Comprehensive mutational scanning of a kinase in vivo reveals substrate-dependent fitness landscapes
Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this rank...
Saved in:
Published in | Nucleic acids research Vol. 42; no. 14; p. e112 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
18.08.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0305-1048 1362-4962 1362-4962 |
DOI | 10.1093/nar/gku511 |
Cover
Abstract | Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3')II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3')II variants with orthogonal substrate specificities. |
---|---|
AbstractList | Deep mutational scanning has emerged as a promising tool for mapping sequence–activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3′)II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in
Escherichia coli
under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3′)II variants with orthogonal substrate specificities. Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3')II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3')II variants with orthogonal substrate specificities. Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3')II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3')II variants with orthogonal substrate specificities.Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3')II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3')II variants with orthogonal substrate specificities. |
Author | Wang, Li Gnirke, Andreas Melnikov, Alexandre Mikkelsen, Tarjei S. Rogov, Peter |
Author_xml | – sequence: 1 givenname: Alexandre surname: Melnikov fullname: Melnikov, Alexandre – sequence: 2 givenname: Peter surname: Rogov fullname: Rogov, Peter – sequence: 3 givenname: Li surname: Wang fullname: Wang, Li – sequence: 4 givenname: Andreas surname: Gnirke fullname: Gnirke, Andreas – sequence: 5 givenname: Tarjei S. surname: Mikkelsen fullname: Mikkelsen, Tarjei S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24914046$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1rFTEUhoNU7G114w-QLEUYe_I1c2cjyEVtoeBG1yGZnNzGziRjMjPgvzdyW1FxlUWe87zJeS_IWUwRCXnJ4C2DXlxFk6-O96ti7AnZMdHyRvYtPyM7EKAaBnJ_Ti5K-QbAJFPyGTnnsmcSZLsj7pCmOeMdxhI2pNO6mCWkaEZaBhNjiEeaPDX0PkRTkIZIt7AlmnFDMxZaVluWbBZsHM4YHcaF-rBELIWOJroqmbE8J099pfHFw3lJvn788OVw3dx-_nRzeH_bDELypTFKCttK2KPhxu2V99711jlmewAJ3lpnHBN91ynXMd7vfcvBubazQnnrhLgk707eebUTuqG-JptRzzlMJv_QyQT9900Md_qYNi2Z4B2wKnj9IMjp-4pl0VMoA471K5jWoplSooO-47Kir_7M-h3yuNoKwAkYciolo9dDOC23RodRM9C_2tO1PX1qr468-Wfk0fof-Cdaz6Bk |
CitedBy_id | crossref_primary_10_1016_j_celrep_2016_09_061 crossref_primary_10_1186_s12859_015_0590_4 crossref_primary_10_1021_acs_jcim_0c01223 crossref_primary_10_1038_s41589_021_00865_9 crossref_primary_10_1016_j_jmb_2021_166810 crossref_primary_10_1016_j_cels_2023_06_009 crossref_primary_10_1021_jacs_1c08707 crossref_primary_10_1021_acscatal_1c05508 crossref_primary_10_1371_journal_pone_0170445 crossref_primary_10_1038_ncomms15695 crossref_primary_10_1002_prot_26067 crossref_primary_10_1038_ng_3700 crossref_primary_10_1016_j_tig_2014_11_002 crossref_primary_10_1126_science_ado9336 crossref_primary_10_1002_cbic_201600382 crossref_primary_10_1016_j_ymben_2022_09_001 crossref_primary_10_1016_j_jmb_2021_167210 crossref_primary_10_1016_j_jid_2024_08_011 crossref_primary_10_1038_s41559_022_01675_5 crossref_primary_10_1093_nar_gkw1226 crossref_primary_10_1016_j_cels_2023_10_009 crossref_primary_10_1158_0008_5472_CAN_21_1153 crossref_primary_10_1038_s41588_019_0432_9 crossref_primary_10_1038_nmeth_4029 crossref_primary_10_1371_journal_ppat_1006114 crossref_primary_10_1093_molbev_msw182 crossref_primary_10_1111_eva_12846 crossref_primary_10_1093_molbev_msz179 crossref_primary_10_1038_s41467_023_43967_9 crossref_primary_10_1042_BCJ20200188 crossref_primary_10_1021_acscentsci_9b00590 crossref_primary_10_1016_j_ccell_2021_10_012 crossref_primary_10_15252_msb_202110305 crossref_primary_10_1093_bioadv_vbab045 crossref_primary_10_1016_j_sbi_2018_02_006 crossref_primary_10_1371_journal_pgen_1007419 crossref_primary_10_7554_eLife_56707 crossref_primary_10_1002_humu_23762 crossref_primary_10_1016_j_cell_2021_01_012 crossref_primary_10_1371_journal_pone_0288158 crossref_primary_10_1534_genetics_116_190462 crossref_primary_10_1093_nar_gkz1110 crossref_primary_10_1039_D1CC04635G crossref_primary_10_1038_s41588_018_0204_y crossref_primary_10_1038_nbt_3769 crossref_primary_10_1016_j_cell_2015_01_035 crossref_primary_10_1038_s41592_018_0138_4 crossref_primary_10_1038_s41594_019_0358_z crossref_primary_10_3389_fmolb_2021_635425 crossref_primary_10_1073_pnas_1614437114 crossref_primary_10_1016_j_coisb_2017_02_002 crossref_primary_10_1146_annurev_biophys_052118_115333 crossref_primary_10_1126_science_aav5095 crossref_primary_10_1007_s00239_021_10009_1 crossref_primary_10_3390_ijms242216496 crossref_primary_10_1016_j_crmeth_2023_100641 crossref_primary_10_1158_2159_8290_CD_21_1661 crossref_primary_10_1186_s13059_019_1845_6 crossref_primary_10_1186_s12859_016_1124_4 crossref_primary_10_1186_s12864_016_2533_5 crossref_primary_10_1186_s13321_025_00971_z crossref_primary_10_1021_acs_biochem_7b00886 crossref_primary_10_1093_nar_gkz536 crossref_primary_10_1126_science_aae0568 crossref_primary_10_1186_s13073_017_0502_5 crossref_primary_10_1038_s41467_024_50566_9 crossref_primary_10_1016_j_cell_2016_12_015 crossref_primary_10_1038_s41467_017_02680_0 crossref_primary_10_1007_s00018_016_2344_5 crossref_primary_10_21105_joss_00362 crossref_primary_10_1016_j_ajhg_2018_03_018 crossref_primary_10_1016_j_copbio_2018_02_001 crossref_primary_10_1021_acssynbio_7b00112 crossref_primary_10_1007_s00253_018_9041_2 crossref_primary_10_1038_s41422_024_00989_2 crossref_primary_10_1016_j_csbj_2025_02_012 crossref_primary_10_1186_s13059_017_1272_5 crossref_primary_10_1021_acs_jcim_4c00704 crossref_primary_10_1002_pro_3901 crossref_primary_10_1038_s41467_024_45630_3 crossref_primary_10_2139_ssrn_4000465 crossref_primary_10_1016_j_ccell_2016_06_022 crossref_primary_10_1021_acsomega_0c02402 crossref_primary_10_1371_journal_pone_0227621 crossref_primary_10_1038_s41559_018_0549_8 crossref_primary_10_7717_peerj_3657 crossref_primary_10_1007_s12551_022_01005_w crossref_primary_10_1016_j_sbi_2016_11_001 crossref_primary_10_1186_s12915_022_01304_4 crossref_primary_10_1038_nprot_2016_135 crossref_primary_10_1093_bib_bbab234 crossref_primary_10_1093_gbe_evy261 crossref_primary_10_1016_j_trsl_2022_11_002 crossref_primary_10_1093_protein_gzaa012 crossref_primary_10_1038_nmeth_3223 crossref_primary_10_1093_bioinformatics_btaa1030 crossref_primary_10_1007_s00439_018_1916_x crossref_primary_10_3390_ijms25020705 crossref_primary_10_1021_acssynbio_1c00592 crossref_primary_10_1038_s41467_023_35940_3 crossref_primary_10_1016_j_ccell_2022_07_011 crossref_primary_10_1186_s12859_020_3439_4 crossref_primary_10_1534_genetics_117_300064 crossref_primary_10_1242_dmm_049857 crossref_primary_10_1146_annurev_genet_072920_032107 crossref_primary_10_3390_ijms222010908 crossref_primary_10_1038_s41467_024_45594_4 crossref_primary_10_1126_science_aax3649 crossref_primary_10_1016_j_ymeth_2019_02_017 crossref_primary_10_1038_s42003_018_0075_x crossref_primary_10_1016_j_csbj_2023_11_017 crossref_primary_10_1534_genetics_115_180562 crossref_primary_10_1186_s13059_025_03476_y crossref_primary_10_1038_nrendo_2016_50 crossref_primary_10_1073_pnas_1902731116 crossref_primary_10_1158_2159_8290_CD_20_0564 crossref_primary_10_1186_s13059_023_02880_6 crossref_primary_10_1128_mBio_01801_16 crossref_primary_10_1016_j_cell_2024_03_022 |
Cites_doi | 10.1111/j.2517-6161.1995.tb02031.x 10.1038/nbt.2137 10.1038/ng.795 10.1002/0470867302.ch14 10.1093/bioinformatics/btp324 10.1093/nar/gkn822 10.1016/j.tibtech.2011.04.003 10.1073/pnas.1004290107 10.1126/science.1192001 10.1093/nar/gkq163 10.1038/nbt.1589 10.1109/MCSE.2007.53 10.1016/S0022-2836(03)00121-9 10.1073/pnas.1016024108 10.1109/MCSE.2007.55 10.1038/nmeth.1492 10.1038/nrg3227 |
ContentType | Journal Article |
Copyright | The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014 |
Copyright_xml | – notice: The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gku511 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | e112 |
ExternalDocumentID | PMC4132701 24914046 10_1093_nar_gku511 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVD OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TEORI TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM .55 .GJ 3O- AAWDT AAYJJ ABIME ABNGD ABPIB ABQTQ ABSMQ ABZEO ACFRR ACIPB ACPQN ACUKT ACVCV ACZBC AEHUL AEKPW AFSHK AGKRT AGMDO AJDVS ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BEYMZ C1A CGR COF CUY CVF CXTWN D0S DFGAJ ECM EIF ELUNK FEDTE HVGLF H~9 M49 MBTAY MVM NPM NTWIH O~Y PB- QBD RNI RZF RZO SJN TCN UHB X7M XSW ZXP 7X8 ESTFP 5PM |
ID | FETCH-LOGICAL-c342t-a543b6408ea2ad85fffd9bdd1b90040fbbdad139775d71298f620dd67b35fbd33 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 17:40:44 EDT 2025 Mon Sep 08 15:23:12 EDT 2025 Thu Apr 03 07:10:17 EDT 2025 Tue Jul 01 01:41:30 EDT 2025 Thu Apr 24 23:12:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | http://creativecommons.org/licenses/by-nc/3.0 The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c342t-a543b6408ea2ad85fffd9bdd1b90040fbbdad139775d71298f620dd67b35fbd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gku511 |
PMID | 24914046 |
PQID | 1553709724 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132701 proquest_miscellaneous_1553709724 pubmed_primary_24914046 crossref_citationtrail_10_1093_nar_gku511 crossref_primary_10_1093_nar_gku511 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-18 |
PublicationDateYYYYMMDD | 2014-08-18 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2014 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016012122322121000_42.14.e112.2 2016012122322121000_42.14.e112.1 2016012122322121000_42.14.e112.4 2016012122322121000_42.14.e112.11 2016012122322121000_42.14.e112.3 2016012122322121000_42.14.e112.10 2016012122322121000_42.14.e112.6 2016012122322121000_42.14.e112.5 2016012122322121000_42.14.e112.13 2016012122322121000_42.14.e112.12 2016012122322121000_42.14.e112.17 2016012122322121000_42.14.e112.16 Benjamini (2016012122322121000_42.14.e112.15) 1995; 57 2016012122322121000_42.14.e112.8 2016012122322121000_42.14.e112.7 2016012122322121000_42.14.e112.9 Goldenberg (2016012122322121000_42.14.e112.14) 2008; 37 21561674 - Trends Biotechnol. 2011 Sep;29(9):435-42 21464309 - Proc Natl Acad Sci U S A. 2011 May 10;108(19):7896-901 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 20947767 - Science. 2010 Oct 15;330(6002):376-9 21441930 - Nat Genet. 2011 May;43(5):487-9 20711194 - Nat Methods. 2010 Sep;7(9):741-6 20439748 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9158-63 22596318 - Nat Rev Genet. 2012 Jun;13(6):406-20 12628253 - J Mol Biol. 2003 Mar 21;327(2):491-506 22371084 - Nat Biotechnol. 2012 Mar;30(3):271-7 20308161 - Nucleic Acids Res. 2010 May;38(8):2522-40 19915551 - Nat Biotechnol. 2009 Dec;27(12):1173-5 18971256 - Nucleic Acids Res. 2009 Jan;37(Database issue):D323-7 |
References_xml | – volume: 57 start-page: 289 year: 1995 ident: 2016012122322121000_42.14.e112.15 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B. doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: 2016012122322121000_42.14.e112.8 doi: 10.1038/nbt.2137 – ident: 2016012122322121000_42.14.e112.4 doi: 10.1038/ng.795 – ident: 2016012122322121000_42.14.e112.10 doi: 10.1002/0470867302.ch14 – ident: 2016012122322121000_42.14.e112.11 doi: 10.1093/bioinformatics/btp324 – volume: 37 start-page: D323 year: 2008 ident: 2016012122322121000_42.14.e112.14 article-title: The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn822 – ident: 2016012122322121000_42.14.e112.2 doi: 10.1016/j.tibtech.2011.04.003 – ident: 2016012122322121000_42.14.e112.7 doi: 10.1073/pnas.1004290107 – ident: 2016012122322121000_42.14.e112.5 doi: 10.1126/science.1192001 – ident: 2016012122322121000_42.14.e112.9 doi: 10.1093/nar/gkq163 – ident: 2016012122322121000_42.14.e112.6 doi: 10.1038/nbt.1589 – ident: 2016012122322121000_42.14.e112.12 doi: 10.1109/MCSE.2007.53 – ident: 2016012122322121000_42.14.e112.16 doi: 10.1016/S0022-2836(03)00121-9 – ident: 2016012122322121000_42.14.e112.3 doi: 10.1073/pnas.1016024108 – ident: 2016012122322121000_42.14.e112.13 doi: 10.1109/MCSE.2007.55 – ident: 2016012122322121000_42.14.e112.1 doi: 10.1038/nmeth.1492 – ident: 2016012122322121000_42.14.e112.17 doi: 10.1038/nrg3227 – reference: 18971256 - Nucleic Acids Res. 2009 Jan;37(Database issue):D323-7 – reference: 22371084 - Nat Biotechnol. 2012 Mar;30(3):271-7 – reference: 19915551 - Nat Biotechnol. 2009 Dec;27(12):1173-5 – reference: 21561674 - Trends Biotechnol. 2011 Sep;29(9):435-42 – reference: 22596318 - Nat Rev Genet. 2012 Jun;13(6):406-20 – reference: 20711194 - Nat Methods. 2010 Sep;7(9):741-6 – reference: 20308161 - Nucleic Acids Res. 2010 May;38(8):2522-40 – reference: 12628253 - J Mol Biol. 2003 Mar 21;327(2):491-506 – reference: 21441930 - Nat Genet. 2011 May;43(5):487-9 – reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 – reference: 20947767 - Science. 2010 Oct 15;330(6002):376-9 – reference: 20439748 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9158-63 – reference: 21464309 - Proc Natl Acad Sci U S A. 2011 May 10;108(19):7896-901 |
SSID | ssj0014154 |
Score | 2.5140064 |
Snippet | Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid.... Deep mutational scanning has emerged as a promising tool for mapping sequence–activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e112 |
SubjectTerms | Amino Acid Substitution Aminoglycosides - pharmacology Anti-Bacterial Agents - pharmacology Escherichia coli - drug effects Kanamycin Kinase - chemistry Kanamycin Kinase - genetics Kanamycin Kinase - metabolism Methods Online Mutagenesis, Site-Directed - methods Mutation Substrate Specificity |
Title | Comprehensive mutational scanning of a kinase in vivo reveals substrate-dependent fitness landscapes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24914046 https://www.proquest.com/docview/1553709724 https://pubmed.ncbi.nlm.nih.gov/PMC4132701 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHOCCoAW6PCojEBKH0CR2XseqalUh6AG1Um-RHTtttF2n6mZXgl_PjJ1nu0jAJYrysKV8k_F4_M1nQj6iiBgM277nh1J5HOZuXqpC7YlMS18UYak1pga-n8Yn5_zrRXQxcFVtdUkjvxS_NtaV_A-qcA1wxSrZf0C2bxQuwDngC0dAGI5_hTH-zLf6quWgL1ZNl9lbFm4rIlf9OK8MjFWY2VhX6xqrVTSKJi_BZ1htWq_bCRdlmhrr-2wFMHKjluPo9RTFj1HgtagULjeMMmFWw_faVPN6PaqbGZi1P-pLd2dKCG6z1d-qngdkqpYvZKmWYpKWCDjmWVtPqp0rtfVY2dTX8nBsU3zkOXXg6NT3XLqTuzJINz--nK8i55tH6N4sLLwwj0SpoDu62nak7m49JI_CBEIscHuJf9QvNkEMwzvl2oztQ1f7riNUim5fnYYt9-Yidym1oxjl7Bl52k4u6IGzlOfkgTbbZOfAiKZe_KSfqKX72nWUbfL4sNvqb4eoiSHRwZBoZ0i0LqmgzpBoZSgaEm0NiW4wJNoaEh0M6QU5Pz46Ozzx2u03vILxsPFExJmMuZ9qEQqVRmVZqkwqFcgMXX8ppRLKTiAilUDYmJZx6CsVJ5JFpVSMvSRbpjZ6l1CdyjJmCl5ijBfKlzIoYF5bRCLGIJTPyOfu6-ZFq02PW6Rc544jwXIAJXegzMiH_tkbp8iy8an3HUg5fExcBRNG16tljhtlJShaBb2-cqD17XRoz0gygbN_AMXYp3dMdWVF2SEYDBM_eP3HNt-QJ8N_8pZsNbcr_Q4C2kbuWXPcs-mg3_K8rEQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+mutational+scanning+of+a+kinase+in+vivo+reveals+substrate-dependent+fitness+landscapes&rft.jtitle=Nucleic+acids+research&rft.au=Melnikov%2C+Alexandre&rft.au=Rogov%2C+Peter&rft.au=Wang%2C+Li&rft.au=Gnirke%2C+Andreas&rft.date=2014-08-18&rft.eissn=1362-4962&rft.volume=42&rft.issue=14&rft.spage=e112&rft_id=info:doi/10.1093%2Fnar%2Fgku511&rft_id=info%3Apmid%2F24914046&rft.externalDocID=24914046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |