Machine learning modeling of base flow generation potential: A case study of the combined application of BWM and Fallback bargaining algorithm

•Base Flow modeling with conjunct application of MCDM and machine learning.•Combining MCDM and machine learning algorithms improved Base Flow modeling.•Game theory algorithm performed better than BWM in Base Flow modeling.•Base Flow generation potential was higher in the watershed upstream. The stud...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 636; p. 131220
Main Author Nasiri Khiavi, Ali
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Subjects
Online AccessGet full text
ISSN0022-1694
1879-2707
DOI10.1016/j.jhydrol.2024.131220

Cover

Abstract •Base Flow modeling with conjunct application of MCDM and machine learning.•Combining MCDM and machine learning algorithms improved Base Flow modeling.•Game theory algorithm performed better than BWM in Base Flow modeling.•Base Flow generation potential was higher in the watershed upstream. The study of base flow is essential for sustainable water management. By understanding the dynamics of base flow, policymakers can make informed decisions to ensure the long-term health and availability of water resources. This study was conducted with the aim of modeling the spatial changes of Base Flow Generation Potential (BFGP) using integrated Machine Learning Algorithms (MLAs) including Decision Tree Regression (DTR), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Random Forest (RF), Simple Linear Regression (SLR), Support Vector Machine (SVM) and Support Vector Regression (SVR) and optimal Multi-Criteria Decision Making (MCDM) methods including Best-Worst Method (BWM) and Fallback bargaining in the Cheshmeh-Kileh watershed, Iran. BFGP conditioning factors were selected for the Sub-Watershed (SW) and weighed using MCDM (BWM and Fallback bargaining algorithm) methods. BFGP maps of five classes were generated and analyzed. MCDM methods were also integrated with ML algorithms for optimum performance evaluation of the integrated unit. Based on the results, in the integrated model of BWM and Fallback bargaining algorithm with ML algorithms, SVR and RF algorithms was selected as the optimal model, respectively. In BWM in the Sehezar River, the upstream had the highest BFGP. The pattern of spatial changes based on the Fallback bargaining algorithm in the upstream of Sehezar River was similar to BWM. The combined approach of RF-GTA with the factors of minimum temperature (Tn), NDSI and elevation showed the highest correlation. It was observed that that the Fallback bargaining algorithm and BWM of the MCDM exhibited similarity in output of regarding the spatial change patterns of the BFGP. Also, Fallback bargaining exhibited a 67% similarity with the integrated RF-GTA in BFGP prioritization of the SWs, while BWM performed poorly. This suggests that the Fallback bargaining algorithm was more effective than BWM of the MCDM methods for SWs BFGP prioritization. The general summary indicated that the combined use of MCDM and MLAs were valuable tools in BF studies and helped in better understanding the complex hydrological processes. The findings of our research may be of help to Iran Water Resources Research Company using hydrological data arising from base flow studies to support their analysis. In conclusion, understanding the BF characteristics of SWs allows watershed managers to effectively prioritize conservation and restoration efforts aimed at protecting and enhancing the natural flow regime.
AbstractList The study of base flow is essential for sustainable water management. By understanding the dynamics of base flow, policymakers can make informed decisions to ensure the long-term health and availability of water resources. This study was conducted with the aim of modeling the spatial changes of Base Flow Generation Potential (BFGP) using integrated Machine Learning Algorithms (MLAs) including Decision Tree Regression (DTR), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Random Forest (RF), Simple Linear Regression (SLR), Support Vector Machine (SVM) and Support Vector Regression (SVR) and optimal Multi-Criteria Decision Making (MCDM) methods including Best-Worst Method (BWM) and Fallback bargaining in the Cheshmeh-Kileh watershed, Iran. BFGP conditioning factors were selected for the Sub-Watershed (SW) and weighed using MCDM (BWM and Fallback bargaining algorithm) methods. BFGP maps of five classes were generated and analyzed. MCDM methods were also integrated with ML algorithms for optimum performance evaluation of the integrated unit. Based on the results, in the integrated model of BWM and Fallback bargaining algorithm with ML algorithms, SVR and RF algorithms was selected as the optimal model, respectively. In BWM in the Sehezar River, the upstream had the highest BFGP. The pattern of spatial changes based on the Fallback bargaining algorithm in the upstream of Sehezar River was similar to BWM. The combined approach of RF-GTA with the factors of minimum temperature (Tn), NDSI and elevation showed the highest correlation. It was observed that that the Fallback bargaining algorithm and BWM of the MCDM exhibited similarity in output of regarding the spatial change patterns of the BFGP. Also, Fallback bargaining exhibited a 67% similarity with the integrated RF-GTA in BFGP prioritization of the SWs, while BWM performed poorly. This suggests that the Fallback bargaining algorithm was more effective than BWM of the MCDM methods for SWs BFGP prioritization. The general summary indicated that the combined use of MCDM and MLAs were valuable tools in BF studies and helped in better understanding the complex hydrological processes. The findings of our research may be of help to Iran Water Resources Research Company using hydrological data arising from base flow studies to support their analysis. In conclusion, understanding the BF characteristics of SWs allows watershed managers to effectively prioritize conservation and restoration efforts aimed at protecting and enhancing the natural flow regime.
•Base Flow modeling with conjunct application of MCDM and machine learning.•Combining MCDM and machine learning algorithms improved Base Flow modeling.•Game theory algorithm performed better than BWM in Base Flow modeling.•Base Flow generation potential was higher in the watershed upstream. The study of base flow is essential for sustainable water management. By understanding the dynamics of base flow, policymakers can make informed decisions to ensure the long-term health and availability of water resources. This study was conducted with the aim of modeling the spatial changes of Base Flow Generation Potential (BFGP) using integrated Machine Learning Algorithms (MLAs) including Decision Tree Regression (DTR), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Random Forest (RF), Simple Linear Regression (SLR), Support Vector Machine (SVM) and Support Vector Regression (SVR) and optimal Multi-Criteria Decision Making (MCDM) methods including Best-Worst Method (BWM) and Fallback bargaining in the Cheshmeh-Kileh watershed, Iran. BFGP conditioning factors were selected for the Sub-Watershed (SW) and weighed using MCDM (BWM and Fallback bargaining algorithm) methods. BFGP maps of five classes were generated and analyzed. MCDM methods were also integrated with ML algorithms for optimum performance evaluation of the integrated unit. Based on the results, in the integrated model of BWM and Fallback bargaining algorithm with ML algorithms, SVR and RF algorithms was selected as the optimal model, respectively. In BWM in the Sehezar River, the upstream had the highest BFGP. The pattern of spatial changes based on the Fallback bargaining algorithm in the upstream of Sehezar River was similar to BWM. The combined approach of RF-GTA with the factors of minimum temperature (Tn), NDSI and elevation showed the highest correlation. It was observed that that the Fallback bargaining algorithm and BWM of the MCDM exhibited similarity in output of regarding the spatial change patterns of the BFGP. Also, Fallback bargaining exhibited a 67% similarity with the integrated RF-GTA in BFGP prioritization of the SWs, while BWM performed poorly. This suggests that the Fallback bargaining algorithm was more effective than BWM of the MCDM methods for SWs BFGP prioritization. The general summary indicated that the combined use of MCDM and MLAs were valuable tools in BF studies and helped in better understanding the complex hydrological processes. The findings of our research may be of help to Iran Water Resources Research Company using hydrological data arising from base flow studies to support their analysis. In conclusion, understanding the BF characteristics of SWs allows watershed managers to effectively prioritize conservation and restoration efforts aimed at protecting and enhancing the natural flow regime.
ArticleNumber 131220
Author Nasiri Khiavi, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Nasiri Khiavi
  fullname: Nasiri Khiavi, Ali
  email: ali.nasirikhiavi@modares.ac.ir
  organization: Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor 46414-356, Iran
BookMark eNqFkM1u1DAURi1UJKaFR0DyspsM_pukKQtURhSQWrEBsbRu7JsZD44dbE_RvATPTNJ0xaZeXFvyd74rnXNyFmJAQt5ytuaM1-8O68P-ZFP0a8GEWnPJhWAvyIpfNW0lGtackRVjQlS8btUrcp7zgU1HSrUif-_B7F1A6hFScGFHh2jRz4_Y0w4y0t7HP3SHARMUFwMdY8FQHPhrekPNnMjlaE9zvuyRmjh0U6GlMI7emYWZ_j7-vKcQLL0F7zswv6bytAP3uBP8LiZX9sNr8rIHn_HN031Bftx--r79Ut19-_x1e3NXGalEqVrW1C03HVMN2LrpmIRNJxnyepo1bBrT9K2wkilE0zJUgNCpKyHaRlmrmLwgl0vvmOLvI-aiB5cNeg8B4zFrKSZhkzkxRzdL1KSYc8Jej8kNkE6aMz371wf95F_P_vXif-Le_8cZVx5tlATOP0t_WGicLDw4TDobh8GgdQlN0Ta6Zxr-Ac1NqHk
CitedBy_id crossref_primary_10_1007_s11356_024_35712_6
crossref_primary_10_1007_s11356_024_34691_y
Cites_doi 10.3390/rs9050398
10.3390/w6082519
10.1007/s00199-002-0318-3
10.3390/ijerph17144987
10.1016/j.jhydrol.2007.12.018
10.1023/A:1010933404324
10.1016/j.landusepol.2017.12.035
10.1007/s12145-022-00846-z
10.1016/j.jhydrol.2020.124715
10.5194/hess-26-183-2022
10.1016/j.scitotenv.2021.151760
10.1029/2005WR004314
10.3389/fenvs.2023.1152296
10.1016/j.jhydrol.2016.08.008
10.1038/s41598-022-21259-4
10.5194/hess-22-6209-2018
10.1029/2018WR024464
10.3390/s21113758
10.1016/j.jhydrol.2016.01.063
10.1016/j.jenvman.2023.118843
10.1016/j.watres.2021.117450
10.1061/(ASCE)HE.1943-5584.0002217
10.1109/ACCESS.2017.2696365
10.1016/j.jhydrol.2015.10.038
10.1080/15715124.2021.2002346
10.1007/s10980-008-9261-4
10.1007/s10661-023-11193-x
10.1016/j.ecolmodel.2011.12.007
10.1007/s00477-023-02417-0
10.1007/s11600-020-00428-x
10.1016/j.heliyon.2023.e22509
10.5194/hess-20-1621-2016
10.1016/S0022-1694(01)00391-2
10.1029/2007WR006737
10.1007/s10333-014-0448-9
10.1016/j.asoc.2021.107168
10.1080/15715124.2015.1081209
10.3390/w10070848
10.1016/j.jhydrol.2020.124780
10.3390/rs12203284
10.2166/ws.2019.074
10.1007/s12665-023-11059-y
10.1029/WR004i005p00985
10.1016/j.jenvman.2021.113040
10.1016/j.engappai.2015.09.014
10.1016/j.neucom.2017.01.026
10.1071/MF09285
10.1007/s00477-022-02276-1
10.1016/j.jhydrol.2008.01.005
10.1029/2004WR003608
10.1002/2013WR013918
10.3390/w14111745
10.1002/hyp.10422
10.1016/j.jenvman.2022.116207
10.3390/su142416651
10.1029/2020WR027349
10.1111/j.1752-1688.2007.00003.x
10.1029/2018WR023551
10.1016/j.geoderma.2011.10.010
10.1016/j.ejrh.2015.07.005
10.1016/j.jhydrol.2009.07.042
10.1007/s11600-022-00827-2
10.1016/j.jhydrol.2015.05.019
10.5194/hess-3-271-1999
10.1016/j.jhydrol.2019.124001
10.1111/nrm.12380
10.1002/fsh.10054
10.1016/j.envsoft.2021.104991
10.1007/s11269-012-0200-4
10.1016/j.ejrh.2015.04.008
10.5194/hess-27-2301-2023
10.1016/j.envsoft.2023.105684
10.1016/j.ecoleng.2018.10.007
10.3390/su151612465
10.1086/685084
10.1016/j.omega.2014.11.009
10.1007/s00500-021-05933-9
10.3390/w10101304
10.1038/s41598-020-60322-w
10.1016/j.jhydrol.2018.07.004
10.1371/journal.pone.0261859
10.1007/s11269-021-02856-w
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2024.131220
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2024_131220
S0022169424006152
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-907691cb047ad67b03a5b30e16b306a57c7f92d304eec90e4aeab4822974dd403
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Thu Oct 02 22:51:06 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Wed Oct 01 02:36:36 EDT 2025
Sat Jun 29 15:30:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Environmental Flow
Artificial Intelligence (AI)
Python Programming Language
Water Resources Management (WRM)
Optimal Decision Making
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-907691cb047ad67b03a5b30e16b306a57c7f92d304eec90e4aeab4822974dd403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3200270720
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3200270720
crossref_primary_10_1016_j_jhydrol_2024_131220
crossref_citationtrail_10_1016_j_jhydrol_2024_131220
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2024_131220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nasiri Khiavi, Mostafazadeh, Adhami (b0270) 2023
Kheimi, Almadani, Zounemat-Kermani (b0170) 2023
Segura, Noone, Warren, Jones, Tenny, Ganio (b0380) 2019; 55
Hellwig, Stahl (b0155) 2018; 22
Laub, Thiede, Macfarlane, Budy (b0190) 2018; 43
Breiman, Friedman, Stone, Olshen (b0085) 1984
Yan, Xu (b0450) 2022; 17
Mehrparvar, Ahmadi, Safavi (b0240) 2016; 14
Gentile, Canone, Ceperley, Gisolo, Previati, Zuecco, Schaefli, Ferraris (b0130) 2023; 27
Khiavi, Tavoosi, Kuriqi (b0175) 2023; 82
Beck, Van Dijk, Miralles, De Jeu, Bruijnzeel, McVicar, Schellekens (b0055) 2013; 49
Santhi, Allen, Muttiah, Arnold, Tuppad (b0375) 2008; 351
Blumstock, Tetzlaff, Malcolm, Nuetzmann, Soulsby (b0070) 2015; 527
Cartwright (b0090) 2022; 26
Gnann, Woods, Howden (b0135) 2019; 55
Richter, Gungle, Lacher, Turner, Bushman (b0340) 2014; 6
Crites, Kokelj, Lacelle (b0100) 2020; 10
Khalil, Almasri, McKee, Kaluarachchi (b0165) 2005; 41
Dunn (b0110) 1999; 3
Yaseen, El-Shafie, Jaafar, Afan, Sayl (b0460) 2015; 530
Li, Qian, Liu, Yan, Yang, Luo, Ma (b0210) 2022; 14
Alvandi, Soleimani-Sardo, Meshram, Farid Giglou, Dahmardeh Ghaleno (b0040) 2021; 25
Derepasko, Guillaume, Horne, Volk (b0105) 2021; 139
Tongal, Booij (b0420) 2023; 37
Muñoz-Villers, Geissert, Holwerda, McDonnell (b0260) 2016; 20
Haberlandt, Klöcking, Krysanova, Becker (b0150) 2001; 248
Tu, Chen, Wang, Li (b0425) 2020; 17
Adhami, Sadeghi, Sheikhmohammady (b0015) 2018; 72
Mishra, Khare, Gupta, Shukla (b0250) 2014; 2
Fathabadi, Seyedian, Malekian (b0125) 2022; 818
Afshar Ardekani, Sabzevari (b0025) 2020; 68
Liu, Pender (b0220) 2015; 46
Winter (b0440) 2007; 43
Zhang, Fang, Zhang, Ju, Zhong (b0470) 2023; 11
Santarosa, Gastmans, Gilmore, Boll, Betancur, Gonçalves (b0370) 2023; 21
Yang, Xiao, Liang, Zhang (b0455) 2019; 19
Zomlot, Verbeiren, Huysmans, Batelaan (b0490) 2015; 4
Guzmán, Batelaan, Huysmans, Wyseure (b0145) 2015; 29
Benos, Tagarakis, Dolias, Berruto, Kateris, Bochtis (b0060) 2021; 21
Bourel, Segura, Crisci, López, Sampognaro, Vidal, Kruk, Piccini, Perera (b0075) 2021; 202
Nasiri Khiavi, Vafakhah, Sadeghi (b0285) 2023
Liu, Zhu, Wang (b0225) 2021; 103
Tavakoli, Torabi, GhanavatiNejad, Nayeri (b0410) 2023
Nasiri Khiavi, Vafakhah, Sadeghi (b0290) 2023
Roy, Chandra Pal, Arabameri, Chakrabortty, Pradhan, Chowdhuri, Lee, Tien Bui (b0345) 2020; 12
Guo (b0140) 2022; 27
Lott, Stewart (b0230) 2016; 535
Rumsey, Miller, Sexstone (b0355) 2020; 584
Suen, Eheart (b0400) 2006; 42
Ozdemir, Yaqub, Yildirim (b0310) 2023
Tan, Liu, Tan (b0405) 2020; 56
Salerno, Tartari (b0365) 2009; 376
Su, Huang, Zhao, Li (b0395) 2023; 195
Avand, Khiavi, Khazaei, Tiefenbacher (b0045) 2021; 295
Kimambo, Mbungu, Massawe, Hamad, Ligate (b0180) 2023
Nasiri Khiavi, Vafakhah, Sadeghi (b0275) 2021; 8
Breiman (b0080) 2001; 45
Bhaskar, Beesley, Burns, Fletcher, Hamel, Oldham, Roy (b0065) 2016; 35
Vafakhah, Nasiri Khiavi, Janizadeh, Ganjkhanlo (b0430) 2022; 15
Vorpahl, Elsenbeer, Märker, Schröder (b0435) 2012; 239
Lee, Park, Kum, Jung, Kim, Hwang, Kim, Kim, Lim (b0195) 2014; 12
Li (b0205) 2023
Ließ, Glaser, Huwe (b0215) 2012; 170
Aires, da Silva, Fernandes Filho, Rodrigues, Uliana, Amorim, de Melo Ribeiro, Campos (b0030) 2022; 323
Yue, Li, Cheng, Gao (b0465) 2018; 10
Eckhardt (b0115) 2008; 352
Lee, Park, Min, Na (b0200) 2023; 15
Wu, Chau, Li (b0445) 2009; 45
Meshram, Adhami, Kisi, Meshram, Duc, Khedher (b0245) 2021; 35
Singh (b0385) 1968; 4
Baharad, Nitzan (b0050) 2003; 22
Nasiri Khiavi, Vafakhah, Sadeghi (b0295) 2023
Peters, Verhoest, Samson, Boeckx, De Baets (b0320) 2008; 23
Salem, Abduljaleel, DezsHo, Lóczy (b0360) 2023; 13
Nasiri Khiavi, Vafakhah, Sadeghi (b0280) 2023
Norman, Dunn, Bakker, Allen, de Albuquerque (b0305) 2013; 27
Montesinos López, Montesinos López, Crossa (b0255) 2022
Steyn (b0390) 2018
Zhou, Li, Wei, Li, Qiao, Armaghani (b0480) 2019; 9
Pijanowski, Wałkega, Ksikażek, Strużyński, Goleniowski, Zarzycki, Kowalik, Bogdał, Wyrkebek, Szeremeta (b0325) 2022; 14
Tongal, Booij (b0415) 2018; 564
Noi, Degener, Kappas (b0300) 2017; 9
Rezaei (b0335) 2016; 64
Aboelnour, Engel, Frisbee, Gitau, Flanagan (b0005) 2021; 35
Mao, Shi, Song, Xu, Tang, Li (b0235) 2023; 345
Choi, Kang, Lee (b0095) 2018; 10
Zhang, Zhang, Song, Cheng, Paul, Gan, Shi, Luo, Zhao (b0475) 2020; 585
Zhou, Pan, Wang, Vasilakos (b0485) 2017; 237
Aldous, Fitzsimons, Richter, Bach (b0035) 2011; 62
Adhami, Sadeghi, Duttmann, Sheikhmohammady (b0020) 2019; 577
Adhami, Sadeghi (b0010) 2016; 541
Elmeddahi, Ragab (b0120) 2022; 70
Jang, Engel, Ryu (b0160) 2018; 125
Nasiri Khiavi, Mostafazadeh, Esmali Ouri, Ghafarzadeh, Golshan (b0265) 2019; 11
Rezaei (b0330) 2015; 53
L’heureux, Grolinger, Elyamany, Capretz (b0185) 2017; 5
Pauta (b0315) 2023
Rumsey, Miller, Susong, Tillman, Anning (b0350) 2015; 4
Breiman (10.1016/j.jhydrol.2024.131220_b0080) 2001; 45
Guzmán (10.1016/j.jhydrol.2024.131220_b0145) 2015; 29
Singh (10.1016/j.jhydrol.2024.131220_b0385) 1968; 4
Aldous (10.1016/j.jhydrol.2024.131220_b0035) 2011; 62
Adhami (10.1016/j.jhydrol.2024.131220_b0020) 2019; 577
Zhang (10.1016/j.jhydrol.2024.131220_b0475) 2020; 585
Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0270) 2023
Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0280) 2023
Crites (10.1016/j.jhydrol.2024.131220_b0100) 2020; 10
Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0290) 2023
Rezaei (10.1016/j.jhydrol.2024.131220_b0335) 2016; 64
Ließ (10.1016/j.jhydrol.2024.131220_b0215) 2012; 170
Mehrparvar (10.1016/j.jhydrol.2024.131220_b0240) 2016; 14
Aires (10.1016/j.jhydrol.2024.131220_b0030) 2022; 323
Dunn (10.1016/j.jhydrol.2024.131220_b0110) 1999; 3
Winter (10.1016/j.jhydrol.2024.131220_b0440) 2007; 43
Zomlot (10.1016/j.jhydrol.2024.131220_b0490) 2015; 4
Gnann (10.1016/j.jhydrol.2024.131220_b0135) 2019; 55
Adhami (10.1016/j.jhydrol.2024.131220_b0010) 2016; 541
Muñoz-Villers (10.1016/j.jhydrol.2024.131220_b0260) 2016; 20
Vafakhah (10.1016/j.jhydrol.2024.131220_b0430) 2022; 15
Jang (10.1016/j.jhydrol.2024.131220_b0160) 2018; 125
Mishra (10.1016/j.jhydrol.2024.131220_b0250) 2014; 2
Norman (10.1016/j.jhydrol.2024.131220_b0305) 2013; 27
Tongal (10.1016/j.jhydrol.2024.131220_b0420) 2023; 37
Santhi (10.1016/j.jhydrol.2024.131220_b0375) 2008; 351
Yang (10.1016/j.jhydrol.2024.131220_b0455) 2019; 19
Noi (10.1016/j.jhydrol.2024.131220_b0300) 2017; 9
Salerno (10.1016/j.jhydrol.2024.131220_b0365) 2009; 376
Meshram (10.1016/j.jhydrol.2024.131220_b0245) 2021; 35
Li (10.1016/j.jhydrol.2024.131220_b0205) 2023
Kimambo (10.1016/j.jhydrol.2024.131220_b0180) 2023
Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0285) 2023
Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0295) 2023
Yan (10.1016/j.jhydrol.2024.131220_b0450) 2022; 17
Steyn (10.1016/j.jhydrol.2024.131220_b0390) 2018
Kheimi (10.1016/j.jhydrol.2024.131220_b0170) 2023
Khiavi (10.1016/j.jhydrol.2024.131220_b0175) 2023; 82
Santarosa (10.1016/j.jhydrol.2024.131220_b0370) 2023; 21
Zhang (10.1016/j.jhydrol.2024.131220_b0470) 2023; 11
Khalil (10.1016/j.jhydrol.2024.131220_b0165) 2005; 41
Lott (10.1016/j.jhydrol.2024.131220_b0230) 2016; 535
Salem (10.1016/j.jhydrol.2024.131220_b0360) 2023; 13
Su (10.1016/j.jhydrol.2024.131220_b0395) 2023; 195
Beck (10.1016/j.jhydrol.2024.131220_b0055) 2013; 49
Aboelnour (10.1016/j.jhydrol.2024.131220_b0005) 2021; 35
Pauta (10.1016/j.jhydrol.2024.131220_b0315) 2023
Elmeddahi (10.1016/j.jhydrol.2024.131220_b0120) 2022; 70
Zhou (10.1016/j.jhydrol.2024.131220_b0485) 2017; 237
Tavakoli (10.1016/j.jhydrol.2024.131220_b0410) 2023
Peters (10.1016/j.jhydrol.2024.131220_b0320) 2008; 23
Vorpahl (10.1016/j.jhydrol.2024.131220_b0435) 2012; 239
Mao (10.1016/j.jhydrol.2024.131220_b0235) 2023; 345
Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0275) 2021; 8
Liu (10.1016/j.jhydrol.2024.131220_b0220) 2015; 46
L’heureux (10.1016/j.jhydrol.2024.131220_b0185) 2017; 5
Tu (10.1016/j.jhydrol.2024.131220_b0425) 2020; 17
Lee (10.1016/j.jhydrol.2024.131220_b0195) 2014; 12
Yaseen (10.1016/j.jhydrol.2024.131220_b0460) 2015; 530
Afshar Ardekani (10.1016/j.jhydrol.2024.131220_b0025) 2020; 68
Hellwig (10.1016/j.jhydrol.2024.131220_b0155) 2018; 22
Bhaskar (10.1016/j.jhydrol.2024.131220_b0065) 2016; 35
Ozdemir (10.1016/j.jhydrol.2024.131220_b0310) 2023
Tongal (10.1016/j.jhydrol.2024.131220_b0415) 2018; 564
Eckhardt (10.1016/j.jhydrol.2024.131220_b0115) 2008; 352
Lee (10.1016/j.jhydrol.2024.131220_b0200) 2023; 15
Alvandi (10.1016/j.jhydrol.2024.131220_b0040) 2021; 25
Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0265) 2019; 11
Richter (10.1016/j.jhydrol.2024.131220_b0340) 2014; 6
Yue (10.1016/j.jhydrol.2024.131220_b0465) 2018; 10
Fathabadi (10.1016/j.jhydrol.2024.131220_b0125) 2022; 818
Rezaei (10.1016/j.jhydrol.2024.131220_b0330) 2015; 53
Laub (10.1016/j.jhydrol.2024.131220_b0190) 2018; 43
Roy (10.1016/j.jhydrol.2024.131220_b0345) 2020; 12
Breiman (10.1016/j.jhydrol.2024.131220_b0085) 1984
Gentile (10.1016/j.jhydrol.2024.131220_b0130) 2023; 27
Zhou (10.1016/j.jhydrol.2024.131220_b0480) 2019; 9
Baharad (10.1016/j.jhydrol.2024.131220_b0050) 2003; 22
Segura (10.1016/j.jhydrol.2024.131220_b0380) 2019; 55
Benos (10.1016/j.jhydrol.2024.131220_b0060) 2021; 21
Wu (10.1016/j.jhydrol.2024.131220_b0445) 2009; 45
Li (10.1016/j.jhydrol.2024.131220_b0210) 2022; 14
Avand (10.1016/j.jhydrol.2024.131220_b0045) 2021; 295
Blumstock (10.1016/j.jhydrol.2024.131220_b0070) 2015; 527
Pijanowski (10.1016/j.jhydrol.2024.131220_b0325) 2022; 14
Liu (10.1016/j.jhydrol.2024.131220_b0225) 2021; 103
Rumsey (10.1016/j.jhydrol.2024.131220_b0350) 2015; 4
Haberlandt (10.1016/j.jhydrol.2024.131220_b0150) 2001; 248
Derepasko (10.1016/j.jhydrol.2024.131220_b0105) 2021; 139
Suen (10.1016/j.jhydrol.2024.131220_b0400) 2006; 42
Adhami (10.1016/j.jhydrol.2024.131220_b0015) 2018; 72
Guo (10.1016/j.jhydrol.2024.131220_b0140) 2022; 27
Rumsey (10.1016/j.jhydrol.2024.131220_b0355) 2020; 584
Tan (10.1016/j.jhydrol.2024.131220_b0405) 2020; 56
Bourel (10.1016/j.jhydrol.2024.131220_b0075) 2021; 202
Choi (10.1016/j.jhydrol.2024.131220_b0095) 2018; 10
Montesinos López (10.1016/j.jhydrol.2024.131220_b0255) 2022
Cartwright (10.1016/j.jhydrol.2024.131220_b0090) 2022; 26
References_xml – volume: 72
  start-page: 171
  year: 2018
  end-page: 180
  ident: b0015
  article-title: Making competent land use policy using a co-management framework
  publication-title: Land Use Policy
– start-page: 105684
  year: 2023
  ident: b0310
  article-title: A systematic literature review on lake water level prediction models
  publication-title: Environ. Model Softw.
– volume: 37
  start-page: 89
  year: 2023
  end-page: 112
  ident: b0420
  article-title: Simulated annealing coupled with a Naive Bayes model and base flow separation for streamflow simulation in a snow dominated basin
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 14
  start-page: 33
  year: 2016
  end-page: 45
  ident: b0240
  article-title: Social resolution of conflicts over water resources allocation in a river basin using cooperative game theory approaches: a case study
  publication-title: Int. J. River Basin Manag.
– volume: 42
  year: 2006
  ident: b0400
  article-title: Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime
  publication-title: Water Resour. Res.
– volume: 49
  start-page: 7843
  year: 2013
  end-page: 7863
  ident: b0055
  article-title: Global patterns in base flow index and recession based on streamflow observations from 3394 catchments
  publication-title: Water Resour. Res.
– volume: 13
  start-page: 5061
  year: 2023
  ident: b0360
  article-title: Integrated assessment of the impact of land use changes on groundwater recharge and groundwater level in the Drava floodplain, Hungary
  publication-title: Sci. Rep.
– volume: 9
  year: 2017
  ident: b0300
  article-title: Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data
  publication-title: Remote Sens.
– volume: 11
  start-page: 1152296
  year: 2023
  ident: b0470
  article-title: Water resources optimal allocation model for coordinating regional multi-level water resources managers’ interests
  publication-title: Front. Environ. Sci.
– volume: 6
  start-page: 2519
  year: 2014
  end-page: 2538
  ident: b0340
  article-title: Development of a shared vision for groundwater management to protect and sustain baseflows of the Upper San Pedro River, Arizona, USA
  publication-title: Water
– volume: 323
  year: 2022
  ident: b0030
  article-title: Modeling of surface sediment concentration in the Doce River basin using satellite remote sensing
  publication-title: J. Environ. Manage.
– year: 2023
  ident: b0180
  article-title: Rapid environmental flow assessment for sustainable water resource management in Tanzania’s lower Rufiji river basin: A scoping review
  publication-title: Heliyon
– volume: 564
  start-page: 266
  year: 2018
  end-page: 282
  ident: b0415
  article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation
  publication-title: J. Hydrol.
– year: 2023
  ident: b0410
  article-title: An integrated decision-making framework for selecting the best strategies of water resources management in pandemic emergencies
  publication-title: Sci. Iran
– volume: 584
  year: 2020
  ident: b0355
  article-title: Relating hydroclimatic change to streamflow, baseflow, and hydrologic partitioning in the Upper Rio Grande Basin, 1980 to 2015
  publication-title: J. Hydrol.
– volume: 17
  start-page: 4987
  year: 2020
  ident: b0425
  article-title: Regional water resources security evaluation based on a hybrid fuzzy BWM-TOPSIS method
  publication-title: Int. J. Environ. Res. Public Health
– volume: 4
  start-page: 91
  year: 2015
  end-page: 107
  ident: b0350
  article-title: Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin
  publication-title: J. Hydrol. Reg. Stud.
– volume: 139
  year: 2021
  ident: b0105
  article-title: Considering scale within optimization procedures for water management decisions: Balancing environmental flows and human needs
  publication-title: Environ. Model. Softw.
– start-page: 337
  year: 2022
  end-page: 378
  ident: b0255
  article-title: Support vector machines and support vector regression
  publication-title: Multivariate Statistical Machine Learning Methods for Genomic Prediction
– start-page: 1
  year: 2023
  end-page: 19
  ident: b0285
  article-title: Flood-based critical sub-watershed mapping: comparative application of multi-criteria decision making methods and hydrological modeling approach
  publication-title: Stoch. Environ. Res. Risk Assess
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0080
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 10
  start-page: 3283
  year: 2020
  ident: b0100
  article-title: Icings and groundwater conditions in permafrost catchments of northwestern Canada
  publication-title: Sci. Rep.
– volume: 14
  start-page: 16651
  year: 2022
  ident: b0325
  article-title: An expert approach to an assessment of the needs of land consolidation within the scope of improving water resource management
  publication-title: Sustainability
– volume: 43
  start-page: 15
  year: 2007
  end-page: 25
  ident: b0440
  article-title: The role of ground water in generating streamflow in headwater areas and in maintaining base flow 1
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 20
  start-page: 1621
  year: 2016
  end-page: 1635
  ident: b0260
  article-title: Factors influencing stream baseflow transit times in tropical montane watersheds
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 56
  year: 2020
  ident: b0405
  article-title: Global changes in baseflow under the impacts of changing climate and vegetation
  publication-title: Water Resour. Res.
– volume: 10
  start-page: 848
  year: 2018
  ident: b0465
  article-title: The value of environmental base flow in water-scarce basins: a case study of Wei River Basin, Northwest China
  publication-title: Water
– volume: 29
  start-page: 3051
  year: 2015
  end-page: 3064
  ident: b0145
  article-title: Comparative analysis of baseflow characteristics of two Andean catchments, Ecuador
  publication-title: Hydrol. Process.
– volume: 17
  start-page: e0261859
  year: 2022
  ident: b0450
  article-title: Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes
  publication-title: PLoS One
– volume: 3
  start-page: 271
  year: 1999
  end-page: 284
  ident: b0110
  article-title: Imposing constraints on parameter values of a conceptual hydrological model using baseflow response
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 64
  start-page: 126
  year: 2016
  end-page: 130
  ident: b0335
  article-title: Best-worst multi-criteria decision-making method: Some properties and a linear model
  publication-title: Omega (United Kingdom)
– volume: 53
  start-page: 49
  year: 2015
  end-page: 57
  ident: b0330
  article-title: Best-worst multi-criteria decision-making method
  publication-title: Omega
– volume: 11
  start-page: 851
  year: 2019
  end-page: 865
  ident: b0265
  article-title: Alteration of hydrologic flow indicators in Ardabil Balikhlouchai River under combined effects of change in climatic variables and Yamchi Dam construction using range of variability approach
  publication-title: Watershed Eng. Manag.
– year: 2023
  ident: b0315
  article-title: Facultad de Ingenier{’i}a Doctorado en Recursos H{’i}dricos
– volume: 4
  start-page: 985
  year: 1968
  end-page: 999
  ident: b0385
  article-title: Some factors affecting baseflow
  publication-title: Water Resour. Res.
– volume: 46
  start-page: 223
  year: 2015
  end-page: 231
  ident: b0220
  article-title: A flood inundation modelling using v-support vector machine regression model
  publication-title: Eng. Appl. Artif. Intell.
– volume: 351
  start-page: 139
  year: 2008
  end-page: 153
  ident: b0375
  article-title: Regional estimation of base flow for the conterminous United States by hydrologic landscape regions
  publication-title: J. Hydrol.
– volume: 248
  start-page: 35
  year: 2001
  end-page: 53
  ident: b0150
  article-title: Regionalisation of the base flow index from dynamically simulated flow components—a case study in the Elbe River Basin
  publication-title: J. Hydrol.
– year: 2023
  ident: b0290
  article-title: Flood-based critical sub-watershed mapping: comparative application of multi-criteria decision making methods and hydrological modeling approach
  publication-title: Stoch. Environ. Res. Risk Assess
– volume: 15
  start-page: 2431
  year: 2022
  end-page: 2445
  ident: b0430
  article-title: Evaluating different machine learning algorithms for snow water equivalent prediction
  publication-title: Earth Sci. Inf.
– volume: 70
  start-page: 1797
  year: 2022
  end-page: 1814
  ident: b0120
  article-title: Prediction of the groundwater quality index through machine learning in Western Middle Cheliff plain in North Algeria
  publication-title: Acta Geophys.
– volume: 527
  start-page: 1021
  year: 2015
  end-page: 1033
  ident: b0070
  article-title: Baseflow dynamics: Multi-tracer surveys to assess variable groundwater contributions to montane streams under low flows
  publication-title: J. Hydrol.
– volume: 237
  start-page: 350
  year: 2017
  end-page: 361
  ident: b0485
  article-title: Machine learning on big data: Opportunities and challenges
  publication-title: Neurocomputing
– volume: 22
  start-page: 6209
  year: 2018
  end-page: 6224
  ident: b0155
  article-title: An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times
  publication-title: Hydrol. Earth Syst. Sci.
– start-page: 1
  year: 2023
  end-page: 15
  ident: b0170
  article-title: Stochastic (S [ARIMA]), shallow (NARnet, NAR-GMDH, OS-ELM), and deep learning (LSTM, Stacked-LSTM, CNN-GRU) models, application to river flow forecasting
  publication-title: Acta Geophys.
– volume: 27
  start-page: 535
  year: 2013
  end-page: 551
  ident: b0305
  article-title: Water security assessment: integrating governance and freshwater indicators
  publication-title: Water Resour. Manag.
– year: 2018
  ident: b0390
  article-title: Short-term Stream Flow Forecasting and Downstream Gap Infilling Using Machine Learning Techniques
– volume: 19
  start-page: 1978
  year: 2019
  end-page: 1985
  ident: b0455
  article-title: Two baseflow separation methods based on daily average gage height and discharge
  publication-title: Water Supply
– volume: 12
  start-page: 3284
  year: 2020
  ident: b0345
  article-title: Novel ensemble of multivariate adaptive regression spline with spatial logistic regression and boosted regression tree for gully erosion susceptibility
  publication-title: Remote Sens.
– volume: 530
  start-page: 829
  year: 2015
  end-page: 844
  ident: b0460
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J. Hydrol.
– volume: 35
  year: 2021
  ident: b0005
  article-title: Impacts of watershed physical properties and land use on baseflow at regional scales
  publication-title: J. Hydrol. Reg. Stud.
– volume: 21
  start-page: 387
  year: 2023
  end-page: 400
  ident: b0370
  article-title: Baseflow and water resilience variability in two water management units in southeastern Brazil
  publication-title: Int. J. River Basin Manag.
– volume: 43
  start-page: 194
  year: 2018
  end-page: 206
  ident: b0190
  article-title: Evaluating the conservation potential of tributaries for native fishes in the upper Colorado River basin
  publication-title: Fisheries
– volume: 23
  start-page: 1049
  year: 2008
  end-page: 1065
  ident: b0320
  article-title: Wetland vegetation distribution modelling for the identification of constraining environmental variables
  publication-title: Landsc. Ecol.
– volume: 62
  start-page: 223
  year: 2011
  end-page: 231
  ident: b0035
  article-title: Droughts, floods and freshwater ecosystems: evaluating climate change impacts and developing adaptation strategies
  publication-title: Mar. Freshw. Res.
– volume: 376
  start-page: 295
  year: 2009
  end-page: 306
  ident: b0365
  article-title: A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments
  publication-title: J. Hydrol.
– volume: 10
  start-page: 1304
  year: 2018
  ident: b0095
  article-title: Baseflow contribution to streamflow and aquatic habitats using physical habitat simulations
  publication-title: Water
– year: 2023
  ident: b0280
  article-title: Application of participatory approach in identifying critical sub-watersheds based on flood generation potential in The Cheshmeh-Kileh Watershed, Mazandaran Province
  publication-title: Water Soil Manag. Model
– volume: 21
  start-page: 3758
  year: 2021
  ident: b0060
  article-title: Machine learning in agriculture: A comprehensive updated review
  publication-title: Sensors
– volume: 15
  start-page: 12465
  year: 2023
  ident: b0200
  article-title: Integrated assessment of the land use change and climate change impact on baseflow by using hydrologic model
  publication-title: Sustainability
– volume: 8
  start-page: 221
  year: 2021
  end-page: 234
  ident: b0275
  article-title: The Impressibility of Flood Regime from Rainfall and Land Use Changes in Cheshmeh Kileh Watershed
  publication-title: Iran. J. Ecohydrol.
– volume: 2
  start-page: 28
  year: 2014
  end-page: 41
  ident: b0250
  article-title: Impact of land use change on groundwater—a review
  publication-title: Adv. Water Resour. Prot.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0480
  article-title: Random forests and cubist algorithms for predicting shear strengths of rockfill materials
  publication-title: Appl. Sci.
– volume: 26
  start-page: 183
  year: 2022
  end-page: 195
  ident: b0090
  article-title: Implications of variations in stream specific conductivity for estimating baseflow using chemical mass balance and calibrated hydrograph techniques
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 82
  year: 2023
  ident: b0175
  article-title: Conjunct application of machine learning and game theory in groundwater quality mapping
  publication-title: Environ. Earth Sci.
– volume: 535
  start-page: 525
  year: 2016
  end-page: 533
  ident: b0230
  article-title: Base flow separation: A comparison of analytical and mass balance methods
  publication-title: J. Hydrol.
– year: 1984
  ident: b0085
  article-title: Classification and Regression Trees
– volume: 239
  start-page: 27
  year: 2012
  end-page: 39
  ident: b0435
  article-title: How can statistical models help to determine driving factors of landslides?
  publication-title: Ecol. Modell.
– volume: 125
  start-page: 50
  year: 2018
  end-page: 67
  ident: b0160
  article-title: Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT)
  publication-title: Ecol. Eng.
– volume: 35
  start-page: 293
  year: 2016
  end-page: 310
  ident: b0065
  article-title: Will it rise or will it fall? Managing the complex effects of urbanization on base flow
  publication-title: Freshw. Sci.
– start-page: e12380
  year: 2023
  ident: b0295
  article-title: Comparative applicability of MCDM-SWOT based techniques for developing integrated watershed management framework
  publication-title: Nat. Resour. Model
– volume: 577
  year: 2019
  ident: b0020
  article-title: Changes in watershed hydrological behavior due to land use comanagement scenarios
  publication-title: J. Hydrol.
– volume: 68
  start-page: 773
  year: 2020
  end-page: 782
  ident: b0025
  article-title: Effects of hillslope geometry on soil moisture deficit and base flow using an excess saturation model
  publication-title: Acta Geophys.
– volume: 541
  start-page: 977
  year: 2016
  end-page: 987
  ident: b0010
  article-title: Sub-watershed prioritization based on sediment yield using game theory
  publication-title: J. Hydrol.
– volume: 41
  year: 2005
  ident: b0165
  article-title: Applicability of statistical learning algorithms in groundwater quality modeling
  publication-title: Water Resour. Res.
– volume: 202
  year: 2021
  ident: b0075
  article-title: Machine learning methods for imbalanced data set for prediction of faecal contamination in beach waters
  publication-title: Water Res.
– volume: 27
  start-page: 2301
  year: 2023
  end-page: 2323
  ident: b0130
  article-title: Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 14
  start-page: 1745
  year: 2022
  ident: b0210
  article-title: LSTM-based model for predicting inland river runoff in arid region: A case study on Yarkant River, Northwest China
  publication-title: Water
– volume: 45
  year: 2009
  ident: b0445
  article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
  publication-title: Water Resour. Res.
– volume: 195
  start-page: 581
  year: 2023
  ident: b0395
  article-title: Spatial and temporal dynamics of base flow in semi-arid montane watersheds and the effects of landscape patterns and topography
  publication-title: Environ. Monit. Assess.
– volume: 818
  year: 2022
  ident: b0125
  article-title: Comparison of Bayesian, k-Nearest Neighbor and Gaussian process regression methods for quantifying uncertainty of suspended sediment concentration prediction
  publication-title: Sci. Total Environ.
– volume: 27
  start-page: 4022027
  year: 2022
  ident: b0140
  article-title: Application of general unit hydrograph model for baseflow separation from rainfall and streamflow data
  publication-title: J. Hydrol. Eng.
– volume: 5
  start-page: 7776
  year: 2017
  end-page: 7797
  ident: b0185
  article-title: Machine learning with big data: Challenges and approaches
  publication-title: IEEE Access
– volume: 55
  start-page: 5238
  year: 2019
  end-page: 5254
  ident: b0380
  article-title: Climate, landforms, and geology affect baseflow sources in a mountain catchment
  publication-title: Water Resour. Res.
– volume: 170
  start-page: 70
  year: 2012
  end-page: 79
  ident: b0215
  article-title: Uncertainty in the spatial prediction of soil texture: comparison of regression tree and Random Forest models
  publication-title: Geoderma
– volume: 585
  year: 2020
  ident: b0475
  article-title: Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches
  publication-title: J. Hydrol.
– volume: 345
  year: 2023
  ident: b0235
  article-title: Response of the runoff process to meteorological drought: Baseflow index as an important indicator
  publication-title: J. Environ. Manage.
– volume: 352
  start-page: 168
  year: 2008
  end-page: 173
  ident: b0115
  article-title: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods
  publication-title: J. Hydrol.
– volume: 35
  start-page: 3105
  year: 2021
  end-page: 3120
  ident: b0245
  article-title: Identification of critical watershed for soil conservation using Game Theory-based approaches
  publication-title: Water Resour. Manag.
– volume: 55
  start-page: 2838
  year: 2019
  end-page: 2855
  ident: b0135
  article-title: Is there a baseflow Budyko curve?
  publication-title: Water Resour. Res.
– volume: 4
  start-page: 349
  year: 2015
  end-page: 368
  ident: b0490
  article-title: Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors
  publication-title: J. Hydrol. Reg. Stud.
– volume: 12
  start-page: 169
  year: 2014
  end-page: 183
  ident: b0195
  article-title: Assessing the effect of watershed slopes on recharge/baseflow and soil erosion
  publication-title: Paddy Water Environ.
– volume: 103
  year: 2021
  ident: b0225
  article-title: A weighting model based on best–worst method and its application for environmental performance evaluation
  publication-title: Appl. Soft Comput.
– volume: 295
  year: 2021
  ident: b0045
  article-title: Determination of flood probability and prioritization of sub-watersheds: A comparison of game theory to machine learning
  publication-title: J. Environ. Manage.
– volume: 22
  start-page: 685
  year: 2003
  end-page: 688
  ident: b0050
  article-title: The Borda rule, Condorcet consistency and Condorcet stability
  publication-title: Econ. Theory
– start-page: 1
  year: 2023
  end-page: 18
  ident: b0270
  article-title: Groundwater quality modeling and determining critical points: a comparison of machine learning to Best-Worst Method
  publication-title: Environ. Sci. Pollut. Res.
– volume: 25
  start-page: 11363
  year: 2021
  end-page: 11375
  ident: b0040
  article-title: Using Improved TOPSIS and Best Worst Method in prioritizing management scenarios for the watershed management in arid and semi-arid environments
  publication-title: Soft Comput.
– year: 2023
  ident: b0205
  article-title: Data Driven Discoveries in Streamflow, Vadose Zone, and Baseflow
– volume: 9
  year: 2017
  ident: 10.1016/j.jhydrol.2024.131220_b0300
  article-title: Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data
  publication-title: Remote Sens.
  doi: 10.3390/rs9050398
– volume: 6
  start-page: 2519
  year: 2014
  ident: 10.1016/j.jhydrol.2024.131220_b0340
  article-title: Development of a shared vision for groundwater management to protect and sustain baseflows of the Upper San Pedro River, Arizona, USA
  publication-title: Water
  doi: 10.3390/w6082519
– volume: 22
  start-page: 685
  year: 2003
  ident: 10.1016/j.jhydrol.2024.131220_b0050
  article-title: The Borda rule, Condorcet consistency and Condorcet stability
  publication-title: Econ. Theory
  doi: 10.1007/s00199-002-0318-3
– volume: 35
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131220_b0005
  article-title: Impacts of watershed physical properties and land use on baseflow at regional scales
  publication-title: J. Hydrol. Reg. Stud.
– year: 1984
  ident: 10.1016/j.jhydrol.2024.131220_b0085
– volume: 17
  start-page: 4987
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131220_b0425
  article-title: Regional water resources security evaluation based on a hybrid fuzzy BWM-TOPSIS method
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17144987
– volume: 351
  start-page: 139
  year: 2008
  ident: 10.1016/j.jhydrol.2024.131220_b0375
  article-title: Regional estimation of base flow for the conterminous United States by hydrologic landscape regions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.12.018
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.jhydrol.2024.131220_b0080
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 72
  start-page: 171
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131220_b0015
  article-title: Making competent land use policy using a co-management framework
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2017.12.035
– volume: 15
  start-page: 2431
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131220_b0430
  article-title: Evaluating different machine learning algorithms for snow water equivalent prediction
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-022-00846-z
– volume: 584
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131220_b0355
  article-title: Relating hydroclimatic change to streamflow, baseflow, and hydrologic partitioning in the Upper Rio Grande Basin, 1980 to 2015
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124715
– volume: 26
  start-page: 183
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131220_b0090
  article-title: Implications of variations in stream specific conductivity for estimating baseflow using chemical mass balance and calibrated hydrograph techniques
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-26-183-2022
– volume: 818
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131220_b0125
  article-title: Comparison of Bayesian, k-Nearest Neighbor and Gaussian process regression methods for quantifying uncertainty of suspended sediment concentration prediction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.151760
– volume: 42
  year: 2006
  ident: 10.1016/j.jhydrol.2024.131220_b0400
  article-title: Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004314
– volume: 11
  start-page: 1152296
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0470
  article-title: Water resources optimal allocation model for coordinating regional multi-level water resources managers’ interests
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2023.1152296
– volume: 541
  start-page: 977
  year: 2016
  ident: 10.1016/j.jhydrol.2024.131220_b0010
  article-title: Sub-watershed prioritization based on sediment yield using game theory
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.08.008
– volume: 13
  start-page: 5061
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0360
  article-title: Integrated assessment of the impact of land use changes on groundwater recharge and groundwater level in the Drava floodplain, Hungary
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-21259-4
– volume: 22
  start-page: 6209
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131220_b0155
  article-title: An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6209-2018
– volume: 55
  start-page: 2838
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131220_b0135
  article-title: Is there a baseflow Budyko curve?
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR024464
– volume: 21
  start-page: 3758
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131220_b0060
  article-title: Machine learning in agriculture: A comprehensive updated review
  publication-title: Sensors
  doi: 10.3390/s21113758
– volume: 535
  start-page: 525
  year: 2016
  ident: 10.1016/j.jhydrol.2024.131220_b0230
  article-title: Base flow separation: A comparison of analytical and mass balance methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.01.063
– volume: 345
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0235
  article-title: Response of the runoff process to meteorological drought: Baseflow index as an important indicator
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2023.118843
– start-page: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0170
  article-title: Stochastic (S [ARIMA]), shallow (NARnet, NAR-GMDH, OS-ELM), and deep learning (LSTM, Stacked-LSTM, CNN-GRU) models, application to river flow forecasting
  publication-title: Acta Geophys.
– volume: 202
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131220_b0075
  article-title: Machine learning methods for imbalanced data set for prediction of faecal contamination in beach waters
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117450
– volume: 27
  start-page: 4022027
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131220_b0140
  article-title: Application of general unit hydrograph model for baseflow separation from rainfall and streamflow data
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0002217
– volume: 5
  start-page: 7776
  year: 2017
  ident: 10.1016/j.jhydrol.2024.131220_b0185
  article-title: Machine learning with big data: Challenges and approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2696365
– volume: 530
  start-page: 829
  year: 2015
  ident: 10.1016/j.jhydrol.2024.131220_b0460
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.038
– volume: 21
  start-page: 387
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0370
  article-title: Baseflow and water resilience variability in two water management units in southeastern Brazil
  publication-title: Int. J. River Basin Manag.
  doi: 10.1080/15715124.2021.2002346
– volume: 23
  start-page: 1049
  year: 2008
  ident: 10.1016/j.jhydrol.2024.131220_b0320
  article-title: Wetland vegetation distribution modelling for the identification of constraining environmental variables
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-008-9261-4
– volume: 195
  start-page: 581
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0395
  article-title: Spatial and temporal dynamics of base flow in semi-arid montane watersheds and the effects of landscape patterns and topography
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-023-11193-x
– volume: 239
  start-page: 27
  year: 2012
  ident: 10.1016/j.jhydrol.2024.131220_b0435
  article-title: How can statistical models help to determine driving factors of landslides?
  publication-title: Ecol. Modell.
  doi: 10.1016/j.ecolmodel.2011.12.007
– volume: 8
  start-page: 221
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131220_b0275
  article-title: The Impressibility of Flood Regime from Rainfall and Land Use Changes in Cheshmeh Kileh Watershed
  publication-title: Iran. J. Ecohydrol.
– year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0290
  article-title: Flood-based critical sub-watershed mapping: comparative application of multi-criteria decision making methods and hydrological modeling approach
  publication-title: Stoch. Environ. Res. Risk Assess
  doi: 10.1007/s00477-023-02417-0
– volume: 68
  start-page: 773
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131220_b0025
  article-title: Effects of hillslope geometry on soil moisture deficit and base flow using an excess saturation model
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-020-00428-x
– year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0180
  article-title: Rapid environmental flow assessment for sustainable water resource management in Tanzania’s lower Rufiji river basin: A scoping review
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e22509
– volume: 20
  start-page: 1621
  year: 2016
  ident: 10.1016/j.jhydrol.2024.131220_b0260
  article-title: Factors influencing stream baseflow transit times in tropical montane watersheds
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-1621-2016
– volume: 248
  start-page: 35
  year: 2001
  ident: 10.1016/j.jhydrol.2024.131220_b0150
  article-title: Regionalisation of the base flow index from dynamically simulated flow components—a case study in the Elbe River Basin
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(01)00391-2
– year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0315
– volume: 45
  year: 2009
  ident: 10.1016/j.jhydrol.2024.131220_b0445
  article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006737
– volume: 12
  start-page: 169
  year: 2014
  ident: 10.1016/j.jhydrol.2024.131220_b0195
  article-title: Assessing the effect of watershed slopes on recharge/baseflow and soil erosion
  publication-title: Paddy Water Environ.
  doi: 10.1007/s10333-014-0448-9
– volume: 103
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131220_b0225
  article-title: A weighting model based on best–worst method and its application for environmental performance evaluation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107168
– volume: 14
  start-page: 33
  year: 2016
  ident: 10.1016/j.jhydrol.2024.131220_b0240
  article-title: Social resolution of conflicts over water resources allocation in a river basin using cooperative game theory approaches: a case study
  publication-title: Int. J. River Basin Manag.
  doi: 10.1080/15715124.2015.1081209
– volume: 10
  start-page: 848
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131220_b0465
  article-title: The value of environmental base flow in water-scarce basins: a case study of Wei River Basin, Northwest China
  publication-title: Water
  doi: 10.3390/w10070848
– volume: 585
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131220_b0475
  article-title: Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124780
– start-page: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0270
  article-title: Groundwater quality modeling and determining critical points: a comparison of machine learning to Best-Worst Method
  publication-title: Environ. Sci. Pollut. Res.
– volume: 12
  start-page: 3284
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131220_b0345
  article-title: Novel ensemble of multivariate adaptive regression spline with spatial logistic regression and boosted regression tree for gully erosion susceptibility
  publication-title: Remote Sens.
  doi: 10.3390/rs12203284
– volume: 19
  start-page: 1978
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131220_b0455
  article-title: Two baseflow separation methods based on daily average gage height and discharge
  publication-title: Water Supply
  doi: 10.2166/ws.2019.074
– volume: 82
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0175
  article-title: Conjunct application of machine learning and game theory in groundwater quality mapping
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-023-11059-y
– volume: 4
  start-page: 985
  year: 1968
  ident: 10.1016/j.jhydrol.2024.131220_b0385
  article-title: Some factors affecting baseflow
  publication-title: Water Resour. Res.
  doi: 10.1029/WR004i005p00985
– volume: 295
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131220_b0045
  article-title: Determination of flood probability and prioritization of sub-watersheds: A comparison of game theory to machine learning
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.113040
– volume: 46
  start-page: 223
  year: 2015
  ident: 10.1016/j.jhydrol.2024.131220_b0220
  article-title: A flood inundation modelling using v-support vector machine regression model
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.09.014
– volume: 237
  start-page: 350
  year: 2017
  ident: 10.1016/j.jhydrol.2024.131220_b0485
  article-title: Machine learning on big data: Opportunities and challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.026
– volume: 62
  start-page: 223
  year: 2011
  ident: 10.1016/j.jhydrol.2024.131220_b0035
  article-title: Droughts, floods and freshwater ecosystems: evaluating climate change impacts and developing adaptation strategies
  publication-title: Mar. Freshw. Res.
  doi: 10.1071/MF09285
– volume: 37
  start-page: 89
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0420
  article-title: Simulated annealing coupled with a Naive Bayes model and base flow separation for streamflow simulation in a snow dominated basin
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-022-02276-1
– year: 2018
  ident: 10.1016/j.jhydrol.2024.131220_b0390
– volume: 352
  start-page: 168
  year: 2008
  ident: 10.1016/j.jhydrol.2024.131220_b0115
  article-title: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.01.005
– volume: 41
  year: 2005
  ident: 10.1016/j.jhydrol.2024.131220_b0165
  article-title: Applicability of statistical learning algorithms in groundwater quality modeling
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003608
– volume: 49
  start-page: 7843
  year: 2013
  ident: 10.1016/j.jhydrol.2024.131220_b0055
  article-title: Global patterns in base flow index and recession based on streamflow observations from 3394 catchments
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR013918
– volume: 14
  start-page: 1745
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131220_b0210
  article-title: LSTM-based model for predicting inland river runoff in arid region: A case study on Yarkant River, Northwest China
  publication-title: Water
  doi: 10.3390/w14111745
– year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0205
– volume: 64
  start-page: 126
  year: 2016
  ident: 10.1016/j.jhydrol.2024.131220_b0335
  article-title: Best-worst multi-criteria decision-making method: Some properties and a linear model
  publication-title: Omega (United Kingdom)
– volume: 29
  start-page: 3051
  year: 2015
  ident: 10.1016/j.jhydrol.2024.131220_b0145
  article-title: Comparative analysis of baseflow characteristics of two Andean catchments, Ecuador
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10422
– volume: 323
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131220_b0030
  article-title: Modeling of surface sediment concentration in the Doce River basin using satellite remote sensing
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2022.116207
– volume: 14
  start-page: 16651
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131220_b0325
  article-title: An expert approach to an assessment of the needs of land consolidation within the scope of improving water resource management
  publication-title: Sustainability
  doi: 10.3390/su142416651
– volume: 56
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131220_b0405
  article-title: Global changes in baseflow under the impacts of changing climate and vegetation
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR027349
– volume: 43
  start-page: 15
  year: 2007
  ident: 10.1016/j.jhydrol.2024.131220_b0440
  article-title: The role of ground water in generating streamflow in headwater areas and in maintaining base flow 1
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2007.00003.x
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131220_b0480
  article-title: Random forests and cubist algorithms for predicting shear strengths of rockfill materials
  publication-title: Appl. Sci.
– volume: 55
  start-page: 5238
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131220_b0380
  article-title: Climate, landforms, and geology affect baseflow sources in a mountain catchment
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023551
– volume: 170
  start-page: 70
  year: 2012
  ident: 10.1016/j.jhydrol.2024.131220_b0215
  article-title: Uncertainty in the spatial prediction of soil texture: comparison of regression tree and Random Forest models
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.10.010
– start-page: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0285
  article-title: Flood-based critical sub-watershed mapping: comparative application of multi-criteria decision making methods and hydrological modeling approach
  publication-title: Stoch. Environ. Res. Risk Assess
– volume: 4
  start-page: 349
  year: 2015
  ident: 10.1016/j.jhydrol.2024.131220_b0490
  article-title: Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2015.07.005
– volume: 376
  start-page: 295
  year: 2009
  ident: 10.1016/j.jhydrol.2024.131220_b0365
  article-title: A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.07.042
– volume: 70
  start-page: 1797
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131220_b0120
  article-title: Prediction of the groundwater quality index through machine learning in Western Middle Cheliff plain in North Algeria
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-022-00827-2
– volume: 527
  start-page: 1021
  year: 2015
  ident: 10.1016/j.jhydrol.2024.131220_b0070
  article-title: Baseflow dynamics: Multi-tracer surveys to assess variable groundwater contributions to montane streams under low flows
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.05.019
– volume: 3
  start-page: 271
  year: 1999
  ident: 10.1016/j.jhydrol.2024.131220_b0110
  article-title: Imposing constraints on parameter values of a conceptual hydrological model using baseflow response
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-3-271-1999
– volume: 577
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131220_b0020
  article-title: Changes in watershed hydrological behavior due to land use comanagement scenarios
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124001
– start-page: e12380
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0295
  article-title: Comparative applicability of MCDM-SWOT based techniques for developing integrated watershed management framework
  publication-title: Nat. Resour. Model
  doi: 10.1111/nrm.12380
– volume: 43
  start-page: 194
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131220_b0190
  article-title: Evaluating the conservation potential of tributaries for native fishes in the upper Colorado River basin
  publication-title: Fisheries
  doi: 10.1002/fsh.10054
– year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0410
  article-title: An integrated decision-making framework for selecting the best strategies of water resources management in pandemic emergencies
  publication-title: Sci. Iran
– volume: 139
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131220_b0105
  article-title: Considering scale within optimization procedures for water management decisions: Balancing environmental flows and human needs
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2021.104991
– year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0280
  article-title: Application of participatory approach in identifying critical sub-watersheds based on flood generation potential in The Cheshmeh-Kileh Watershed, Mazandaran Province
  publication-title: Water Soil Manag. Model
– volume: 27
  start-page: 535
  year: 2013
  ident: 10.1016/j.jhydrol.2024.131220_b0305
  article-title: Water security assessment: integrating governance and freshwater indicators
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-012-0200-4
– volume: 4
  start-page: 91
  year: 2015
  ident: 10.1016/j.jhydrol.2024.131220_b0350
  article-title: Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2015.04.008
– volume: 2
  start-page: 28
  year: 2014
  ident: 10.1016/j.jhydrol.2024.131220_b0250
  article-title: Impact of land use change on groundwater—a review
  publication-title: Adv. Water Resour. Prot.
– volume: 27
  start-page: 2301
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0130
  article-title: Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-27-2301-2023
– start-page: 105684
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0310
  article-title: A systematic literature review on lake water level prediction models
  publication-title: Environ. Model Softw.
  doi: 10.1016/j.envsoft.2023.105684
– volume: 125
  start-page: 50
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131220_b0160
  article-title: Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT)
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2018.10.007
– volume: 15
  start-page: 12465
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131220_b0200
  article-title: Integrated assessment of the land use change and climate change impact on baseflow by using hydrologic model
  publication-title: Sustainability
  doi: 10.3390/su151612465
– volume: 35
  start-page: 293
  year: 2016
  ident: 10.1016/j.jhydrol.2024.131220_b0065
  article-title: Will it rise or will it fall? Managing the complex effects of urbanization on base flow
  publication-title: Freshw. Sci.
  doi: 10.1086/685084
– start-page: 337
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131220_b0255
  article-title: Support vector machines and support vector regression
– volume: 11
  start-page: 851
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131220_b0265
  article-title: Alteration of hydrologic flow indicators in Ardabil Balikhlouchai River under combined effects of change in climatic variables and Yamchi Dam construction using range of variability approach
  publication-title: Watershed Eng. Manag.
– volume: 53
  start-page: 49
  year: 2015
  ident: 10.1016/j.jhydrol.2024.131220_b0330
  article-title: Best-worst multi-criteria decision-making method
  publication-title: Omega
  doi: 10.1016/j.omega.2014.11.009
– volume: 25
  start-page: 11363
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131220_b0040
  article-title: Using Improved TOPSIS and Best Worst Method in prioritizing management scenarios for the watershed management in arid and semi-arid environments
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05933-9
– volume: 10
  start-page: 1304
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131220_b0095
  article-title: Baseflow contribution to streamflow and aquatic habitats using physical habitat simulations
  publication-title: Water
  doi: 10.3390/w10101304
– volume: 10
  start-page: 3283
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131220_b0100
  article-title: Icings and groundwater conditions in permafrost catchments of northwestern Canada
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60322-w
– volume: 564
  start-page: 266
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131220_b0415
  article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.07.004
– volume: 17
  start-page: e0261859
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131220_b0450
  article-title: Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0261859
– volume: 35
  start-page: 3105
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131220_b0245
  article-title: Identification of critical watershed for soil conservation using Game Theory-based approaches
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-02856-w
SSID ssj0000334
Score 2.46965
Snippet •Base Flow modeling with conjunct application of MCDM and machine learning.•Combining MCDM and machine learning algorithms improved Base Flow modeling.•Game...
The study of base flow is essential for sustainable water management. By understanding the dynamics of base flow, policymakers can make informed decisions to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131220
SubjectTerms Artificial Intelligence (AI)
base flow
case studies
decision support systems
Environmental Flow
hydrologic data
Iran
Optimal Decision Making
prioritization
Python Programming Language
regression analysis
rivers
subwatersheds
support vector machines
temperature
water management
Water Resources Management (WRM)
Title Machine learning modeling of base flow generation potential: A case study of the combined application of BWM and Fallback bargaining algorithm
URI https://dx.doi.org/10.1016/j.jhydrol.2024.131220
https://www.proquest.com/docview/3200270720
Volume 636
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection unibz
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaq9gAXRFlEWSojcc2MY7_Ek96GqqMBND1R0ZvlLbMQktGQquqFn8Bvxi9xWkBIlbhEWWzL8nPeovf5fYS848Y673WZcES4wqSARE_KNDFhv2gLufdd9nxxns8v4ONldrlHToezMAirjLq_1-mdto5vxnE1x9v1Gs_4cp7mBSAKMthl1MMAElkMRj_uYB5MCBgqhmPru1M8481os7pxuwYzEBxGqUg50n7_2z79pak78zN7TB5Fv5FO-6kdkj1fPyEPIoX56uYp-bnoYJGeRh6IJe1IbvCmKSkaK1pWzTVddnWmURx027SIFdLVCZ1Siy26YrPYPriFNCxJCJu9o78lufHb-y8LqmtHZ7qqjLZfw-C7ZU80QXW1bHbrdvXtGbmYnX0-nSeRbCGxAnibhCA5L1JrGEjtcmmY0JkRzKd5uOY6k1aWBXeCgfe2YB601wawXLwE54CJ52S_bmr_gtDMBTdNSxs8AQOZ1EYyAyaESmXJwHp2RGBYYmVjJXIkxKjUADnbqCgZhZJRvWSOyOi227YvxXFfh8kgP_XHnlLBXNzX9e0gbxX-N0yi6No3V9-VQFSLZJKzl_8__CvyEJ96yNlrst_urvyb4Ny05rjbvcfkYPrh0_z8F3mQ-yM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaqcigXxCrKaiSumXHsl3jSW1sxGqDTUyt6s7xlFkIyGlKhXvoT-M31SxwKCKkSlyiKF1l-zlv0Pr-PkPfcWOe9LhOOCFeYFJDoSZkmJpwXbSH3vsuez0_z2Tl8usgudsjxcBcGYZVR9_c6vdPW8cs47uZ4s1rhHV_O07wAREEGuxz08D3IuMQIbHR9i_NgQsBQMhy7317jGa9H6-WV2zaYguAwSkXKkff73wbqL1Xd2Z_pQ_IgOo70sF_bI7Lj68dkL3KYL6-ekJ_zDhfpaSSCWNCO5QZfmpKitaJl1fygi67QNMqDbpoWwUK6OqCH1GKPrtos9g9-IQ17EuJm7-hvWW5sO_oyp7p2dKqrymj7NUy-XfRME1RXi2a7apffnpLz6Yez41kS2RYSK4C3SYiS8yK1hoHULpeGCZ0ZwXyah2euM2llWXAnGHhvC-ZBe20A68VLcA6YeEZ266b2zwnNXPDTtLTBFTCQSW0kM2BCrFSWDKxn-wSGLVY2liJHRoxKDZiztYqSUSgZ1Utmn4x-Ddv0tTjuGjAZ5Kf-OFQq2Iu7hr4b5K3CD4dZFF375vK7EghrkUxy9uL_p39L9mZn8xN18vH080tyH1t6_NkrsttuL_3r4Om05k13km8AQLL8uA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+modeling+of+base+flow+generation+potential%3A+A+case+study+of+the+combined+application+of+BWM+and+Fallback+bargaining+algorithm&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Nasiri+Khiavi%2C+Ali&rft.date=2024-06-01&rft.issn=0022-1694&rft.volume=636+p.131220-&rft_id=info:doi/10.1016%2Fj.jhydrol.2024.131220&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon