Numerical study of non-Newtonian nano-fluid in a micro-channel with adding slip velocity and porous blocks
The investigation of microfluidics heat transfer in recent years has been of great interest to researchers. In studies to improve the thermal performance of micro-devices, the use of nano-fluids, geometric corrections and other parameters have been investigated. In addition to examining the heat tra...
Saved in:
| Published in | International communications in heat and mass transfer Vol. 118; p. 104843 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.11.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0735-1933 1879-0178 |
| DOI | 10.1016/j.icheatmasstransfer.2020.104843 |
Cover
| Abstract | The investigation of microfluidics heat transfer in recent years has been of great interest to researchers. In studies to improve the thermal performance of micro-devices, the use of nano-fluids, geometric corrections and other parameters have been investigated. In addition to examining the heat transfer of cooling systems, the research of thermodynamics second-law of these systems has been widely studied in recent years. In this study, thermodynamics second law and heat transfer of non-Newtonian nano-fluid in a micro-channel with distributing variable temperature on the wall, the presence and absence of porous blocks and slip velocity with finite volume method (SIMPLE algorithm) have been investigated. Non-Newtonian nano-fluid contains water-CMC as the basis fluid and volume fraction of 3% and 4% nano-particles of TiO2. The current study is reviewed in two sections in the Reynolds number (10−100) and nano-particles volume fraction (3–4). In the first section, it investigates the influence of slip velocity and compares first and second-order models with different slip factor (0–0.1) on heat transfer, fluid flow, entropy generation and exergy losses. The outcomes present that the slip velocity of the first-order increases the mean Nusselt number in the range of 2.02% to 12.48%, and this range is 1.91% to 7.52% for second-order. Also, the first-order and second-order slip velocities reduce the generation rate of frictional entropy by a maximum of 76.2% and 67.43%, respectively. The rate generation of thermal entropy and exergy losses exhibits variable behaviour with Reynolds number. In the second section, the Darcy number (5 × 10−3–5 × 10−5), porosity (0.75–0.95) and thermal conductivity ratio (1–15) with first-order slip velocity are examined. The Nusselt number increases locally by reducing, reducing and enhancing the Darcy number, porosity and thermal conductivity ratio, respectively. The production rate of frictional entropy also increments by more than 800% with reducing Darcy number and porosity. |
|---|---|
| AbstractList | The investigation of microfluidics heat transfer in recent years has been of great interest to researchers. In studies to improve the thermal performance of micro-devices, the use of nano-fluids, geometric corrections and other parameters have been investigated. In addition to examining the heat transfer of cooling systems, the research of thermodynamics second-law of these systems has been widely studied in recent years. In this study, thermodynamics second law and heat transfer of non-Newtonian nano-fluid in a micro-channel with distributing variable temperature on the wall, the presence and absence of porous blocks and slip velocity with finite volume method (SIMPLE algorithm) have been investigated. Non-Newtonian nano-fluid contains water-CMC as the basis fluid and volume fraction of 3% and 4% nano-particles of TiO2. The current study is reviewed in two sections in the Reynolds number (10−100) and nano-particles volume fraction (3–4). In the first section, it investigates the influence of slip velocity and compares first and second-order models with different slip factor (0–0.1) on heat transfer, fluid flow, entropy generation and exergy losses. The outcomes present that the slip velocity of the first-order increases the mean Nusselt number in the range of 2.02% to 12.48%, and this range is 1.91% to 7.52% for second-order. Also, the first-order and second-order slip velocities reduce the generation rate of frictional entropy by a maximum of 76.2% and 67.43%, respectively. The rate generation of thermal entropy and exergy losses exhibits variable behaviour with Reynolds number. In the second section, the Darcy number (5 × 10−3–5 × 10−5), porosity (0.75–0.95) and thermal conductivity ratio (1–15) with first-order slip velocity are examined. The Nusselt number increases locally by reducing, reducing and enhancing the Darcy number, porosity and thermal conductivity ratio, respectively. The production rate of frictional entropy also increments by more than 800% with reducing Darcy number and porosity. |
| ArticleNumber | 104843 |
| Author | Derikvand, Mohammad Rahmati, Ahmad Reza |
| Author_xml | – sequence: 1 givenname: Ahmad Reza surname: Rahmati fullname: Rahmati, Ahmad Reza email: ar_rahmati@kashanu.ac.ir – sequence: 2 givenname: Mohammad surname: Derikvand fullname: Derikvand, Mohammad |
| BookMark | eNqVkMFOGzEQhi0EEiHwDj72sqnHTna9t1ZRKaCIXsp55bXHZMLGjmwnKG_fjcKJXtrTSPNL3_zz3bDLEAMy9gXEDATUXzczsms0ZWtyLsmE7DHNpJCneK7n6oJNQDdtJaDRl2wiGrWooFXqmt3kvBFCgAY9YZvn_RYTWTPwXPbuyKPn46XqGd9LDGQCDybEyg97cpwCN3xLNsXKrk0IOPB3KmtunKPwyvNAO37AIVoqR26C47uY4j7zfly95Vt25c2Q8e5jTtnL_Y_fy4dq9evn4_L7qrJqLkvVKieh1QsAUffKao-qBlPX3kgFoK2TXjaLuWpRQm-bGnuhvRGyrnXb9IBqyu7P3LFnzgl9N_YxhWIYPdHQgehOBrtN97fB7mSwOxscQd8-gXaJtiYd_wfxdEbg-PCBxjRbwmDRUUJbOhfp32F_AOltoCY |
| CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2025_108715 crossref_primary_10_1088_1402_4896_acbdc7 crossref_primary_10_1166_jon_2022_1866 crossref_primary_10_1140_epjp_s13360_022_03210_8 crossref_primary_10_1016_j_jtice_2022_104642 crossref_primary_10_1115_1_4067588 crossref_primary_10_1007_s13369_023_07686_z crossref_primary_10_1016_j_icheatmasstransfer_2024_108345 crossref_primary_10_1016_j_jtice_2023_104707 crossref_primary_10_1002_admi_202201224 crossref_primary_10_1016_j_applthermaleng_2023_120546 crossref_primary_10_1007_s10973_023_12539_w crossref_primary_10_1016_j_icheatmasstransfer_2021_105633 crossref_primary_10_1007_s42241_021_0102_0 crossref_primary_10_1088_1402_4896_ac79d7 crossref_primary_10_1016_j_ijheatfluidflow_2024_109409 crossref_primary_10_1615_JPorMedia_2022043151 crossref_primary_10_1007_s42452_024_05864_8 crossref_primary_10_1016_j_enganabound_2022_12_033 crossref_primary_10_1088_1361_6528_acbda1 crossref_primary_10_1088_1361_6528_acdc2f crossref_primary_10_1002_mma_7852 crossref_primary_10_1039_D1SE00938A crossref_primary_10_1016_j_est_2023_109357 crossref_primary_10_1016_j_est_2023_106663 crossref_primary_10_1088_1402_4896_ac0fd3 crossref_primary_10_1155_2022_1523287 |
| Cites_doi | 10.1016/j.icheatmasstransfer.2020.104663 10.1016/j.csite.2020.100597 10.3390/app5030294 10.1016/j.ijheatmasstransfer.2014.11.006 10.1016/B978-008044527-4/50004-9 10.1016/j.icheatmasstransfer.2019.104404 10.1016/j.ijthermalsci.2018.02.013 10.1016/j.ijheatmasstransfer.2014.07.022 10.1016/S0065-2717(08)70233-8 10.1016/j.ijmecsci.2019.105415 10.1016/j.physe.2017.06.015 10.1016/j.icheatmasstransfer.2020.104501 10.1016/j.ijheatmasstransfer.2016.08.053 10.1016/j.tsep.2018.08.007 10.1016/j.ijnonlinmec.2011.07.013 10.1016/j.ijheatmasstransfer.2017.11.125 10.1016/j.applthermaleng.2019.04.009 10.1016/j.molliq.2020.112533 10.1016/j.ijheatmasstransfer.2010.11.039 10.1016/j.physe.2017.06.013 10.1016/j.enconman.2017.05.057 10.1016/j.renene.2019.04.007 10.1016/j.applthermaleng.2020.115011 10.1016/j.powtec.2019.05.036 10.1016/j.apt.2016.04.005 10.1016/j.molliq.2019.01.012 10.1364/OL.44.000053 10.1016/j.asej.2014.12.008 10.1016/0009-2509(85)85113-7 10.1016/S0017-9310(03)00156-X 10.1080/10407782.2011.540964 10.1007/s10973-019-08256-y 10.1016/j.egypro.2019.01.601 10.1016/j.ijthermalsci.2007.02.001 10.1016/j.ijheatmasstransfer.2019.118482 10.1016/j.cjph.2017.07.001 10.1016/j.rinp.2018.03.013 10.1016/j.ijthermalsci.2020.106320 10.1016/j.asej.2016.04.019 10.1016/j.ijheatmasstransfer.2018.01.063 10.1016/j.ijheatmasstransfer.2012.11.001 10.1016/j.ijthermalsci.2013.07.020 10.1108/HFF-05-2018-0192 10.1016/j.ijheatmasstransfer.2015.05.110 10.1016/0142-727X(95)00032-L 10.1016/j.icheatmasstransfer.2010.11.019 10.1016/j.ijthermalsci.2011.04.013 10.1016/j.applthermaleng.2016.03.038 10.1016/j.icheatmasstransfer.2019.104446 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.icheatmasstransfer.2020.104843 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-0178 |
| ExternalDocumentID | 10_1016_j_icheatmasstransfer_2020_104843 S0735193320303717 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c342t-93d219851106b3c8fe361a66fa23118cd2f275439e21bc76eb08fa0266897b1e3 |
| IEDL.DBID | .~1 |
| ISSN | 0735-1933 |
| IngestDate | Thu Oct 16 04:43:09 EDT 2025 Thu Apr 24 22:50:08 EDT 2025 Fri Feb 23 02:46:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Porous block Slip velocity Non-Newtonian Microchannel Heat transfer Entropy generation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c342t-93d219851106b3c8fe361a66fa23118cd2f275439e21bc76eb08fa0266897b1e3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_icheatmasstransfer_2020_104843 crossref_primary_10_1016_j_icheatmasstransfer_2020_104843 elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2020_104843 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | International communications in heat and mass transfer |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Safaei, Rahmanian, Goodarzi (bb0255) 2011; 6 Ngoma, Erchiqui (bb0265) 2007; 46 Li, Zhu, Zhao, Peng (bb0070) 2019; 143 Said, Abdelkareem, Rezk, Nassef (bb0025) 2019; 353 Dharmadhikari, Kale (bb0170) 1985; 40 Adesanya (bb0050) 2015; 6 Hojjat, Etemad, Bagheri, Thibault (bb0210) 2011; 54 Sheikholeslami, Ellahi (bb0215) 2015; 89 Aminossadati, Raisi, Ghasemi (bb0245) 2011; 46 Xu (bb0095) 2020; 110 Kiyasatfar (bb0135) 2018; 128 Huminic, Huminic (bb0045) 2020; 302 Neyestani, Nazari, Shahmardan, Sharifpur, Ashouri, Meyer (bb0090) 2019; 138 Urmi, Rahman, Hamzah (bb0040) 2020; 116 Nield, Bejan (bb0165) 2006 Sung, Kim, Hyun (bb0275) 1995; 16 Al-Rashed, Shahsavar, Entezari, Moghimi, Adio, Nguyen (bb0015) 2019; 155 Nojoomizadeh, Karimipour, Firouzi, Afrand (bb0080) 2018; 119 Rehman, Al-Mdallal (bb0130) 2020; 18 Khan, Qasim, Haq, Al-Mdallal (bb0120) 2017; 55 Helvaci, Khan (bb0280) 2017; 104 Nebbali, Bouhadef (bb0160) 2011; 50 Shyam, Chhabra (bb0195) 2013; 57 Vicki, Abdullah, Gunnasegaran (bb0035) 2020 Yuan, Zhou, Fu, Liu (bb0075) 2020; 152 Jiang, Wang, Xu, Xu, Ji, Zou, Zhang (bb0005) 2019; 44 Sheikholeslami, Ellahi (bb0220) 2015; 5 Raisi, Ghasemi, Aminossadati (bb0270) 2011; 59 Chen, Hadim (bb0175) 1998; 1 Bejan, Kestin (bb0180) 1983 Shamsi, Akbari, Marzban, Toghraie, Mashayekhi (bb0190) 2017; 93 Patankar (bb0240) 2018 Khodabandeh, Rahbari, Rosen, Ashrafi, Akbari, Anvari (bb0235) 2017; 148 Haq, Soomro, Mekkaoui, Al-Mdallal (bb0085) 2018; 121 Yang, Du (bb0020) 2020; 172 Delisle, Welsford, Saghir (bb0100) 2019 Ling, Zhou, Liu, Zhou, Yuan, Huang (bb0010) 2020; 170 Li, He, Gu, Sun, Liu (bb0065) 2019; 158 Ting, Hung, Guo (bb0125) 2015; 81 Rezaei, Akbari, Marzban, Toghraie, Pourfattah, Mashayekhi (bb0250) 2017; 93 Colin (bb0260) 2006 Hojjat, Etemad, Bagheri, Thibault (bb0200) 2011; 38 Islami, Dastvareh, Gharraei (bb0145) 2014; 78 Narendran, Bhat, Akshay, Perumal (bb0055) 2018; 8 Hameed, Mukhtar, Shafiq, Qizilbash, Khan, Rashid, Bavoh, Rehman, Guardo (bb0030) 2019; 277 Manay, Akyürek, Sahin (bb0115) 2018; 9 Shenoy (bb0155) 1994 Goodarzi, Javid, Sajadifar, Nojoomizadeh, Motaharipour, Bach, Karimipour (bb0060) 2019; 29 Reddy, Chamkha (bb0150) 2016; 27 Vatanparast, Hossainpour, Keyhani-Asl, Forouzi (bb0105) 2020; 111 Rehman, Al-Mdallal, Tlili, Malik (bb0110) 2020; 112 Esmaeilnejad, Aminfar, Neistanak (bb0225) 2014; 75 Ganesh, Hakeem, Ganga (bb0140) 2018; 9 Khanafer, Vafai, Lightstone (bb0205) 2003; 46 Khodabandeh, Pourramezan, Pakravan (bb0230) 2016; 105 Farshad, Sheikholeslami (bb0185) 2019; 141 Narendran (10.1016/j.icheatmasstransfer.2020.104843_bb0055) 2018; 8 Esmaeilnejad (10.1016/j.icheatmasstransfer.2020.104843_bb0225) 2014; 75 Dharmadhikari (10.1016/j.icheatmasstransfer.2020.104843_bb0170) 1985; 40 Neyestani (10.1016/j.icheatmasstransfer.2020.104843_bb0090) 2019; 138 Hojjat (10.1016/j.icheatmasstransfer.2020.104843_bb0200) 2011; 38 Yang (10.1016/j.icheatmasstransfer.2020.104843_bb0020) 2020; 172 Manay (10.1016/j.icheatmasstransfer.2020.104843_bb0115) 2018; 9 Rezaei (10.1016/j.icheatmasstransfer.2020.104843_bb0250) 2017; 93 Sheikholeslami (10.1016/j.icheatmasstransfer.2020.104843_bb0220) 2015; 5 Farshad (10.1016/j.icheatmasstransfer.2020.104843_bb0185) 2019; 141 Hojjat (10.1016/j.icheatmasstransfer.2020.104843_bb0210) 2011; 54 Khodabandeh (10.1016/j.icheatmasstransfer.2020.104843_bb0230) 2016; 105 Urmi (10.1016/j.icheatmasstransfer.2020.104843_bb0040) 2020; 116 Kiyasatfar (10.1016/j.icheatmasstransfer.2020.104843_bb0135) 2018; 128 Raisi (10.1016/j.icheatmasstransfer.2020.104843_bb0270) 2011; 59 Nojoomizadeh (10.1016/j.icheatmasstransfer.2020.104843_bb0080) 2018; 119 Vicki (10.1016/j.icheatmasstransfer.2020.104843_bb0035) 2020 Nebbali (10.1016/j.icheatmasstransfer.2020.104843_bb0160) 2011; 50 Adesanya (10.1016/j.icheatmasstransfer.2020.104843_bb0050) 2015; 6 Reddy (10.1016/j.icheatmasstransfer.2020.104843_bb0150) 2016; 27 Hameed (10.1016/j.icheatmasstransfer.2020.104843_bb0030) 2019; 277 Shyam (10.1016/j.icheatmasstransfer.2020.104843_bb0195) 2013; 57 Colin (10.1016/j.icheatmasstransfer.2020.104843_bb0260) 2006 Said (10.1016/j.icheatmasstransfer.2020.104843_bb0025) 2019; 353 Rehman (10.1016/j.icheatmasstransfer.2020.104843_bb0110) 2020; 112 Sung (10.1016/j.icheatmasstransfer.2020.104843_bb0275) 1995; 16 Nield (10.1016/j.icheatmasstransfer.2020.104843_bb0165) 2006 Li (10.1016/j.icheatmasstransfer.2020.104843_bb0070) 2019; 143 Li (10.1016/j.icheatmasstransfer.2020.104843_bb0065) 2019; 158 Khanafer (10.1016/j.icheatmasstransfer.2020.104843_bb0205) 2003; 46 Bejan (10.1016/j.icheatmasstransfer.2020.104843_bb0180) 1983 Ling (10.1016/j.icheatmasstransfer.2020.104843_bb0010) 2020; 170 Sheikholeslami (10.1016/j.icheatmasstransfer.2020.104843_bb0215) 2015; 89 Patankar (10.1016/j.icheatmasstransfer.2020.104843_bb0240) 2018 Safaei (10.1016/j.icheatmasstransfer.2020.104843_bb0255) 2011; 6 Ngoma (10.1016/j.icheatmasstransfer.2020.104843_bb0265) 2007; 46 Shamsi (10.1016/j.icheatmasstransfer.2020.104843_bb0190) 2017; 93 Islami (10.1016/j.icheatmasstransfer.2020.104843_bb0145) 2014; 78 Jiang (10.1016/j.icheatmasstransfer.2020.104843_bb0005) 2019; 44 Haq (10.1016/j.icheatmasstransfer.2020.104843_bb0085) 2018; 121 Shenoy (10.1016/j.icheatmasstransfer.2020.104843_bb0155) 1994 Chen (10.1016/j.icheatmasstransfer.2020.104843_bb0175) 1998; 1 Huminic (10.1016/j.icheatmasstransfer.2020.104843_bb0045) 2020; 302 Aminossadati (10.1016/j.icheatmasstransfer.2020.104843_bb0245) 2011; 46 Delisle (10.1016/j.icheatmasstransfer.2020.104843_bb0100) 2019 Khan (10.1016/j.icheatmasstransfer.2020.104843_bb0120) 2017; 55 Ting (10.1016/j.icheatmasstransfer.2020.104843_bb0125) 2015; 81 Vatanparast (10.1016/j.icheatmasstransfer.2020.104843_bb0105) 2020; 111 Al-Rashed (10.1016/j.icheatmasstransfer.2020.104843_bb0015) 2019; 155 Ganesh (10.1016/j.icheatmasstransfer.2020.104843_bb0140) 2018; 9 Goodarzi (10.1016/j.icheatmasstransfer.2020.104843_bb0060) 2019; 29 Yuan (10.1016/j.icheatmasstransfer.2020.104843_bb0075) 2020; 152 Rehman (10.1016/j.icheatmasstransfer.2020.104843_bb0130) 2020; 18 Khodabandeh (10.1016/j.icheatmasstransfer.2020.104843_bb0235) 2017; 148 Xu (10.1016/j.icheatmasstransfer.2020.104843_bb0095) 2020; 110 Helvaci (10.1016/j.icheatmasstransfer.2020.104843_bb0280) 2017; 104 |
| References_xml | – volume: 6 start-page: 1045 year: 2015 end-page: 1052 ident: bb0050 article-title: Free convective flow of heat generating fluid through a porous vertical channel with velocity slip and temperature jump publication-title: Ain. Shams Eng. J. – volume: 18 start-page: 100597 year: 2020 ident: bb0130 article-title: On partially heated circular obstacle in a channel having heated rectangular ribs: finite element outcomes publication-title: Case Stud. Therm. Eng. – volume: 59 start-page: 114 year: 2011 end-page: 129 ident: bb0270 article-title: A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions publication-title: Numer. Heat Transf. Part A Appl. – volume: 148 start-page: 43 year: 2017 end-page: 56 ident: bb0235 article-title: Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace publication-title: Energy Convers. Manag. – volume: 75 start-page: 76 year: 2014 end-page: 86 ident: bb0225 article-title: Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids publication-title: Int. J. Therm. Sci. – volume: 54 start-page: 1017 year: 2011 end-page: 1023 ident: bb0210 article-title: Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network publication-title: Int. J. Heat Mass Transf. – volume: 27 start-page: 1207 year: 2016 end-page: 1218 ident: bb0150 article-title: Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption publication-title: Adv. Powder Technol. – volume: 93 start-page: 167 year: 2017 end-page: 178 ident: bb0190 article-title: Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs publication-title: Phys. E Low Dimension. Syst. Nanostruct. – volume: 155 start-page: 247 year: 2019 end-page: 258 ident: bb0015 article-title: Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: thermal performance and thermodynamic considerations publication-title: Appl. Therm. Eng. – volume: 29 start-page: 1606 year: 2019 end-page: 1628 ident: bb0060 article-title: Slip velocity and temperature jump of a non-Newtonian nanofluid, aqueous solution of carboxy-methyl cellulose/aluminum oxide nanoparticles, through a microtube publication-title: Int. J. Numer. Methods Heat Fluid Flow. – volume: 16 start-page: 527 year: 1995 end-page: 535 ident: bb0275 article-title: Forced convection from an isolated heat source in a channel with porous medium publication-title: Int. J. Heat Fluid Flow – volume: 353 start-page: 345 year: 2019 end-page: 358 ident: bb0025 article-title: Fuzzy modeling and optimization for experimental thermophysical properties of water and ethylene glycol mixture for Al2O3 and TiO2 based nanofluids publication-title: Powder Technol. – volume: 112 start-page: 104501 year: 2020 ident: bb0110 article-title: Impact of heated triangular ribs on hydrodynamic forces in a rectangular domain with heated elliptic cylinder: finite element analysis publication-title: Int. Commun. Heat Mass Transf. – start-page: 9 year: 2006 end-page: 86 ident: bb0260 article-title: Single-phase gas flow in microchannels publication-title: Heat Transf. Fluid Flow Minichannels Microchannels. – year: 1983 ident: bb0180 article-title: Entropy Generation Through Heat and Fluid Flow – volume: 8 start-page: 93 year: 2018 end-page: 104 ident: bb0055 article-title: Experimental analysis on exergy studies of flow through a minichannel using TiO2/water nanofluids publication-title: Therm. Sci. Eng. Prog. – volume: 302 start-page: 112533 year: 2020 ident: bb0045 article-title: Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review publication-title: J. Mol. Liq. – volume: 116 start-page: 104663 year: 2020 ident: bb0040 article-title: An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids publication-title: Int. Commun. Heat Mass Transf. – volume: 40 start-page: 527 year: 1985 end-page: 529 ident: bb0170 article-title: Flow of non-Newtonian fluids through porous media publication-title: Chem. Eng. Sci. – volume: 46 start-page: 1076 year: 2007 end-page: 1083 ident: bb0265 article-title: Heat flux and slip effects on liquid flow in a microchannel publication-title: Int. J. Therm. Sci. – volume: 110 start-page: 104404 year: 2020 ident: bb0095 article-title: Thermal transport in microchannels partially filled with micro-porous media involving flow inertia, flow/thermal slips, thermal non-equilibrium and thermal asymmetry publication-title: Int. Commun. Heat Mass Transf. – volume: 46 start-page: 1373 year: 2011 end-page: 1382 ident: bb0245 article-title: Effects of magnetic field on nanofluid forced convection in a partially heated microchannel publication-title: Int. J. Non. Linear. Mech. – volume: 5 start-page: 294 year: 2015 end-page: 306 ident: bb0220 article-title: Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall publication-title: Appl. Sci. – volume: 158 start-page: 5459 year: 2019 end-page: 5464 ident: bb0065 article-title: Numerical study of droplet formation in the T-junction microchannel with wall velocity slip publication-title: Energy Procedia – volume: 172 start-page: 105415 year: 2020 ident: bb0020 article-title: Numerical simulation of nanofluid flow and heat transfer in a microchannel: the effect of changing the injection layout arrangement publication-title: Int. J. Mech. Sci. – volume: 57 start-page: 742 year: 2013 end-page: 755 ident: bb0195 article-title: Effect of Prandtl number on heat transfer from tandem square cylinders immersed in power-law fluids in the low Reynolds number regime publication-title: Int. J. Heat Mass Transf. – volume: 141 start-page: 246 year: 2019 end-page: 258 ident: bb0185 article-title: Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis publication-title: Renew. Energy – volume: 55 start-page: 1284 year: 2017 end-page: 1293 ident: bb0120 article-title: Closed form dual nature solutions of fluid flow and heat transfer over a stretching/shrinking sheet in a porous medium publication-title: Chin. J. Phys. – volume: 104 start-page: 318 year: 2017 end-page: 327 ident: bb0280 article-title: Heat transfer and entropy generation analysis of HFE 7000 based nanorefrigerants publication-title: Int. J. Heat Mass Transf. – start-page: 113458 year: 2020 ident: bb0035 article-title: Thermophysical properties of Al2O3-CuO hybrid nanofluid at different nanoparticle mixture ratio: an experimental approach publication-title: J. Mol. Liq. – volume: 46 start-page: 3639 year: 2003 end-page: 3653 ident: bb0205 article-title: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 138 start-page: 805 year: 2019 end-page: 817 ident: bb0090 article-title: Thermal characteristics of CPU cooling by using a novel porous heat sink and nanofluids publication-title: J. Therm. Anal. Calorim. – volume: 44 start-page: 53 year: 2019 end-page: 56 ident: bb0005 article-title: Integrated optofluidic micro-pumps in micro-channels with uniform excitation of a polarization rotating beam publication-title: Opt. Lett. – volume: 38 start-page: 144 year: 2011 end-page: 148 ident: bb0200 article-title: Rheological characteristics of non-Newtonian nanofluids: experimental investigation publication-title: Int. Commun. Heat Mass Transf. – volume: 143 start-page: 118482 year: 2019 ident: bb0070 article-title: Experimental investigation of the heat transfer and flow characteristics of microchannels with microribs publication-title: Int. J. Heat Mass Transf. – year: 2006 ident: bb0165 article-title: Convection in Porous Media – volume: 93 start-page: 179 year: 2017 end-page: 189 ident: bb0250 article-title: The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel publication-title: Phys. E Low Dimension. Syst. Nanostruct. – volume: 170 start-page: 115011 year: 2020 ident: bb0010 article-title: Structure and geometric dimension optimization of interlaced microchannel for heat transfer performance enhancement publication-title: Appl. Therm. Eng. – volume: 9 start-page: 615 year: 2018 end-page: 624 ident: bb0115 article-title: Entropy generation of nanofluid flow in a microchannel heat sink publication-title: Results Phys. – volume: 1 start-page: 147 year: 1998 end-page: 157 ident: bb0175 article-title: Numerical study of non-Darcy forced convection in a packed bed saturated with a power-law fluid publication-title: J. Porous Media. – volume: 89 start-page: 799 year: 2015 end-page: 808 ident: bb0215 article-title: Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid publication-title: Int. J. Heat Mass Transf. – volume: 50 start-page: 1984 year: 2011 end-page: 1995 ident: bb0160 article-title: Non-Newtonian fluid flow in plane channels: heat transfer enhancement using porous blocks publication-title: Int. J. Therm. Sci. – volume: 121 start-page: 1168 year: 2018 end-page: 1178 ident: bb0085 article-title: MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium publication-title: Int. J. Heat Mass Transf. – year: 2018 ident: bb0240 article-title: Numerical Heat Transfer and Fluid Flow – volume: 6 start-page: 7456 year: 2011 end-page: 7470 ident: bb0255 article-title: Numerical study of laminar mixed convection heat transfer of power-law non-Newtonian fluids in square enclosures by finite volume method publication-title: Int. J. Phys. Sci. – volume: 152 start-page: 106320 year: 2020 ident: bb0075 article-title: Experimental and numerical investigation of heat and mass transfer in non-uniform wavy microchannels publication-title: Int. J. Therm. Sci. – volume: 277 start-page: 812 year: 2019 end-page: 824 ident: bb0030 article-title: Experimental investigation on synthesis, characterization, stability, thermo-physical properties and rheological behavior of MWCNTs-kapok seed oil based nanofluid publication-title: J. Mol. Liq. – volume: 111 start-page: 104446 year: 2020 ident: bb0105 article-title: Numerical investigation of total entropy generation in a rectangular channel with staggered semi-porous fins publication-title: Int. Commun. Heat Mass Transf. – volume: 119 start-page: 891 year: 2018 end-page: 906 ident: bb0080 article-title: Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of Fe3O4/water nanofluid flow in a microchannel while its lower half filled by a porous medium publication-title: Int. J. Heat Mass Transf. – start-page: 1 year: 2019 end-page: 10 ident: bb0100 article-title: Forced convection study with microporous channels and nanofluid: experimental and numerical publication-title: J. Therm. Anal. Calorim. – volume: 128 start-page: 15 year: 2018 end-page: 27 ident: bb0135 article-title: Convective heat transfer and entropy generation analysis of non-Newtonian power-law fluid flows in parallel-plate and circular microchannels under slip boundary conditions publication-title: Int. J. Therm. Sci. – volume: 105 start-page: 537 year: 2016 end-page: 548 ident: bb0230 article-title: Effects of excess air and preheating on the flow pattern and efficiency of the radiative section of a fired heater publication-title: Appl. Therm. Eng. – volume: 81 start-page: 862 year: 2015 end-page: 877 ident: bb0125 article-title: Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels publication-title: Int. J. Heat Mass Transf. – start-page: 101 year: 1994 end-page: 190 ident: bb0155 article-title: Non-Newtonian fluid heat transfer in porous media publication-title: Adv. Heat Transf – volume: 9 start-page: 939 year: 2018 end-page: 951 ident: bb0140 article-title: Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects publication-title: Ain Shams Eng. J. – volume: 78 start-page: 917 year: 2014 end-page: 929 ident: bb0145 article-title: An investigation on the hydrodynamic and heat transfer of nanofluid flow, with non-Newtonian base fluid, in micromixers publication-title: Int. J. Heat Mass Transf. – volume: 116 start-page: 104663 year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0040 article-title: An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104663 – volume: 18 start-page: 100597 year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0130 article-title: On partially heated circular obstacle in a channel having heated rectangular ribs: finite element outcomes publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2020.100597 – year: 2006 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0165 – volume: 5 start-page: 294 year: 2015 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0220 article-title: Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall publication-title: Appl. Sci. doi: 10.3390/app5030294 – volume: 1 start-page: 147 year: 1998 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0175 article-title: Numerical study of non-Darcy forced convection in a packed bed saturated with a power-law fluid publication-title: J. Porous Media. – volume: 81 start-page: 862 year: 2015 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0125 article-title: Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.11.006 – start-page: 9 year: 2006 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0260 article-title: Single-phase gas flow in microchannels publication-title: Heat Transf. Fluid Flow Minichannels Microchannels. doi: 10.1016/B978-008044527-4/50004-9 – volume: 110 start-page: 104404 year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0095 article-title: Thermal transport in microchannels partially filled with micro-porous media involving flow inertia, flow/thermal slips, thermal non-equilibrium and thermal asymmetry publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2019.104404 – volume: 128 start-page: 15 year: 2018 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0135 article-title: Convective heat transfer and entropy generation analysis of non-Newtonian power-law fluid flows in parallel-plate and circular microchannels under slip boundary conditions publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.02.013 – volume: 78 start-page: 917 year: 2014 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0145 article-title: An investigation on the hydrodynamic and heat transfer of nanofluid flow, with non-Newtonian base fluid, in micromixers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.07.022 – start-page: 101 year: 1994 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0155 article-title: Non-Newtonian fluid heat transfer in porous media doi: 10.1016/S0065-2717(08)70233-8 – start-page: 1 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0100 article-title: Forced convection study with microporous channels and nanofluid: experimental and numerical publication-title: J. Therm. Anal. Calorim. – volume: 172 start-page: 105415 year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0020 article-title: Numerical simulation of nanofluid flow and heat transfer in a microchannel: the effect of changing the injection layout arrangement publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.105415 – volume: 93 start-page: 167 year: 2017 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0190 article-title: Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs publication-title: Phys. E Low Dimension. Syst. Nanostruct. doi: 10.1016/j.physe.2017.06.015 – volume: 112 start-page: 104501 year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0110 article-title: Impact of heated triangular ribs on hydrodynamic forces in a rectangular domain with heated elliptic cylinder: finite element analysis publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104501 – volume: 104 start-page: 318 year: 2017 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0280 article-title: Heat transfer and entropy generation analysis of HFE 7000 based nanorefrigerants publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.053 – year: 1983 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0180 – volume: 8 start-page: 93 year: 2018 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0055 article-title: Experimental analysis on exergy studies of flow through a minichannel using TiO2/water nanofluids publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2018.08.007 – volume: 46 start-page: 1373 year: 2011 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0245 article-title: Effects of magnetic field on nanofluid forced convection in a partially heated microchannel publication-title: Int. J. Non. Linear. Mech. doi: 10.1016/j.ijnonlinmec.2011.07.013 – volume: 119 start-page: 891 year: 2018 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0080 article-title: Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of Fe3O4/water nanofluid flow in a microchannel while its lower half filled by a porous medium publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.11.125 – volume: 155 start-page: 247 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0015 article-title: Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: thermal performance and thermodynamic considerations publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.04.009 – volume: 302 start-page: 112533 year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0045 article-title: Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.112533 – volume: 54 start-page: 1017 year: 2011 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0210 article-title: Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.11.039 – volume: 93 start-page: 179 year: 2017 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0250 article-title: The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel publication-title: Phys. E Low Dimension. Syst. Nanostruct. doi: 10.1016/j.physe.2017.06.013 – volume: 148 start-page: 43 year: 2017 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0235 article-title: Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.05.057 – volume: 141 start-page: 246 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0185 article-title: Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis publication-title: Renew. Energy doi: 10.1016/j.renene.2019.04.007 – volume: 170 start-page: 115011 year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0010 article-title: Structure and geometric dimension optimization of interlaced microchannel for heat transfer performance enhancement publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115011 – volume: 353 start-page: 345 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0025 article-title: Fuzzy modeling and optimization for experimental thermophysical properties of water and ethylene glycol mixture for Al2O3 and TiO2 based nanofluids publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.05.036 – volume: 27 start-page: 1207 year: 2016 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0150 article-title: Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.04.005 – volume: 277 start-page: 812 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0030 article-title: Experimental investigation on synthesis, characterization, stability, thermo-physical properties and rheological behavior of MWCNTs-kapok seed oil based nanofluid publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.01.012 – volume: 44 start-page: 53 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0005 article-title: Integrated optofluidic micro-pumps in micro-channels with uniform excitation of a polarization rotating beam publication-title: Opt. Lett. doi: 10.1364/OL.44.000053 – volume: 6 start-page: 1045 year: 2015 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0050 article-title: Free convective flow of heat generating fluid through a porous vertical channel with velocity slip and temperature jump publication-title: Ain. Shams Eng. J. doi: 10.1016/j.asej.2014.12.008 – volume: 40 start-page: 527 year: 1985 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0170 article-title: Flow of non-Newtonian fluids through porous media publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(85)85113-7 – year: 2018 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0240 – volume: 46 start-page: 3639 year: 2003 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0205 article-title: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00156-X – volume: 59 start-page: 114 year: 2011 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0270 article-title: A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions publication-title: Numer. Heat Transf. Part A Appl. doi: 10.1080/10407782.2011.540964 – volume: 138 start-page: 805 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0090 article-title: Thermal characteristics of CPU cooling by using a novel porous heat sink and nanofluids publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08256-y – volume: 158 start-page: 5459 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0065 article-title: Numerical study of droplet formation in the T-junction microchannel with wall velocity slip publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.601 – volume: 46 start-page: 1076 year: 2007 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0265 article-title: Heat flux and slip effects on liquid flow in a microchannel publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2007.02.001 – volume: 143 start-page: 118482 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0070 article-title: Experimental investigation of the heat transfer and flow characteristics of microchannels with microribs publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118482 – volume: 55 start-page: 1284 year: 2017 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0120 article-title: Closed form dual nature solutions of fluid flow and heat transfer over a stretching/shrinking sheet in a porous medium publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2017.07.001 – volume: 9 start-page: 615 year: 2018 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0115 article-title: Entropy generation of nanofluid flow in a microchannel heat sink publication-title: Results Phys. doi: 10.1016/j.rinp.2018.03.013 – volume: 152 start-page: 106320 year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0075 article-title: Experimental and numerical investigation of heat and mass transfer in non-uniform wavy microchannels publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2020.106320 – volume: 9 start-page: 939 year: 2018 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0140 article-title: Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2016.04.019 – volume: 121 start-page: 1168 year: 2018 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0085 article-title: MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.01.063 – volume: 57 start-page: 742 year: 2013 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0195 article-title: Effect of Prandtl number on heat transfer from tandem square cylinders immersed in power-law fluids in the low Reynolds number regime publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.11.001 – volume: 75 start-page: 76 year: 2014 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0225 article-title: Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2013.07.020 – volume: 29 start-page: 1606 issue: 5 year: 2019 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0060 article-title: Slip velocity and temperature jump of a non-Newtonian nanofluid, aqueous solution of carboxy-methyl cellulose/aluminum oxide nanoparticles, through a microtube publication-title: Int. J. Numer. Methods Heat Fluid Flow. doi: 10.1108/HFF-05-2018-0192 – start-page: 113458 year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0035 article-title: Thermophysical properties of Al2O3-CuO hybrid nanofluid at different nanoparticle mixture ratio: an experimental approach publication-title: J. Mol. Liq. – volume: 89 start-page: 799 year: 2015 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0215 article-title: Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.05.110 – volume: 16 start-page: 527 year: 1995 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0275 article-title: Forced convection from an isolated heat source in a channel with porous medium publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(95)00032-L – volume: 38 start-page: 144 year: 2011 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0200 article-title: Rheological characteristics of non-Newtonian nanofluids: experimental investigation publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2010.11.019 – volume: 50 start-page: 1984 year: 2011 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0160 article-title: Non-Newtonian fluid flow in plane channels: heat transfer enhancement using porous blocks publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.04.013 – volume: 6 start-page: 7456 year: 2011 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0255 article-title: Numerical study of laminar mixed convection heat transfer of power-law non-Newtonian fluids in square enclosures by finite volume method publication-title: Int. J. Phys. Sci. – volume: 105 start-page: 537 year: 2016 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0230 article-title: Effects of excess air and preheating on the flow pattern and efficiency of the radiative section of a fired heater publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.038 – volume: 111 start-page: 104446 year: 2020 ident: 10.1016/j.icheatmasstransfer.2020.104843_bb0105 article-title: Numerical investigation of total entropy generation in a rectangular channel with staggered semi-porous fins publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2019.104446 |
| SSID | ssj0001818 |
| Score | 2.4258592 |
| Snippet | The investigation of microfluidics heat transfer in recent years has been of great interest to researchers. In studies to improve the thermal performance of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104843 |
| SubjectTerms | Entropy generation Heat transfer Microchannel Non-Newtonian Porous block Slip velocity |
| Title | Numerical study of non-Newtonian nano-fluid in a micro-channel with adding slip velocity and porous blocks |
| URI | https://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104843 |
| Volume | 118 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0178 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001818 issn: 0735-1933 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0178 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001818 issn: 0735-1933 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1879-0178 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001818 issn: 0735-1933 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0178 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001818 issn: 0735-1933 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0178 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001818 issn: 0735-1933 databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EUfQgPvFNDh68xLVNmqYnkUVZFfeigreSpoms7nYXt3v1tzvTdn2gBwWPDckQMsPMl-abGYBDTxhfxZ7HPlBcOuO5kU5z421uBYacpKrAd9NVnXt59RA9zEB7mgtDtMrG99c-vfLWzUirOc3WqNdr3aJxEvwQIdqpwFsJZbDLmLoYHL9-0DwwglXeGCdzmr0ARx8cL2JbmnKAMLWsYKKjCqFh9fCppfg5VH0KPxcrsNzgRnZWb20VZlyxBkufqgmuwXzF5rTjdXjqTuqHmD6ryseyoWd4zefo0RDqoUGwwhRD7vuTXs56BTNsQLw8TlnAhesz-jnLiGlUPDLEoSNGxCKLeJ2ZImeI2IeTMctw6Hm8AfcX53ftDm-aKnArZFjyROTopAhnnahMWO2dUIFRyhtEeoG2eejDOEKY4sIgs7Fy2Yn2Bm9qSidxFjixCbO4Y7cFzCV57iMfopRIulhq6xMttbNRYlGE34bT6fmltqk4To0v-umUWvaUftdAShpIaw1sQ_IuYVRX3_jD2vZUZekXi0oxWPxays6_SNmFRfqqcxj3YLZ8mbh9BDNldlBZ6wHMnV1ed7pvgtT5jQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xEK8B8RRvPDCwmDax4zgTQhWovLpApW6R49iopU0rmq78ds5JykMwgMTq2CfLd7r7Lv7uDHBiHcYXoaWh9QTlRlmquJFUWZ1qhiEnKjrw3bdEs81vOkFnBhrTWhhHq6x8f-nTC29djdSq06yNut3aAxqngx_MRztlmJXMwjwP_NBlYGevHzwPDGGFO8bZ1E1fhNMPkpejW6p8gDg1L3CicS1C_eLmU3L2c6z6FH-u1mC1Ao7kotzbOsyYbANWPrUT3ICFgs6px5vQa03Km5g-KfrHkqElmOdTdGmI9dAiSKayIbX9STcl3YwoMnDEPOrKgDPTJ-7vLHFUo-yJIBAdEccs0gjYicpSgpB9OBmTBIeex1vQvrp8bDRp9aoC1Yz7OY1Yil7KAa26SJiW1jDhKSGsQqjnSZ361g8DxCnG9xIdCpPUpVWYqgkZhYln2DbM4Y7NDhATpakNrI9SAm5CLrWNJJdGB5FGEXYXzqfnF-uq5bh7-aIfT7llvfi7BmKngbjUwC5E7xJGZfuNP6xtTFUWfzGpGKPFr6Xs_YuUY1hqPt7fxXfXrdt9WHZfyoLGA5jLXybmEJFNnhwVlvsGQD77Ig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+of+non-Newtonian+nano-fluid+in+a+micro-channel+with+adding+slip+velocity+and+porous+blocks&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Rahmati%2C+Ahmad+Reza&rft.au=Derikvand%2C+Mohammad&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0735-1933&rft.eissn=1879-0178&rft.volume=118&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2020.104843&rft.externalDocID=S0735193320303717 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon |