Dynamically feasible trajectory planning for Anguilliform-inspired robots in the presence of steady ambient flow

A crucial requirement for imparting autonomy to the fish-inspired robots is the trajectory planning capability that can generate obstacle-free and optimal trajectories to a commanded goal location. Research in the area of dynamics-aware trajectory planning, especially in the presence of environmenta...

Full description

Saved in:
Bibliographic Details
Published inRobotics and autonomous systems Vol. 118; pp. 144 - 158
Main Authors Raj, Aditi, Thakur, Atul
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2019
Subjects
Online AccessGet full text
ISSN0921-8890
1872-793X
DOI10.1016/j.robot.2019.05.001

Cover

Abstract A crucial requirement for imparting autonomy to the fish-inspired robots is the trajectory planning capability that can generate obstacle-free and optimal trajectories to a commanded goal location. Research in the area of dynamics-aware trajectory planning, especially in the presence of environmental disturbances, for fish-inspired robots is scarce. Trajectory-following for fish-inspired robots, which is different from trajectory planning, has been well explored wherein feedback controllers that reject disturbances are employed to follow the pre-specified waypoints. This paper reports an optimal trajectory planning approach for Anguilliform-inspired robots based on model predictive planning framework. The robot’s dynamics constraints, as well as its interaction with the surrounding flow conditions, are captured via dynamics simulations and are expressed using discretized motion primitives. The motion primitives are then used for generating a search-tree and an A*-based algorithm is used for searching the optimal trajectory. We developed a simulation-based admissible heuristic function that is used for improving the computational performance of the developed trajectory planner. The developed simulation-based heuristic function provided a computational speed-up by a factor of up to 10.3 with respect to that of the Euclidean heuristic for test cases comprising of a variety of obstacle densities, ambient flow conditions, and goal locations. The trajectories generated by the developed approach have been found to be dynamically feasible, collision-free, and optimal for the experiments reported in this paper. We believe that the developed approach can impart autonomy to the Anguilliform-inspired robots that, due to their slender and hyper-redundant structures, can perform autonomous inspection and maintenance of sub-sea structures having narrow regions, obstacles, and ambient flow and can be useful in various civil and defense applications. •Trajectory planning amidst flow and obstacles for Anguilliform-inspired robots.•Simulation-based computation of dynamically feasible motion primitives.•A*-based optimal trajectory planning with simulation-based search heuristic.•Search speed-up by a factor of up to 10.3 over Euclidean-based heuristic.•Possible application in autonomous inspection and maintenance of sub-sea structures.
AbstractList A crucial requirement for imparting autonomy to the fish-inspired robots is the trajectory planning capability that can generate obstacle-free and optimal trajectories to a commanded goal location. Research in the area of dynamics-aware trajectory planning, especially in the presence of environmental disturbances, for fish-inspired robots is scarce. Trajectory-following for fish-inspired robots, which is different from trajectory planning, has been well explored wherein feedback controllers that reject disturbances are employed to follow the pre-specified waypoints. This paper reports an optimal trajectory planning approach for Anguilliform-inspired robots based on model predictive planning framework. The robot’s dynamics constraints, as well as its interaction with the surrounding flow conditions, are captured via dynamics simulations and are expressed using discretized motion primitives. The motion primitives are then used for generating a search-tree and an A*-based algorithm is used for searching the optimal trajectory. We developed a simulation-based admissible heuristic function that is used for improving the computational performance of the developed trajectory planner. The developed simulation-based heuristic function provided a computational speed-up by a factor of up to 10.3 with respect to that of the Euclidean heuristic for test cases comprising of a variety of obstacle densities, ambient flow conditions, and goal locations. The trajectories generated by the developed approach have been found to be dynamically feasible, collision-free, and optimal for the experiments reported in this paper. We believe that the developed approach can impart autonomy to the Anguilliform-inspired robots that, due to their slender and hyper-redundant structures, can perform autonomous inspection and maintenance of sub-sea structures having narrow regions, obstacles, and ambient flow and can be useful in various civil and defense applications. •Trajectory planning amidst flow and obstacles for Anguilliform-inspired robots.•Simulation-based computation of dynamically feasible motion primitives.•A*-based optimal trajectory planning with simulation-based search heuristic.•Search speed-up by a factor of up to 10.3 over Euclidean-based heuristic.•Possible application in autonomous inspection and maintenance of sub-sea structures.
Author Thakur, Atul
Raj, Aditi
Author_xml – sequence: 1
  givenname: Aditi
  surname: Raj
  fullname: Raj, Aditi
  email: aditiraj.pme13@iitp.ac.in
– sequence: 2
  givenname: Atul
  surname: Thakur
  fullname: Thakur, Atul
  email: athakur@iitp.ac.in
BookMark eNqFkMlOwzAQQC1UJNrCF3DxDyTYcdYDh6qsUiUuIHGzHGdcHDl2ZBtQ_p6UcuIAl5mRRm-Wt0IL6ywgdElJSgktr_rUu9bFNCO0SUmREkJP0JLWVZZUDXtdoCVpMprUdUPO0CqEnhDCioot0XgzWTFoKYyZsAIRdGsARy96kNH5CY9GWKvtHivn8cbu37Uxeq6HRNswag8d_t4dsLY4vgEePQSwErBTOEQQ3YTF0GqwESvjPs_RqRImwMVPXqOXu9vn7UOye7p_3G52iWR5FueoclV1BZG1pK1UIs-kzDumWE3bMmtzSvOya9pS1nOP1SBUzipoGCnqLmtKtkbNca70LgQPiksdRdTOzs9pwynhB3W859_n84M6Tgo-q5tZ9osdvR6En_6hro8UzG99aPA8SH0w0c2WZOSd03_yXylxj10
CitedBy_id crossref_primary_10_1007_s10846_020_01154_8
crossref_primary_10_1007_s10846_023_01902_6
crossref_primary_10_1007_s12213_022_00151_4
crossref_primary_10_1016_j_robot_2021_103941
crossref_primary_10_1177_1729881420909603
Cites_doi 10.1088/1748-3190/11/3/031001
10.1109/LRA.2016.2517827
10.1016/j.oceaneng.2016.11.009
10.1109/ICRA.2014.6907522
10.1109/CCA.2014.6981478
10.1109/TRO.2017.2651119
10.1109/TMECH.2016.2612689
10.1016/j.robot.2012.07.009
10.1109/MRA.2013.2294914
10.1007/s10236-016-0979-2
10.1016/j.robot.2016.03.011
10.1016/j.oceaneng.2015.10.007
10.1109/IROS.2016.7759217
10.1109/ROBIO.2017.8324582
10.1115/DETC2018-86120
10.1109/IJCNN.2016.7727255
10.1109/MED.2014.6961590
10.1177/1077546315623887
10.1016/j.isatra.2018.02.003
10.1016/j.oceaneng.2018.01.025
10.1016/j.robot.2018.06.014
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.robot.2019.05.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-793X
EndPage 158
ExternalDocumentID 10_1016_j_robot_2019_05_001
S0921889018307565
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c342t-c3f4f7d50c8c1bcfa42cc4d3f381b62b41146d9b6c8fa438eaf437e93058d2963
IEDL.DBID .~1
ISSN 0921-8890
IngestDate Thu Apr 24 22:59:45 EDT 2025
Wed Oct 01 02:20:29 EDT 2025
Fri Feb 23 02:33:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Motion planning
Fish-inspired robots
Heuristic function
Trajectory planning
Anguilliform-inspired robot
Flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-c3f4f7d50c8c1bcfa42cc4d3f381b62b41146d9b6c8fa438eaf437e93058d2963
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_robot_2019_05_001
crossref_primary_10_1016_j_robot_2019_05_001
elsevier_sciencedirect_doi_10_1016_j_robot_2019_05_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Robotics and autonomous systems
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Howard, Pivtoraiko, Knepper, Kelly (b4) 2014; 21
Thakur, Svec, Gupta (b28) 2012; 60
S.K. Thati, A. Raj, A. Thakur, Optimal and dynamically feasible path planning for an anguilliform fish-inspired robot in presence of obstacles, in: ASME/IDETC Mechanisms and Robotics Conference, 2018.
Niu, Lu, Savvaris, Tsourdos (b15) 2018; 161
Fossen (b25) 2011
Kelasidi, Liljebäck, Pettersen, Gravdahl (b8) 2017; 33
MahmoudZadeh, Powers, Sammut, Yazdani, Atyabi (b20) 2017
Kohl, Pettersen, Kelasidi, Gravdahl (b5) 2016; 1
Zeng, Sammut, Lian, He, Lammas, Tang (b17) 2016; 82
Raj, Thakur (b1) 2016; 11
Zeng, Lian, Sammut, He, Tang, Lammas (b19) 2015; 110
E. Kelasidi, K.Y. Pettersen, P. Liljebäck, J.T. Gravdahl, Integral line-of-sight for path following of underwater snake robots, in: 2014 IEEE Conference on Control Applications (CCA), 2014, pp. 1078–1085
DeVries, Paley (b11) 2013
A.M. Kohl, K.Y. Pettersen, E. Kelasidi, J.T. Gravdahl, Planar path following of underwater snake robots in the presence of ocean currents.
J.D. Hernández, M. Moll, E. Vidal, M. Carreras, L.E. Kavraki, Planning feasible and safe paths online for autonomous underwater vehicles in unknown environments, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 1313–1320
Song, Liu, Bucknall (b23) 2017; 129
Kelasidi, Pettersen, Gravdahl (b13) 2014
Salumäe, Kruusmaa (b12) 2013
Zhang, Ma, Li, Wang (b7) 2018; 108
Wang, Le Maître, Hoteit, Knio (b16) 2016; 66
Mobayen, Baleanu, Tchier (b26) 2017; 23
.
E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, A waypoint guidance strategy for underwater snake robots, in: 22nd Mediterranean Conference on Control and Automation, 2014, pp. 1512–1519
Khatib (b14) 1990
Ma, Hu, Yan (b18) 2018; 75
Shen, Shi, Buckham (b21) 2017; 22
E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, P. Liljebck, Modeling of underwater snake robots, in: 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 4540–4547
I. Petráš, A note on fractional-order non-linear controller: Possible neural network approach to design, in: 2016 International Joint Conference on Neural Networks (IJCNN), 2016, 603–608
A.M. Kohl, S. Moe, E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, Set-based path following and obstacle avoidance for underwater snake robots, in: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017, pp. 1206–1213
Ma (10.1016/j.robot.2019.05.001_b18) 2018; 75
Zhang (10.1016/j.robot.2019.05.001_b7) 2018; 108
Thakur (10.1016/j.robot.2019.05.001_b28) 2012; 60
10.1016/j.robot.2019.05.001_b24
Kelasidi (10.1016/j.robot.2019.05.001_b13) 2014
Khatib (10.1016/j.robot.2019.05.001_b14) 1990
Zeng (10.1016/j.robot.2019.05.001_b19) 2015; 110
10.1016/j.robot.2019.05.001_b27
10.1016/j.robot.2019.05.001_b2
Salumäe (10.1016/j.robot.2019.05.001_b12) 2013
Shen (10.1016/j.robot.2019.05.001_b21) 2017; 22
10.1016/j.robot.2019.05.001_b6
Howard (10.1016/j.robot.2019.05.001_b4) 2014; 21
10.1016/j.robot.2019.05.001_b3
10.1016/j.robot.2019.05.001_b22
10.1016/j.robot.2019.05.001_b9
Zeng (10.1016/j.robot.2019.05.001_b17) 2016; 82
Niu (10.1016/j.robot.2019.05.001_b15) 2018; 161
Fossen (10.1016/j.robot.2019.05.001_b25) 2011
Kohl (10.1016/j.robot.2019.05.001_b5) 2016; 1
Song (10.1016/j.robot.2019.05.001_b23) 2017; 129
Raj (10.1016/j.robot.2019.05.001_b1) 2016; 11
Wang (10.1016/j.robot.2019.05.001_b16) 2016; 66
MahmoudZadeh (10.1016/j.robot.2019.05.001_b20) 2017
10.1016/j.robot.2019.05.001_b10
Kelasidi (10.1016/j.robot.2019.05.001_b8) 2017; 33
DeVries (10.1016/j.robot.2019.05.001_b11) 2013
Mobayen (10.1016/j.robot.2019.05.001_b26) 2017; 23
References_xml – start-page: 1512
  year: 2014
  end-page: 1519
  ident: b13
  article-title: A waypoint guidance strategy for underwater snake robots
  publication-title: Control and Automation (MED), 2014 22nd Mediterranean Conference of
– reference: E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, P. Liljebck, Modeling of underwater snake robots, in: 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 4540–4547
– year: 2013
  ident: b12
  article-title: Flow-Relative Control of an Underwater Robot, vol. 469
– volume: 11
  year: 2016
  ident: b1
  article-title: Fish-inspired robots: Design sensing actuation and autonomy - a review of research
  publication-title: Bioinspiration Biomim.
– volume: 21
  start-page: 64
  year: 2014
  end-page: 73
  ident: b4
  article-title: Model-predictive motion planning: Several key developments for autonomous mobile robots
  publication-title: IEEE Robot. Autom. Mag.
– start-page: 1
  year: 2017
  end-page: 18
  ident: b20
  article-title: Hybrid motion planning task allocation model for AUV’s safe maneuvering in a realistic ocean environment
  publication-title: J. Intell. Robot. Syst.
– volume: 108
  start-page: 129
  year: 2018
  end-page: 139
  ident: b7
  article-title: Curved path following control for planar eel robots
  publication-title: Robot. Auton. Syst.
– reference: E. Kelasidi, K.Y. Pettersen, P. Liljebäck, J.T. Gravdahl, Integral line-of-sight for path following of underwater snake robots, in: 2014 IEEE Conference on Control Applications (CCA), 2014, pp. 1078–1085
– year: 2011
  ident: b25
  article-title: HandBook of Marine Craft Hydrodynamics and Motion Control
– volume: 161
  start-page: 308
  year: 2018
  end-page: 321
  ident: b15
  article-title: An energy-efficient path planning algorithm for unmanned surface vehicles
  publication-title: Ocean Eng.
– reference: S.K. Thati, A. Raj, A. Thakur, Optimal and dynamically feasible path planning for an anguilliform fish-inspired robot in presence of obstacles, in: ASME/IDETC Mechanisms and Robotics Conference, 2018.
– volume: 129
  start-page: 301
  year: 2017
  end-page: 317
  ident: b23
  article-title: A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment
  publication-title: Ocean Eng.
– volume: 1
  start-page: 383
  year: 2016
  end-page: 390
  ident: b5
  article-title: Planar path following of underwater snake robots in the presence of ocean currents
  publication-title: IEEE Robot. Autom. Lett.
– reference: J.D. Hernández, M. Moll, E. Vidal, M. Carreras, L.E. Kavraki, Planning feasible and safe paths online for autonomous underwater vehicles in unknown environments, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 1313–1320
– reference: A.M. Kohl, K.Y. Pettersen, E. Kelasidi, J.T. Gravdahl, Planar path following of underwater snake robots in the presence of ocean currents.
– start-page: 396
  year: 1990
  end-page: 404
  ident: b14
  article-title: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots
– volume: 75
  start-page: 137
  year: 2018
  end-page: 156
  ident: b18
  article-title: Multi-objective path planning for unmanned surface vehicle with currents effects
  publication-title: ISA Trans.
– reference: E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, A waypoint guidance strategy for underwater snake robots, in: 22nd Mediterranean Conference on Control and Automation, 2014, pp. 1512–1519
– volume: 66
  start-page: 1231
  year: 2016
  end-page: 1251
  ident: b16
  article-title: Path planning in uncertain flow fields using ensemble method
  publication-title: Ocean Dyn.
– volume: 22
  start-page: 1163
  year: 2017
  end-page: 1173
  ident: b21
  article-title: Integrated path planning and tracking control of an AUV: A unified receding horizon optimization approach
  publication-title: IEEE/ASME Trans. Mechatronics
– reference: .
– volume: 23
  start-page: 2912
  year: 2017
  end-page: 2925
  ident: b26
  article-title: Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems
  publication-title: J. Vib. Control
– volume: 82
  start-page: 61
  year: 2016
  end-page: 72
  ident: b17
  article-title: A comparison of optimization techniques for AUV path planning in environments with ocean currents
  publication-title: Robot. Auton. Syst.
– volume: 110
  start-page: 303
  year: 2015
  end-page: 313
  ident: b19
  article-title: A survey on path planning for persistent autonomy of autonomous underwater vehicles
  publication-title: Ocean Eng.
– volume: 60
  start-page: 1457
  year: 2012
  end-page: 1471
  ident: b28
  article-title: GPU based generation of state transition models using simulations for unmanned surface vehicle trajectory planning
  publication-title: Robot. Auton. Syst.
– start-page: 1386
  year: 2013
  end-page: 1391
  ident: b11
  article-title: Observability-based optimization for flow sensing and control of an underwater vehicle in a uniform flowfield
  publication-title: American Control Conference (ACC)
– reference: I. Petráš, A note on fractional-order non-linear controller: Possible neural network approach to design, in: 2016 International Joint Conference on Neural Networks (IJCNN), 2016, 603–608
– reference: A.M. Kohl, S. Moe, E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, Set-based path following and obstacle avoidance for underwater snake robots, in: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017, pp. 1206–1213
– volume: 33
  start-page: 610
  year: 2017
  end-page: 628
  ident: b8
  article-title: Integral line-of-sight guidance for path following control of underwater snake robots: Theory and experiments
  publication-title: IEEE Trans. Robot.
– volume: 11
  issue: 3
  year: 2016
  ident: 10.1016/j.robot.2019.05.001_b1
  article-title: Fish-inspired robots: Design sensing actuation and autonomy - a review of research
  publication-title: Bioinspiration Biomim.
  doi: 10.1088/1748-3190/11/3/031001
– volume: 1
  start-page: 383
  issue: 1
  year: 2016
  ident: 10.1016/j.robot.2019.05.001_b5
  article-title: Planar path following of underwater snake robots in the presence of ocean currents
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2016.2517827
– year: 2011
  ident: 10.1016/j.robot.2019.05.001_b25
– volume: 129
  start-page: 301
  year: 2017
  ident: 10.1016/j.robot.2019.05.001_b23
  article-title: A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.11.009
– ident: 10.1016/j.robot.2019.05.001_b24
  doi: 10.1109/ICRA.2014.6907522
– ident: 10.1016/j.robot.2019.05.001_b9
  doi: 10.1109/CCA.2014.6981478
– year: 2013
  ident: 10.1016/j.robot.2019.05.001_b12
– volume: 33
  start-page: 610
  issue: 3
  year: 2017
  ident: 10.1016/j.robot.2019.05.001_b8
  article-title: Integral line-of-sight guidance for path following control of underwater snake robots: Theory and experiments
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2017.2651119
– volume: 22
  start-page: 1163
  issue: 3
  year: 2017
  ident: 10.1016/j.robot.2019.05.001_b21
  article-title: Integrated path planning and tracking control of an AUV: A unified receding horizon optimization approach
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2016.2612689
– volume: 60
  start-page: 1457
  issue: 12
  year: 2012
  ident: 10.1016/j.robot.2019.05.001_b28
  article-title: GPU based generation of state transition models using simulations for unmanned surface vehicle trajectory planning
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2012.07.009
– volume: 21
  start-page: 64
  issue: 1
  year: 2014
  ident: 10.1016/j.robot.2019.05.001_b4
  article-title: Model-predictive motion planning: Several key developments for autonomous mobile robots
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2013.2294914
– start-page: 396
  year: 1990
  ident: 10.1016/j.robot.2019.05.001_b14
– volume: 66
  start-page: 1231
  issue: 10
  year: 2016
  ident: 10.1016/j.robot.2019.05.001_b16
  article-title: Path planning in uncertain flow fields using ensemble method
  publication-title: Ocean Dyn.
  doi: 10.1007/s10236-016-0979-2
– volume: 82
  start-page: 61
  year: 2016
  ident: 10.1016/j.robot.2019.05.001_b17
  article-title: A comparison of optimization techniques for AUV path planning in environments with ocean currents
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2016.03.011
– start-page: 1386
  year: 2013
  ident: 10.1016/j.robot.2019.05.001_b11
  article-title: Observability-based optimization for flow sensing and control of an underwater vehicle in a uniform flowfield
– volume: 110
  start-page: 303
  issue: Part A
  year: 2015
  ident: 10.1016/j.robot.2019.05.001_b19
  article-title: A survey on path planning for persistent autonomy of autonomous underwater vehicles
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2015.10.007
– start-page: 1512
  year: 2014
  ident: 10.1016/j.robot.2019.05.001_b13
  article-title: A waypoint guidance strategy for underwater snake robots
– ident: 10.1016/j.robot.2019.05.001_b22
  doi: 10.1109/IROS.2016.7759217
– ident: 10.1016/j.robot.2019.05.001_b6
  doi: 10.1109/ROBIO.2017.8324582
– ident: 10.1016/j.robot.2019.05.001_b3
  doi: 10.1115/DETC2018-86120
– ident: 10.1016/j.robot.2019.05.001_b27
  doi: 10.1109/IJCNN.2016.7727255
– ident: 10.1016/j.robot.2019.05.001_b10
  doi: 10.1109/MED.2014.6961590
– start-page: 1
  year: 2017
  ident: 10.1016/j.robot.2019.05.001_b20
  article-title: Hybrid motion planning task allocation model for AUV’s safe maneuvering in a realistic ocean environment
  publication-title: J. Intell. Robot. Syst.
– volume: 23
  start-page: 2912
  issue: 18
  year: 2017
  ident: 10.1016/j.robot.2019.05.001_b26
  article-title: Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems
  publication-title: J. Vib. Control
  doi: 10.1177/1077546315623887
– volume: 75
  start-page: 137
  year: 2018
  ident: 10.1016/j.robot.2019.05.001_b18
  article-title: Multi-objective path planning for unmanned surface vehicle with currents effects
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.02.003
– volume: 161
  start-page: 308
  year: 2018
  ident: 10.1016/j.robot.2019.05.001_b15
  article-title: An energy-efficient path planning algorithm for unmanned surface vehicles
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.01.025
– ident: 10.1016/j.robot.2019.05.001_b2
– volume: 108
  start-page: 129
  year: 2018
  ident: 10.1016/j.robot.2019.05.001_b7
  article-title: Curved path following control for planar eel robots
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2018.06.014
SSID ssj0003573
Score 2.2813385
Snippet A crucial requirement for imparting autonomy to the fish-inspired robots is the trajectory planning capability that can generate obstacle-free and optimal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 144
SubjectTerms Anguilliform-inspired robot
Fish-inspired robots
Flow
Heuristic function
Motion planning
Trajectory planning
Title Dynamically feasible trajectory planning for Anguilliform-inspired robots in the presence of steady ambient flow
URI https://dx.doi.org/10.1016/j.robot.2019.05.001
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN6YetGD8RnrK3vwKJayy-vY-Ei10YPa2BthX6YNAqk1phd_uzMLaI1JD14gwC5ZhmG-YfebGUJOWcqUZEI4kvuuw7kfOuC1KkcB2BvADKkijEa-uw_6Q3478kcr5KKJhUFaZW37K5turXV9plNLs1OOx51HNwZ4igDPItBT8Eswgp2HWMXg_POH5sH8apUZGjvYusk8ZDle00IUSKjsxjZ9Z10Z5g86LSDO9SbZqF1F2qtGs0VWdL5N1hcSCO6Q8rIqKJ9m2ZwanYJ-Z5rOpunETsbPaVnXJKLgm9Je_vKO0yvopzrjHNfYtaJ2dG90nFPwBWlpw5GkpoWhVgHmNH0VGDRJTVZ87JLh9dXTRd-payg4knFvBlvDTah8V0ayK6RJuSclV8wAUovAExyjklUsAhnBNRbp1HAW6hjMQKQ8-Dr3SCsvcr1PKP7AitDlGnN4RWEMdtQHe6CYC_dTQdgmXiO7RNYJxrHORZY0TLJJYh8pQYEnro98ujY5--5UVvk1ljcPmpeS_FKTBBBgWceD_3Y8JGt4VHH-jkhrNn3Xx-CHzMSJVbQTstq7GfTvcT94eB58ASbs4Es
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGYABcYpyemAkNMTONVaFqkDbhVbqFsUXahWSqLRCXfjtPDsJFCF1YMkQP0eO8_K-z_Y7ELomMRGcMGZx6toWpa5vAWsVlgCwV4AZXAQ6Grk_8Loj-jR2xzXUrmJhtFtlafsLm26sdXmnWc5mM59Mmi92CPAUAJ4FoKfASzbQJnUdX6_Abj9__DyIWxwzg7SlxavUQ8bJa5axTHtU3oUmf2dZGuYPPK1ATmcP7ZZcEbeK4eyjmkwP0M5KBsFDlN8XFeXjJFliJWNQ8ETi-Syemt34Jc7LokQYyClupa8Lvb-iiao1SfUhuxTYjO4dT1IMZBDnJh6JS5wpbDRgieM3pqMmsUqyjyM06jwM212rLKJgcUKdOVwVVb5wbR7wO8ZVTB3OqSAKoJp5DqM6LFmEzOMBtJFAxooSX4ZgBwLhwO95jOpplsoThPUKlvk2lTqJV-CHYEhdMAiC2PA84fkN5FRzF_Eyw7gudJFElSvZNDKvFOkJj2xXO9Q10M13p7xIsLFe3Ks-SvRLTyKAgHUdT__b8QptdYf9XtR7HDyfoW3dUjgAnqP6fLaQF0BK5uzSKN0XbWvgPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamically+feasible+trajectory+planning+for+Anguilliform-inspired+robots+in+the+presence+of+steady+ambient+flow&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Raj%2C+Aditi&rft.au=Thakur%2C+Atul&rft.date=2019-08-01&rft.issn=0921-8890&rft.volume=118&rft.spage=144&rft.epage=158&rft_id=info:doi/10.1016%2Fj.robot.2019.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_robot_2019_05_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon