Comprehensive mutational scanning of a kinase in vivo reveals substrate-dependent fitness landscapes

Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this rank...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 42; no. 14; p. e112
Main Authors Melnikov, Alexandre, Rogov, Peter, Wang, Li, Gnirke, Andreas, Mikkelsen, Tarjei S.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 18.08.2014
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4962
DOI10.1093/nar/gku511

Cover

Abstract Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3')II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3')II variants with orthogonal substrate specificities.
AbstractList Deep mutational scanning has emerged as a promising tool for mapping sequence–activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3′)II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3′)II variants with orthogonal substrate specificities.
Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3')II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3')II variants with orthogonal substrate specificities.
Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3')II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3')II variants with orthogonal substrate specificities.Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3')II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3')II variants with orthogonal substrate specificities.
Author Wang, Li
Gnirke, Andreas
Melnikov, Alexandre
Mikkelsen, Tarjei S.
Rogov, Peter
Author_xml – sequence: 1
  givenname: Alexandre
  surname: Melnikov
  fullname: Melnikov, Alexandre
– sequence: 2
  givenname: Peter
  surname: Rogov
  fullname: Rogov, Peter
– sequence: 3
  givenname: Li
  surname: Wang
  fullname: Wang, Li
– sequence: 4
  givenname: Andreas
  surname: Gnirke
  fullname: Gnirke, Andreas
– sequence: 5
  givenname: Tarjei S.
  surname: Mikkelsen
  fullname: Mikkelsen, Tarjei S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24914046$$D View this record in MEDLINE/PubMed
BookMark eNptkU1rFTEUhoNU7G114w-QLEUYe_I1c2cjyEVtoeBG1yGZnNzGziRjMjPgvzdyW1FxlUWe87zJeS_IWUwRCXnJ4C2DXlxFk6-O96ti7AnZMdHyRvYtPyM7EKAaBnJ_Ti5K-QbAJFPyGTnnsmcSZLsj7pCmOeMdxhI2pNO6mCWkaEZaBhNjiEeaPDX0PkRTkIZIt7AlmnFDMxZaVluWbBZsHM4YHcaF-rBELIWOJroqmbE8J099pfHFw3lJvn788OVw3dx-_nRzeH_bDELypTFKCttK2KPhxu2V99711jlmewAJ3lpnHBN91ynXMd7vfcvBubazQnnrhLgk707eebUTuqG-JptRzzlMJv_QyQT9900Md_qYNi2Z4B2wKnj9IMjp-4pl0VMoA471K5jWoplSooO-47Kir_7M-h3yuNoKwAkYciolo9dDOC23RodRM9C_2tO1PX1qr468-Wfk0fof-Cdaz6Bk
CitedBy_id crossref_primary_10_1016_j_celrep_2016_09_061
crossref_primary_10_1186_s12859_015_0590_4
crossref_primary_10_1021_acs_jcim_0c01223
crossref_primary_10_1038_s41589_021_00865_9
crossref_primary_10_1016_j_jmb_2021_166810
crossref_primary_10_1016_j_cels_2023_06_009
crossref_primary_10_1021_jacs_1c08707
crossref_primary_10_1021_acscatal_1c05508
crossref_primary_10_1371_journal_pone_0170445
crossref_primary_10_1038_ncomms15695
crossref_primary_10_1002_prot_26067
crossref_primary_10_1038_ng_3700
crossref_primary_10_1016_j_tig_2014_11_002
crossref_primary_10_1126_science_ado9336
crossref_primary_10_1002_cbic_201600382
crossref_primary_10_1016_j_ymben_2022_09_001
crossref_primary_10_1016_j_jmb_2021_167210
crossref_primary_10_1016_j_jid_2024_08_011
crossref_primary_10_1038_s41559_022_01675_5
crossref_primary_10_1093_nar_gkw1226
crossref_primary_10_1016_j_cels_2023_10_009
crossref_primary_10_1158_0008_5472_CAN_21_1153
crossref_primary_10_1038_s41588_019_0432_9
crossref_primary_10_1038_nmeth_4029
crossref_primary_10_1371_journal_ppat_1006114
crossref_primary_10_1093_molbev_msw182
crossref_primary_10_1111_eva_12846
crossref_primary_10_1093_molbev_msz179
crossref_primary_10_1038_s41467_023_43967_9
crossref_primary_10_1042_BCJ20200188
crossref_primary_10_1021_acscentsci_9b00590
crossref_primary_10_1016_j_ccell_2021_10_012
crossref_primary_10_15252_msb_202110305
crossref_primary_10_1093_bioadv_vbab045
crossref_primary_10_1016_j_sbi_2018_02_006
crossref_primary_10_1371_journal_pgen_1007419
crossref_primary_10_7554_eLife_56707
crossref_primary_10_1002_humu_23762
crossref_primary_10_1016_j_cell_2021_01_012
crossref_primary_10_1371_journal_pone_0288158
crossref_primary_10_1534_genetics_116_190462
crossref_primary_10_1093_nar_gkz1110
crossref_primary_10_1039_D1CC04635G
crossref_primary_10_1038_s41588_018_0204_y
crossref_primary_10_1038_nbt_3769
crossref_primary_10_1016_j_cell_2015_01_035
crossref_primary_10_1038_s41592_018_0138_4
crossref_primary_10_1038_s41594_019_0358_z
crossref_primary_10_3389_fmolb_2021_635425
crossref_primary_10_1073_pnas_1614437114
crossref_primary_10_1016_j_coisb_2017_02_002
crossref_primary_10_1146_annurev_biophys_052118_115333
crossref_primary_10_1126_science_aav5095
crossref_primary_10_1007_s00239_021_10009_1
crossref_primary_10_3390_ijms242216496
crossref_primary_10_1016_j_crmeth_2023_100641
crossref_primary_10_1158_2159_8290_CD_21_1661
crossref_primary_10_1186_s13059_019_1845_6
crossref_primary_10_1186_s12859_016_1124_4
crossref_primary_10_1186_s12864_016_2533_5
crossref_primary_10_1186_s13321_025_00971_z
crossref_primary_10_1021_acs_biochem_7b00886
crossref_primary_10_1093_nar_gkz536
crossref_primary_10_1126_science_aae0568
crossref_primary_10_1186_s13073_017_0502_5
crossref_primary_10_1038_s41467_024_50566_9
crossref_primary_10_1016_j_cell_2016_12_015
crossref_primary_10_1038_s41467_017_02680_0
crossref_primary_10_1007_s00018_016_2344_5
crossref_primary_10_21105_joss_00362
crossref_primary_10_1016_j_ajhg_2018_03_018
crossref_primary_10_1016_j_copbio_2018_02_001
crossref_primary_10_1021_acssynbio_7b00112
crossref_primary_10_1007_s00253_018_9041_2
crossref_primary_10_1038_s41422_024_00989_2
crossref_primary_10_1016_j_csbj_2025_02_012
crossref_primary_10_1186_s13059_017_1272_5
crossref_primary_10_1021_acs_jcim_4c00704
crossref_primary_10_1002_pro_3901
crossref_primary_10_1038_s41467_024_45630_3
crossref_primary_10_2139_ssrn_4000465
crossref_primary_10_1016_j_ccell_2016_06_022
crossref_primary_10_1021_acsomega_0c02402
crossref_primary_10_1371_journal_pone_0227621
crossref_primary_10_1038_s41559_018_0549_8
crossref_primary_10_7717_peerj_3657
crossref_primary_10_1007_s12551_022_01005_w
crossref_primary_10_1016_j_sbi_2016_11_001
crossref_primary_10_1186_s12915_022_01304_4
crossref_primary_10_1038_nprot_2016_135
crossref_primary_10_1093_bib_bbab234
crossref_primary_10_1093_gbe_evy261
crossref_primary_10_1016_j_trsl_2022_11_002
crossref_primary_10_1093_protein_gzaa012
crossref_primary_10_1038_nmeth_3223
crossref_primary_10_1093_bioinformatics_btaa1030
crossref_primary_10_1007_s00439_018_1916_x
crossref_primary_10_3390_ijms25020705
crossref_primary_10_1021_acssynbio_1c00592
crossref_primary_10_1038_s41467_023_35940_3
crossref_primary_10_1016_j_ccell_2022_07_011
crossref_primary_10_1186_s12859_020_3439_4
crossref_primary_10_1534_genetics_117_300064
crossref_primary_10_1242_dmm_049857
crossref_primary_10_1146_annurev_genet_072920_032107
crossref_primary_10_3390_ijms222010908
crossref_primary_10_1038_s41467_024_45594_4
crossref_primary_10_1126_science_aax3649
crossref_primary_10_1016_j_ymeth_2019_02_017
crossref_primary_10_1038_s42003_018_0075_x
crossref_primary_10_1016_j_csbj_2023_11_017
crossref_primary_10_1534_genetics_115_180562
crossref_primary_10_1186_s13059_025_03476_y
crossref_primary_10_1038_nrendo_2016_50
crossref_primary_10_1073_pnas_1902731116
crossref_primary_10_1158_2159_8290_CD_20_0564
crossref_primary_10_1186_s13059_023_02880_6
crossref_primary_10_1128_mBio_01801_16
crossref_primary_10_1016_j_cell_2024_03_022
Cites_doi 10.1111/j.2517-6161.1995.tb02031.x
10.1038/nbt.2137
10.1038/ng.795
10.1002/0470867302.ch14
10.1093/bioinformatics/btp324
10.1093/nar/gkn822
10.1016/j.tibtech.2011.04.003
10.1073/pnas.1004290107
10.1126/science.1192001
10.1093/nar/gkq163
10.1038/nbt.1589
10.1109/MCSE.2007.53
10.1016/S0022-2836(03)00121-9
10.1073/pnas.1016024108
10.1109/MCSE.2007.55
10.1038/nmeth.1492
10.1038/nrg3227
ContentType Journal Article
Copyright The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014
Copyright_xml – notice: The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gku511
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage e112
ExternalDocumentID PMC4132701
24914046
10_1093_nar_gku511
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TEORI
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
.55
.GJ
3O-
AAWDT
AAYJJ
ABIME
ABNGD
ABPIB
ABQTQ
ABSMQ
ABZEO
ACFRR
ACIPB
ACPQN
ACUKT
ACVCV
ACZBC
AEHUL
AEKPW
AFSHK
AGKRT
AGMDO
AJDVS
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BEYMZ
C1A
CGR
COF
CUY
CVF
CXTWN
D0S
DFGAJ
ECM
EIF
ELUNK
FEDTE
HVGLF
H~9
M49
MBTAY
MVM
NPM
NTWIH
O~Y
PB-
QBD
RNI
RZF
RZO
SJN
TCN
UHB
X7M
XSW
ZXP
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c342t-a543b6408ea2ad85fffd9bdd1b90040fbbdad139775d71298f620dd67b35fbd33
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 17:40:44 EDT 2025
Mon Sep 08 15:23:12 EDT 2025
Thu Apr 03 07:10:17 EDT 2025
Tue Jul 01 01:41:30 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License http://creativecommons.org/licenses/by-nc/3.0
The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-a543b6408ea2ad85fffd9bdd1b90040fbbdad139775d71298f620dd67b35fbd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1093/nar/gku511
PMID 24914046
PQID 1553709724
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132701
proquest_miscellaneous_1553709724
pubmed_primary_24914046
crossref_citationtrail_10_1093_nar_gku511
crossref_primary_10_1093_nar_gku511
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-18
PublicationDateYYYYMMDD 2014-08-18
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-18
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2014
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2016012122322121000_42.14.e112.2
2016012122322121000_42.14.e112.1
2016012122322121000_42.14.e112.4
2016012122322121000_42.14.e112.11
2016012122322121000_42.14.e112.3
2016012122322121000_42.14.e112.10
2016012122322121000_42.14.e112.6
2016012122322121000_42.14.e112.5
2016012122322121000_42.14.e112.13
2016012122322121000_42.14.e112.12
2016012122322121000_42.14.e112.17
2016012122322121000_42.14.e112.16
Benjamini (2016012122322121000_42.14.e112.15) 1995; 57
2016012122322121000_42.14.e112.8
2016012122322121000_42.14.e112.7
2016012122322121000_42.14.e112.9
Goldenberg (2016012122322121000_42.14.e112.14) 2008; 37
21561674 - Trends Biotechnol. 2011 Sep;29(9):435-42
21464309 - Proc Natl Acad Sci U S A. 2011 May 10;108(19):7896-901
19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
20947767 - Science. 2010 Oct 15;330(6002):376-9
21441930 - Nat Genet. 2011 May;43(5):487-9
20711194 - Nat Methods. 2010 Sep;7(9):741-6
20439748 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9158-63
22596318 - Nat Rev Genet. 2012 Jun;13(6):406-20
12628253 - J Mol Biol. 2003 Mar 21;327(2):491-506
22371084 - Nat Biotechnol. 2012 Mar;30(3):271-7
20308161 - Nucleic Acids Res. 2010 May;38(8):2522-40
19915551 - Nat Biotechnol. 2009 Dec;27(12):1173-5
18971256 - Nucleic Acids Res. 2009 Jan;37(Database issue):D323-7
References_xml – volume: 57
  start-page: 289
  year: 1995
  ident: 2016012122322121000_42.14.e112.15
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 2016012122322121000_42.14.e112.8
  doi: 10.1038/nbt.2137
– ident: 2016012122322121000_42.14.e112.4
  doi: 10.1038/ng.795
– ident: 2016012122322121000_42.14.e112.10
  doi: 10.1002/0470867302.ch14
– ident: 2016012122322121000_42.14.e112.11
  doi: 10.1093/bioinformatics/btp324
– volume: 37
  start-page: D323
  year: 2008
  ident: 2016012122322121000_42.14.e112.14
  article-title: The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn822
– ident: 2016012122322121000_42.14.e112.2
  doi: 10.1016/j.tibtech.2011.04.003
– ident: 2016012122322121000_42.14.e112.7
  doi: 10.1073/pnas.1004290107
– ident: 2016012122322121000_42.14.e112.5
  doi: 10.1126/science.1192001
– ident: 2016012122322121000_42.14.e112.9
  doi: 10.1093/nar/gkq163
– ident: 2016012122322121000_42.14.e112.6
  doi: 10.1038/nbt.1589
– ident: 2016012122322121000_42.14.e112.12
  doi: 10.1109/MCSE.2007.53
– ident: 2016012122322121000_42.14.e112.16
  doi: 10.1016/S0022-2836(03)00121-9
– ident: 2016012122322121000_42.14.e112.3
  doi: 10.1073/pnas.1016024108
– ident: 2016012122322121000_42.14.e112.13
  doi: 10.1109/MCSE.2007.55
– ident: 2016012122322121000_42.14.e112.1
  doi: 10.1038/nmeth.1492
– ident: 2016012122322121000_42.14.e112.17
  doi: 10.1038/nrg3227
– reference: 18971256 - Nucleic Acids Res. 2009 Jan;37(Database issue):D323-7
– reference: 22371084 - Nat Biotechnol. 2012 Mar;30(3):271-7
– reference: 19915551 - Nat Biotechnol. 2009 Dec;27(12):1173-5
– reference: 21561674 - Trends Biotechnol. 2011 Sep;29(9):435-42
– reference: 22596318 - Nat Rev Genet. 2012 Jun;13(6):406-20
– reference: 20711194 - Nat Methods. 2010 Sep;7(9):741-6
– reference: 20308161 - Nucleic Acids Res. 2010 May;38(8):2522-40
– reference: 12628253 - J Mol Biol. 2003 Mar 21;327(2):491-506
– reference: 21441930 - Nat Genet. 2011 May;43(5):487-9
– reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
– reference: 20947767 - Science. 2010 Oct 15;330(6002):376-9
– reference: 20439748 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9158-63
– reference: 21464309 - Proc Natl Acad Sci U S A. 2011 May 10;108(19):7896-901
SSID ssj0014154
Score 2.5140064
Snippet Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid....
Deep mutational scanning has emerged as a promising tool for mapping sequence–activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e112
SubjectTerms Amino Acid Substitution
Aminoglycosides - pharmacology
Anti-Bacterial Agents - pharmacology
Escherichia coli - drug effects
Kanamycin Kinase - chemistry
Kanamycin Kinase - genetics
Kanamycin Kinase - metabolism
Methods Online
Mutagenesis, Site-Directed - methods
Mutation
Substrate Specificity
Title Comprehensive mutational scanning of a kinase in vivo reveals substrate-dependent fitness landscapes
URI https://www.ncbi.nlm.nih.gov/pubmed/24914046
https://www.proquest.com/docview/1553709724
https://pubmed.ncbi.nlm.nih.gov/PMC4132701
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHOCCoAW6PCojEBKH0CR2XseqalUh6AG1Um-RHTtttF2n6mZXgl_PjJ1nu0jAJYrysKV8k_F4_M1nQj6iiBgM277nh1J5HOZuXqpC7YlMS18UYak1pga-n8Yn5_zrRXQxcFVtdUkjvxS_NtaV_A-qcA1wxSrZf0C2bxQuwDngC0dAGI5_hTH-zLf6quWgL1ZNl9lbFm4rIlf9OK8MjFWY2VhX6xqrVTSKJi_BZ1htWq_bCRdlmhrr-2wFMHKjluPo9RTFj1HgtagULjeMMmFWw_faVPN6PaqbGZi1P-pLd2dKCG6z1d-qngdkqpYvZKmWYpKWCDjmWVtPqp0rtfVY2dTX8nBsU3zkOXXg6NT3XLqTuzJINz--nK8i55tH6N4sLLwwj0SpoDu62nak7m49JI_CBEIscHuJf9QvNkEMwzvl2oztQ1f7riNUim5fnYYt9-Yidym1oxjl7Bl52k4u6IGzlOfkgTbbZOfAiKZe_KSfqKX72nWUbfL4sNvqb4eoiSHRwZBoZ0i0LqmgzpBoZSgaEm0NiW4wJNoaEh0M6QU5Pz46Ozzx2u03vILxsPFExJmMuZ9qEQqVRmVZqkwqFcgMXX8ppRLKTiAilUDYmJZx6CsVJ5JFpVSMvSRbpjZ6l1CdyjJmCl5ijBfKlzIoYF5bRCLGIJTPyOfu6-ZFq02PW6Rc544jwXIAJXegzMiH_tkbp8iy8an3HUg5fExcBRNG16tljhtlJShaBb2-cqD17XRoz0gygbN_AMXYp3dMdWVF2SEYDBM_eP3HNt-QJ8N_8pZsNbcr_Q4C2kbuWXPcs-mg3_K8rEQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+mutational+scanning+of+a+kinase+in+vivo+reveals+substrate-dependent+fitness+landscapes&rft.jtitle=Nucleic+acids+research&rft.au=Melnikov%2C+Alexandre&rft.au=Rogov%2C+Peter&rft.au=Wang%2C+Li&rft.au=Gnirke%2C+Andreas&rft.date=2014-08-18&rft.eissn=1362-4962&rft.volume=42&rft.issue=14&rft.spage=e112&rft_id=info:doi/10.1093%2Fnar%2Fgku511&rft_id=info%3Apmid%2F24914046&rft.externalDocID=24914046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon