Enhancing cross-market recommendations by addressing negative transfer and leveraging item co-occurrences
Real-world multinational e-commerce companies, such as Amazon and eBay, serve in multiple countries and regions. Some markets are data-scarce, while others are data-rich. In recent years, cross-market recommendation (CMR) has been proposed to bolster data-scarce markets by leveraging auxiliary infor...
Saved in:
| Published in | Information Systems Vol. 124; p. 102388 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English Japanese |
| Published |
Elsevier Ltd
01.09.2024
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-4379 1873-6076 |
| DOI | 10.1016/j.is.2024.102388 |
Cover
| Abstract | Real-world multinational e-commerce companies, such as Amazon and eBay, serve in multiple countries and regions. Some markets are data-scarce, while others are data-rich. In recent years, cross-market recommendation (CMR) has been proposed to bolster data-scarce markets by leveraging auxiliary information from data-rich markets. Previous CMR algorithms have employed techniques such as sharing market-agnostic parameters or incorporating inter-market similarity to optimize the performance of CMR. However, the existing approaches have several limitations: (1) They do not fully utilize the valuable information on item co-occurrences obtained from data-rich markets (such as the consistent purchase of mice and keyboards). (2) They ignore the issue of negative transfer stemming from disparities across diverse markets. To address these limitations, we introduce a novel attention-based model that exploits users’ historical behaviors to mine general patterns from item co-occurrences and designs market-specific embeddings to mitigate negative transfer. Specifically, we propose an attention-based user interest mining module to harness the potential of common items as bridges for mining general knowledge from item co-occurrence patterns through rich data derived from global markets. In order to mitigate the adverse effects of negative transfer, we decouple the item representations into market-specific embeddings and market-agnostic embeddings. The market-specific embeddings effectively model the inherent biases associated with different markets, while the market-agnostic embeddings learn generic representations of the items. Extensive experiments conducted on seven real-world datasets illustrate our model’s effectiveness.11Our codes and checkpoints are available at https://github.com/laowangzi/ACMR. Our model outperforms the suboptimal model by an average of 4.82%, 6.82%, 3.87%, and 5.34% across four variants of two metrics. Extensive experiments and analysis demonstrate the effectiveness of our proposed model in mining general item co-occurrence patterns and avoiding negative transfer for data-sparse markets. |
|---|---|
| AbstractList | Real-world multinational e-commerce companies, such as Amazon and eBay, serve in multiple countries and regions. Some markets are data-scarce, while others are data-rich. In recent years, cross-market recommendation (CMR) has been proposed to bolster data-scarce markets by leveraging auxiliary information from data-rich markets. Previous CMR algorithms have employed techniques such as sharing market-agnostic parameters or incorporating inter-market similarity to optimize the performance of CMR. However, the existing approaches have several limitations: (1) They do not fully utilize the valuable information on item co-occurrences obtained from data-rich markets (such as the consistent purchase of mice and keyboards). (2) They ignore the issue of negative transfer stemming from disparities across diverse markets. To address these limitations, we introduce a novel attention-based model that exploits users’ historical behaviors to mine general patterns from item co-occurrences and designs market-specific embeddings to mitigate negative transfer. Specifically, we propose an attention-based user interest mining module to harness the potential of common items as bridges for mining general knowledge from item co-occurrence patterns through rich data derived from global markets. In order to mitigate the adverse effects of negative transfer, we decouple the item representations into market-specific embeddings and market-agnostic embeddings. The market-specific embeddings effectively model the inherent biases associated with different markets, while the market-agnostic embeddings learn generic representations of the items. Extensive experiments conducted on seven real-world datasets illustrate our model’s effectiveness.11Our codes and checkpoints are available at https://github.com/laowangzi/ACMR. Our model outperforms the suboptimal model by an average of 4.82%, 6.82%, 3.87%, and 5.34% across four variants of two metrics. Extensive experiments and analysis demonstrate the effectiveness of our proposed model in mining general item co-occurrence patterns and avoiding negative transfer for data-sparse markets. |
| ArticleNumber | 102388 |
| Author | Nakagawa, Satoshi Cai, Shi-Min Hu, Zheng Ren, Fuji Deng, Jiawen |
| Author_xml | – sequence: 1 givenname: Zheng surname: Hu fullname: Hu, Zheng organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 2 givenname: Satoshi surname: Nakagawa fullname: Nakagawa, Satoshi organization: The University of Tokyo, Tokyo 113-8656, Japan – sequence: 3 givenname: Shi-Min surname: Cai fullname: Cai, Shi-Min organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 4 givenname: Fuji surname: Ren fullname: Ren, Fuji organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 5 givenname: Jiawen orcidid: 0000-0003-0602-8250 surname: Deng fullname: Deng, Jiawen email: dengjw2016@gmail.com organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| BackLink | https://cir.nii.ac.jp/crid/1873962440604576512$$DView record in CiNii |
| BookMark | eNp1kLtPwzAQxi0EEm1hZ_TAmuJXHIcNVeUhVWKB2fLjUlwaB9mhUv97HMrKcqc7fff4fnN0HocICN1QsqSEyrvdMuQlI0yUknGlztCMqoZXkjTyHM0IJ7ISvGkv0TznHSGE1W07Q2EdP0x0IW6xS0POVW_SJ4w4gRv6HqI3YxhixvaIjfcJcp6kEbalfwA8JhNzBwmb6PEeDpDMdhKEEXrshmpw7jsliA7yFbrozD7D9V9eoPfH9dvqudq8Pr2sHjaV44KNlbfWcSWAcktrUEIq74lUHZE1eKYccd7StrVtDU4ZK5Qy0jYNl4rWvAPPF4ic9v76SdDprxSKq6OmRE-o9E6HrCdU-oSqjNyeRmIIurAocWLXSiYEkUTUjawpK7L7kwzK-4cASWcXJm8-FFyj9kP4_8YP8JB_RQ |
| Cites_doi | 10.1007/s11036-018-1112-1 10.1109/TNNLS.2017.2690683 10.1016/j.knosys.2022.109282 10.1109/TKDE.2021.3059744 10.1016/j.knosys.2021.107970 10.1016/j.knosys.2021.107339 10.1177/107769905303000401 10.1016/j.heliyon.2019.e02690 10.1561/1100000009 10.1016/j.is.2005.02.004 10.1140/epjb/e2009-00335-8 10.1016/j.is.2022.102002 10.1109/TKDE.2022.3233789 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | RYH AAYXX CITATION |
| DOI | 10.1016/j.is.2024.102388 |
| DatabaseName | CiNii Complete CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1873-6076 |
| ExternalDocumentID | 10_1016_j_is_2024_102388 S0306437924000462 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 13V 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 63O 7-5 71M 77K 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABTAH ABUCO ABXDB ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HF~ HLZ HVGLF HZ~ H~9 IHE J1W KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSB SSD SSL SSV SSZ T5K TN5 UHS VH1 WUQ XSW ZCG ZY4 ~G- AATTM AAXKI AAYWO ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV RYH SSH 77I AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO ADVLN AGQPQ CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c342t-dbbc384e13b15e8468dd068f065ed28c0cdb199b95ec8ab488a6b77368153fed3 |
| IEDL.DBID | .~1 |
| ISSN | 0306-4379 |
| IngestDate | Wed Oct 01 04:49:42 EDT 2025 Thu Jun 26 23:33:29 EDT 2025 Tue Jun 18 08:52:27 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Transfer learning Recommender systems Cross-market recommendation |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c342t-dbbc384e13b15e8468dd068f065ed28c0cdb199b95ec8ab488a6b77368153fed3 |
| ORCID | 0000-0003-0602-8250 0009-0004-4950-3167 |
| ParticipantIDs | crossref_primary_10_1016_j_is_2024_102388 nii_cinii_1873962440604576512 elsevier_sciencedirect_doi_10_1016_j_is_2024_102388 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-01 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Information Systems |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Qiu, Wu, Gao, Fan (b40) 2021 Devlin, Chang, Lee, Toutanova (b41) 2019 Liu, Zhao, Liu, Wu, Duan, Li (b3) 2017 Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell, Agarwal, Herbert-Voss, Krueger, Henighan, Child, Ramesh, Ziegler, Wu, Winter, Hesse, Chen, Sigler, Litwin, Gray, Chess, Clark, Berner, McCandlish, Radford, Sutskever, Amodei (b42) 2020 Bao, Dong, Piao, Wei (b50) 2022 Wang, Lu, Lyu (b32) 2022; 251 Luo, Li, Gao, Tang, Wang, Li, Zhu, Liu, Li, Pan (b20) 2023 Ge, Xu, Liu, Fu, Sun, Zhang (b56) 2020 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b44) 2014; 15 Sheng, Zhao, Zhou, Ding, Dai, Luo, Yang, Lv, Zhang, Deng, Zhu (b25) 2021 Wang, Li, Li, Zhu, Li, Ou (b24) 2022 Sun, Wang, Li, Feng, Chen, Zhang, Tian, Zhu, Tian, Wu (b51) 2019 Cao, Cong, Sheng, Liu, Wang (b11) 2022 Ba, Kiros, Hinton (b39) 2016 Li, Tuzhilin (b16) 2020 Veeramachaneni, Pujari, Padmanabhan, Kumar (b9) 2022; 107 Jutla, Bodorik, Zhang (b2) 2006; 31 Cao, Sheng, Cong, Liu, Wang (b17) 2022 Ma, Zhao, Yi, Chen, Hong, Chi (b23) 2018 McInnes, Healy (b60) 2018 Bonab, Aliannejadi, Vardasbi, Kanoulas, Allan (b6) 2021 Cao, Sheng, Cong, Liu, Wang (b13) 2022 Hu, Zhang, Yang (b15) 2018 Wang, de Vries, Reinders (b48) 2006 He, Liao, Zhang, Nie, Hu, Chua (b7) 2017 Kingma, Ba (b49) 2015 Taylor (b52) 1953; 30 Reimers, Gurevych (b45) 2019 Zhang, Ma, Wan, Abbas, Guizani (b10) 2018; 23 Bhargav, Aliannejadi, Kanoulas (b26) 2023; vol. 13980 Zhou, Mou, Fan, Pi, Bian, Zhou, Zhu, Gai (b30) 2019 Ren, Shi (b61) 2001 Zhou, Zhu, Song, Fan, Zhu, Ma, Yan, Jin, Li, Gai (b29) 2018 Zhang, Li, Jia, Wang, Zhu, Wang, He (b36) 2021 Zhou, Lü, Zhang (b4) 2009; 71 Li, Tian, Liu, Tao (b59) 2018; 29 Han, Shang, Sun, Zhao, Zheng, Zhang (b54) 2022; 34 Cao, Li, Yu, Guo, Liu, Wang (b18) 2023 Misra, Shrivastava, Gupta, Hebert (b22) 2016 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b37) 2017 Zhu, Tang, Liu, Zhuang, Xie, Zhang, Lin, He (b12) 2022 Ruder (b21) 2017 Grover, Leskovec (b28) 2016 Zhang, Wu, Li, Li (b46) 2018 Steck (b27) 2019 Ying, Zhuang, Zhang, Liu, Xu, Xie, Xiong, Wu (b43) 2018 Rita, Oliveira, Farisa (b1) 2019; 5 Artetxe, Labaka, Agirre (b62) 2016 Sun, Liu, Wu, Pei, Lin, Ou, Jiang (b35) 2019 Zou, Chen, Kanoulas (b53) 2020 Zhang, Ren (b57) 2021; 229 He, Zhang, Ren, Sun (b38) 2016 Ekstrand, Riedl, Konstan (b47) 2011; 4 Cheng, Koc, Harmsen, Shaked, Chandra, Aradhye, Anderson, Corrado, Chai, Ispir, Anil, Haque, Hong, Jain, Liu, Shah (b55) 2016 Xu, Li, Zhang, Duan, Tsang, Shao (b14) 2023; 35 Liu, Zheng, Su, Zheng, Chen, Hu (b19) 2023; 35 Liu, Zhou, Wang (b5) 2009; 19 Cao, Cong, Liu, Wang (b8) 2022 Shimizu, Matsutani, Goto (b33) 2022; 239 Chung, Gülçehre, Cho, Bengio (b31) 2014 Li, Tuzhilin (b58) 2020 Chen, Yang, Wang, Bai, Song, King (b34) 2022 Xu (10.1016/j.is.2024.102388_b14) 2023; 35 Liu (10.1016/j.is.2024.102388_b5) 2009; 19 Cao (10.1016/j.is.2024.102388_b8) 2022 Wang (10.1016/j.is.2024.102388_b32) 2022; 251 Shimizu (10.1016/j.is.2024.102388_b33) 2022; 239 Zhou (10.1016/j.is.2024.102388_b29) 2018 Artetxe (10.1016/j.is.2024.102388_b62) 2016 Ruder (10.1016/j.is.2024.102388_b21) 2017 Bonab (10.1016/j.is.2024.102388_b6) 2021 Cao (10.1016/j.is.2024.102388_b18) 2023 Chen (10.1016/j.is.2024.102388_b34) 2022 Liu (10.1016/j.is.2024.102388_b19) 2023; 35 Ma (10.1016/j.is.2024.102388_b23) 2018 Cao (10.1016/j.is.2024.102388_b13) 2022 Liu (10.1016/j.is.2024.102388_b3) 2017 Grover (10.1016/j.is.2024.102388_b28) 2016 Hu (10.1016/j.is.2024.102388_b15) 2018 Zhang (10.1016/j.is.2024.102388_b57) 2021; 229 Sun (10.1016/j.is.2024.102388_b51) 2019 Wang (10.1016/j.is.2024.102388_b48) 2006 Kingma (10.1016/j.is.2024.102388_b49) 2015 Li (10.1016/j.is.2024.102388_b16) 2020 Bhargav (10.1016/j.is.2024.102388_b26) 2023; vol. 13980 Veeramachaneni (10.1016/j.is.2024.102388_b9) 2022; 107 Ying (10.1016/j.is.2024.102388_b43) 2018 Han (10.1016/j.is.2024.102388_b54) 2022; 34 Misra (10.1016/j.is.2024.102388_b22) 2016 Qiu (10.1016/j.is.2024.102388_b40) 2021 Cheng (10.1016/j.is.2024.102388_b55) 2016 Chung (10.1016/j.is.2024.102388_b31) 2014 Li (10.1016/j.is.2024.102388_b59) 2018; 29 Ba (10.1016/j.is.2024.102388_b39) 2016 Li (10.1016/j.is.2024.102388_b58) 2020 Zhang (10.1016/j.is.2024.102388_b36) 2021 Sheng (10.1016/j.is.2024.102388_b25) 2021 Ren (10.1016/j.is.2024.102388_b61) 2001 Luo (10.1016/j.is.2024.102388_b20) 2023 Zhou (10.1016/j.is.2024.102388_b4) 2009; 71 Vaswani (10.1016/j.is.2024.102388_b37) 2017 Jutla (10.1016/j.is.2024.102388_b2) 2006; 31 Zhu (10.1016/j.is.2024.102388_b12) 2022 Srivastava (10.1016/j.is.2024.102388_b44) 2014; 15 Bao (10.1016/j.is.2024.102388_b50) 2022 Zhang (10.1016/j.is.2024.102388_b10) 2018; 23 Rita (10.1016/j.is.2024.102388_b1) 2019; 5 He (10.1016/j.is.2024.102388_b7) 2017 Devlin (10.1016/j.is.2024.102388_b41) 2019 Zhang (10.1016/j.is.2024.102388_b46) 2018 Ge (10.1016/j.is.2024.102388_b56) 2020 Sun (10.1016/j.is.2024.102388_b35) 2019 Zhou (10.1016/j.is.2024.102388_b30) 2019 Brown (10.1016/j.is.2024.102388_b42) 2020 Cao (10.1016/j.is.2024.102388_b11) 2022 He (10.1016/j.is.2024.102388_b38) 2016 Zou (10.1016/j.is.2024.102388_b53) 2020 Taylor (10.1016/j.is.2024.102388_b52) 1953; 30 Wang (10.1016/j.is.2024.102388_b24) 2022 McInnes (10.1016/j.is.2024.102388_b60) 2018 Cao (10.1016/j.is.2024.102388_b17) 2022 Ekstrand (10.1016/j.is.2024.102388_b47) 2011; 4 Steck (10.1016/j.is.2024.102388_b27) 2019 Reimers (10.1016/j.is.2024.102388_b45) 2019 |
| References_xml | – year: 2017 ident: b21 article-title: An overview of multi-task learning in deep neural networks – start-page: 2209 year: 2022 end-page: 2223 ident: b13 article-title: Cross-domain recommendation to cold-start users via variational information bottleneck publication-title: ICDE – start-page: 7 year: 2016 end-page: 10 ident: b55 article-title: Wide & deep learning for recommender systems publication-title: DLRS@RecSys – start-page: 331 year: 2020 end-page: 339 ident: b16 article-title: DDTCDR: deep dual transfer cross domain recommendation publication-title: WSDM – start-page: 881 year: 2020 end-page: 890 ident: b53 article-title: Towards question-based recommender systems publication-title: SIGIR – start-page: 409 year: 2020 end-page: 418 ident: b56 article-title: Learning personalized risk preferences for recommendation publication-title: SIGIR – year: 2014 ident: b31 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – volume: 229 year: 2021 ident: b57 article-title: Double bayesian pairwise learning for one-class collaborative filtering publication-title: Knowl.-Based Syst. – year: 2022 ident: b50 article-title: BEiT: BERT pre-training of image transformers publication-title: ICLR – start-page: 78 year: 2023 end-page: 86 ident: b18 article-title: Towards universal cross-domain recommendation publication-title: WSDM – volume: 5 year: 2019 ident: b1 article-title: The impact of e-service quality and customer satisfaction on customer behavior in online shopping publication-title: Heliyon – start-page: 4514 year: 2018 end-page: 4523 ident: b46 article-title: Learning universal sentence representations with mean-max attention autoencoder publication-title: EMNLP – year: 2016 ident: b39 article-title: Layer normalization – volume: 19 start-page: 1 year: 2009 end-page: 15 ident: b5 article-title: Research progress of personalized recommendation system publication-title: Prog. Nat. Sci. – start-page: 110 year: 2021 end-page: 119 ident: b6 article-title: Cross-market product recommendation publication-title: CIKM – volume: 251 year: 2022 ident: b32 article-title: CGSNet: Contrastive graph self-attention network for session-based recommendation publication-title: Knowl.-Based Syst. – volume: 31 start-page: 295 year: 2006 end-page: 320 ident: b2 article-title: Pecan: An architecture for users’ privacy-aware electronic commerce contexts on the semantic web publication-title: Inf. Syst. – start-page: 2289 year: 2016 end-page: 2294 ident: b62 article-title: Learning principled bilingual mappings of word embeddings while preserving monolingual invariance publication-title: EMNLP – start-page: 331 year: 2020 end-page: 339 ident: b58 article-title: DDTCDR: deep dual transfer cross domain recommendation publication-title: WSDM – volume: 35 start-page: 11216 year: 2023 end-page: 11230 ident: b19 article-title: Contrastive proxy kernel stein path alignment for cross-domain cold-start recommendation publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 5998 year: 2017 end-page: 6008 ident: b37 article-title: Attention is all you need publication-title: NeurIPS – start-page: 4320 year: 2021 end-page: 4327 ident: b40 article-title: U-BERT: pre-training user representations for improved recommendation publication-title: AAAI – start-page: 3307 year: 2022 end-page: 3319 ident: b24 article-title: Multi-task learning with calibrated mixture of insightful experts publication-title: ICDE – start-page: 2209 year: 2022 end-page: 2223 ident: b17 article-title: Cross-domain recommendation to cold-start users via variational information bottleneck publication-title: ICDE – start-page: 1930 year: 2018 end-page: 1939 ident: b23 article-title: Modeling task relationships in multi-task learning with multi-gate mixture-of-experts publication-title: KDD – start-page: 855 year: 2016 end-page: 864 ident: b28 article-title: Node2vec: Scalable feature learning for networks publication-title: KDD – volume: 23 start-page: 1610 year: 2018 end-page: 1623 ident: b10 article-title: CrossRec: Cross-domain recommendations based on social big data and cognitive computing publication-title: Mob. Netw. Appl. – start-page: 501 year: 2006 end-page: 508 ident: b48 article-title: Unifying user-based and item-based collaborative filtering approaches by similarity fusion publication-title: SIGIR – volume: 107 year: 2022 ident: b9 article-title: A hinge-loss based codebook transfer for cross-domain recommendation with non-overlapping data publication-title: Inf. Syst. – start-page: 1059 year: 2018 end-page: 1068 ident: b29 article-title: Deep interest network for click-through rate prediction publication-title: KDD – year: 2015 ident: b49 article-title: Adam: A method for stochastic optimization publication-title: ICLR (Poster) – start-page: 770 year: 2016 end-page: 778 ident: b38 article-title: Deep residual learning for image recognition publication-title: CVPR – start-page: 3980 year: 2019 end-page: 3990 ident: b45 article-title: Sentence-BERT: Sentence embeddings using siamese BERT-networks publication-title: EMNLP/IJCNLP (1) – start-page: 3251 year: 2019 end-page: 3257 ident: b27 article-title: Embarrassingly shallow autoencoders for sparse data publication-title: WWW – start-page: 3994 year: 2016 end-page: 4003 ident: b22 article-title: Cross-stitch networks for multi-task learning publication-title: CVPR – start-page: 4104 year: 2021 end-page: 4113 ident: b25 article-title: One model to serve all: Star topology adaptive recommender for multi-domain CTR prediction publication-title: CIKM – start-page: 3926 year: 2018 end-page: 3932 ident: b43 article-title: Sequential recommender system based on hierarchical attention networks publication-title: IJCAI – start-page: 667 year: 2018 end-page: 676 ident: b15 article-title: Conet: Collaborative cross networks for cross-domain recommendation publication-title: CIKM – volume: 34 start-page: 5484 year: 2022 end-page: 5495 ident: b54 article-title: Point-of-interest recommendation with global and local context publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 4171 year: 2019 end-page: 4186 ident: b41 article-title: BERT: pre-training of deep bidirectional transformers for language understanding publication-title: NAACL-HLT (1) – volume: 239 year: 2022 ident: b33 article-title: An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information publication-title: Knowl.-Based Syst. – year: 2020 ident: b42 article-title: Language models are few-shot learners publication-title: NeurIPS – start-page: 173 year: 2017 end-page: 182 ident: b7 article-title: Neural collaborative filtering publication-title: WWW – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b44 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – start-page: 1441 year: 2019 end-page: 1450 ident: b35 article-title: BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer publication-title: CIKM – volume: 35 start-page: 8199 year: 2023 end-page: 8212 ident: b14 article-title: Metacar: Cross-domain meta-augmentation for content-aware recommendation publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 2379 year: 2017 end-page: 2385 ident: b3 article-title: Learning user dependencies for recommendation publication-title: IJCAI – volume: vol. 13980 start-page: 134 year: 2023 end-page: 149 ident: b26 article-title: Market-aware models for efficient cross-market recommendation publication-title: ECIR (1) – start-page: 5941 year: 2019 end-page: 5948 ident: b30 article-title: Deep interest evolution network for click-through rate prediction publication-title: AAAI – start-page: 3079 year: 2023 end-page: 3092 ident: b20 article-title: MAMDR: A model agnostic learning framework for multi-domain recommendation publication-title: ICDE – volume: 4 start-page: 81 year: 2011 end-page: 173 ident: b47 article-title: Collaborative filtering recommender systems publication-title: Found. Trends® Hum.–Comput. Interact. – year: 2018 ident: b60 article-title: UMAP: uniform manifold approximation and projection for dimension reduction – start-page: 138 year: 2022 end-page: 147 ident: b11 article-title: Contrastive cross-domain sequential recommendation publication-title: CIKM – year: 2019 ident: b51 article-title: ERNIE: enhanced representation through knowledge integration – volume: 71 start-page: 623 year: 2009 end-page: 630 ident: b4 article-title: Predicting missing links via local information publication-title: Eur. Phys. J. B – start-page: 299 year: 2022 end-page: 311 ident: b34 article-title: Attentive knowledge-aware graph convolutional networks with collaborative guidance for personalized recommendation publication-title: ICDE – start-page: 3356 year: 2021 end-page: 3362 ident: b36 article-title: UNBERT: user-news matching BERT for news recommendation publication-title: IJCAI – start-page: 1507 year: 2022 end-page: 1515 ident: b12 article-title: Personalized transfer of user preferences for cross-domain recommendation publication-title: WSDM – volume: 30 start-page: 415 year: 1953 end-page: 433 ident: b52 article-title: “Cloze procedure”: A new tool for measuring readability publication-title: Journalism Q. – start-page: 249 year: 2001 end-page: 259 ident: b61 article-title: Parallel machine translation: Principles and practice publication-title: ICECCS – volume: 29 start-page: 1975 year: 2018 end-page: 1985 ident: b59 article-title: On better exploring and exploiting task relationships in multitask learning: Joint model and feature learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 2249 year: 2022 end-page: 2254 ident: b8 article-title: Item similarity mining for multi-market recommendation publication-title: SIGIR – volume: 23 start-page: 1610 issue: 6 year: 2018 ident: 10.1016/j.is.2024.102388_b10 article-title: CrossRec: Cross-domain recommendations based on social big data and cognitive computing publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-018-1112-1 – start-page: 173 year: 2017 ident: 10.1016/j.is.2024.102388_b7 article-title: Neural collaborative filtering – volume: 29 start-page: 1975 issue: 5 year: 2018 ident: 10.1016/j.is.2024.102388_b59 article-title: On better exploring and exploiting task relationships in multitask learning: Joint model and feature learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2690683 – year: 2015 ident: 10.1016/j.is.2024.102388_b49 article-title: Adam: A method for stochastic optimization – volume: 251 year: 2022 ident: 10.1016/j.is.2024.102388_b32 article-title: CGSNet: Contrastive graph self-attention network for session-based recommendation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109282 – year: 2014 ident: 10.1016/j.is.2024.102388_b31 – start-page: 138 year: 2022 ident: 10.1016/j.is.2024.102388_b11 article-title: Contrastive cross-domain sequential recommendation – volume: 34 start-page: 5484 issue: 11 year: 2022 ident: 10.1016/j.is.2024.102388_b54 article-title: Point-of-interest recommendation with global and local context publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3059744 – year: 2017 ident: 10.1016/j.is.2024.102388_b21 – start-page: 2209 year: 2022 ident: 10.1016/j.is.2024.102388_b13 article-title: Cross-domain recommendation to cold-start users via variational information bottleneck – start-page: 3251 year: 2019 ident: 10.1016/j.is.2024.102388_b27 article-title: Embarrassingly shallow autoencoders for sparse data – start-page: 881 year: 2020 ident: 10.1016/j.is.2024.102388_b53 article-title: Towards question-based recommender systems – start-page: 3994 year: 2016 ident: 10.1016/j.is.2024.102388_b22 article-title: Cross-stitch networks for multi-task learning – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.is.2024.102388_b44 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – start-page: 501 year: 2006 ident: 10.1016/j.is.2024.102388_b48 article-title: Unifying user-based and item-based collaborative filtering approaches by similarity fusion – start-page: 2379 year: 2017 ident: 10.1016/j.is.2024.102388_b3 article-title: Learning user dependencies for recommendation – year: 2022 ident: 10.1016/j.is.2024.102388_b50 article-title: BEiT: BERT pre-training of image transformers – volume: 239 year: 2022 ident: 10.1016/j.is.2024.102388_b33 article-title: An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107970 – start-page: 2249 year: 2022 ident: 10.1016/j.is.2024.102388_b8 article-title: Item similarity mining for multi-market recommendation – start-page: 2289 year: 2016 ident: 10.1016/j.is.2024.102388_b62 article-title: Learning principled bilingual mappings of word embeddings while preserving monolingual invariance – start-page: 331 year: 2020 ident: 10.1016/j.is.2024.102388_b16 article-title: DDTCDR: deep dual transfer cross domain recommendation – volume: 229 year: 2021 ident: 10.1016/j.is.2024.102388_b57 article-title: Double bayesian pairwise learning for one-class collaborative filtering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107339 – start-page: 5998 year: 2017 ident: 10.1016/j.is.2024.102388_b37 article-title: Attention is all you need – start-page: 3079 year: 2023 ident: 10.1016/j.is.2024.102388_b20 article-title: MAMDR: A model agnostic learning framework for multi-domain recommendation – start-page: 770 year: 2016 ident: 10.1016/j.is.2024.102388_b38 article-title: Deep residual learning for image recognition – volume: 30 start-page: 415 issue: 4 year: 1953 ident: 10.1016/j.is.2024.102388_b52 article-title: “Cloze procedure”: A new tool for measuring readability publication-title: Journalism Q. doi: 10.1177/107769905303000401 – start-page: 249 year: 2001 ident: 10.1016/j.is.2024.102388_b61 article-title: Parallel machine translation: Principles and practice – volume: 5 issue: 10 year: 2019 ident: 10.1016/j.is.2024.102388_b1 article-title: The impact of e-service quality and customer satisfaction on customer behavior in online shopping publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02690 – start-page: 4514 year: 2018 ident: 10.1016/j.is.2024.102388_b46 article-title: Learning universal sentence representations with mean-max attention autoencoder – start-page: 1930 year: 2018 ident: 10.1016/j.is.2024.102388_b23 article-title: Modeling task relationships in multi-task learning with multi-gate mixture-of-experts – start-page: 4104 year: 2021 ident: 10.1016/j.is.2024.102388_b25 article-title: One model to serve all: Star topology adaptive recommender for multi-domain CTR prediction – year: 2016 ident: 10.1016/j.is.2024.102388_b39 – start-page: 2209 year: 2022 ident: 10.1016/j.is.2024.102388_b17 article-title: Cross-domain recommendation to cold-start users via variational information bottleneck – start-page: 299 year: 2022 ident: 10.1016/j.is.2024.102388_b34 article-title: Attentive knowledge-aware graph convolutional networks with collaborative guidance for personalized recommendation – volume: 4 start-page: 81 issue: 2 year: 2011 ident: 10.1016/j.is.2024.102388_b47 article-title: Collaborative filtering recommender systems publication-title: Found. Trends® Hum.–Comput. Interact. doi: 10.1561/1100000009 – start-page: 855 year: 2016 ident: 10.1016/j.is.2024.102388_b28 article-title: Node2vec: Scalable feature learning for networks – start-page: 78 year: 2023 ident: 10.1016/j.is.2024.102388_b18 article-title: Towards universal cross-domain recommendation – start-page: 331 year: 2020 ident: 10.1016/j.is.2024.102388_b58 article-title: DDTCDR: deep dual transfer cross domain recommendation – volume: 31 start-page: 295 issue: 4–5 year: 2006 ident: 10.1016/j.is.2024.102388_b2 article-title: Pecan: An architecture for users’ privacy-aware electronic commerce contexts on the semantic web publication-title: Inf. Syst. doi: 10.1016/j.is.2005.02.004 – start-page: 409 year: 2020 ident: 10.1016/j.is.2024.102388_b56 article-title: Learning personalized risk preferences for recommendation – start-page: 4320 year: 2021 ident: 10.1016/j.is.2024.102388_b40 article-title: U-BERT: pre-training user representations for improved recommendation – start-page: 7 year: 2016 ident: 10.1016/j.is.2024.102388_b55 article-title: Wide & deep learning for recommender systems – volume: vol. 13980 start-page: 134 year: 2023 ident: 10.1016/j.is.2024.102388_b26 article-title: Market-aware models for efficient cross-market recommendation – year: 2020 ident: 10.1016/j.is.2024.102388_b42 article-title: Language models are few-shot learners – start-page: 3356 year: 2021 ident: 10.1016/j.is.2024.102388_b36 article-title: UNBERT: user-news matching BERT for news recommendation – start-page: 5941 year: 2019 ident: 10.1016/j.is.2024.102388_b30 article-title: Deep interest evolution network for click-through rate prediction – start-page: 3307 year: 2022 ident: 10.1016/j.is.2024.102388_b24 article-title: Multi-task learning with calibrated mixture of insightful experts – start-page: 1441 year: 2019 ident: 10.1016/j.is.2024.102388_b35 article-title: BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer – start-page: 1059 year: 2018 ident: 10.1016/j.is.2024.102388_b29 article-title: Deep interest network for click-through rate prediction – start-page: 1507 year: 2022 ident: 10.1016/j.is.2024.102388_b12 article-title: Personalized transfer of user preferences for cross-domain recommendation – start-page: 3980 year: 2019 ident: 10.1016/j.is.2024.102388_b45 article-title: Sentence-BERT: Sentence embeddings using siamese BERT-networks – year: 2018 ident: 10.1016/j.is.2024.102388_b60 – volume: 71 start-page: 623 year: 2009 ident: 10.1016/j.is.2024.102388_b4 article-title: Predicting missing links via local information publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2009-00335-8 – volume: 19 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.is.2024.102388_b5 article-title: Research progress of personalized recommendation system publication-title: Prog. Nat. Sci. – year: 2019 ident: 10.1016/j.is.2024.102388_b51 – start-page: 667 year: 2018 ident: 10.1016/j.is.2024.102388_b15 article-title: Conet: Collaborative cross networks for cross-domain recommendation – start-page: 3926 year: 2018 ident: 10.1016/j.is.2024.102388_b43 article-title: Sequential recommender system based on hierarchical attention networks – volume: 107 year: 2022 ident: 10.1016/j.is.2024.102388_b9 article-title: A hinge-loss based codebook transfer for cross-domain recommendation with non-overlapping data publication-title: Inf. Syst. doi: 10.1016/j.is.2022.102002 – start-page: 4171 year: 2019 ident: 10.1016/j.is.2024.102388_b41 article-title: BERT: pre-training of deep bidirectional transformers for language understanding – volume: 35 start-page: 8199 issue: 8 year: 2023 ident: 10.1016/j.is.2024.102388_b14 article-title: Metacar: Cross-domain meta-augmentation for content-aware recommendation publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 110 year: 2021 ident: 10.1016/j.is.2024.102388_b6 article-title: Cross-market product recommendation – volume: 35 start-page: 11216 issue: 11 year: 2023 ident: 10.1016/j.is.2024.102388_b19 article-title: Contrastive proxy kernel stein path alignment for cross-domain cold-start recommendation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2022.3233789 |
| SSID | ssj0002599 ssib006544749 |
| Score | 2.397464 |
| Snippet | Real-world multinational e-commerce companies, such as Amazon and eBay, serve in multiple countries and regions. Some markets are data-scarce, while others are... |
| SourceID | crossref nii elsevier |
| SourceType | Index Database Publisher |
| StartPage | 102388 |
| SubjectTerms | Cross-market recommendation Recommender systems Transfer learning |
| Title | Enhancing cross-market recommendations by addressing negative transfer and leveraging item co-occurrences |
| URI | https://dx.doi.org/10.1016/j.is.2024.102388 https://cir.nii.ac.jp/crid/1873962440604576512 |
| Volume | 124 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6076 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002599 issn: 0306-4379 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Complete Freedom Collection customDbUrl: eissn: 1873-6076 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002599 issn: 0306-4379 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6076 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002599 issn: 0306-4379 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6076 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002599 issn: 0306-4379 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6076 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002599 issn: 0306-4379 databaseCode: AKRWK dateStart: 19950301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWWDgUUC8WnlgYQhNE8dOxqpqVV4VAip1i-JHShBNES0DC7-dOycRRUIMLIkSOQ-d7c-f7bvvCDkLEp6IxFO4UKUdFgSAg8JlTupxIVORKuVjoPDtiA_H7GoSTGqkV8XCoFtlif0Fplu0Lu-0S2u2X7Os_YBsF9X00AsSQywxgp0JzGJw8fnt5gH0Pip2EriDpcutysLHK0PBbo9Z_QKbe-XXoWktz7KVQWewQ7ZKtki7xQ_tkprJG2S7ysRAy47ZIJsrsoJ7JOvnTyijkU-p_ZIzs6HNFCe_s5kp0ygtqPyggDvWERaK5mZqRcDp0nJZeH2Sa_pioK3bTEYUl3mpmjtzpayoEyDMPhkP-o-9oVOmVHCUz7ylo6VUfshMx5edwAD3CLV2eZgCETHaC5WrtOxEkYwCo8JEQu9OuBTC5yEgY2q0f0Dq-Tw3h4QqFKcXIo0Uc1mi3QTIR5BGnhbKcOmZI3JeWTN-LZQz4sql7DnOFjFaPi4sf0T8ytzxj9qPAdj_eKoJNRODOeHYCYUfcSArqAYEkyggMsf_eusJ2cCrwo_slNSXb--mCcRjKVu2ZbXIerd3f3OH58vr4egL_Y_XuA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN-JV8MDCEJomjp2MCIHKcwEkNit-BIJoWkEZWPjt3DmJAAkxsGRIHCc6258_23ffAewnuchlHhnaqLIBTxLEQRnyoIiE1IUsjIkpUPjqWgzu-Pl9cj8Fx20sDLlVNthfY7pH6-ZOr7Fmb1yWvRtiu6SmR16QFGI5DTM8iSStwA4_vvw8kN9n9VGCCKh4c1ZZO3mVpNgdcS9g4JOv_Do3TVdl-W3WOV2ChYYusqP6j5ZhylUrsNimYmDNyFyB-W-6gqtQnlSPpKNRPTD_pWDoY5sZrX6HQ9fkUXpl-p0h8HhPWCxauQevAs4mnsxi9Xll2bPDzu5TGTHa52VmFIyM8apOCDFrcHd6cns8CJqcCoGJeTQJrNYmTrnrx7qfOCQfqbWhSAtkIs5GqQmN1f0s01niTJprHN650FLGIkVoLJyN16FTjSq3AcyQOr2URWZ4yHMb5sg-kiKLrDRO6MhtwkFrTTWupTNU61P2pMpXRZZXteU3IW7NrX40v0Jk_-OtLraMQnPitZ_KOBPIVkgOCFdRyGS2_lXrHswObq8u1eXZ9cU2zNGT2qlsBzqTlzfXRRYy0bu-l30CYvjXuA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+cross-market+recommendations+by+addressing+negative+transfer+and+leveraging+item+co-occurrences&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Hu%2C+Zheng&rft.au=Nakagawa%2C+Satoshi&rft.au=Cai%2C+Shi-Min&rft.au=Ren%2C+Fuji&rft.date=2024-09-01&rft.issn=0306-4379&rft.volume=124&rft.spage=102388&rft_id=info:doi/10.1016%2Fj.is.2024.102388&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_is_2024_102388 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon |