Extended convergence analysis of the Scholtes-type regularization for cardinality-constrained optimization problems

We extend the convergence analysis of the Scholtes-type regularization method for cardinality-constrained optimization problems. Its behavior is clarified in the vicinity of saddle points, and not just of minimizers as it has been done in the literature before. This becomes possible by using as an i...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 211; no. 1-2; pp. 207 - 243
Main Authors Lämmel, Sebastian, Shikhman, Vladimir
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.05.2025
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
1436-4646
DOI10.1007/s10107-024-02082-3

Cover

Abstract We extend the convergence analysis of the Scholtes-type regularization method for cardinality-constrained optimization problems. Its behavior is clarified in the vicinity of saddle points, and not just of minimizers as it has been done in the literature before. This becomes possible by using as an intermediate step the recently introduced regularized continuous reformulation of a cardinality-constrained optimization problem. We show that the Scholtes-type regularization method is well-defined locally around a nondegenerate T-stationary point of this regularized continuous reformulation. Moreover, the nondegenerate Karush–Kuhn–Tucker points of the corresponding Scholtes-type regularization converge to a T-stationary point having the same index, i.e. its topological type persists. As consequence, we conclude that the global structure of the Scholtes-type regularization essentially coincides with that of CCOP.
AbstractList We extend the convergence analysis of the Scholtes-type regularization method for cardinality-constrained optimization problems. Its behavior is clarified in the vicinity of saddle points, and not just of minimizers as it has been done in the literature before. This becomes possible by using as an intermediate step the recently introduced regularized continuous reformulation of a cardinality-constrained optimization problem. We show that the Scholtes-type regularization method is well-defined locally around a nondegenerate T-stationary point of this regularized continuous reformulation. Moreover, the nondegenerate Karush–Kuhn–Tucker points of the corresponding Scholtes-type regularization converge to a T-stationary point having the same index, i.e. its topological type persists. As consequence, we conclude that the global structure of the Scholtes-type regularization essentially coincides with that of CCOP.
Author Lämmel, Sebastian
Shikhman, Vladimir
Author_xml – sequence: 1
  givenname: Sebastian
  orcidid: 0000-0001-5064-7249
  surname: Lämmel
  fullname: Lämmel, Sebastian
– sequence: 2
  givenname: Vladimir
  surname: Shikhman
  fullname: Shikhman, Vladimir
BookMark eNqNkD1PHDEQhq0IJA7CH6BaKbXJ-GPtvTI6QYiElCJJbfnsMexpz97YvpDl1-NwpKcYTfO-j2aec3ISU0RCrhhcMwD9uTBgoClw2QYGTsUHsmJSKCqVVCdkBcB72isGZ-S8lB0AMDEMK1Ju_laMHn3nUvyD-QGjw85GOy1lLF0KXX3E7od7TFPFQusyY5fx4TDZPD7bOqbYhZQ7Z7MfW2msC22gUrMdY4OmuY77_8E5p-2E-_KRnAY7Fbx82xfk1-3Nz80dvf_-9dvmyz11QvJKfeDWD5JLFNte-yC5GqTQTgN6tKBw7YMOcu36IAcBcquUR8ed3AIfNOPigogj9xBnuzzZaTJzHvc2L4aB-efNHL2Z5s28ejOitT4dW-3c3wcs1ezSIbffihFsrXrZC61bih9TLqdSMob3oF8Ai7aBrQ
Cites_doi 10.1007/s10107-016-0986-6
10.1137/140978077
10.1080/10556788.2019.1663425
10.1080/02331934.2023.2249014
10.1007/s11228-023-00673-4
10.1007/s10957-018-1320-7
10.1137/S1052623499361233
10.1080/02331930701779039
10.1007/s10589-018-9985-2
10.1007/s10957-009-9517-4
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1007/s10107-024-02082-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 243
ExternalDocumentID 10.1007/s10107-024-02082-3
10_1007_s10107_024_02082_3
GroupedDBID --K
--Z
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADXHL
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
PUEGO
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c342t-df2ad8424e3b57df4268437c70edea06e9df7f49c5f48304b66dec2c4b0287123
IEDL.DBID UNPAY
ISSN 0025-5610
1436-4646
IngestDate Wed Oct 01 16:10:02 EDT 2025
Thu Sep 25 00:48:55 EDT 2025
Wed Oct 01 06:06:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-df2ad8424e3b57df4268437c70edea06e9df7f49c5f48304b66dec2c4b0287123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5064-7249
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10107-024-02082-3.pdf
PQID 3196545377
PQPubID 25307
PageCount 37
ParticipantIDs unpaywall_primary_10_1007_s10107_024_02082_3
proquest_journals_3196545377
crossref_primary_10_1007_s10107_024_02082_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Mathematical programming
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References M Červinka (2082_CR11) 2016; 160
C Kanzow (2082_CR3) 2021; 36
H Günzel (2082_CR12) 2008; 57
S Lämmel (2082_CR10) 2023; 8
M Bucher (2082_CR6) 2018; 178
S Scholtes (2082_CR1) 2001; 11
AF Izmailov (2082_CR2) 2009; 142
M Branda (2082_CR7) 2018; 70
HT Jongen (2082_CR8) 2000
S Lämmel (2082_CR9) 2023
HT Jongen (2082_CR13) 2004
2082_CR4
OP Burdakov (2082_CR5) 2016; 26
References_xml – volume: 160
  start-page: 353
  year: 2016
  ident: 2082_CR11
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-0986-6
– volume: 26
  start-page: 397
  year: 2016
  ident: 2082_CR5
  publication-title: SIAM J. Optim.
  doi: 10.1137/140978077
– volume: 36
  start-page: 1223
  year: 2021
  ident: 2082_CR3
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2019.1663425
– volume-title: Nonlinear Optimization in Finite Dimensions
  year: 2000
  ident: 2082_CR8
– year: 2023
  ident: 2082_CR9
  publication-title: Optimization
  doi: 10.1080/02331934.2023.2249014
– ident: 2082_CR4
  doi: 10.1007/s11228-023-00673-4
– volume-title: Optimization Theory
  year: 2004
  ident: 2082_CR13
– volume: 178
  start-page: 383
  year: 2018
  ident: 2082_CR6
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1320-7
– volume: 11
  start-page: 918
  year: 2001
  ident: 2082_CR1
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499361233
– volume: 8
  start-page: 1107
  issue: 4
  year: 2023
  ident: 2082_CR10
  publication-title: Pure Appl. Funct. Anal.
– volume: 57
  start-page: 159
  year: 2008
  ident: 2082_CR12
  publication-title: Optimization
  doi: 10.1080/02331930701779039
– volume: 70
  start-page: 503
  year: 2018
  ident: 2082_CR7
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-018-9985-2
– volume: 142
  start-page: 501
  year: 2009
  ident: 2082_CR2
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9517-4
SSID ssj0001388
Score 2.4436045
Snippet We extend the convergence analysis of the Scholtes-type regularization method for cardinality-constrained optimization problems. Its behavior is clarified in...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 207
SubjectTerms Constraints
Convergence
Optimization
Regularization
Saddle points
Title Extended convergence analysis of the Scholtes-type regularization for cardinality-constrained optimization problems
URI https://www.proquest.com/docview/3196545377
https://link.springer.com/content/pdf/10.1007/s10107-024-02082-3.pdf
UnpaywallVersion publishedVersion
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: AFBBN
  dateStart: 19711201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3Bcig9FEpBLAXkQ2-tIbEdZ3Nc8SGEBOqhK9FTlHhsDizZ1W5WFfx6PIkDW8ShFcdI1iixJ-M39rw3AN-cjhRmiFzrwicoNo35IEHDPTgpihiNSxq1_atrfTFSlzfJzQqcdlyYptq9u5JsOQ2k0lTVx1N0x0vEt5iO2ITi1GRScJ8QoluFNU3XTD1YG13_HP7uurUSRGhIRlJzpZUO3Jm3Df29P72Azg-Lalo8_CnG46X953wDbPfmbdnJ3dGiLo_M4ytRx_d-2iZ8CgCVDVuP-gwrttqCj0uyhf7p6lnrdf4F5mfhHJ01FewNmdOyIoidsIljfjAjtc-xh7WcznzZzN5S-WvggDIPnJkhV22zAm4ItFLvCm904mPafTcwtL-Zb8Po_OzXyQUPrRy4kUrUHJ0ocKCEsrJMUnSKRGZkatLIoi0ibTN0qVOZSZwayEiVWqM1wqgyopROyB3oVZPK7gKLpLVZbCPptFM2SUpBNhBjzHysSbAP37sFzKetYkf-os1Mk5v7yc2byc1lH_a7Nc7D3zvPKSx5ZCnTtA8_ntf9H6zt_d_wr7AuyEGb-sl96NWzhT3wGKcuD2F1JIaHwZGfAHNX9rQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3B7gF6KN9iW0A-cGsNie04myMqoBUSqIeuRE9R4rE5sGRXbFYV_Pp6Ege2FYeiHiNZo8SejN_Y894AHDsdKcwQudaFT1BsGvNhgoZ7cFIUMRqXNGr71zd6NFZXt8ntCpx3XJim2r27kmw5DaTSVNWnM3SnS8S3mI7YhOLUZFJwnxCiW4W-pmumHvTHN9_PfnbdWgkiNCQjqbnSSgfuzNuG_tyfXkHn2qKaFU-_islkaf-53ADbvXlbdnJ_sqjLE_P8l6jj_37aJnwMAJWdtR61BSu22oYPS7KF_un6Ret1vgPzi3COzpoK9obMaVkRxE7Y1DE_mJHa58TDWk5nvuzR3lH5a-CAMg-cmSFXbbMCbgi0Uu8Kb3TqY9pDNzC0v5nvwvjy4se3EQ-tHLiRStQcnShwqISyskxSdIpEZmRq0siiLSJtM3SpU5lJnBrKSJVaozXCqDKilE7IPehV08ruA4uktVlsI-m0UzZJSkE2EGPMfKxJcABfugXMZ61iR_6qzUyTm_vJzZvJzeUADro1zsPfO88pLHlkKdN0AF9f1v0frH163_DPsC7IQZv6yQPo1Y8Le-gxTl0eBRf-DbCv9cs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+convergence+analysis+of+the+Scholtes-type+regularization+for+cardinality-constrained+optimization+problems&rft.jtitle=Mathematical+programming&rft.au=L%C3%A4mmel%2C+Sebastian&rft.au=Shikhman%2C+Vladimir&rft.date=2025-05-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=211&rft.issue=1-2&rft.spage=207&rft.epage=243&rft_id=info:doi/10.1007%2Fs10107-024-02082-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_024_02082_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon