Dynamically feasible trajectory planning for Anguilliform-inspired robots in the presence of steady ambient flow
A crucial requirement for imparting autonomy to the fish-inspired robots is the trajectory planning capability that can generate obstacle-free and optimal trajectories to a commanded goal location. Research in the area of dynamics-aware trajectory planning, especially in the presence of environmenta...
        Saved in:
      
    
          | Published in | Robotics and autonomous systems Vol. 118; pp. 144 - 158 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.08.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0921-8890 1872-793X  | 
| DOI | 10.1016/j.robot.2019.05.001 | 
Cover
| Abstract | A crucial requirement for imparting autonomy to the fish-inspired robots is the trajectory planning capability that can generate obstacle-free and optimal trajectories to a commanded goal location. Research in the area of dynamics-aware trajectory planning, especially in the presence of environmental disturbances, for fish-inspired robots is scarce. Trajectory-following for fish-inspired robots, which is different from trajectory planning, has been well explored wherein feedback controllers that reject disturbances are employed to follow the pre-specified waypoints. This paper reports an optimal trajectory planning approach for Anguilliform-inspired robots based on model predictive planning framework. The robot’s dynamics constraints, as well as its interaction with the surrounding flow conditions, are captured via dynamics simulations and are expressed using discretized motion primitives. The motion primitives are then used for generating a search-tree and an A*-based algorithm is used for searching the optimal trajectory. We developed a simulation-based admissible heuristic function that is used for improving the computational performance of the developed trajectory planner. The developed simulation-based heuristic function provided a computational speed-up by a factor of up to 10.3 with respect to that of the Euclidean heuristic for test cases comprising of a variety of obstacle densities, ambient flow conditions, and goal locations. The trajectories generated by the developed approach have been found to be dynamically feasible, collision-free, and optimal for the experiments reported in this paper. We believe that the developed approach can impart autonomy to the Anguilliform-inspired robots that, due to their slender and hyper-redundant structures, can perform autonomous inspection and maintenance of sub-sea structures having narrow regions, obstacles, and ambient flow and can be useful in various civil and defense applications.
•Trajectory planning amidst flow and obstacles for Anguilliform-inspired robots.•Simulation-based computation of dynamically feasible motion primitives.•A*-based optimal trajectory planning with simulation-based search heuristic.•Search speed-up by a factor of up to 10.3 over Euclidean-based heuristic.•Possible application in autonomous inspection and maintenance of sub-sea structures. | 
    
|---|---|
| AbstractList | A crucial requirement for imparting autonomy to the fish-inspired robots is the trajectory planning capability that can generate obstacle-free and optimal trajectories to a commanded goal location. Research in the area of dynamics-aware trajectory planning, especially in the presence of environmental disturbances, for fish-inspired robots is scarce. Trajectory-following for fish-inspired robots, which is different from trajectory planning, has been well explored wherein feedback controllers that reject disturbances are employed to follow the pre-specified waypoints. This paper reports an optimal trajectory planning approach for Anguilliform-inspired robots based on model predictive planning framework. The robot’s dynamics constraints, as well as its interaction with the surrounding flow conditions, are captured via dynamics simulations and are expressed using discretized motion primitives. The motion primitives are then used for generating a search-tree and an A*-based algorithm is used for searching the optimal trajectory. We developed a simulation-based admissible heuristic function that is used for improving the computational performance of the developed trajectory planner. The developed simulation-based heuristic function provided a computational speed-up by a factor of up to 10.3 with respect to that of the Euclidean heuristic for test cases comprising of a variety of obstacle densities, ambient flow conditions, and goal locations. The trajectories generated by the developed approach have been found to be dynamically feasible, collision-free, and optimal for the experiments reported in this paper. We believe that the developed approach can impart autonomy to the Anguilliform-inspired robots that, due to their slender and hyper-redundant structures, can perform autonomous inspection and maintenance of sub-sea structures having narrow regions, obstacles, and ambient flow and can be useful in various civil and defense applications.
•Trajectory planning amidst flow and obstacles for Anguilliform-inspired robots.•Simulation-based computation of dynamically feasible motion primitives.•A*-based optimal trajectory planning with simulation-based search heuristic.•Search speed-up by a factor of up to 10.3 over Euclidean-based heuristic.•Possible application in autonomous inspection and maintenance of sub-sea structures. | 
    
| Author | Thakur, Atul Raj, Aditi  | 
    
| Author_xml | – sequence: 1 givenname: Aditi surname: Raj fullname: Raj, Aditi email: aditiraj.pme13@iitp.ac.in – sequence: 2 givenname: Atul surname: Thakur fullname: Thakur, Atul email: athakur@iitp.ac.in  | 
    
| BookMark | eNqFkMlOwzAQQC1UJNrCF3DxDyTYcdYDh6qsUiUuIHGzHGdcHDl2ZBtQ_p6UcuIAl5mRRm-Wt0IL6ywgdElJSgktr_rUu9bFNCO0SUmREkJP0JLWVZZUDXtdoCVpMprUdUPO0CqEnhDCioot0XgzWTFoKYyZsAIRdGsARy96kNH5CY9GWKvtHivn8cbu37Uxeq6HRNswag8d_t4dsLY4vgEePQSwErBTOEQQ3YTF0GqwESvjPs_RqRImwMVPXqOXu9vn7UOye7p_3G52iWR5FueoclV1BZG1pK1UIs-kzDumWE3bMmtzSvOya9pS1nOP1SBUzipoGCnqLmtKtkbNca70LgQPiksdRdTOzs9pwynhB3W859_n84M6Tgo-q5tZ9osdvR6En_6hro8UzG99aPA8SH0w0c2WZOSd03_yXylxj10 | 
    
| CitedBy_id | crossref_primary_10_1007_s10846_020_01154_8 crossref_primary_10_1007_s10846_023_01902_6 crossref_primary_10_1007_s12213_022_00151_4 crossref_primary_10_1016_j_robot_2021_103941 crossref_primary_10_1177_1729881420909603  | 
    
| Cites_doi | 10.1088/1748-3190/11/3/031001 10.1109/LRA.2016.2517827 10.1016/j.oceaneng.2016.11.009 10.1109/ICRA.2014.6907522 10.1109/CCA.2014.6981478 10.1109/TRO.2017.2651119 10.1109/TMECH.2016.2612689 10.1016/j.robot.2012.07.009 10.1109/MRA.2013.2294914 10.1007/s10236-016-0979-2 10.1016/j.robot.2016.03.011 10.1016/j.oceaneng.2015.10.007 10.1109/IROS.2016.7759217 10.1109/ROBIO.2017.8324582 10.1115/DETC2018-86120 10.1109/IJCNN.2016.7727255 10.1109/MED.2014.6961590 10.1177/1077546315623887 10.1016/j.isatra.2018.02.003 10.1016/j.oceaneng.2018.01.025 10.1016/j.robot.2018.06.014  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2019 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.robot.2019.05.001 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1872-793X | 
    
| EndPage | 158 | 
    
| ExternalDocumentID | 10_1016_j_robot_2019_05_001 S0921889018307565  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABIVO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SCC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE UNMZH WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c342t-c3f4f7d50c8c1bcfa42cc4d3f381b62b41146d9b6c8fa438eaf437e93058d2963 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0921-8890 | 
    
| IngestDate | Thu Apr 24 22:59:45 EDT 2025 Wed Oct 01 02:20:29 EDT 2025 Fri Feb 23 02:33:47 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Motion planning Fish-inspired robots Heuristic function Trajectory planning Anguilliform-inspired robot Flow  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c342t-c3f4f7d50c8c1bcfa42cc4d3f381b62b41146d9b6c8fa438eaf437e93058d2963 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_robot_2019_05_001 crossref_primary_10_1016_j_robot_2019_05_001 elsevier_sciencedirect_doi_10_1016_j_robot_2019_05_001  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-08-01 | 
    
| PublicationDateYYYYMMDD | 2019-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Robotics and autonomous systems | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Howard, Pivtoraiko, Knepper, Kelly (b4) 2014; 21 Thakur, Svec, Gupta (b28) 2012; 60 S.K. Thati, A. Raj, A. Thakur, Optimal and dynamically feasible path planning for an anguilliform fish-inspired robot in presence of obstacles, in: ASME/IDETC Mechanisms and Robotics Conference, 2018. Niu, Lu, Savvaris, Tsourdos (b15) 2018; 161 Fossen (b25) 2011 Kelasidi, Liljebäck, Pettersen, Gravdahl (b8) 2017; 33 MahmoudZadeh, Powers, Sammut, Yazdani, Atyabi (b20) 2017 Kohl, Pettersen, Kelasidi, Gravdahl (b5) 2016; 1 Zeng, Sammut, Lian, He, Lammas, Tang (b17) 2016; 82 Raj, Thakur (b1) 2016; 11 Zeng, Lian, Sammut, He, Tang, Lammas (b19) 2015; 110 E. Kelasidi, K.Y. Pettersen, P. Liljebäck, J.T. Gravdahl, Integral line-of-sight for path following of underwater snake robots, in: 2014 IEEE Conference on Control Applications (CCA), 2014, pp. 1078–1085 DeVries, Paley (b11) 2013 A.M. Kohl, K.Y. Pettersen, E. Kelasidi, J.T. Gravdahl, Planar path following of underwater snake robots in the presence of ocean currents. J.D. Hernández, M. Moll, E. Vidal, M. Carreras, L.E. Kavraki, Planning feasible and safe paths online for autonomous underwater vehicles in unknown environments, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 1313–1320 Song, Liu, Bucknall (b23) 2017; 129 Kelasidi, Pettersen, Gravdahl (b13) 2014 Salumäe, Kruusmaa (b12) 2013 Zhang, Ma, Li, Wang (b7) 2018; 108 Wang, Le Maître, Hoteit, Knio (b16) 2016; 66 Mobayen, Baleanu, Tchier (b26) 2017; 23 . E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, A waypoint guidance strategy for underwater snake robots, in: 22nd Mediterranean Conference on Control and Automation, 2014, pp. 1512–1519 Khatib (b14) 1990 Ma, Hu, Yan (b18) 2018; 75 Shen, Shi, Buckham (b21) 2017; 22 E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, P. Liljebck, Modeling of underwater snake robots, in: 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 4540–4547 I. Petráš, A note on fractional-order non-linear controller: Possible neural network approach to design, in: 2016 International Joint Conference on Neural Networks (IJCNN), 2016, 603–608 A.M. Kohl, S. Moe, E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, Set-based path following and obstacle avoidance for underwater snake robots, in: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017, pp. 1206–1213 Ma (10.1016/j.robot.2019.05.001_b18) 2018; 75 Zhang (10.1016/j.robot.2019.05.001_b7) 2018; 108 Thakur (10.1016/j.robot.2019.05.001_b28) 2012; 60 10.1016/j.robot.2019.05.001_b24 Kelasidi (10.1016/j.robot.2019.05.001_b13) 2014 Khatib (10.1016/j.robot.2019.05.001_b14) 1990 Zeng (10.1016/j.robot.2019.05.001_b19) 2015; 110 10.1016/j.robot.2019.05.001_b27 10.1016/j.robot.2019.05.001_b2 Salumäe (10.1016/j.robot.2019.05.001_b12) 2013 Shen (10.1016/j.robot.2019.05.001_b21) 2017; 22 10.1016/j.robot.2019.05.001_b6 Howard (10.1016/j.robot.2019.05.001_b4) 2014; 21 10.1016/j.robot.2019.05.001_b3 10.1016/j.robot.2019.05.001_b22 10.1016/j.robot.2019.05.001_b9 Zeng (10.1016/j.robot.2019.05.001_b17) 2016; 82 Niu (10.1016/j.robot.2019.05.001_b15) 2018; 161 Fossen (10.1016/j.robot.2019.05.001_b25) 2011 Kohl (10.1016/j.robot.2019.05.001_b5) 2016; 1 Song (10.1016/j.robot.2019.05.001_b23) 2017; 129 Raj (10.1016/j.robot.2019.05.001_b1) 2016; 11 Wang (10.1016/j.robot.2019.05.001_b16) 2016; 66 MahmoudZadeh (10.1016/j.robot.2019.05.001_b20) 2017 10.1016/j.robot.2019.05.001_b10 Kelasidi (10.1016/j.robot.2019.05.001_b8) 2017; 33 DeVries (10.1016/j.robot.2019.05.001_b11) 2013 Mobayen (10.1016/j.robot.2019.05.001_b26) 2017; 23  | 
    
| References_xml | – start-page: 1512 year: 2014 end-page: 1519 ident: b13 article-title: A waypoint guidance strategy for underwater snake robots publication-title: Control and Automation (MED), 2014 22nd Mediterranean Conference of – reference: E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, P. Liljebck, Modeling of underwater snake robots, in: 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 4540–4547 – year: 2013 ident: b12 article-title: Flow-Relative Control of an Underwater Robot, vol. 469 – volume: 11 year: 2016 ident: b1 article-title: Fish-inspired robots: Design sensing actuation and autonomy - a review of research publication-title: Bioinspiration Biomim. – volume: 21 start-page: 64 year: 2014 end-page: 73 ident: b4 article-title: Model-predictive motion planning: Several key developments for autonomous mobile robots publication-title: IEEE Robot. Autom. Mag. – start-page: 1 year: 2017 end-page: 18 ident: b20 article-title: Hybrid motion planning task allocation model for AUV’s safe maneuvering in a realistic ocean environment publication-title: J. Intell. Robot. Syst. – volume: 108 start-page: 129 year: 2018 end-page: 139 ident: b7 article-title: Curved path following control for planar eel robots publication-title: Robot. Auton. Syst. – reference: E. Kelasidi, K.Y. Pettersen, P. Liljebäck, J.T. Gravdahl, Integral line-of-sight for path following of underwater snake robots, in: 2014 IEEE Conference on Control Applications (CCA), 2014, pp. 1078–1085 – year: 2011 ident: b25 article-title: HandBook of Marine Craft Hydrodynamics and Motion Control – volume: 161 start-page: 308 year: 2018 end-page: 321 ident: b15 article-title: An energy-efficient path planning algorithm for unmanned surface vehicles publication-title: Ocean Eng. – reference: S.K. Thati, A. Raj, A. Thakur, Optimal and dynamically feasible path planning for an anguilliform fish-inspired robot in presence of obstacles, in: ASME/IDETC Mechanisms and Robotics Conference, 2018. – volume: 129 start-page: 301 year: 2017 end-page: 317 ident: b23 article-title: A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment publication-title: Ocean Eng. – volume: 1 start-page: 383 year: 2016 end-page: 390 ident: b5 article-title: Planar path following of underwater snake robots in the presence of ocean currents publication-title: IEEE Robot. Autom. Lett. – reference: J.D. Hernández, M. Moll, E. Vidal, M. Carreras, L.E. Kavraki, Planning feasible and safe paths online for autonomous underwater vehicles in unknown environments, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 1313–1320 – reference: A.M. Kohl, K.Y. Pettersen, E. Kelasidi, J.T. Gravdahl, Planar path following of underwater snake robots in the presence of ocean currents. – start-page: 396 year: 1990 end-page: 404 ident: b14 article-title: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots – volume: 75 start-page: 137 year: 2018 end-page: 156 ident: b18 article-title: Multi-objective path planning for unmanned surface vehicle with currents effects publication-title: ISA Trans. – reference: E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, A waypoint guidance strategy for underwater snake robots, in: 22nd Mediterranean Conference on Control and Automation, 2014, pp. 1512–1519 – volume: 66 start-page: 1231 year: 2016 end-page: 1251 ident: b16 article-title: Path planning in uncertain flow fields using ensemble method publication-title: Ocean Dyn. – volume: 22 start-page: 1163 year: 2017 end-page: 1173 ident: b21 article-title: Integrated path planning and tracking control of an AUV: A unified receding horizon optimization approach publication-title: IEEE/ASME Trans. Mechatronics – reference: . – volume: 23 start-page: 2912 year: 2017 end-page: 2925 ident: b26 article-title: Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems publication-title: J. Vib. Control – volume: 82 start-page: 61 year: 2016 end-page: 72 ident: b17 article-title: A comparison of optimization techniques for AUV path planning in environments with ocean currents publication-title: Robot. Auton. Syst. – volume: 110 start-page: 303 year: 2015 end-page: 313 ident: b19 article-title: A survey on path planning for persistent autonomy of autonomous underwater vehicles publication-title: Ocean Eng. – volume: 60 start-page: 1457 year: 2012 end-page: 1471 ident: b28 article-title: GPU based generation of state transition models using simulations for unmanned surface vehicle trajectory planning publication-title: Robot. Auton. Syst. – start-page: 1386 year: 2013 end-page: 1391 ident: b11 article-title: Observability-based optimization for flow sensing and control of an underwater vehicle in a uniform flowfield publication-title: American Control Conference (ACC) – reference: I. Petráš, A note on fractional-order non-linear controller: Possible neural network approach to design, in: 2016 International Joint Conference on Neural Networks (IJCNN), 2016, 603–608 – reference: A.M. Kohl, S. Moe, E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, Set-based path following and obstacle avoidance for underwater snake robots, in: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017, pp. 1206–1213 – volume: 33 start-page: 610 year: 2017 end-page: 628 ident: b8 article-title: Integral line-of-sight guidance for path following control of underwater snake robots: Theory and experiments publication-title: IEEE Trans. Robot. – volume: 11 issue: 3 year: 2016 ident: 10.1016/j.robot.2019.05.001_b1 article-title: Fish-inspired robots: Design sensing actuation and autonomy - a review of research publication-title: Bioinspiration Biomim. doi: 10.1088/1748-3190/11/3/031001 – volume: 1 start-page: 383 issue: 1 year: 2016 ident: 10.1016/j.robot.2019.05.001_b5 article-title: Planar path following of underwater snake robots in the presence of ocean currents publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2016.2517827 – year: 2011 ident: 10.1016/j.robot.2019.05.001_b25 – volume: 129 start-page: 301 year: 2017 ident: 10.1016/j.robot.2019.05.001_b23 article-title: A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.11.009 – ident: 10.1016/j.robot.2019.05.001_b24 doi: 10.1109/ICRA.2014.6907522 – ident: 10.1016/j.robot.2019.05.001_b9 doi: 10.1109/CCA.2014.6981478 – year: 2013 ident: 10.1016/j.robot.2019.05.001_b12 – volume: 33 start-page: 610 issue: 3 year: 2017 ident: 10.1016/j.robot.2019.05.001_b8 article-title: Integral line-of-sight guidance for path following control of underwater snake robots: Theory and experiments publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2017.2651119 – volume: 22 start-page: 1163 issue: 3 year: 2017 ident: 10.1016/j.robot.2019.05.001_b21 article-title: Integrated path planning and tracking control of an AUV: A unified receding horizon optimization approach publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2016.2612689 – volume: 60 start-page: 1457 issue: 12 year: 2012 ident: 10.1016/j.robot.2019.05.001_b28 article-title: GPU based generation of state transition models using simulations for unmanned surface vehicle trajectory planning publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2012.07.009 – volume: 21 start-page: 64 issue: 1 year: 2014 ident: 10.1016/j.robot.2019.05.001_b4 article-title: Model-predictive motion planning: Several key developments for autonomous mobile robots publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2013.2294914 – start-page: 396 year: 1990 ident: 10.1016/j.robot.2019.05.001_b14 – volume: 66 start-page: 1231 issue: 10 year: 2016 ident: 10.1016/j.robot.2019.05.001_b16 article-title: Path planning in uncertain flow fields using ensemble method publication-title: Ocean Dyn. doi: 10.1007/s10236-016-0979-2 – volume: 82 start-page: 61 year: 2016 ident: 10.1016/j.robot.2019.05.001_b17 article-title: A comparison of optimization techniques for AUV path planning in environments with ocean currents publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.03.011 – start-page: 1386 year: 2013 ident: 10.1016/j.robot.2019.05.001_b11 article-title: Observability-based optimization for flow sensing and control of an underwater vehicle in a uniform flowfield – volume: 110 start-page: 303 issue: Part A year: 2015 ident: 10.1016/j.robot.2019.05.001_b19 article-title: A survey on path planning for persistent autonomy of autonomous underwater vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.10.007 – start-page: 1512 year: 2014 ident: 10.1016/j.robot.2019.05.001_b13 article-title: A waypoint guidance strategy for underwater snake robots – ident: 10.1016/j.robot.2019.05.001_b22 doi: 10.1109/IROS.2016.7759217 – ident: 10.1016/j.robot.2019.05.001_b6 doi: 10.1109/ROBIO.2017.8324582 – ident: 10.1016/j.robot.2019.05.001_b3 doi: 10.1115/DETC2018-86120 – ident: 10.1016/j.robot.2019.05.001_b27 doi: 10.1109/IJCNN.2016.7727255 – ident: 10.1016/j.robot.2019.05.001_b10 doi: 10.1109/MED.2014.6961590 – start-page: 1 year: 2017 ident: 10.1016/j.robot.2019.05.001_b20 article-title: Hybrid motion planning task allocation model for AUV’s safe maneuvering in a realistic ocean environment publication-title: J. Intell. Robot. Syst. – volume: 23 start-page: 2912 issue: 18 year: 2017 ident: 10.1016/j.robot.2019.05.001_b26 article-title: Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems publication-title: J. Vib. Control doi: 10.1177/1077546315623887 – volume: 75 start-page: 137 year: 2018 ident: 10.1016/j.robot.2019.05.001_b18 article-title: Multi-objective path planning for unmanned surface vehicle with currents effects publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.02.003 – volume: 161 start-page: 308 year: 2018 ident: 10.1016/j.robot.2019.05.001_b15 article-title: An energy-efficient path planning algorithm for unmanned surface vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.01.025 – ident: 10.1016/j.robot.2019.05.001_b2 – volume: 108 start-page: 129 year: 2018 ident: 10.1016/j.robot.2019.05.001_b7 article-title: Curved path following control for planar eel robots publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2018.06.014  | 
    
| SSID | ssj0003573 | 
    
| Score | 2.2813385 | 
    
| Snippet | A crucial requirement for imparting autonomy to the fish-inspired robots is the trajectory planning capability that can generate obstacle-free and optimal... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 144 | 
    
| SubjectTerms | Anguilliform-inspired robot Fish-inspired robots Flow Heuristic function Motion planning Trajectory planning  | 
    
| Title | Dynamically feasible trajectory planning for Anguilliform-inspired robots in the presence of steady ambient flow | 
    
| URI | https://dx.doi.org/10.1016/j.robot.2019.05.001 | 
    
| Volume | 118 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-793X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003573 issn: 0921-8890 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-793X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003573 issn: 0921-8890 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-793X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003573 issn: 0921-8890 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-793X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003573 issn: 0921-8890 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-793X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003573 issn: 0921-8890 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN6YetGD8RnrK3vwKJayy-vY-Ei10YPa2BthX6YNAqk1phd_uzMLaI1JD14gwC5ZhmG-YfebGUJOWcqUZEI4kvuuw7kfOuC1KkcB2BvADKkijEa-uw_6Q3478kcr5KKJhUFaZW37K5turXV9plNLs1OOx51HNwZ4igDPItBT8Eswgp2HWMXg_POH5sH8apUZGjvYusk8ZDle00IUSKjsxjZ9Z10Z5g86LSDO9SbZqF1F2qtGs0VWdL5N1hcSCO6Q8rIqKJ9m2ZwanYJ-Z5rOpunETsbPaVnXJKLgm9Je_vKO0yvopzrjHNfYtaJ2dG90nFPwBWlpw5GkpoWhVgHmNH0VGDRJTVZ87JLh9dXTRd-payg4knFvBlvDTah8V0ayK6RJuSclV8wAUovAExyjklUsAhnBNRbp1HAW6hjMQKQ8-Dr3SCsvcr1PKP7AitDlGnN4RWEMdtQHe6CYC_dTQdgmXiO7RNYJxrHORZY0TLJJYh8pQYEnro98ujY5--5UVvk1ljcPmpeS_FKTBBBgWceD_3Y8JGt4VHH-jkhrNn3Xx-CHzMSJVbQTstq7GfTvcT94eB58ASbs4Es | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGYABcYpyemAkNMTONVaFqkDbhVbqFsUXahWSqLRCXfjtPDsJFCF1YMkQP0eO8_K-z_Y7ELomMRGcMGZx6toWpa5vAWsVlgCwV4AZXAQ6Grk_8Loj-jR2xzXUrmJhtFtlafsLm26sdXmnWc5mM59Mmi92CPAUAJ4FoKfASzbQJnUdX6_Abj9__DyIWxwzg7SlxavUQ8bJa5axTHtU3oUmf2dZGuYPPK1ATmcP7ZZcEbeK4eyjmkwP0M5KBsFDlN8XFeXjJFliJWNQ8ETi-Syemt34Jc7LokQYyClupa8Lvb-iiao1SfUhuxTYjO4dT1IMZBDnJh6JS5wpbDRgieM3pqMmsUqyjyM06jwM212rLKJgcUKdOVwVVb5wbR7wO8ZVTB3OqSAKoJp5DqM6LFmEzOMBtJFAxooSX4ZgBwLhwO95jOpplsoThPUKlvk2lTqJV-CHYEhdMAiC2PA84fkN5FRzF_Eyw7gudJFElSvZNDKvFOkJj2xXO9Q10M13p7xIsLFe3Ks-SvRLTyKAgHUdT__b8QptdYf9XtR7HDyfoW3dUjgAnqP6fLaQF0BK5uzSKN0XbWvgPQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamically+feasible+trajectory+planning+for+Anguilliform-inspired+robots+in+the+presence+of+steady+ambient+flow&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Raj%2C+Aditi&rft.au=Thakur%2C+Atul&rft.date=2019-08-01&rft.issn=0921-8890&rft.volume=118&rft.spage=144&rft.epage=158&rft_id=info:doi/10.1016%2Fj.robot.2019.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_robot_2019_05_001 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon |