jnca.2015.05.017_bib26) 2001; 31 Zadeh (10.1016/j.jnca.2015.05.017_bib76) 1965; 8 Steiner (10.1016/j.jnca.2015.05.017_bib69) 1999; 31 Cortez (10.1016/j.jnca.2015.05.017_bib18) 2012; 29 Gomes (10.1016/j.jnca.2015.05.017_bib201) 2013; 40 Khashei (10.1016/j.jnca.2015.05.017_bib43) 2008; 159 Conti (10.1016/j.jnca.2015.05.017_bib16) 2013; 57 Xu (10.1016/j.jnca.2015.05.017_bib73) 2014; 42 10.1016/j.jnca.2015.05.017_bib17 Shakibian (10.1016/j.jnca.2015.05.017_bib67) 2014; 42 10.1016/j.jnca.2015.05.017_bib58 10.1016/j.jnca.2015.05.017_bib13 10.1016/j.jnca.2015.05.017_bib53 Muscariello (10.1016/j.jnca.2015.05.017_bib200) 2011 10.1016/j.jnca.2015.05.017_bib52 Chrysostomou (10.1016/j.jnca.2015.05.017_bib14) 2009; 53 Funahashi (10.1016/j.jnca.2015.05.017_bib28) 1989; 2 Moradi (10.1016/j.jnca.2015.05.017_bib57) 2012; 34 Rossini (10.1016/j.jnca.2015.05.017_bib62) 2013; 36 Lee (10.1016/j.jnca.2015.05.017_bib50) 2013; 57 Chamkalani (10.1016/j.jnca.2015.05.017_bib11) 2013; 14 Ahlgren (10.1016/j.jnca.2015.05.017_bib3) 2012; 50 Das (10.1016/j.jnca.2015.05.017_bib21) 2014; 41 Kuo (10.1016/j.jnca.2015.05.017_bib46) 2010; 49 Karami (10.1016/j.jnca.2015.05.017_bib38) 2015; 149 |
References_xml | – reference: Barabas M, Boanea G, Dobrota V. Multipath routing management using neural networks-based traffic prediction. In: Proceedings of the 3rd international conference on emerging network intelligence. IARIA; 2011b. p. 118–24. – reference: Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the evolutionary computation, vol. 1; 2000. p. 84–8. – reference: Dfn-verein: Dfn-noc. retrieved June 2013. 〈 – reference: Chrysostomou C, Pitsillides A, Hadjipollas G, Sekercioglu A. Fuzzy logic congestion control in tcp/ip best-effort networks. In: Australian telecommunications networks and applications conference (ATNAC). Melbourne, Australia; 2003. p. 8-10. – reference: Li Z, Lei Q, Kouying X, Xinyan Z. A novel bp neural network model for traffic prediction of next generation network. In: Fifth international conference on natural computation (ICNC׳09), vol. 1; 2009. p. 32–8. – volume: 36 start-page: 771 year: 2013 end-page: 778 ident: bib62 article-title: Evaluating ccn multi-path interest forwarding strategies publication-title: Comput Commun – reference: Baig Z, Khan S. Fuzzy logic-based decision making for detecting distributed node exhaustion attacks in wireless sensor networks. In: Second international conference on future networks (ICFN ׳10); 2010. p. 185–9. – volume: 29 start-page: 143 year: 2012 end-page: 155 ident: bib18 article-title: Multi-scale internet traffic forecasting using neural networks and time series methods publication-title: Expert Syst – volume: 14 start-page: 139 year: 2009 end-page: 150 ident: bib64 article-title: A three-layer back-propagation neural network for spam detection using artificial immune concentration publication-title: Soft Comput – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib32 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw – reference: Gluszek A, Kekez M, Rudzinski F. Web traffic prediction with artificial neural networks. In: Photonics applications in astronomy, communications, industry, and high-energy physics experiments III, vol. 5775. Society of photo-optical instrumentation engineers (SPIE); 2005. p. 520–5. – volume: 49 start-page: 451 year: 2010 end-page: 462 ident: bib46 article-title: Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering publication-title: Decis Support Syst – reference: Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the IEEE international conference neural networks, vol. 4; 1995. p. 1942–48. – reference: Karami A, Guerrero-Zapata M. Mining and visualizing uncertain data objects and named data networking traffics by fuzzy self-organizing map. In: Proceedings of the second international workshop on artificial intelligence and cognition (AIC), vol. 1315; 2014. p. 156–63. – reference: 〉. – year: 1997 ident: bib55 publication-title: Forecasting: methods and applications – reference: Heckmann O. The competitive Internet service provider: network architecture, interconnection, traffic engineering and network design. Wiley series in communications networking and distributed systems; J. Wiley; 2006. URL 〈 – volume: 51 start-page: 3773 year: 2007 end-page: 3798 ident: bib51 article-title: Adaptive congestion protocol publication-title: Comput Netw – start-page: 26 year: 2011 end-page: 31 ident: bib200 article-title: Bandwidth and storage sharing performance in information centric networking publication-title: In: Proceedings of the ACM SIGCOMM workshop on Information-centric networking, ACM – reference: Saino L, Cocora C, Pavlou G. Cctcp: a scalable receiver-driven congestion control protocol for content centric networking. In: 2013 IEEE international conference on communications (ICC); 2013. p. 3775–80. – volume: vol. 198 start-page: 399 year: 2011 end-page: 408 ident: bib30 article-title: Advances in computing and information technology communications in computer and information science publication-title: Network intrusion detection using genetic algorithm and neural network – volume: 50 start-page: 26 year: 2012 end-page: 36 ident: bib3 article-title: A survey of information-centric networking publication-title: IEEE Commun Mag – reference: Barabas M, Boanea G, Rus AB, Dobrota V, Domingo-Pascual J. Evaluation of network traffic prediction based on neural networks with multi-task learning and multiresolution decomposition. In: IEEE international conference on intelligent computer communication and processing (ICCP); 2011a. p. 95–102. – volume: 1 start-page: 223 year: 2011 end-page: 235 ident: bib56 article-title: Tuning of neural networks using particle swarm optimization to model {MIG} welding process publication-title: Swarm Evolut Comput – volume: 207 start-page: 807 year: 2010 end-page: 816 ident: bib71 article-title: Adaptive neural network model for time-series forecasting publication-title: Eur J Oper Res – reference: Peralta Donate J, Cortez P, Sanchis de Miguel A, Gutierrez Sanchez G. Evolving time-lagged feedforward neural networks for time series forecasting. In: Proceedings of the 13th annual conference companion on genetic and evolutionary computation, GECCO ׳11. New York, NY, USA: ACM; 2011. p. 163–4. – volume: 36 start-page: 208 year: 2006 end-page: 220 ident: bib4 article-title: Multiresolution fir neural-network-based learning algorithm applied to network traffic prediction publication-title: IEEE Trans Syst, Man, Cybern, Part C – volume: 41 start-page: 274 year: 2014 end-page: 299 ident: bib54 article-title: A comparative simulation study of tcp/aqm systems for evaluating the potential of neuron-based {AQM} schemes publication-title: J Netw Comput Appl – reference: Afanasyev A, Mahadevan P, Moiseenko I, Uzun E, Zhang L. Interest flooding attack and countermeasures in named data networking. In: IFIP networking conference; 2013. p. 1–9. – reference: Fu T, Li Y, Lin T, Tan H, Tang H, Ci S. An effective congestion control scheme in content-centric networking. In: 13th international conference on parallel and distributed computing, applications and technologies (PDCAT); 2012. p. 245–8. – reference: Shivakumar U, Ravi V, Gangadharan G. Ranking cloud services using fuzzy multi-attribute decision making. In: IEEE international conference on fuzzy systems (FUZZ); 2013. p. 1-8. – reference: Xia C, Xu M, Wang Y. A loss-based tcp design in icn. In: Wireless and optical communication conference (WOCC); 2013. p. 449–54. – reference: Afanasyev A, Moiseenko I, Zhang L. ndnSIM: NDN simulator for NS-3. Technical Report NDN-0005; NDN; 2012. 〈 – reference: Bonald T, Martin M, Bolot JC. Analytic evaluation of red performance. In: Proceedings in nineteenth annual joint conference of the ieee computer and communications societies; vol. 3; 2000. p. 1415– 24. – volume: 7 start-page: 585 year: 2007 end-page: 592 ident: bib34 article-title: Hybrid neural network models for hydrologic time series forecasting publication-title: Appl Soft Comput – volume: 40 start-page: 6438 year: 2013 end-page: 6446 ident: bib201 article-title: Optimization of the weights and asymmetric activation function family of neural network for time series forecasting publication-title: Expert Systems with Applications – reference: Rozhnova N, Fdida S. An effective hop-by-hop interest shaping mechanism for ccn communications. In: IEEE conference on computer communications workshops (INFOCOM WKSHPS); 2012. p. 322–7. – volume: 80 start-page: 51 year: 2015 end-page: 65 ident: bib37 article-title: An anfis-based cache replacement method for mitigating cache pollution attacks in named data networking publication-title: Comput Netw – volume: 30 start-page: 519 year: 2014 end-page: 534 ident: bib40 article-title: Utilization of multi-attribute decision making techniques to integrate automatic and manual ranking of options publication-title: J Inf Sci Eng – volume: 34 start-page: 66 year: 2012 end-page: 74 ident: bib57 article-title: A combination of genetic algorithm and particle swarm optimization for optimal {DG} location and sizing in distribution systems publication-title: Int J Electr Power Energy Syst – reference: Cortez P, Rio M, Rocha M, Sousa P. Internet traffic forecasting using neural networks. In: International joint conference on neural networks (IJCNN׳06); 2006. p. 4942–9. – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib76 article-title: Fuzzy sets publication-title: Inf Control – volume: 57 start-page: 3142 year: 2013 end-page: 3153 ident: bib50 article-title: User-assisted in-network caching in information-centric networking publication-title: Comput Netw – volume: 53 start-page: 650 year: 2009 end-page: 667 ident: bib14 article-title: Fuzzy explicit marking: A unified congestion controller for best-effort and diff-serv networks publication-title: Comput Netw – volume: 2 start-page: 183 year: 1989 end-page: 192 ident: bib28 article-title: On the approximate realization of continuous mappings by neural networks publication-title: Neural Netw – volume: 34 start-page: 447 year: 2008 end-page: 469 ident: bib12 article-title: Adaptive neural queue management for tcp networks publication-title: Comput Electr Eng – volume: 36 start-page: 220 year: 2014 end-page: 228 ident: bib15 article-title: Forecasting tourism demand to catalonia: neural networks vs. time series models publication-title: Econ Modell – volume: 149 start-page: 1253 year: 2015 end-page: 1269 ident: bib38 article-title: A fuzzy anomaly detection system based on hybrid pso-kmeans algorithm in content-centric networks publication-title: Neurocomputing – volume: 56 start-page: 226 year: 2014 end-page: 239 ident: bib61 article-title: Optimal parameters selection for {BP} neural network based on particle swarm optimization publication-title: Knowl-Based Syst – reference: Ding X, Canu S, Denoeux T. Neural network based models for forecasting. In: In proceedings of the applied decision technologies conference (ADT׳95). Uxbridge, UK; 1995. p. 243–52. – volume: 41 start-page: 3491 year: 2014 end-page: 3496 ident: bib21 article-title: Artificial neural network trained by particle swarm optimization for non-linear channel equalization publication-title: Expert Syst Appl – reference: Dharmadhikari VB, Gavade JD. An nn approach for mpeg video traffic prediction. In: 2nd International conference on software technology and engineering (ICSTE), vol. 1; 2010. p. 57–61. – volume: 186 start-page: 59 year: 2012 end-page: 72 ident: bib49 article-title: Nonlinear systems design by a novel fuzzy neural system via hybridization of electromagnetism-like mechanism and particle swarm optimisation algorithms publication-title: Inf Sci – volume: 31 year: 1999 ident: bib69 article-title: Exponentially weighted moving average control charts with time varying control limits and fast initial response publication-title: J Qual Technol – volume: 6 start-page: 283 year: 2012 end-page: 290 ident: bib70 article-title: Dynamic particle swarm optimization to solve multi-objective optimization problem publication-title: Procedia Technol – volume: 268 start-page: 79 year: 2014 end-page: 90 ident: bib77 article-title: Response of the parameters of a neural network to pseudoperiodic time series publication-title: Physica D: Nonlinear Phenom – volume: 31 start-page: 91 year: 2001 end-page: 103 ident: bib26 article-title: Time series prediction and neural networks publication-title: J Intell Robot Syst – volume: 36 start-page: 779 year: 2013 end-page: 791 ident: bib74 article-title: A case for stateful forwarding plane publication-title: Comput Commun – reference: Yogi S, Subhashini KR, Satapathy J. A pso based functional link artificial neural network training algorithm for equalization of digital communication channels. In: 2010 international conference on industrial and information systems (ICIIS); 2010. p. 107–12. – reference: Jacobson V, Smetters DK, Thornton JD, Plass MF, Briggs NH, Braynard RL. Networking named content. In: Proceedings of the 5th international conference on Emerging networking experiments and technologies. New York, NY, USA: ACM; 2009. – volume: 42 start-page: 12 year: 2014 end-page: 20 ident: bib73 article-title: A simple active queue management based on the prediction of the packet arrival rate publication-title: J Netw Comput Appl – reference: Jiang X, Bi J. Named content delivery network. Technical report; 2013. – volume: 31 start-page: 1723 year: 2008 end-page: 1726 ident: bib59 article-title: Network congestion avoidance strategy with particle filter publication-title: Comput Commun – reference: Li C, Liu W, Okamura K. A greedy ant colony forwarding algorithm for named data networking. In: Proceedings of the Asia-Pacific advanced network, vol. 34l; 2012. p. 17–26. – volume: 195 start-page: 124 year: 2012 end-page: 140 ident: bib47 article-title: Integration of particle swarm optimization and genetic algorithm for dynamic clustering publication-title: Inf Sci – volume: 42 start-page: 80 year: 2014 end-page: 91 ident: bib67 article-title: In-cluster vector evaluated particle swarm optimization for distributed regression in {WSNs} publication-title: J Netw Comput Appl – volume: 36 start-page: 721 year: 2013 end-page: 735 ident: bib20 article-title: Network of information (netinf) – an information-centric networking publication-title: Comput Commun – volume: 57 start-page: 3178 year: 2013 end-page: 3191 ident: bib16 article-title: A lightweight mechanism for detection of cache pollution attacks in named data networking publication-title: Comput Netw – year: 2006 ident: bib36 article-title: Multi-objective machine learning publication-title: Studies in computational intelligence – reference: Kirubavathi Venkatesh G, Anitha Nadarajan R. Http botnet detection using adaptive learning rate multilayer feed-forward neural network. In: International conference on information security theory and practice: security, privacy and trust in computing systems and ambient intelligent ecosystems. Berlin: Springer-Verlag; 2012. p. 38–48. – volume: 14 start-page: 132 year: 2013 end-page: 143 ident: bib11 article-title: An intelligent approach for optimal prediction of gas deviation factor using particle swarm optimization and genetic algorithm publication-title: J Nat Gas Sci Eng – reference: Saucez D, Grieco LA, Barakat C. Aimd and ccn: past and novel acronyms working together in the future internet. In: Proceedings of the ACM workshop on capacity sharing, CSWS ’12. New York, NY, USA; 2012. p. 21–6. – volume: 151 start-page: 1262 year: 2015 end-page: 1282 ident: bib39 article-title: A hybrid multiobjective rbf-pso method for mitigating dos attacks in named data networking publication-title: Neurocomputing – reference: Carofiglio G, Gallo M, Papalini LM. Multipath Congestion control in content-centric networks. In: Proceedings of the IEEE INFOCOM NOMEN; 2013. – volume: 159 start-page: 769 year: 2008 end-page: 786 ident: bib43 article-title: A new hybrid artificial neural networks and fuzzy regression model for time series forecasting publication-title: Fuzzy Sets Syst – volume: 262 start-page: 78 year: 2014 end-page: 98 ident: bib48 article-title: Application of an optimization artificial immune network and particle swarm optimization-based fuzzy neural network to an rfid-based positioning system publication-title: Inf Sci – reference: Ran J, Lv N, Zhang D, Ma Y, Xie Z. On performance of cache policies in named data networking. In: International conference on advanced science and electronics information (ICACSEI). Atlantis Press; 2013. p. 668–71. – volume: 36 start-page: 208 issue: 2 year: 2006 ident: 10.1016/j.jnca.2015.05.017_bib4 article-title: Multiresolution fir neural-network-based learning algorithm applied to network traffic prediction publication-title: IEEE Trans Syst, Man, Cybern, Part C doi: 10.1109/TSMCC.2004.843217 – ident: 10.1016/j.jnca.2015.05.017_bib13 – volume: 30 start-page: 519 issue: 2 year: 2014 ident: 10.1016/j.jnca.2015.05.017_bib40 article-title: Utilization of multi-attribute decision making techniques to integrate automatic and manual ranking of options publication-title: J Inf Sci Eng – volume: 50 start-page: 26 issue: 7 year: 2012 ident: 10.1016/j.jnca.2015.05.017_bib3 article-title: A survey of information-centric networking publication-title: IEEE Commun Mag doi: 10.1109/MCOM.2012.6231276 – volume: 34 start-page: 447 year: 2008 ident: 10.1016/j.jnca.2015.05.017_bib12 article-title: Adaptive neural queue management for tcp networks publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2008.02.002 – volume: 2 start-page: 183 issue: 3 year: 1989 ident: 10.1016/j.jnca.2015.05.017_bib28 article-title: On the approximate realization of continuous mappings by neural networks publication-title: Neural Netw doi: 10.1016/0893-6080(89)90003-8 – volume: 41 start-page: 274 year: 2014 ident: 10.1016/j.jnca.2015.05.017_bib54 article-title: A comparative simulation study of tcp/aqm systems for evaluating the potential of neuron-based {AQM} schemes publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2014.01.005 – volume: 31 year: 1999 ident: 10.1016/j.jnca.2015.05.017_bib69 article-title: Exponentially weighted moving average control charts with time varying control limits and fast initial response publication-title: J Qual Technol doi: 10.1080/00224065.1999.11979899 – volume: 57 start-page: 3178 issue: 16 year: 2013 ident: 10.1016/j.jnca.2015.05.017_bib16 article-title: A lightweight mechanism for detection of cache pollution attacks in named data networking publication-title: Comput Netw doi: 10.1016/j.comnet.2013.07.034 – volume: 7 start-page: 585 issue: 2 year: 2007 ident: 10.1016/j.jnca.2015.05.017_bib34 article-title: Hybrid neural network models for hydrologic time series forecasting publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2006.03.002 – volume: 262 start-page: 78 year: 2014 ident: 10.1016/j.jnca.2015.05.017_bib48 article-title: Application of an optimization artificial immune network and particle swarm optimization-based fuzzy neural network to an rfid-based positioning system publication-title: Inf Sci doi: 10.1016/j.ins.2013.10.035 – ident: 10.1016/j.jnca.2015.05.017_bib42 doi: 10.1109/ICNN.1995.488968 – ident: 10.1016/j.jnca.2015.05.017_bib66 doi: 10.1145/2413219.2413226 – volume: 186 start-page: 59 issue: 1 year: 2012 ident: 10.1016/j.jnca.2015.05.017_bib49 article-title: Nonlinear systems design by a novel fuzzy neural system via hybridization of electromagnetism-like mechanism and particle swarm optimisation algorithms publication-title: Inf Sci doi: 10.1016/j.ins.2011.09.036 – volume: 36 start-page: 779 issue: 7 year: 2013 ident: 10.1016/j.jnca.2015.05.017_bib74 article-title: A case for stateful forwarding plane publication-title: Comput Commun doi: 10.1016/j.comcom.2013.01.005 – volume: 36 start-page: 721 issue: 7 year: 2013 ident: 10.1016/j.jnca.2015.05.017_bib20 article-title: Network of information (netinf) – an information-centric networking publication-title: Comput Commun doi: 10.1016/j.comcom.2013.01.009 – ident: 10.1016/j.jnca.2015.05.017_bib6 doi: 10.1109/ICCP.2011.6047849 – volume: 14 start-page: 139 issue: 2 year: 2009 ident: 10.1016/j.jnca.2015.05.017_bib64 article-title: A three-layer back-propagation neural network for spam detection using artificial immune concentration publication-title: Soft Comput doi: 10.1007/s00500-009-0440-2 – volume: 8 start-page: 338 year: 1965 ident: 10.1016/j.jnca.2015.05.017_bib76 article-title: Fuzzy sets publication-title: Inf Control doi: 10.1016/S0019-9958(65)90241-X – ident: 10.1016/j.jnca.2015.05.017_bib31 doi: 10.1002/9780470017906 – ident: 10.1016/j.jnca.2015.05.017_bib72 doi: 10.1109/WOCC.2013.6676409 – volume: 31 start-page: 1723 issue: 9 year: 2008 ident: 10.1016/j.jnca.2015.05.017_bib59 article-title: Network congestion avoidance strategy with particle filter publication-title: Comput Commun doi: 10.1016/j.comcom.2007.11.007 – volume: 56 start-page: 226 year: 2014 ident: 10.1016/j.jnca.2015.05.017_bib61 article-title: Optimal parameters selection for {BP} neural network based on particle swarm optimization publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2013.11.015 – volume: 14 start-page: 132 year: 2013 ident: 10.1016/j.jnca.2015.05.017_bib11 article-title: An intelligent approach for optimal prediction of gas deviation factor using particle swarm optimization and genetic algorithm publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2013.06.002 – ident: 10.1016/j.jnca.2015.05.017_bib75 doi: 10.1109/ICIINFS.2010.5578726 – ident: 10.1016/j.jnca.2015.05.017_bib65 doi: 10.1109/ICC.2013.6655143 – ident: 10.1016/j.jnca.2015.05.017_bib7 – volume: 1 start-page: 223 issue: 4 year: 2011 ident: 10.1016/j.jnca.2015.05.017_bib56 article-title: Tuning of neural networks using particle swarm optimization to model {MIG} welding process publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2011.07.001 – ident: 10.1016/j.jnca.2015.05.017_bib24 – volume: 57 start-page: 3142 issue: 16 year: 2013 ident: 10.1016/j.jnca.2015.05.017_bib50 article-title: User-assisted in-network caching in information-centric networking publication-title: Comput Netw doi: 10.1016/j.comnet.2013.07.008 – ident: 10.1016/j.jnca.2015.05.017_bib41 – volume: 29 start-page: 143 year: 2012 ident: 10.1016/j.jnca.2015.05.017_bib18 article-title: Multi-scale internet traffic forecasting using neural networks and time series methods publication-title: Expert Syst doi: 10.1111/j.1468-0394.2010.00568.x – year: 1997 ident: 10.1016/j.jnca.2015.05.017_bib55 – ident: 10.1016/j.jnca.2015.05.017_bib27 doi: 10.1109/PDCAT.2012.43 – volume: 195 start-page: 124 year: 2012 ident: 10.1016/j.jnca.2015.05.017_bib47 article-title: Integration of particle swarm optimization and genetic algorithm for dynamic clustering publication-title: Inf Sci doi: 10.1016/j.ins.2012.01.021 – volume: 34 start-page: 66 issue: 1 year: 2012 ident: 10.1016/j.jnca.2015.05.017_bib57 article-title: A combination of genetic algorithm and particle swarm optimization for optimal {DG} location and sizing in distribution systems publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2011.08.023 – start-page: 26 year: 2011 ident: 10.1016/j.jnca.2015.05.017_bib200 article-title: Bandwidth and storage sharing performance in information centric networking publication-title: In: Proceedings of the ACM SIGCOMM workshop on Information-centric networking, ACM – volume: 36 start-page: 771 issue: 7 year: 2013 ident: 10.1016/j.jnca.2015.05.017_bib62 article-title: Evaluating ccn multi-path interest forwarding strategies publication-title: Comput Commun doi: 10.1016/j.comcom.2013.01.008 – volume: 49 start-page: 451 issue: 4 year: 2010 ident: 10.1016/j.jnca.2015.05.017_bib46 article-title: Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering publication-title: Decis Support Syst doi: 10.1016/j.dss.2010.05.006 – ident: 10.1016/j.jnca.2015.05.017_bib29 doi: 10.1117/12.610751 – ident: 10.1016/j.jnca.2015.05.017_bib8 doi: 10.1109/INFCOM.2000.832539 – ident: 10.1016/j.jnca.2015.05.017_bib44 doi: 10.1007/978-3-642-30955-7_5 – ident: 10.1016/j.jnca.2015.05.017_bib58 doi: 10.1145/2001858.2001950 – ident: 10.1016/j.jnca.2015.05.017_bib52 doi: 10.1109/ICNC.2009.673 – volume: 53 start-page: 650 issue: 5 year: 2009 ident: 10.1016/j.jnca.2015.05.017_bib14 article-title: Fuzzy explicit marking: A unified congestion controller for best-effort and diff-serv networks publication-title: Comput Netw doi: 10.1016/j.comnet.2008.11.002 – ident: 10.1016/j.jnca.2015.05.017_bib17 doi: 10.1109/IJCNN.2006.247142 – volume: 36 start-page: 220 year: 2014 ident: 10.1016/j.jnca.2015.05.017_bib15 article-title: Forecasting tourism demand to catalonia: neural networks vs. time series models publication-title: Econ Modell doi: 10.1016/j.econmod.2013.09.024 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.jnca.2015.05.017_bib32 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 51 start-page: 3773 issue: 13 year: 2007 ident: 10.1016/j.jnca.2015.05.017_bib51 article-title: Adaptive congestion protocol publication-title: Comput Netw doi: 10.1016/j.comnet.2007.04.002 – ident: 10.1016/j.jnca.2015.05.017_bib2 – volume: 41 start-page: 3491 issue: 7 year: 2014 ident: 10.1016/j.jnca.2015.05.017_bib21 article-title: Artificial neural network trained by particle swarm optimization for non-linear channel equalization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.10.053 – volume: 159 start-page: 769 issue: 7 year: 2008 ident: 10.1016/j.jnca.2015.05.017_bib43 article-title: A new hybrid artificial neural networks and fuzzy regression model for time series forecasting publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2007.10.011 – ident: 10.1016/j.jnca.2015.05.017_bib25 doi: 10.1109/CEC.2000.870279 – volume: 151 start-page: 1262 issue: Part 3 year: 2015 ident: 10.1016/j.jnca.2015.05.017_bib39 article-title: A hybrid multiobjective rbf-pso method for mitigating dos attacks in named data networking publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.11.003 – ident: 10.1016/j.jnca.2015.05.017_bib23 doi: 10.1109/ICSTE.2010.5608912 – volume: 42 start-page: 12 year: 2014 ident: 10.1016/j.jnca.2015.05.017_bib73 article-title: A simple active queue management based on the prediction of the packet arrival rate publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2014.03.006 – volume: 31 start-page: 91 issue: 1–3 year: 2001 ident: 10.1016/j.jnca.2015.05.017_bib26 article-title: Time series prediction and neural networks publication-title: J Intell Robot Syst doi: 10.1023/A:1012074215150 – volume: vol. 198 start-page: 399 year: 2011 ident: 10.1016/j.jnca.2015.05.017_bib30 article-title: Advances in computing and information technology communications in computer and information science – volume: 6 start-page: 283 year: 2012 ident: 10.1016/j.jnca.2015.05.017_bib70 article-title: Dynamic particle swarm optimization to solve multi-objective optimization problem publication-title: Procedia Technol doi: 10.1016/j.protcy.2012.10.034 – volume: 207 start-page: 807 issue: 2 year: 2010 ident: 10.1016/j.jnca.2015.05.017_bib71 article-title: Adaptive neural network model for time-series forecasting publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2010.05.022 – ident: 10.1016/j.jnca.2015.05.017_bib63 doi: 10.1109/INFCOMW.2012.6193514 – volume: 149 start-page: 1253 issue: Part C year: 2015 ident: 10.1016/j.jnca.2015.05.017_bib38 article-title: A fuzzy anomaly detection system based on hybrid pso-kmeans algorithm in content-centric networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.070 – ident: 10.1016/j.jnca.2015.05.017_bib35 – ident: 10.1016/j.jnca.2015.05.017_bib5 doi: 10.1109/ICFN.2010.73 – year: 2006 ident: 10.1016/j.jnca.2015.05.017_bib36 article-title: Multi-objective machine learning doi: 10.1007/3-540-33019-4 – volume: 42 start-page: 80 year: 2014 ident: 10.1016/j.jnca.2015.05.017_bib67 article-title: In-cluster vector evaluated particle swarm optimization for distributed regression in {WSNs} publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2014.02.011 – ident: 10.1016/j.jnca.2015.05.017_bib1 – ident: 10.1016/j.jnca.2015.05.017_bib68 doi: 10.1109/FUZZ-IEEE.2013.6622319 – volume: 40 start-page: 6438 issue: 16 year: 2013 ident: 10.1016/j.jnca.2015.05.017_bib201 article-title: Optimization of the weights and asymmetric activation function family of neural network for time series forecasting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.05.053 – ident: 10.1016/j.jnca.2015.05.017_bib22 – ident: 10.1016/j.jnca.2015.05.017_bib9 doi: 10.1109/INFCOMW.2013.6970718 – ident: 10.1016/j.jnca.2015.05.017_bib53 doi: 10.7125/APAN.34.3 – ident: 10.1016/j.jnca.2015.05.017_bib60 doi: 10.2991/icacsei.2013.160 – volume: 80 start-page: 51 year: 2015 ident: 10.1016/j.jnca.2015.05.017_bib37 article-title: An anfis-based cache replacement method for mitigating cache pollution attacks in named data networking publication-title: Comput Netw doi: 10.1016/j.comnet.2015.01.020 – volume: 268 start-page: 79 year: 2014 ident: 10.1016/j.jnca.2015.05.017_bib77 article-title: Response of the parameters of a neural network to pseudoperiodic time series publication-title: Physica D: Nonlinear Phenom doi: 10.1016/j.physd.2013.11.002 – ident: 10.1016/j.jnca.2015.05.017_bib33 doi: 10.1145/1658939.1658941 |
SSID | ssj0006493 |
Score | 2.2393813 |
Snippet | Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure.... |
SourceID | csuc crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | CACHE POLLUTION ATTACKS Congestion control Future internet Fuzzy set Genetic algorithm HYBRID INFORMATION-CENTRIC NETWORKING Internet del futur MECHANISM Named data networking Particle swarm optimization SERIES SYSTEMS Time-lagged feedforward network TRAFFIC PREDICTION |
Title | ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network |
URI | https://dx.doi.org/10.1016/j.jnca.2015.05.017 https://recercat.cat/handle/2072/346777 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-8592 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006493 issn: 1084-8045 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-8592 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006493 issn: 1084-8045 databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-8592 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006493 issn: 1084-8045 databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1095-8592 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006493 issn: 1084-8045 databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-8592 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006493 issn: 1084-8045 databaseCode: AKRWK dateStart: 19960101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLVGZQMLGAqIMkPlBSuQaR52HrOrAlV5VZUoUneW7ThVRkNSlXQxs5ivmA_m3sYp7aYLpESKI9uxfG98bpzjY0LeiTTVyhrOhPY4475STKtEMxEGRSoSkxY5znf8mEXTX_zrUizPSNathUFapRv72zF9N1q7OyPXm6N1WY5--igFj_IoAjE7woXmqP4FPv3x_h_NI-KpI9lzhrndwpmW43WN0wYAgaJV74yPwKln_mzNAUYd4M7knDx1ASMdt216Ts5s1SfPus0YqHs3--TJgbLgC_IwzrJ5lVdXdJyrNQ5pNKsr_JcEdsBL5KfT-aZuavAEWlZ0pgAX6SfVKDprqeFQEdW31O0rsaIGcNXsBFgpsuVXtIaKf5d3UAwXkrDvarWC6wngIUTCyMalKP0BjXcVviSLyedFNmVuAwZmQh40zEah9hIVW51Y-GDlKGucpL4CAxdpbiGS8XXh54BvWoEBcoglrbFJYOIYosI0fEV6VV3Z14SKXAMoRLzAuUvr2aSAyCexoRfYIgyFGRC_63hpnDg57pFxIzsW2rVEY0k0lvTg8OMB-bAvs26lOU7mfo_2lOBTdmNUI1FXe5_AM_DiQIYAHDFkFp3V5ZE3SgCaEw9585_lLshjTLUkwUvSazZb-xaCnUYPd948JI_GX75NZ38BQ3b_pg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QE4UChUlKcPnEDW5mHn0dsqZbWl26gSi9SbZTvOaitIVkt6gN_BD-5M46y2lx6QEikP27E8znwT5_NngE8yz412VnBpAsFFqDU3OjNcxlGdy8zmdUXjHRdlMvshvl3Jqz0ohrkwRKv0vr_36Xfe2l8Z-9Ycr1er8feQpOBJHkUSZifyEewLiT55BPuTs_NZuXXIicg9z15wyuDnzvQ0r2saOUAUlL2AZ3oPn0b2943dgakd6Jk-h2c-ZmSTvlovYM81h3AwrMfA_Ot5CE93xAVfwr9JUVw2VXPCJpVek1djRdvQ7yQ0BR0SRZ1dbtquxc7AVg0rNUIjO9WdZmXPDseCmPnD_NISS2YRWu2dBisjwvyStVjwr9VfzEZzSfhcL5d4PEVIxGCYCLmM1D-w8r7AV7CYfl0UM-7XYOA2FlHHXRKbINOpM5nDb1ZBysZZHmq0cZ1XDoOZ0NRhhRBnNNqgwnDSWZdFNk0xMMzjIxg1beNeA5OVQVxIRE3Dly5wWY3BT-biIHJ1HEt7DOHQ8Mp6fXJaJuOnGoho14qMpchYKsAtTI_hyzbPulfneDD1Z7Knwm7lNlZ3iqS1tye0R0EaqRixI8XEcrC6utchFWLNAw9585_5PsLj2eJiruZn5flbeEJ3es7gOxh1mxv3HmOfznzwffsW7loCYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACCPndn%3A+Adaptive+Congestion+Control+Protocol+in+Named+Data+Networking+by+learning+capacities+using+optimized+Time-Lagged+Feedforward+Neural+Network&rft.jtitle=Journal+of+network+and+computer+applications&rft.au=Karami%2C+Amin&rft.date=2015-10-01&rft.pub=Elsevier+Ltd&rft.issn=1084-8045&rft.eissn=1095-8592&rft.volume=56&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1016%2Fj.jnca.2015.05.017&rft.externalDocID=S1084804515001265 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-8045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-8045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-8045&client=summon |