Enhancing cross-market recommendations by addressing negative transfer and leveraging item co-occurrences

Real-world multinational e-commerce companies, such as Amazon and eBay, serve in multiple countries and regions. Some markets are data-scarce, while others are data-rich. In recent years, cross-market recommendation (CMR) has been proposed to bolster data-scarce markets by leveraging auxiliary infor...

Full description

Saved in:
Bibliographic Details
Published inInformation Systems Vol. 124; p. 102388
Main Authors Hu, Zheng, Nakagawa, Satoshi, Cai, Shi-Min, Ren, Fuji, Deng, Jiawen
Format Journal Article
LanguageEnglish
Japanese
Published Elsevier Ltd 01.09.2024
Elsevier BV
Subjects
Online AccessGet full text
ISSN0306-4379
1873-6076
DOI10.1016/j.is.2024.102388

Cover

Abstract Real-world multinational e-commerce companies, such as Amazon and eBay, serve in multiple countries and regions. Some markets are data-scarce, while others are data-rich. In recent years, cross-market recommendation (CMR) has been proposed to bolster data-scarce markets by leveraging auxiliary information from data-rich markets. Previous CMR algorithms have employed techniques such as sharing market-agnostic parameters or incorporating inter-market similarity to optimize the performance of CMR. However, the existing approaches have several limitations: (1) They do not fully utilize the valuable information on item co-occurrences obtained from data-rich markets (such as the consistent purchase of mice and keyboards). (2) They ignore the issue of negative transfer stemming from disparities across diverse markets. To address these limitations, we introduce a novel attention-based model that exploits users’ historical behaviors to mine general patterns from item co-occurrences and designs market-specific embeddings to mitigate negative transfer. Specifically, we propose an attention-based user interest mining module to harness the potential of common items as bridges for mining general knowledge from item co-occurrence patterns through rich data derived from global markets. In order to mitigate the adverse effects of negative transfer, we decouple the item representations into market-specific embeddings and market-agnostic embeddings. The market-specific embeddings effectively model the inherent biases associated with different markets, while the market-agnostic embeddings learn generic representations of the items. Extensive experiments conducted on seven real-world datasets illustrate our model’s effectiveness.11Our codes and checkpoints are available at https://github.com/laowangzi/ACMR. Our model outperforms the suboptimal model by an average of 4.82%, 6.82%, 3.87%, and 5.34% across four variants of two metrics. Extensive experiments and analysis demonstrate the effectiveness of our proposed model in mining general item co-occurrence patterns and avoiding negative transfer for data-sparse markets.
AbstractList Real-world multinational e-commerce companies, such as Amazon and eBay, serve in multiple countries and regions. Some markets are data-scarce, while others are data-rich. In recent years, cross-market recommendation (CMR) has been proposed to bolster data-scarce markets by leveraging auxiliary information from data-rich markets. Previous CMR algorithms have employed techniques such as sharing market-agnostic parameters or incorporating inter-market similarity to optimize the performance of CMR. However, the existing approaches have several limitations: (1) They do not fully utilize the valuable information on item co-occurrences obtained from data-rich markets (such as the consistent purchase of mice and keyboards). (2) They ignore the issue of negative transfer stemming from disparities across diverse markets. To address these limitations, we introduce a novel attention-based model that exploits users’ historical behaviors to mine general patterns from item co-occurrences and designs market-specific embeddings to mitigate negative transfer. Specifically, we propose an attention-based user interest mining module to harness the potential of common items as bridges for mining general knowledge from item co-occurrence patterns through rich data derived from global markets. In order to mitigate the adverse effects of negative transfer, we decouple the item representations into market-specific embeddings and market-agnostic embeddings. The market-specific embeddings effectively model the inherent biases associated with different markets, while the market-agnostic embeddings learn generic representations of the items. Extensive experiments conducted on seven real-world datasets illustrate our model’s effectiveness.11Our codes and checkpoints are available at https://github.com/laowangzi/ACMR. Our model outperforms the suboptimal model by an average of 4.82%, 6.82%, 3.87%, and 5.34% across four variants of two metrics. Extensive experiments and analysis demonstrate the effectiveness of our proposed model in mining general item co-occurrence patterns and avoiding negative transfer for data-sparse markets.
ArticleNumber 102388
Author Nakagawa, Satoshi
Cai, Shi-Min
Hu, Zheng
Ren, Fuji
Deng, Jiawen
Author_xml – sequence: 1
  givenname: Zheng
  surname: Hu
  fullname: Hu, Zheng
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 2
  givenname: Satoshi
  surname: Nakagawa
  fullname: Nakagawa, Satoshi
  organization: The University of Tokyo, Tokyo 113-8656, Japan
– sequence: 3
  givenname: Shi-Min
  surname: Cai
  fullname: Cai, Shi-Min
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 4
  givenname: Fuji
  surname: Ren
  fullname: Ren, Fuji
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 5
  givenname: Jiawen
  orcidid: 0000-0003-0602-8250
  surname: Deng
  fullname: Deng, Jiawen
  email: dengjw2016@gmail.com
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
BackLink https://cir.nii.ac.jp/crid/1873962440604576512$$DView record in CiNii
BookMark eNp1kLtPwzAQxi0EEm1hZ_TAmuJXHIcNVeUhVWKB2fLjUlwaB9mhUv97HMrKcqc7fff4fnN0HocICN1QsqSEyrvdMuQlI0yUknGlztCMqoZXkjTyHM0IJ7ISvGkv0TznHSGE1W07Q2EdP0x0IW6xS0POVW_SJ4w4gRv6HqI3YxhixvaIjfcJcp6kEbalfwA8JhNzBwmb6PEeDpDMdhKEEXrshmpw7jsliA7yFbrozD7D9V9eoPfH9dvqudq8Pr2sHjaV44KNlbfWcSWAcktrUEIq74lUHZE1eKYccd7StrVtDU4ZK5Qy0jYNl4rWvAPPF4ic9v76SdDprxSKq6OmRE-o9E6HrCdU-oSqjNyeRmIIurAocWLXSiYEkUTUjawpK7L7kwzK-4cASWcXJm8-FFyj9kP4_8YP8JB_RQ
Cites_doi 10.1007/s11036-018-1112-1
10.1109/TNNLS.2017.2690683
10.1016/j.knosys.2022.109282
10.1109/TKDE.2021.3059744
10.1016/j.knosys.2021.107970
10.1016/j.knosys.2021.107339
10.1177/107769905303000401
10.1016/j.heliyon.2019.e02690
10.1561/1100000009
10.1016/j.is.2005.02.004
10.1140/epjb/e2009-00335-8
10.1016/j.is.2022.102002
10.1109/TKDE.2022.3233789
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID RYH
AAYXX
CITATION
DOI 10.1016/j.is.2024.102388
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-6076
ExternalDocumentID 10_1016_j_is_2024_102388
S0306437924000462
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
13V
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
63O
7-5
71M
77K
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABTAH
ABUCO
ABXDB
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HF~
HLZ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SSV
SSZ
T5K
TN5
UHS
VH1
WUQ
XSW
ZCG
ZY4
~G-
AATTM
AAXKI
AAYWO
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
77I
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AGQPQ
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c342t-dbbc384e13b15e8468dd068f065ed28c0cdb199b95ec8ab488a6b77368153fed3
IEDL.DBID .~1
ISSN 0306-4379
IngestDate Wed Oct 01 04:49:42 EDT 2025
Thu Jun 26 23:33:29 EDT 2025
Tue Jun 18 08:52:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Transfer learning
Recommender systems
Cross-market recommendation
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-dbbc384e13b15e8468dd068f065ed28c0cdb199b95ec8ab488a6b77368153fed3
ORCID 0000-0003-0602-8250
0009-0004-4950-3167
ParticipantIDs crossref_primary_10_1016_j_is_2024_102388
nii_cinii_1873962440604576512
elsevier_sciencedirect_doi_10_1016_j_is_2024_102388
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-01
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Information Systems
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Qiu, Wu, Gao, Fan (b40) 2021
Devlin, Chang, Lee, Toutanova (b41) 2019
Liu, Zhao, Liu, Wu, Duan, Li (b3) 2017
Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell, Agarwal, Herbert-Voss, Krueger, Henighan, Child, Ramesh, Ziegler, Wu, Winter, Hesse, Chen, Sigler, Litwin, Gray, Chess, Clark, Berner, McCandlish, Radford, Sutskever, Amodei (b42) 2020
Bao, Dong, Piao, Wei (b50) 2022
Wang, Lu, Lyu (b32) 2022; 251
Luo, Li, Gao, Tang, Wang, Li, Zhu, Liu, Li, Pan (b20) 2023
Ge, Xu, Liu, Fu, Sun, Zhang (b56) 2020
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b44) 2014; 15
Sheng, Zhao, Zhou, Ding, Dai, Luo, Yang, Lv, Zhang, Deng, Zhu (b25) 2021
Wang, Li, Li, Zhu, Li, Ou (b24) 2022
Sun, Wang, Li, Feng, Chen, Zhang, Tian, Zhu, Tian, Wu (b51) 2019
Cao, Cong, Sheng, Liu, Wang (b11) 2022
Ba, Kiros, Hinton (b39) 2016
Li, Tuzhilin (b16) 2020
Veeramachaneni, Pujari, Padmanabhan, Kumar (b9) 2022; 107
Jutla, Bodorik, Zhang (b2) 2006; 31
Cao, Sheng, Cong, Liu, Wang (b17) 2022
Ma, Zhao, Yi, Chen, Hong, Chi (b23) 2018
McInnes, Healy (b60) 2018
Bonab, Aliannejadi, Vardasbi, Kanoulas, Allan (b6) 2021
Cao, Sheng, Cong, Liu, Wang (b13) 2022
Hu, Zhang, Yang (b15) 2018
Wang, de Vries, Reinders (b48) 2006
He, Liao, Zhang, Nie, Hu, Chua (b7) 2017
Kingma, Ba (b49) 2015
Taylor (b52) 1953; 30
Reimers, Gurevych (b45) 2019
Zhang, Ma, Wan, Abbas, Guizani (b10) 2018; 23
Bhargav, Aliannejadi, Kanoulas (b26) 2023; vol. 13980
Zhou, Mou, Fan, Pi, Bian, Zhou, Zhu, Gai (b30) 2019
Ren, Shi (b61) 2001
Zhou, Zhu, Song, Fan, Zhu, Ma, Yan, Jin, Li, Gai (b29) 2018
Zhang, Li, Jia, Wang, Zhu, Wang, He (b36) 2021
Zhou, Lü, Zhang (b4) 2009; 71
Li, Tian, Liu, Tao (b59) 2018; 29
Han, Shang, Sun, Zhao, Zheng, Zhang (b54) 2022; 34
Cao, Li, Yu, Guo, Liu, Wang (b18) 2023
Misra, Shrivastava, Gupta, Hebert (b22) 2016
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b37) 2017
Zhu, Tang, Liu, Zhuang, Xie, Zhang, Lin, He (b12) 2022
Ruder (b21) 2017
Grover, Leskovec (b28) 2016
Zhang, Wu, Li, Li (b46) 2018
Steck (b27) 2019
Ying, Zhuang, Zhang, Liu, Xu, Xie, Xiong, Wu (b43) 2018
Rita, Oliveira, Farisa (b1) 2019; 5
Artetxe, Labaka, Agirre (b62) 2016
Sun, Liu, Wu, Pei, Lin, Ou, Jiang (b35) 2019
Zou, Chen, Kanoulas (b53) 2020
Zhang, Ren (b57) 2021; 229
He, Zhang, Ren, Sun (b38) 2016
Ekstrand, Riedl, Konstan (b47) 2011; 4
Cheng, Koc, Harmsen, Shaked, Chandra, Aradhye, Anderson, Corrado, Chai, Ispir, Anil, Haque, Hong, Jain, Liu, Shah (b55) 2016
Xu, Li, Zhang, Duan, Tsang, Shao (b14) 2023; 35
Liu, Zheng, Su, Zheng, Chen, Hu (b19) 2023; 35
Liu, Zhou, Wang (b5) 2009; 19
Cao, Cong, Liu, Wang (b8) 2022
Shimizu, Matsutani, Goto (b33) 2022; 239
Chung, Gülçehre, Cho, Bengio (b31) 2014
Li, Tuzhilin (b58) 2020
Chen, Yang, Wang, Bai, Song, King (b34) 2022
Xu (10.1016/j.is.2024.102388_b14) 2023; 35
Liu (10.1016/j.is.2024.102388_b5) 2009; 19
Cao (10.1016/j.is.2024.102388_b8) 2022
Wang (10.1016/j.is.2024.102388_b32) 2022; 251
Shimizu (10.1016/j.is.2024.102388_b33) 2022; 239
Zhou (10.1016/j.is.2024.102388_b29) 2018
Artetxe (10.1016/j.is.2024.102388_b62) 2016
Ruder (10.1016/j.is.2024.102388_b21) 2017
Bonab (10.1016/j.is.2024.102388_b6) 2021
Cao (10.1016/j.is.2024.102388_b18) 2023
Chen (10.1016/j.is.2024.102388_b34) 2022
Liu (10.1016/j.is.2024.102388_b19) 2023; 35
Ma (10.1016/j.is.2024.102388_b23) 2018
Cao (10.1016/j.is.2024.102388_b13) 2022
Liu (10.1016/j.is.2024.102388_b3) 2017
Grover (10.1016/j.is.2024.102388_b28) 2016
Hu (10.1016/j.is.2024.102388_b15) 2018
Zhang (10.1016/j.is.2024.102388_b57) 2021; 229
Sun (10.1016/j.is.2024.102388_b51) 2019
Wang (10.1016/j.is.2024.102388_b48) 2006
Kingma (10.1016/j.is.2024.102388_b49) 2015
Li (10.1016/j.is.2024.102388_b16) 2020
Bhargav (10.1016/j.is.2024.102388_b26) 2023; vol. 13980
Veeramachaneni (10.1016/j.is.2024.102388_b9) 2022; 107
Ying (10.1016/j.is.2024.102388_b43) 2018
Han (10.1016/j.is.2024.102388_b54) 2022; 34
Misra (10.1016/j.is.2024.102388_b22) 2016
Qiu (10.1016/j.is.2024.102388_b40) 2021
Cheng (10.1016/j.is.2024.102388_b55) 2016
Chung (10.1016/j.is.2024.102388_b31) 2014
Li (10.1016/j.is.2024.102388_b59) 2018; 29
Ba (10.1016/j.is.2024.102388_b39) 2016
Li (10.1016/j.is.2024.102388_b58) 2020
Zhang (10.1016/j.is.2024.102388_b36) 2021
Sheng (10.1016/j.is.2024.102388_b25) 2021
Ren (10.1016/j.is.2024.102388_b61) 2001
Luo (10.1016/j.is.2024.102388_b20) 2023
Zhou (10.1016/j.is.2024.102388_b4) 2009; 71
Vaswani (10.1016/j.is.2024.102388_b37) 2017
Jutla (10.1016/j.is.2024.102388_b2) 2006; 31
Zhu (10.1016/j.is.2024.102388_b12) 2022
Srivastava (10.1016/j.is.2024.102388_b44) 2014; 15
Bao (10.1016/j.is.2024.102388_b50) 2022
Zhang (10.1016/j.is.2024.102388_b10) 2018; 23
Rita (10.1016/j.is.2024.102388_b1) 2019; 5
He (10.1016/j.is.2024.102388_b7) 2017
Devlin (10.1016/j.is.2024.102388_b41) 2019
Zhang (10.1016/j.is.2024.102388_b46) 2018
Ge (10.1016/j.is.2024.102388_b56) 2020
Sun (10.1016/j.is.2024.102388_b35) 2019
Zhou (10.1016/j.is.2024.102388_b30) 2019
Brown (10.1016/j.is.2024.102388_b42) 2020
Cao (10.1016/j.is.2024.102388_b11) 2022
He (10.1016/j.is.2024.102388_b38) 2016
Zou (10.1016/j.is.2024.102388_b53) 2020
Taylor (10.1016/j.is.2024.102388_b52) 1953; 30
Wang (10.1016/j.is.2024.102388_b24) 2022
McInnes (10.1016/j.is.2024.102388_b60) 2018
Cao (10.1016/j.is.2024.102388_b17) 2022
Ekstrand (10.1016/j.is.2024.102388_b47) 2011; 4
Steck (10.1016/j.is.2024.102388_b27) 2019
Reimers (10.1016/j.is.2024.102388_b45) 2019
References_xml – year: 2017
  ident: b21
  article-title: An overview of multi-task learning in deep neural networks
– start-page: 2209
  year: 2022
  end-page: 2223
  ident: b13
  article-title: Cross-domain recommendation to cold-start users via variational information bottleneck
  publication-title: ICDE
– start-page: 7
  year: 2016
  end-page: 10
  ident: b55
  article-title: Wide & deep learning for recommender systems
  publication-title: DLRS@RecSys
– start-page: 331
  year: 2020
  end-page: 339
  ident: b16
  article-title: DDTCDR: deep dual transfer cross domain recommendation
  publication-title: WSDM
– start-page: 881
  year: 2020
  end-page: 890
  ident: b53
  article-title: Towards question-based recommender systems
  publication-title: SIGIR
– start-page: 409
  year: 2020
  end-page: 418
  ident: b56
  article-title: Learning personalized risk preferences for recommendation
  publication-title: SIGIR
– year: 2014
  ident: b31
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– volume: 229
  year: 2021
  ident: b57
  article-title: Double bayesian pairwise learning for one-class collaborative filtering
  publication-title: Knowl.-Based Syst.
– year: 2022
  ident: b50
  article-title: BEiT: BERT pre-training of image transformers
  publication-title: ICLR
– start-page: 78
  year: 2023
  end-page: 86
  ident: b18
  article-title: Towards universal cross-domain recommendation
  publication-title: WSDM
– volume: 5
  year: 2019
  ident: b1
  article-title: The impact of e-service quality and customer satisfaction on customer behavior in online shopping
  publication-title: Heliyon
– start-page: 4514
  year: 2018
  end-page: 4523
  ident: b46
  article-title: Learning universal sentence representations with mean-max attention autoencoder
  publication-title: EMNLP
– year: 2016
  ident: b39
  article-title: Layer normalization
– volume: 19
  start-page: 1
  year: 2009
  end-page: 15
  ident: b5
  article-title: Research progress of personalized recommendation system
  publication-title: Prog. Nat. Sci.
– start-page: 110
  year: 2021
  end-page: 119
  ident: b6
  article-title: Cross-market product recommendation
  publication-title: CIKM
– volume: 251
  year: 2022
  ident: b32
  article-title: CGSNet: Contrastive graph self-attention network for session-based recommendation
  publication-title: Knowl.-Based Syst.
– volume: 31
  start-page: 295
  year: 2006
  end-page: 320
  ident: b2
  article-title: Pecan: An architecture for users’ privacy-aware electronic commerce contexts on the semantic web
  publication-title: Inf. Syst.
– start-page: 2289
  year: 2016
  end-page: 2294
  ident: b62
  article-title: Learning principled bilingual mappings of word embeddings while preserving monolingual invariance
  publication-title: EMNLP
– start-page: 331
  year: 2020
  end-page: 339
  ident: b58
  article-title: DDTCDR: deep dual transfer cross domain recommendation
  publication-title: WSDM
– volume: 35
  start-page: 11216
  year: 2023
  end-page: 11230
  ident: b19
  article-title: Contrastive proxy kernel stein path alignment for cross-domain cold-start recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: b37
  article-title: Attention is all you need
  publication-title: NeurIPS
– start-page: 4320
  year: 2021
  end-page: 4327
  ident: b40
  article-title: U-BERT: pre-training user representations for improved recommendation
  publication-title: AAAI
– start-page: 3307
  year: 2022
  end-page: 3319
  ident: b24
  article-title: Multi-task learning with calibrated mixture of insightful experts
  publication-title: ICDE
– start-page: 2209
  year: 2022
  end-page: 2223
  ident: b17
  article-title: Cross-domain recommendation to cold-start users via variational information bottleneck
  publication-title: ICDE
– start-page: 1930
  year: 2018
  end-page: 1939
  ident: b23
  article-title: Modeling task relationships in multi-task learning with multi-gate mixture-of-experts
  publication-title: KDD
– start-page: 855
  year: 2016
  end-page: 864
  ident: b28
  article-title: Node2vec: Scalable feature learning for networks
  publication-title: KDD
– volume: 23
  start-page: 1610
  year: 2018
  end-page: 1623
  ident: b10
  article-title: CrossRec: Cross-domain recommendations based on social big data and cognitive computing
  publication-title: Mob. Netw. Appl.
– start-page: 501
  year: 2006
  end-page: 508
  ident: b48
  article-title: Unifying user-based and item-based collaborative filtering approaches by similarity fusion
  publication-title: SIGIR
– volume: 107
  year: 2022
  ident: b9
  article-title: A hinge-loss based codebook transfer for cross-domain recommendation with non-overlapping data
  publication-title: Inf. Syst.
– start-page: 1059
  year: 2018
  end-page: 1068
  ident: b29
  article-title: Deep interest network for click-through rate prediction
  publication-title: KDD
– year: 2015
  ident: b49
  article-title: Adam: A method for stochastic optimization
  publication-title: ICLR (Poster)
– start-page: 770
  year: 2016
  end-page: 778
  ident: b38
  article-title: Deep residual learning for image recognition
  publication-title: CVPR
– start-page: 3980
  year: 2019
  end-page: 3990
  ident: b45
  article-title: Sentence-BERT: Sentence embeddings using siamese BERT-networks
  publication-title: EMNLP/IJCNLP (1)
– start-page: 3251
  year: 2019
  end-page: 3257
  ident: b27
  article-title: Embarrassingly shallow autoencoders for sparse data
  publication-title: WWW
– start-page: 3994
  year: 2016
  end-page: 4003
  ident: b22
  article-title: Cross-stitch networks for multi-task learning
  publication-title: CVPR
– start-page: 4104
  year: 2021
  end-page: 4113
  ident: b25
  article-title: One model to serve all: Star topology adaptive recommender for multi-domain CTR prediction
  publication-title: CIKM
– start-page: 3926
  year: 2018
  end-page: 3932
  ident: b43
  article-title: Sequential recommender system based on hierarchical attention networks
  publication-title: IJCAI
– start-page: 667
  year: 2018
  end-page: 676
  ident: b15
  article-title: Conet: Collaborative cross networks for cross-domain recommendation
  publication-title: CIKM
– volume: 34
  start-page: 5484
  year: 2022
  end-page: 5495
  ident: b54
  article-title: Point-of-interest recommendation with global and local context
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 4171
  year: 2019
  end-page: 4186
  ident: b41
  article-title: BERT: pre-training of deep bidirectional transformers for language understanding
  publication-title: NAACL-HLT (1)
– volume: 239
  year: 2022
  ident: b33
  article-title: An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: b42
  article-title: Language models are few-shot learners
  publication-title: NeurIPS
– start-page: 173
  year: 2017
  end-page: 182
  ident: b7
  article-title: Neural collaborative filtering
  publication-title: WWW
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b44
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 1441
  year: 2019
  end-page: 1450
  ident: b35
  article-title: BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer
  publication-title: CIKM
– volume: 35
  start-page: 8199
  year: 2023
  end-page: 8212
  ident: b14
  article-title: Metacar: Cross-domain meta-augmentation for content-aware recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 2379
  year: 2017
  end-page: 2385
  ident: b3
  article-title: Learning user dependencies for recommendation
  publication-title: IJCAI
– volume: vol. 13980
  start-page: 134
  year: 2023
  end-page: 149
  ident: b26
  article-title: Market-aware models for efficient cross-market recommendation
  publication-title: ECIR (1)
– start-page: 5941
  year: 2019
  end-page: 5948
  ident: b30
  article-title: Deep interest evolution network for click-through rate prediction
  publication-title: AAAI
– start-page: 3079
  year: 2023
  end-page: 3092
  ident: b20
  article-title: MAMDR: A model agnostic learning framework for multi-domain recommendation
  publication-title: ICDE
– volume: 4
  start-page: 81
  year: 2011
  end-page: 173
  ident: b47
  article-title: Collaborative filtering recommender systems
  publication-title: Found. Trends® Hum.–Comput. Interact.
– year: 2018
  ident: b60
  article-title: UMAP: uniform manifold approximation and projection for dimension reduction
– start-page: 138
  year: 2022
  end-page: 147
  ident: b11
  article-title: Contrastive cross-domain sequential recommendation
  publication-title: CIKM
– year: 2019
  ident: b51
  article-title: ERNIE: enhanced representation through knowledge integration
– volume: 71
  start-page: 623
  year: 2009
  end-page: 630
  ident: b4
  article-title: Predicting missing links via local information
  publication-title: Eur. Phys. J. B
– start-page: 299
  year: 2022
  end-page: 311
  ident: b34
  article-title: Attentive knowledge-aware graph convolutional networks with collaborative guidance for personalized recommendation
  publication-title: ICDE
– start-page: 3356
  year: 2021
  end-page: 3362
  ident: b36
  article-title: UNBERT: user-news matching BERT for news recommendation
  publication-title: IJCAI
– start-page: 1507
  year: 2022
  end-page: 1515
  ident: b12
  article-title: Personalized transfer of user preferences for cross-domain recommendation
  publication-title: WSDM
– volume: 30
  start-page: 415
  year: 1953
  end-page: 433
  ident: b52
  article-title: “Cloze procedure”: A new tool for measuring readability
  publication-title: Journalism Q.
– start-page: 249
  year: 2001
  end-page: 259
  ident: b61
  article-title: Parallel machine translation: Principles and practice
  publication-title: ICECCS
– volume: 29
  start-page: 1975
  year: 2018
  end-page: 1985
  ident: b59
  article-title: On better exploring and exploiting task relationships in multitask learning: Joint model and feature learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 2249
  year: 2022
  end-page: 2254
  ident: b8
  article-title: Item similarity mining for multi-market recommendation
  publication-title: SIGIR
– volume: 23
  start-page: 1610
  issue: 6
  year: 2018
  ident: 10.1016/j.is.2024.102388_b10
  article-title: CrossRec: Cross-domain recommendations based on social big data and cognitive computing
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-018-1112-1
– start-page: 173
  year: 2017
  ident: 10.1016/j.is.2024.102388_b7
  article-title: Neural collaborative filtering
– volume: 29
  start-page: 1975
  issue: 5
  year: 2018
  ident: 10.1016/j.is.2024.102388_b59
  article-title: On better exploring and exploiting task relationships in multitask learning: Joint model and feature learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2690683
– year: 2015
  ident: 10.1016/j.is.2024.102388_b49
  article-title: Adam: A method for stochastic optimization
– volume: 251
  year: 2022
  ident: 10.1016/j.is.2024.102388_b32
  article-title: CGSNet: Contrastive graph self-attention network for session-based recommendation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109282
– year: 2014
  ident: 10.1016/j.is.2024.102388_b31
– start-page: 138
  year: 2022
  ident: 10.1016/j.is.2024.102388_b11
  article-title: Contrastive cross-domain sequential recommendation
– volume: 34
  start-page: 5484
  issue: 11
  year: 2022
  ident: 10.1016/j.is.2024.102388_b54
  article-title: Point-of-interest recommendation with global and local context
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3059744
– year: 2017
  ident: 10.1016/j.is.2024.102388_b21
– start-page: 2209
  year: 2022
  ident: 10.1016/j.is.2024.102388_b13
  article-title: Cross-domain recommendation to cold-start users via variational information bottleneck
– start-page: 3251
  year: 2019
  ident: 10.1016/j.is.2024.102388_b27
  article-title: Embarrassingly shallow autoencoders for sparse data
– start-page: 881
  year: 2020
  ident: 10.1016/j.is.2024.102388_b53
  article-title: Towards question-based recommender systems
– start-page: 3994
  year: 2016
  ident: 10.1016/j.is.2024.102388_b22
  article-title: Cross-stitch networks for multi-task learning
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.is.2024.102388_b44
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 501
  year: 2006
  ident: 10.1016/j.is.2024.102388_b48
  article-title: Unifying user-based and item-based collaborative filtering approaches by similarity fusion
– start-page: 2379
  year: 2017
  ident: 10.1016/j.is.2024.102388_b3
  article-title: Learning user dependencies for recommendation
– year: 2022
  ident: 10.1016/j.is.2024.102388_b50
  article-title: BEiT: BERT pre-training of image transformers
– volume: 239
  year: 2022
  ident: 10.1016/j.is.2024.102388_b33
  article-title: An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107970
– start-page: 2249
  year: 2022
  ident: 10.1016/j.is.2024.102388_b8
  article-title: Item similarity mining for multi-market recommendation
– start-page: 2289
  year: 2016
  ident: 10.1016/j.is.2024.102388_b62
  article-title: Learning principled bilingual mappings of word embeddings while preserving monolingual invariance
– start-page: 331
  year: 2020
  ident: 10.1016/j.is.2024.102388_b16
  article-title: DDTCDR: deep dual transfer cross domain recommendation
– volume: 229
  year: 2021
  ident: 10.1016/j.is.2024.102388_b57
  article-title: Double bayesian pairwise learning for one-class collaborative filtering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107339
– start-page: 5998
  year: 2017
  ident: 10.1016/j.is.2024.102388_b37
  article-title: Attention is all you need
– start-page: 3079
  year: 2023
  ident: 10.1016/j.is.2024.102388_b20
  article-title: MAMDR: A model agnostic learning framework for multi-domain recommendation
– start-page: 770
  year: 2016
  ident: 10.1016/j.is.2024.102388_b38
  article-title: Deep residual learning for image recognition
– volume: 30
  start-page: 415
  issue: 4
  year: 1953
  ident: 10.1016/j.is.2024.102388_b52
  article-title: “Cloze procedure”: A new tool for measuring readability
  publication-title: Journalism Q.
  doi: 10.1177/107769905303000401
– start-page: 249
  year: 2001
  ident: 10.1016/j.is.2024.102388_b61
  article-title: Parallel machine translation: Principles and practice
– volume: 5
  issue: 10
  year: 2019
  ident: 10.1016/j.is.2024.102388_b1
  article-title: The impact of e-service quality and customer satisfaction on customer behavior in online shopping
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e02690
– start-page: 4514
  year: 2018
  ident: 10.1016/j.is.2024.102388_b46
  article-title: Learning universal sentence representations with mean-max attention autoencoder
– start-page: 1930
  year: 2018
  ident: 10.1016/j.is.2024.102388_b23
  article-title: Modeling task relationships in multi-task learning with multi-gate mixture-of-experts
– start-page: 4104
  year: 2021
  ident: 10.1016/j.is.2024.102388_b25
  article-title: One model to serve all: Star topology adaptive recommender for multi-domain CTR prediction
– year: 2016
  ident: 10.1016/j.is.2024.102388_b39
– start-page: 2209
  year: 2022
  ident: 10.1016/j.is.2024.102388_b17
  article-title: Cross-domain recommendation to cold-start users via variational information bottleneck
– start-page: 299
  year: 2022
  ident: 10.1016/j.is.2024.102388_b34
  article-title: Attentive knowledge-aware graph convolutional networks with collaborative guidance for personalized recommendation
– volume: 4
  start-page: 81
  issue: 2
  year: 2011
  ident: 10.1016/j.is.2024.102388_b47
  article-title: Collaborative filtering recommender systems
  publication-title: Found. Trends® Hum.–Comput. Interact.
  doi: 10.1561/1100000009
– start-page: 855
  year: 2016
  ident: 10.1016/j.is.2024.102388_b28
  article-title: Node2vec: Scalable feature learning for networks
– start-page: 78
  year: 2023
  ident: 10.1016/j.is.2024.102388_b18
  article-title: Towards universal cross-domain recommendation
– start-page: 331
  year: 2020
  ident: 10.1016/j.is.2024.102388_b58
  article-title: DDTCDR: deep dual transfer cross domain recommendation
– volume: 31
  start-page: 295
  issue: 4–5
  year: 2006
  ident: 10.1016/j.is.2024.102388_b2
  article-title: Pecan: An architecture for users’ privacy-aware electronic commerce contexts on the semantic web
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2005.02.004
– start-page: 409
  year: 2020
  ident: 10.1016/j.is.2024.102388_b56
  article-title: Learning personalized risk preferences for recommendation
– start-page: 4320
  year: 2021
  ident: 10.1016/j.is.2024.102388_b40
  article-title: U-BERT: pre-training user representations for improved recommendation
– start-page: 7
  year: 2016
  ident: 10.1016/j.is.2024.102388_b55
  article-title: Wide & deep learning for recommender systems
– volume: vol. 13980
  start-page: 134
  year: 2023
  ident: 10.1016/j.is.2024.102388_b26
  article-title: Market-aware models for efficient cross-market recommendation
– year: 2020
  ident: 10.1016/j.is.2024.102388_b42
  article-title: Language models are few-shot learners
– start-page: 3356
  year: 2021
  ident: 10.1016/j.is.2024.102388_b36
  article-title: UNBERT: user-news matching BERT for news recommendation
– start-page: 5941
  year: 2019
  ident: 10.1016/j.is.2024.102388_b30
  article-title: Deep interest evolution network for click-through rate prediction
– start-page: 3307
  year: 2022
  ident: 10.1016/j.is.2024.102388_b24
  article-title: Multi-task learning with calibrated mixture of insightful experts
– start-page: 1441
  year: 2019
  ident: 10.1016/j.is.2024.102388_b35
  article-title: BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer
– start-page: 1059
  year: 2018
  ident: 10.1016/j.is.2024.102388_b29
  article-title: Deep interest network for click-through rate prediction
– start-page: 1507
  year: 2022
  ident: 10.1016/j.is.2024.102388_b12
  article-title: Personalized transfer of user preferences for cross-domain recommendation
– start-page: 3980
  year: 2019
  ident: 10.1016/j.is.2024.102388_b45
  article-title: Sentence-BERT: Sentence embeddings using siamese BERT-networks
– year: 2018
  ident: 10.1016/j.is.2024.102388_b60
– volume: 71
  start-page: 623
  year: 2009
  ident: 10.1016/j.is.2024.102388_b4
  article-title: Predicting missing links via local information
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00335-8
– volume: 19
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.is.2024.102388_b5
  article-title: Research progress of personalized recommendation system
  publication-title: Prog. Nat. Sci.
– year: 2019
  ident: 10.1016/j.is.2024.102388_b51
– start-page: 667
  year: 2018
  ident: 10.1016/j.is.2024.102388_b15
  article-title: Conet: Collaborative cross networks for cross-domain recommendation
– start-page: 3926
  year: 2018
  ident: 10.1016/j.is.2024.102388_b43
  article-title: Sequential recommender system based on hierarchical attention networks
– volume: 107
  year: 2022
  ident: 10.1016/j.is.2024.102388_b9
  article-title: A hinge-loss based codebook transfer for cross-domain recommendation with non-overlapping data
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2022.102002
– start-page: 4171
  year: 2019
  ident: 10.1016/j.is.2024.102388_b41
  article-title: BERT: pre-training of deep bidirectional transformers for language understanding
– volume: 35
  start-page: 8199
  issue: 8
  year: 2023
  ident: 10.1016/j.is.2024.102388_b14
  article-title: Metacar: Cross-domain meta-augmentation for content-aware recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 110
  year: 2021
  ident: 10.1016/j.is.2024.102388_b6
  article-title: Cross-market product recommendation
– volume: 35
  start-page: 11216
  issue: 11
  year: 2023
  ident: 10.1016/j.is.2024.102388_b19
  article-title: Contrastive proxy kernel stein path alignment for cross-domain cold-start recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2022.3233789
SSID ssj0002599
ssib006544749
Score 2.397464
Snippet Real-world multinational e-commerce companies, such as Amazon and eBay, serve in multiple countries and regions. Some markets are data-scarce, while others are...
SourceID crossref
nii
elsevier
SourceType Index Database
Publisher
StartPage 102388
SubjectTerms Cross-market recommendation
Recommender systems
Transfer learning
Title Enhancing cross-market recommendations by addressing negative transfer and leveraging item co-occurrences
URI https://dx.doi.org/10.1016/j.is.2024.102388
https://cir.nii.ac.jp/crid/1873962440604576512
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6076
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002599
  issn: 0306-4379
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Complete Freedom Collection
  customDbUrl:
  eissn: 1873-6076
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002599
  issn: 0306-4379
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6076
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002599
  issn: 0306-4379
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6076
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002599
  issn: 0306-4379
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6076
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002599
  issn: 0306-4379
  databaseCode: AKRWK
  dateStart: 19950301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWWDgUUC8WnlgYQhNE8dOxqpqVV4VAip1i-JHShBNES0DC7-dOycRRUIMLIkSOQ-d7c-f7bvvCDkLEp6IxFO4UKUdFgSAg8JlTupxIVORKuVjoPDtiA_H7GoSTGqkV8XCoFtlif0Fplu0Lu-0S2u2X7Os_YBsF9X00AsSQywxgp0JzGJw8fnt5gH0Pip2EriDpcutysLHK0PBbo9Z_QKbe-XXoWktz7KVQWewQ7ZKtki7xQ_tkprJG2S7ysRAy47ZIJsrsoJ7JOvnTyijkU-p_ZIzs6HNFCe_s5kp0ygtqPyggDvWERaK5mZqRcDp0nJZeH2Sa_pioK3bTEYUl3mpmjtzpayoEyDMPhkP-o-9oVOmVHCUz7ylo6VUfshMx5edwAD3CLV2eZgCETHaC5WrtOxEkYwCo8JEQu9OuBTC5yEgY2q0f0Dq-Tw3h4QqFKcXIo0Uc1mi3QTIR5BGnhbKcOmZI3JeWTN-LZQz4sql7DnOFjFaPi4sf0T8ytzxj9qPAdj_eKoJNRODOeHYCYUfcSArqAYEkyggMsf_eusJ2cCrwo_slNSXb--mCcRjKVu2ZbXIerd3f3OH58vr4egL_Y_XuA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN-JV8MDCEJomjp2MCIHKcwEkNit-BIJoWkEZWPjt3DmJAAkxsGRIHCc6258_23ffAewnuchlHhnaqLIBTxLEQRnyoIiE1IUsjIkpUPjqWgzu-Pl9cj8Fx20sDLlVNthfY7pH6-ZOr7Fmb1yWvRtiu6SmR16QFGI5DTM8iSStwA4_vvw8kN9n9VGCCKh4c1ZZO3mVpNgdcS9g4JOv_Do3TVdl-W3WOV2ChYYusqP6j5ZhylUrsNimYmDNyFyB-W-6gqtQnlSPpKNRPTD_pWDoY5sZrX6HQ9fkUXpl-p0h8HhPWCxauQevAs4mnsxi9Xll2bPDzu5TGTHa52VmFIyM8apOCDFrcHd6cns8CJqcCoGJeTQJrNYmTrnrx7qfOCQfqbWhSAtkIs5GqQmN1f0s01niTJprHN650FLGIkVoLJyN16FTjSq3AcyQOr2URWZ4yHMb5sg-kiKLrDRO6MhtwkFrTTWupTNU61P2pMpXRZZXteU3IW7NrX40v0Jk_-OtLraMQnPitZ_KOBPIVkgOCFdRyGS2_lXrHswObq8u1eXZ9cU2zNGT2qlsBzqTlzfXRRYy0bu-l30CYvjXuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+cross-market+recommendations+by+addressing+negative+transfer+and+leveraging+item+co-occurrences&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Hu%2C+Zheng&rft.au=Nakagawa%2C+Satoshi&rft.au=Cai%2C+Shi-Min&rft.au=Ren%2C+Fuji&rft.date=2024-09-01&rft.issn=0306-4379&rft.volume=124&rft.spage=102388&rft_id=info:doi/10.1016%2Fj.is.2024.102388&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_is_2024_102388
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon