Numerical study of non-Newtonian nano-fluid in a micro-channel with adding slip velocity and porous blocks

The investigation of microfluidics heat transfer in recent years has been of great interest to researchers. In studies to improve the thermal performance of micro-devices, the use of nano-fluids, geometric corrections and other parameters have been investigated. In addition to examining the heat tra...

Full description

Saved in:
Bibliographic Details
Published inInternational communications in heat and mass transfer Vol. 118; p. 104843
Main Authors Rahmati, Ahmad Reza, Derikvand, Mohammad
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2020
Subjects
Online AccessGet full text
ISSN0735-1933
1879-0178
DOI10.1016/j.icheatmasstransfer.2020.104843

Cover

Abstract The investigation of microfluidics heat transfer in recent years has been of great interest to researchers. In studies to improve the thermal performance of micro-devices, the use of nano-fluids, geometric corrections and other parameters have been investigated. In addition to examining the heat transfer of cooling systems, the research of thermodynamics second-law of these systems has been widely studied in recent years. In this study, thermodynamics second law and heat transfer of non-Newtonian nano-fluid in a micro-channel with distributing variable temperature on the wall, the presence and absence of porous blocks and slip velocity with finite volume method (SIMPLE algorithm) have been investigated. Non-Newtonian nano-fluid contains water-CMC as the basis fluid and volume fraction of 3% and 4% nano-particles of TiO2. The current study is reviewed in two sections in the Reynolds number (10−100) and nano-particles volume fraction (3–4). In the first section, it investigates the influence of slip velocity and compares first and second-order models with different slip factor (0–0.1) on heat transfer, fluid flow, entropy generation and exergy losses. The outcomes present that the slip velocity of the first-order increases the mean Nusselt number in the range of 2.02% to 12.48%, and this range is 1.91% to 7.52% for second-order. Also, the first-order and second-order slip velocities reduce the generation rate of frictional entropy by a maximum of 76.2% and 67.43%, respectively. The rate generation of thermal entropy and exergy losses exhibits variable behaviour with Reynolds number. In the second section, the Darcy number (5 × 10−3–5 × 10−5), porosity (0.75–0.95) and thermal conductivity ratio (1–15) with first-order slip velocity are examined. The Nusselt number increases locally by reducing, reducing and enhancing the Darcy number, porosity and thermal conductivity ratio, respectively. The production rate of frictional entropy also increments by more than 800% with reducing Darcy number and porosity.
AbstractList The investigation of microfluidics heat transfer in recent years has been of great interest to researchers. In studies to improve the thermal performance of micro-devices, the use of nano-fluids, geometric corrections and other parameters have been investigated. In addition to examining the heat transfer of cooling systems, the research of thermodynamics second-law of these systems has been widely studied in recent years. In this study, thermodynamics second law and heat transfer of non-Newtonian nano-fluid in a micro-channel with distributing variable temperature on the wall, the presence and absence of porous blocks and slip velocity with finite volume method (SIMPLE algorithm) have been investigated. Non-Newtonian nano-fluid contains water-CMC as the basis fluid and volume fraction of 3% and 4% nano-particles of TiO2. The current study is reviewed in two sections in the Reynolds number (10−100) and nano-particles volume fraction (3–4). In the first section, it investigates the influence of slip velocity and compares first and second-order models with different slip factor (0–0.1) on heat transfer, fluid flow, entropy generation and exergy losses. The outcomes present that the slip velocity of the first-order increases the mean Nusselt number in the range of 2.02% to 12.48%, and this range is 1.91% to 7.52% for second-order. Also, the first-order and second-order slip velocities reduce the generation rate of frictional entropy by a maximum of 76.2% and 67.43%, respectively. The rate generation of thermal entropy and exergy losses exhibits variable behaviour with Reynolds number. In the second section, the Darcy number (5 × 10−3–5 × 10−5), porosity (0.75–0.95) and thermal conductivity ratio (1–15) with first-order slip velocity are examined. The Nusselt number increases locally by reducing, reducing and enhancing the Darcy number, porosity and thermal conductivity ratio, respectively. The production rate of frictional entropy also increments by more than 800% with reducing Darcy number and porosity.
ArticleNumber 104843
Author Derikvand, Mohammad
Rahmati, Ahmad Reza
Author_xml – sequence: 1
  givenname: Ahmad Reza
  surname: Rahmati
  fullname: Rahmati, Ahmad Reza
  email: ar_rahmati@kashanu.ac.ir
– sequence: 2
  givenname: Mohammad
  surname: Derikvand
  fullname: Derikvand, Mohammad
BookMark eNqVkMFOGzEQhi0EEiHwDj72sqnHTna9t1ZRKaCIXsp55bXHZMLGjmwnKG_fjcKJXtrTSPNL3_zz3bDLEAMy9gXEDATUXzczsms0ZWtyLsmE7DHNpJCneK7n6oJNQDdtJaDRl2wiGrWooFXqmt3kvBFCgAY9YZvn_RYTWTPwXPbuyKPn46XqGd9LDGQCDybEyg97cpwCN3xLNsXKrk0IOPB3KmtunKPwyvNAO37AIVoqR26C47uY4j7zfly95Vt25c2Q8e5jTtnL_Y_fy4dq9evn4_L7qrJqLkvVKieh1QsAUffKao-qBlPX3kgFoK2TXjaLuWpRQm-bGnuhvRGyrnXb9IBqyu7P3LFnzgl9N_YxhWIYPdHQgehOBrtN97fB7mSwOxscQd8-gXaJtiYd_wfxdEbg-PCBxjRbwmDRUUJbOhfp32F_AOltoCY
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2025_108715
crossref_primary_10_1088_1402_4896_acbdc7
crossref_primary_10_1166_jon_2022_1866
crossref_primary_10_1140_epjp_s13360_022_03210_8
crossref_primary_10_1016_j_jtice_2022_104642
crossref_primary_10_1115_1_4067588
crossref_primary_10_1007_s13369_023_07686_z
crossref_primary_10_1016_j_icheatmasstransfer_2024_108345
crossref_primary_10_1016_j_jtice_2023_104707
crossref_primary_10_1002_admi_202201224
crossref_primary_10_1016_j_applthermaleng_2023_120546
crossref_primary_10_1007_s10973_023_12539_w
crossref_primary_10_1016_j_icheatmasstransfer_2021_105633
crossref_primary_10_1007_s42241_021_0102_0
crossref_primary_10_1088_1402_4896_ac79d7
crossref_primary_10_1016_j_ijheatfluidflow_2024_109409
crossref_primary_10_1615_JPorMedia_2022043151
crossref_primary_10_1007_s42452_024_05864_8
crossref_primary_10_1016_j_enganabound_2022_12_033
crossref_primary_10_1088_1361_6528_acbda1
crossref_primary_10_1088_1361_6528_acdc2f
crossref_primary_10_1002_mma_7852
crossref_primary_10_1039_D1SE00938A
crossref_primary_10_1016_j_est_2023_109357
crossref_primary_10_1016_j_est_2023_106663
crossref_primary_10_1088_1402_4896_ac0fd3
crossref_primary_10_1155_2022_1523287
Cites_doi 10.1016/j.icheatmasstransfer.2020.104663
10.1016/j.csite.2020.100597
10.3390/app5030294
10.1016/j.ijheatmasstransfer.2014.11.006
10.1016/B978-008044527-4/50004-9
10.1016/j.icheatmasstransfer.2019.104404
10.1016/j.ijthermalsci.2018.02.013
10.1016/j.ijheatmasstransfer.2014.07.022
10.1016/S0065-2717(08)70233-8
10.1016/j.ijmecsci.2019.105415
10.1016/j.physe.2017.06.015
10.1016/j.icheatmasstransfer.2020.104501
10.1016/j.ijheatmasstransfer.2016.08.053
10.1016/j.tsep.2018.08.007
10.1016/j.ijnonlinmec.2011.07.013
10.1016/j.ijheatmasstransfer.2017.11.125
10.1016/j.applthermaleng.2019.04.009
10.1016/j.molliq.2020.112533
10.1016/j.ijheatmasstransfer.2010.11.039
10.1016/j.physe.2017.06.013
10.1016/j.enconman.2017.05.057
10.1016/j.renene.2019.04.007
10.1016/j.applthermaleng.2020.115011
10.1016/j.powtec.2019.05.036
10.1016/j.apt.2016.04.005
10.1016/j.molliq.2019.01.012
10.1364/OL.44.000053
10.1016/j.asej.2014.12.008
10.1016/0009-2509(85)85113-7
10.1016/S0017-9310(03)00156-X
10.1080/10407782.2011.540964
10.1007/s10973-019-08256-y
10.1016/j.egypro.2019.01.601
10.1016/j.ijthermalsci.2007.02.001
10.1016/j.ijheatmasstransfer.2019.118482
10.1016/j.cjph.2017.07.001
10.1016/j.rinp.2018.03.013
10.1016/j.ijthermalsci.2020.106320
10.1016/j.asej.2016.04.019
10.1016/j.ijheatmasstransfer.2018.01.063
10.1016/j.ijheatmasstransfer.2012.11.001
10.1016/j.ijthermalsci.2013.07.020
10.1108/HFF-05-2018-0192
10.1016/j.ijheatmasstransfer.2015.05.110
10.1016/0142-727X(95)00032-L
10.1016/j.icheatmasstransfer.2010.11.019
10.1016/j.ijthermalsci.2011.04.013
10.1016/j.applthermaleng.2016.03.038
10.1016/j.icheatmasstransfer.2019.104446
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.icheatmasstransfer.2020.104843
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0178
ExternalDocumentID 10_1016_j_icheatmasstransfer_2020_104843
S0735193320303717
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c342t-93d219851106b3c8fe361a66fa23118cd2f275439e21bc76eb08fa0266897b1e3
IEDL.DBID .~1
ISSN 0735-1933
IngestDate Thu Oct 16 04:43:09 EDT 2025
Thu Apr 24 22:50:08 EDT 2025
Fri Feb 23 02:46:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Porous block
Slip velocity
Non-Newtonian
Microchannel
Heat transfer
Entropy generation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-93d219851106b3c8fe361a66fa23118cd2f275439e21bc76eb08fa0266897b1e3
ParticipantIDs crossref_citationtrail_10_1016_j_icheatmasstransfer_2020_104843
crossref_primary_10_1016_j_icheatmasstransfer_2020_104843
elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2020_104843
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle International communications in heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Safaei, Rahmanian, Goodarzi (bb0255) 2011; 6
Ngoma, Erchiqui (bb0265) 2007; 46
Li, Zhu, Zhao, Peng (bb0070) 2019; 143
Said, Abdelkareem, Rezk, Nassef (bb0025) 2019; 353
Dharmadhikari, Kale (bb0170) 1985; 40
Adesanya (bb0050) 2015; 6
Hojjat, Etemad, Bagheri, Thibault (bb0210) 2011; 54
Sheikholeslami, Ellahi (bb0215) 2015; 89
Aminossadati, Raisi, Ghasemi (bb0245) 2011; 46
Xu (bb0095) 2020; 110
Kiyasatfar (bb0135) 2018; 128
Huminic, Huminic (bb0045) 2020; 302
Neyestani, Nazari, Shahmardan, Sharifpur, Ashouri, Meyer (bb0090) 2019; 138
Urmi, Rahman, Hamzah (bb0040) 2020; 116
Nield, Bejan (bb0165) 2006
Sung, Kim, Hyun (bb0275) 1995; 16
Al-Rashed, Shahsavar, Entezari, Moghimi, Adio, Nguyen (bb0015) 2019; 155
Nojoomizadeh, Karimipour, Firouzi, Afrand (bb0080) 2018; 119
Rehman, Al-Mdallal (bb0130) 2020; 18
Khan, Qasim, Haq, Al-Mdallal (bb0120) 2017; 55
Helvaci, Khan (bb0280) 2017; 104
Nebbali, Bouhadef (bb0160) 2011; 50
Shyam, Chhabra (bb0195) 2013; 57
Vicki, Abdullah, Gunnasegaran (bb0035) 2020
Yuan, Zhou, Fu, Liu (bb0075) 2020; 152
Jiang, Wang, Xu, Xu, Ji, Zou, Zhang (bb0005) 2019; 44
Sheikholeslami, Ellahi (bb0220) 2015; 5
Raisi, Ghasemi, Aminossadati (bb0270) 2011; 59
Chen, Hadim (bb0175) 1998; 1
Bejan, Kestin (bb0180) 1983
Shamsi, Akbari, Marzban, Toghraie, Mashayekhi (bb0190) 2017; 93
Patankar (bb0240) 2018
Khodabandeh, Rahbari, Rosen, Ashrafi, Akbari, Anvari (bb0235) 2017; 148
Haq, Soomro, Mekkaoui, Al-Mdallal (bb0085) 2018; 121
Yang, Du (bb0020) 2020; 172
Delisle, Welsford, Saghir (bb0100) 2019
Ling, Zhou, Liu, Zhou, Yuan, Huang (bb0010) 2020; 170
Li, He, Gu, Sun, Liu (bb0065) 2019; 158
Ting, Hung, Guo (bb0125) 2015; 81
Rezaei, Akbari, Marzban, Toghraie, Pourfattah, Mashayekhi (bb0250) 2017; 93
Colin (bb0260) 2006
Hojjat, Etemad, Bagheri, Thibault (bb0200) 2011; 38
Islami, Dastvareh, Gharraei (bb0145) 2014; 78
Narendran, Bhat, Akshay, Perumal (bb0055) 2018; 8
Hameed, Mukhtar, Shafiq, Qizilbash, Khan, Rashid, Bavoh, Rehman, Guardo (bb0030) 2019; 277
Manay, Akyürek, Sahin (bb0115) 2018; 9
Shenoy (bb0155) 1994
Goodarzi, Javid, Sajadifar, Nojoomizadeh, Motaharipour, Bach, Karimipour (bb0060) 2019; 29
Reddy, Chamkha (bb0150) 2016; 27
Vatanparast, Hossainpour, Keyhani-Asl, Forouzi (bb0105) 2020; 111
Rehman, Al-Mdallal, Tlili, Malik (bb0110) 2020; 112
Esmaeilnejad, Aminfar, Neistanak (bb0225) 2014; 75
Ganesh, Hakeem, Ganga (bb0140) 2018; 9
Khanafer, Vafai, Lightstone (bb0205) 2003; 46
Khodabandeh, Pourramezan, Pakravan (bb0230) 2016; 105
Farshad, Sheikholeslami (bb0185) 2019; 141
Narendran (10.1016/j.icheatmasstransfer.2020.104843_bb0055) 2018; 8
Esmaeilnejad (10.1016/j.icheatmasstransfer.2020.104843_bb0225) 2014; 75
Dharmadhikari (10.1016/j.icheatmasstransfer.2020.104843_bb0170) 1985; 40
Neyestani (10.1016/j.icheatmasstransfer.2020.104843_bb0090) 2019; 138
Hojjat (10.1016/j.icheatmasstransfer.2020.104843_bb0200) 2011; 38
Yang (10.1016/j.icheatmasstransfer.2020.104843_bb0020) 2020; 172
Manay (10.1016/j.icheatmasstransfer.2020.104843_bb0115) 2018; 9
Rezaei (10.1016/j.icheatmasstransfer.2020.104843_bb0250) 2017; 93
Sheikholeslami (10.1016/j.icheatmasstransfer.2020.104843_bb0220) 2015; 5
Farshad (10.1016/j.icheatmasstransfer.2020.104843_bb0185) 2019; 141
Hojjat (10.1016/j.icheatmasstransfer.2020.104843_bb0210) 2011; 54
Khodabandeh (10.1016/j.icheatmasstransfer.2020.104843_bb0230) 2016; 105
Urmi (10.1016/j.icheatmasstransfer.2020.104843_bb0040) 2020; 116
Kiyasatfar (10.1016/j.icheatmasstransfer.2020.104843_bb0135) 2018; 128
Raisi (10.1016/j.icheatmasstransfer.2020.104843_bb0270) 2011; 59
Nojoomizadeh (10.1016/j.icheatmasstransfer.2020.104843_bb0080) 2018; 119
Vicki (10.1016/j.icheatmasstransfer.2020.104843_bb0035) 2020
Nebbali (10.1016/j.icheatmasstransfer.2020.104843_bb0160) 2011; 50
Adesanya (10.1016/j.icheatmasstransfer.2020.104843_bb0050) 2015; 6
Reddy (10.1016/j.icheatmasstransfer.2020.104843_bb0150) 2016; 27
Hameed (10.1016/j.icheatmasstransfer.2020.104843_bb0030) 2019; 277
Shyam (10.1016/j.icheatmasstransfer.2020.104843_bb0195) 2013; 57
Colin (10.1016/j.icheatmasstransfer.2020.104843_bb0260) 2006
Said (10.1016/j.icheatmasstransfer.2020.104843_bb0025) 2019; 353
Rehman (10.1016/j.icheatmasstransfer.2020.104843_bb0110) 2020; 112
Sung (10.1016/j.icheatmasstransfer.2020.104843_bb0275) 1995; 16
Nield (10.1016/j.icheatmasstransfer.2020.104843_bb0165) 2006
Li (10.1016/j.icheatmasstransfer.2020.104843_bb0070) 2019; 143
Li (10.1016/j.icheatmasstransfer.2020.104843_bb0065) 2019; 158
Khanafer (10.1016/j.icheatmasstransfer.2020.104843_bb0205) 2003; 46
Bejan (10.1016/j.icheatmasstransfer.2020.104843_bb0180) 1983
Ling (10.1016/j.icheatmasstransfer.2020.104843_bb0010) 2020; 170
Sheikholeslami (10.1016/j.icheatmasstransfer.2020.104843_bb0215) 2015; 89
Patankar (10.1016/j.icheatmasstransfer.2020.104843_bb0240) 2018
Safaei (10.1016/j.icheatmasstransfer.2020.104843_bb0255) 2011; 6
Ngoma (10.1016/j.icheatmasstransfer.2020.104843_bb0265) 2007; 46
Shamsi (10.1016/j.icheatmasstransfer.2020.104843_bb0190) 2017; 93
Islami (10.1016/j.icheatmasstransfer.2020.104843_bb0145) 2014; 78
Jiang (10.1016/j.icheatmasstransfer.2020.104843_bb0005) 2019; 44
Haq (10.1016/j.icheatmasstransfer.2020.104843_bb0085) 2018; 121
Shenoy (10.1016/j.icheatmasstransfer.2020.104843_bb0155) 1994
Chen (10.1016/j.icheatmasstransfer.2020.104843_bb0175) 1998; 1
Huminic (10.1016/j.icheatmasstransfer.2020.104843_bb0045) 2020; 302
Aminossadati (10.1016/j.icheatmasstransfer.2020.104843_bb0245) 2011; 46
Delisle (10.1016/j.icheatmasstransfer.2020.104843_bb0100) 2019
Khan (10.1016/j.icheatmasstransfer.2020.104843_bb0120) 2017; 55
Ting (10.1016/j.icheatmasstransfer.2020.104843_bb0125) 2015; 81
Vatanparast (10.1016/j.icheatmasstransfer.2020.104843_bb0105) 2020; 111
Al-Rashed (10.1016/j.icheatmasstransfer.2020.104843_bb0015) 2019; 155
Ganesh (10.1016/j.icheatmasstransfer.2020.104843_bb0140) 2018; 9
Goodarzi (10.1016/j.icheatmasstransfer.2020.104843_bb0060) 2019; 29
Yuan (10.1016/j.icheatmasstransfer.2020.104843_bb0075) 2020; 152
Rehman (10.1016/j.icheatmasstransfer.2020.104843_bb0130) 2020; 18
Khodabandeh (10.1016/j.icheatmasstransfer.2020.104843_bb0235) 2017; 148
Xu (10.1016/j.icheatmasstransfer.2020.104843_bb0095) 2020; 110
Helvaci (10.1016/j.icheatmasstransfer.2020.104843_bb0280) 2017; 104
References_xml – volume: 6
  start-page: 1045
  year: 2015
  end-page: 1052
  ident: bb0050
  article-title: Free convective flow of heat generating fluid through a porous vertical channel with velocity slip and temperature jump
  publication-title: Ain. Shams Eng. J.
– volume: 18
  start-page: 100597
  year: 2020
  ident: bb0130
  article-title: On partially heated circular obstacle in a channel having heated rectangular ribs: finite element outcomes
  publication-title: Case Stud. Therm. Eng.
– volume: 59
  start-page: 114
  year: 2011
  end-page: 129
  ident: bb0270
  article-title: A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions
  publication-title: Numer. Heat Transf. Part A Appl.
– volume: 148
  start-page: 43
  year: 2017
  end-page: 56
  ident: bb0235
  article-title: Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace
  publication-title: Energy Convers. Manag.
– volume: 75
  start-page: 76
  year: 2014
  end-page: 86
  ident: bb0225
  article-title: Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids
  publication-title: Int. J. Therm. Sci.
– volume: 54
  start-page: 1017
  year: 2011
  end-page: 1023
  ident: bb0210
  article-title: Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network
  publication-title: Int. J. Heat Mass Transf.
– volume: 27
  start-page: 1207
  year: 2016
  end-page: 1218
  ident: bb0150
  article-title: Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption
  publication-title: Adv. Powder Technol.
– volume: 93
  start-page: 167
  year: 2017
  end-page: 178
  ident: bb0190
  article-title: Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs
  publication-title: Phys. E Low Dimension. Syst. Nanostruct.
– volume: 155
  start-page: 247
  year: 2019
  end-page: 258
  ident: bb0015
  article-title: Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: thermal performance and thermodynamic considerations
  publication-title: Appl. Therm. Eng.
– volume: 29
  start-page: 1606
  year: 2019
  end-page: 1628
  ident: bb0060
  article-title: Slip velocity and temperature jump of a non-Newtonian nanofluid, aqueous solution of carboxy-methyl cellulose/aluminum oxide nanoparticles, through a microtube
  publication-title: Int. J. Numer. Methods Heat Fluid Flow.
– volume: 16
  start-page: 527
  year: 1995
  end-page: 535
  ident: bb0275
  article-title: Forced convection from an isolated heat source in a channel with porous medium
  publication-title: Int. J. Heat Fluid Flow
– volume: 353
  start-page: 345
  year: 2019
  end-page: 358
  ident: bb0025
  article-title: Fuzzy modeling and optimization for experimental thermophysical properties of water and ethylene glycol mixture for Al2O3 and TiO2 based nanofluids
  publication-title: Powder Technol.
– volume: 112
  start-page: 104501
  year: 2020
  ident: bb0110
  article-title: Impact of heated triangular ribs on hydrodynamic forces in a rectangular domain with heated elliptic cylinder: finite element analysis
  publication-title: Int. Commun. Heat Mass Transf.
– start-page: 9
  year: 2006
  end-page: 86
  ident: bb0260
  article-title: Single-phase gas flow in microchannels
  publication-title: Heat Transf. Fluid Flow Minichannels Microchannels.
– year: 1983
  ident: bb0180
  article-title: Entropy Generation Through Heat and Fluid Flow
– volume: 8
  start-page: 93
  year: 2018
  end-page: 104
  ident: bb0055
  article-title: Experimental analysis on exergy studies of flow through a minichannel using TiO2/water nanofluids
  publication-title: Therm. Sci. Eng. Prog.
– volume: 302
  start-page: 112533
  year: 2020
  ident: bb0045
  article-title: Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review
  publication-title: J. Mol. Liq.
– volume: 116
  start-page: 104663
  year: 2020
  ident: bb0040
  article-title: An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 40
  start-page: 527
  year: 1985
  end-page: 529
  ident: bb0170
  article-title: Flow of non-Newtonian fluids through porous media
  publication-title: Chem. Eng. Sci.
– volume: 46
  start-page: 1076
  year: 2007
  end-page: 1083
  ident: bb0265
  article-title: Heat flux and slip effects on liquid flow in a microchannel
  publication-title: Int. J. Therm. Sci.
– volume: 110
  start-page: 104404
  year: 2020
  ident: bb0095
  article-title: Thermal transport in microchannels partially filled with micro-porous media involving flow inertia, flow/thermal slips, thermal non-equilibrium and thermal asymmetry
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 46
  start-page: 1373
  year: 2011
  end-page: 1382
  ident: bb0245
  article-title: Effects of magnetic field on nanofluid forced convection in a partially heated microchannel
  publication-title: Int. J. Non. Linear. Mech.
– volume: 5
  start-page: 294
  year: 2015
  end-page: 306
  ident: bb0220
  article-title: Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall
  publication-title: Appl. Sci.
– volume: 158
  start-page: 5459
  year: 2019
  end-page: 5464
  ident: bb0065
  article-title: Numerical study of droplet formation in the T-junction microchannel with wall velocity slip
  publication-title: Energy Procedia
– volume: 172
  start-page: 105415
  year: 2020
  ident: bb0020
  article-title: Numerical simulation of nanofluid flow and heat transfer in a microchannel: the effect of changing the injection layout arrangement
  publication-title: Int. J. Mech. Sci.
– volume: 57
  start-page: 742
  year: 2013
  end-page: 755
  ident: bb0195
  article-title: Effect of Prandtl number on heat transfer from tandem square cylinders immersed in power-law fluids in the low Reynolds number regime
  publication-title: Int. J. Heat Mass Transf.
– volume: 141
  start-page: 246
  year: 2019
  end-page: 258
  ident: bb0185
  article-title: Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis
  publication-title: Renew. Energy
– volume: 55
  start-page: 1284
  year: 2017
  end-page: 1293
  ident: bb0120
  article-title: Closed form dual nature solutions of fluid flow and heat transfer over a stretching/shrinking sheet in a porous medium
  publication-title: Chin. J. Phys.
– volume: 104
  start-page: 318
  year: 2017
  end-page: 327
  ident: bb0280
  article-title: Heat transfer and entropy generation analysis of HFE 7000 based nanorefrigerants
  publication-title: Int. J. Heat Mass Transf.
– start-page: 113458
  year: 2020
  ident: bb0035
  article-title: Thermophysical properties of Al2O3-CuO hybrid nanofluid at different nanoparticle mixture ratio: an experimental approach
  publication-title: J. Mol. Liq.
– volume: 46
  start-page: 3639
  year: 2003
  end-page: 3653
  ident: bb0205
  article-title: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 138
  start-page: 805
  year: 2019
  end-page: 817
  ident: bb0090
  article-title: Thermal characteristics of CPU cooling by using a novel porous heat sink and nanofluids
  publication-title: J. Therm. Anal. Calorim.
– volume: 44
  start-page: 53
  year: 2019
  end-page: 56
  ident: bb0005
  article-title: Integrated optofluidic micro-pumps in micro-channels with uniform excitation of a polarization rotating beam
  publication-title: Opt. Lett.
– volume: 38
  start-page: 144
  year: 2011
  end-page: 148
  ident: bb0200
  article-title: Rheological characteristics of non-Newtonian nanofluids: experimental investigation
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 143
  start-page: 118482
  year: 2019
  ident: bb0070
  article-title: Experimental investigation of the heat transfer and flow characteristics of microchannels with microribs
  publication-title: Int. J. Heat Mass Transf.
– year: 2006
  ident: bb0165
  article-title: Convection in Porous Media
– volume: 93
  start-page: 179
  year: 2017
  end-page: 189
  ident: bb0250
  article-title: The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel
  publication-title: Phys. E Low Dimension. Syst. Nanostruct.
– volume: 170
  start-page: 115011
  year: 2020
  ident: bb0010
  article-title: Structure and geometric dimension optimization of interlaced microchannel for heat transfer performance enhancement
  publication-title: Appl. Therm. Eng.
– volume: 9
  start-page: 615
  year: 2018
  end-page: 624
  ident: bb0115
  article-title: Entropy generation of nanofluid flow in a microchannel heat sink
  publication-title: Results Phys.
– volume: 1
  start-page: 147
  year: 1998
  end-page: 157
  ident: bb0175
  article-title: Numerical study of non-Darcy forced convection in a packed bed saturated with a power-law fluid
  publication-title: J. Porous Media.
– volume: 89
  start-page: 799
  year: 2015
  end-page: 808
  ident: bb0215
  article-title: Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid
  publication-title: Int. J. Heat Mass Transf.
– volume: 50
  start-page: 1984
  year: 2011
  end-page: 1995
  ident: bb0160
  article-title: Non-Newtonian fluid flow in plane channels: heat transfer enhancement using porous blocks
  publication-title: Int. J. Therm. Sci.
– volume: 121
  start-page: 1168
  year: 2018
  end-page: 1178
  ident: bb0085
  article-title: MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium
  publication-title: Int. J. Heat Mass Transf.
– year: 2018
  ident: bb0240
  article-title: Numerical Heat Transfer and Fluid Flow
– volume: 6
  start-page: 7456
  year: 2011
  end-page: 7470
  ident: bb0255
  article-title: Numerical study of laminar mixed convection heat transfer of power-law non-Newtonian fluids in square enclosures by finite volume method
  publication-title: Int. J. Phys. Sci.
– volume: 152
  start-page: 106320
  year: 2020
  ident: bb0075
  article-title: Experimental and numerical investigation of heat and mass transfer in non-uniform wavy microchannels
  publication-title: Int. J. Therm. Sci.
– volume: 277
  start-page: 812
  year: 2019
  end-page: 824
  ident: bb0030
  article-title: Experimental investigation on synthesis, characterization, stability, thermo-physical properties and rheological behavior of MWCNTs-kapok seed oil based nanofluid
  publication-title: J. Mol. Liq.
– volume: 111
  start-page: 104446
  year: 2020
  ident: bb0105
  article-title: Numerical investigation of total entropy generation in a rectangular channel with staggered semi-porous fins
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 119
  start-page: 891
  year: 2018
  end-page: 906
  ident: bb0080
  article-title: Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of Fe3O4/water nanofluid flow in a microchannel while its lower half filled by a porous medium
  publication-title: Int. J. Heat Mass Transf.
– start-page: 1
  year: 2019
  end-page: 10
  ident: bb0100
  article-title: Forced convection study with microporous channels and nanofluid: experimental and numerical
  publication-title: J. Therm. Anal. Calorim.
– volume: 128
  start-page: 15
  year: 2018
  end-page: 27
  ident: bb0135
  article-title: Convective heat transfer and entropy generation analysis of non-Newtonian power-law fluid flows in parallel-plate and circular microchannels under slip boundary conditions
  publication-title: Int. J. Therm. Sci.
– volume: 105
  start-page: 537
  year: 2016
  end-page: 548
  ident: bb0230
  article-title: Effects of excess air and preheating on the flow pattern and efficiency of the radiative section of a fired heater
  publication-title: Appl. Therm. Eng.
– volume: 81
  start-page: 862
  year: 2015
  end-page: 877
  ident: bb0125
  article-title: Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels
  publication-title: Int. J. Heat Mass Transf.
– start-page: 101
  year: 1994
  end-page: 190
  ident: bb0155
  article-title: Non-Newtonian fluid heat transfer in porous media
  publication-title: Adv. Heat Transf
– volume: 9
  start-page: 939
  year: 2018
  end-page: 951
  ident: bb0140
  article-title: Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects
  publication-title: Ain Shams Eng. J.
– volume: 78
  start-page: 917
  year: 2014
  end-page: 929
  ident: bb0145
  article-title: An investigation on the hydrodynamic and heat transfer of nanofluid flow, with non-Newtonian base fluid, in micromixers
  publication-title: Int. J. Heat Mass Transf.
– volume: 116
  start-page: 104663
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0040
  article-title: An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104663
– volume: 18
  start-page: 100597
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0130
  article-title: On partially heated circular obstacle in a channel having heated rectangular ribs: finite element outcomes
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2020.100597
– year: 2006
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0165
– volume: 5
  start-page: 294
  year: 2015
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0220
  article-title: Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall
  publication-title: Appl. Sci.
  doi: 10.3390/app5030294
– volume: 1
  start-page: 147
  year: 1998
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0175
  article-title: Numerical study of non-Darcy forced convection in a packed bed saturated with a power-law fluid
  publication-title: J. Porous Media.
– volume: 81
  start-page: 862
  year: 2015
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0125
  article-title: Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.11.006
– start-page: 9
  year: 2006
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0260
  article-title: Single-phase gas flow in microchannels
  publication-title: Heat Transf. Fluid Flow Minichannels Microchannels.
  doi: 10.1016/B978-008044527-4/50004-9
– volume: 110
  start-page: 104404
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0095
  article-title: Thermal transport in microchannels partially filled with micro-porous media involving flow inertia, flow/thermal slips, thermal non-equilibrium and thermal asymmetry
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2019.104404
– volume: 128
  start-page: 15
  year: 2018
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0135
  article-title: Convective heat transfer and entropy generation analysis of non-Newtonian power-law fluid flows in parallel-plate and circular microchannels under slip boundary conditions
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.02.013
– volume: 78
  start-page: 917
  year: 2014
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0145
  article-title: An investigation on the hydrodynamic and heat transfer of nanofluid flow, with non-Newtonian base fluid, in micromixers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.07.022
– start-page: 101
  year: 1994
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0155
  article-title: Non-Newtonian fluid heat transfer in porous media
  doi: 10.1016/S0065-2717(08)70233-8
– start-page: 1
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0100
  article-title: Forced convection study with microporous channels and nanofluid: experimental and numerical
  publication-title: J. Therm. Anal. Calorim.
– volume: 172
  start-page: 105415
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0020
  article-title: Numerical simulation of nanofluid flow and heat transfer in a microchannel: the effect of changing the injection layout arrangement
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.105415
– volume: 93
  start-page: 167
  year: 2017
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0190
  article-title: Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs
  publication-title: Phys. E Low Dimension. Syst. Nanostruct.
  doi: 10.1016/j.physe.2017.06.015
– volume: 112
  start-page: 104501
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0110
  article-title: Impact of heated triangular ribs on hydrodynamic forces in a rectangular domain with heated elliptic cylinder: finite element analysis
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104501
– volume: 104
  start-page: 318
  year: 2017
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0280
  article-title: Heat transfer and entropy generation analysis of HFE 7000 based nanorefrigerants
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.08.053
– year: 1983
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0180
– volume: 8
  start-page: 93
  year: 2018
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0055
  article-title: Experimental analysis on exergy studies of flow through a minichannel using TiO2/water nanofluids
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2018.08.007
– volume: 46
  start-page: 1373
  year: 2011
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0245
  article-title: Effects of magnetic field on nanofluid forced convection in a partially heated microchannel
  publication-title: Int. J. Non. Linear. Mech.
  doi: 10.1016/j.ijnonlinmec.2011.07.013
– volume: 119
  start-page: 891
  year: 2018
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0080
  article-title: Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of Fe3O4/water nanofluid flow in a microchannel while its lower half filled by a porous medium
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.11.125
– volume: 155
  start-page: 247
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0015
  article-title: Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: thermal performance and thermodynamic considerations
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.04.009
– volume: 302
  start-page: 112533
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0045
  article-title: Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.112533
– volume: 54
  start-page: 1017
  year: 2011
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0210
  article-title: Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.11.039
– volume: 93
  start-page: 179
  year: 2017
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0250
  article-title: The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel
  publication-title: Phys. E Low Dimension. Syst. Nanostruct.
  doi: 10.1016/j.physe.2017.06.013
– volume: 148
  start-page: 43
  year: 2017
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0235
  article-title: Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.05.057
– volume: 141
  start-page: 246
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0185
  article-title: Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.04.007
– volume: 170
  start-page: 115011
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0010
  article-title: Structure and geometric dimension optimization of interlaced microchannel for heat transfer performance enhancement
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115011
– volume: 353
  start-page: 345
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0025
  article-title: Fuzzy modeling and optimization for experimental thermophysical properties of water and ethylene glycol mixture for Al2O3 and TiO2 based nanofluids
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.05.036
– volume: 27
  start-page: 1207
  year: 2016
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0150
  article-title: Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.04.005
– volume: 277
  start-page: 812
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0030
  article-title: Experimental investigation on synthesis, characterization, stability, thermo-physical properties and rheological behavior of MWCNTs-kapok seed oil based nanofluid
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.01.012
– volume: 44
  start-page: 53
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0005
  article-title: Integrated optofluidic micro-pumps in micro-channels with uniform excitation of a polarization rotating beam
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.000053
– volume: 6
  start-page: 1045
  year: 2015
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0050
  article-title: Free convective flow of heat generating fluid through a porous vertical channel with velocity slip and temperature jump
  publication-title: Ain. Shams Eng. J.
  doi: 10.1016/j.asej.2014.12.008
– volume: 40
  start-page: 527
  year: 1985
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0170
  article-title: Flow of non-Newtonian fluids through porous media
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(85)85113-7
– year: 2018
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0240
– volume: 46
  start-page: 3639
  year: 2003
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0205
  article-title: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00156-X
– volume: 59
  start-page: 114
  year: 2011
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0270
  article-title: A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions
  publication-title: Numer. Heat Transf. Part A Appl.
  doi: 10.1080/10407782.2011.540964
– volume: 138
  start-page: 805
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0090
  article-title: Thermal characteristics of CPU cooling by using a novel porous heat sink and nanofluids
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08256-y
– volume: 158
  start-page: 5459
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0065
  article-title: Numerical study of droplet formation in the T-junction microchannel with wall velocity slip
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.601
– volume: 46
  start-page: 1076
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0265
  article-title: Heat flux and slip effects on liquid flow in a microchannel
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2007.02.001
– volume: 143
  start-page: 118482
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0070
  article-title: Experimental investigation of the heat transfer and flow characteristics of microchannels with microribs
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118482
– volume: 55
  start-page: 1284
  year: 2017
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0120
  article-title: Closed form dual nature solutions of fluid flow and heat transfer over a stretching/shrinking sheet in a porous medium
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2017.07.001
– volume: 9
  start-page: 615
  year: 2018
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0115
  article-title: Entropy generation of nanofluid flow in a microchannel heat sink
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.03.013
– volume: 152
  start-page: 106320
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0075
  article-title: Experimental and numerical investigation of heat and mass transfer in non-uniform wavy microchannels
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2020.106320
– volume: 9
  start-page: 939
  year: 2018
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0140
  article-title: Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2016.04.019
– volume: 121
  start-page: 1168
  year: 2018
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0085
  article-title: MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.01.063
– volume: 57
  start-page: 742
  year: 2013
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0195
  article-title: Effect of Prandtl number on heat transfer from tandem square cylinders immersed in power-law fluids in the low Reynolds number regime
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.11.001
– volume: 75
  start-page: 76
  year: 2014
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0225
  article-title: Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2013.07.020
– volume: 29
  start-page: 1606
  issue: 5
  year: 2019
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0060
  article-title: Slip velocity and temperature jump of a non-Newtonian nanofluid, aqueous solution of carboxy-methyl cellulose/aluminum oxide nanoparticles, through a microtube
  publication-title: Int. J. Numer. Methods Heat Fluid Flow.
  doi: 10.1108/HFF-05-2018-0192
– start-page: 113458
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0035
  article-title: Thermophysical properties of Al2O3-CuO hybrid nanofluid at different nanoparticle mixture ratio: an experimental approach
  publication-title: J. Mol. Liq.
– volume: 89
  start-page: 799
  year: 2015
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0215
  article-title: Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.05.110
– volume: 16
  start-page: 527
  year: 1995
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0275
  article-title: Forced convection from an isolated heat source in a channel with porous medium
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(95)00032-L
– volume: 38
  start-page: 144
  year: 2011
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0200
  article-title: Rheological characteristics of non-Newtonian nanofluids: experimental investigation
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2010.11.019
– volume: 50
  start-page: 1984
  year: 2011
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0160
  article-title: Non-Newtonian fluid flow in plane channels: heat transfer enhancement using porous blocks
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.04.013
– volume: 6
  start-page: 7456
  year: 2011
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0255
  article-title: Numerical study of laminar mixed convection heat transfer of power-law non-Newtonian fluids in square enclosures by finite volume method
  publication-title: Int. J. Phys. Sci.
– volume: 105
  start-page: 537
  year: 2016
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0230
  article-title: Effects of excess air and preheating on the flow pattern and efficiency of the radiative section of a fired heater
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.038
– volume: 111
  start-page: 104446
  year: 2020
  ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0105
  article-title: Numerical investigation of total entropy generation in a rectangular channel with staggered semi-porous fins
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2019.104446
SSID ssj0001818
Score 2.4258592
Snippet The investigation of microfluidics heat transfer in recent years has been of great interest to researchers. In studies to improve the thermal performance of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104843
SubjectTerms Entropy generation
Heat transfer
Microchannel
Non-Newtonian
Porous block
Slip velocity
Title Numerical study of non-Newtonian nano-fluid in a micro-channel with adding slip velocity and porous blocks
URI https://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104843
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EUfQgPvFNDh68xLVNmqYnkUVZFfeigreSpoms7nYXt3v1tzvTdn2gBwWPDckQMsPMl-abGYBDTxhfxZ7HPlBcOuO5kU5z421uBYacpKrAd9NVnXt59RA9zEB7mgtDtMrG99c-vfLWzUirOc3WqNdr3aJxEvwQIdqpwFsJZbDLmLoYHL9-0DwwglXeGCdzmr0ARx8cL2JbmnKAMLWsYKKjCqFh9fCppfg5VH0KPxcrsNzgRnZWb20VZlyxBkufqgmuwXzF5rTjdXjqTuqHmD6ryseyoWd4zefo0RDqoUGwwhRD7vuTXs56BTNsQLw8TlnAhesz-jnLiGlUPDLEoSNGxCKLeJ2ZImeI2IeTMctw6Hm8AfcX53ftDm-aKnArZFjyROTopAhnnahMWO2dUIFRyhtEeoG2eejDOEKY4sIgs7Fy2Yn2Bm9qSidxFjixCbO4Y7cFzCV57iMfopRIulhq6xMttbNRYlGE34bT6fmltqk4To0v-umUWvaUftdAShpIaw1sQ_IuYVRX3_jD2vZUZekXi0oxWPxays6_SNmFRfqqcxj3YLZ8mbh9BDNldlBZ6wHMnV1ed7pvgtT5jQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xEK8B8RRvPDCwmDax4zgTQhWovLpApW6R49iopU0rmq78ds5JykMwgMTq2CfLd7r7Lv7uDHBiHcYXoaWh9QTlRlmquJFUWZ1qhiEnKjrw3bdEs81vOkFnBhrTWhhHq6x8f-nTC29djdSq06yNut3aAxqngx_MRztlmJXMwjwP_NBlYGevHzwPDGGFO8bZ1E1fhNMPkpejW6p8gDg1L3CicS1C_eLmU3L2c6z6FH-u1mC1Ao7kotzbOsyYbANWPrUT3ICFgs6px5vQa03Km5g-KfrHkqElmOdTdGmI9dAiSKayIbX9STcl3YwoMnDEPOrKgDPTJ-7vLHFUo-yJIBAdEccs0gjYicpSgpB9OBmTBIeex1vQvrp8bDRp9aoC1Yz7OY1Yil7KAa26SJiW1jDhKSGsQqjnSZ361g8DxCnG9xIdCpPUpVWYqgkZhYln2DbM4Y7NDhATpakNrI9SAm5CLrWNJJdGB5FGEXYXzqfnF-uq5bh7-aIfT7llvfi7BmKngbjUwC5E7xJGZfuNP6xtTFUWfzGpGKPFr6Xs_YuUY1hqPt7fxXfXrdt9WHZfyoLGA5jLXybmEJFNnhwVlvsGQD77Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+of+non-Newtonian+nano-fluid+in+a+micro-channel+with+adding+slip+velocity+and+porous+blocks&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Rahmati%2C+Ahmad+Reza&rft.au=Derikvand%2C+Mohammad&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0735-1933&rft.eissn=1879-0178&rft.volume=118&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2020.104843&rft.externalDocID=S0735193320303717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon