Machine learning modeling of base flow generation potential: A case study of the combined application of BWM and Fallback bargaining algorithm
•Base Flow modeling with conjunct application of MCDM and machine learning.•Combining MCDM and machine learning algorithms improved Base Flow modeling.•Game theory algorithm performed better than BWM in Base Flow modeling.•Base Flow generation potential was higher in the watershed upstream. The stud...
        Saved in:
      
    
          | Published in | Journal of hydrology (Amsterdam) Vol. 636; p. 131220 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.06.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0022-1694 1879-2707  | 
| DOI | 10.1016/j.jhydrol.2024.131220 | 
Cover
| Abstract | •Base Flow modeling with conjunct application of MCDM and machine learning.•Combining MCDM and machine learning algorithms improved Base Flow modeling.•Game theory algorithm performed better than BWM in Base Flow modeling.•Base Flow generation potential was higher in the watershed upstream.
The study of base flow is essential for sustainable water management. By understanding the dynamics of base flow, policymakers can make informed decisions to ensure the long-term health and availability of water resources. This study was conducted with the aim of modeling the spatial changes of Base Flow Generation Potential (BFGP) using integrated Machine Learning Algorithms (MLAs) including Decision Tree Regression (DTR), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Random Forest (RF), Simple Linear Regression (SLR), Support Vector Machine (SVM) and Support Vector Regression (SVR) and optimal Multi-Criteria Decision Making (MCDM) methods including Best-Worst Method (BWM) and Fallback bargaining in the Cheshmeh-Kileh watershed, Iran. BFGP conditioning factors were selected for the Sub-Watershed (SW) and weighed using MCDM (BWM and Fallback bargaining algorithm) methods. BFGP maps of five classes were generated and analyzed. MCDM methods were also integrated with ML algorithms for optimum performance evaluation of the integrated unit. Based on the results, in the integrated model of BWM and Fallback bargaining algorithm with ML algorithms, SVR and RF algorithms was selected as the optimal model, respectively. In BWM in the Sehezar River, the upstream had the highest BFGP. The pattern of spatial changes based on the Fallback bargaining algorithm in the upstream of Sehezar River was similar to BWM. The combined approach of RF-GTA with the factors of minimum temperature (Tn), NDSI and elevation showed the highest correlation. It was observed that that the Fallback bargaining algorithm and BWM of the MCDM exhibited similarity in output of regarding the spatial change patterns of the BFGP. Also, Fallback bargaining exhibited a 67% similarity with the integrated RF-GTA in BFGP prioritization of the SWs, while BWM performed poorly. This suggests that the Fallback bargaining algorithm was more effective than BWM of the MCDM methods for SWs BFGP prioritization. The general summary indicated that the combined use of MCDM and MLAs were valuable tools in BF studies and helped in better understanding the complex hydrological processes. The findings of our research may be of help to Iran Water Resources Research Company using hydrological data arising from base flow studies to support their analysis. In conclusion, understanding the BF characteristics of SWs allows watershed managers to effectively prioritize conservation and restoration efforts aimed at protecting and enhancing the natural flow regime. | 
    
|---|---|
| AbstractList | The study of base flow is essential for sustainable water management. By understanding the dynamics of base flow, policymakers can make informed decisions to ensure the long-term health and availability of water resources. This study was conducted with the aim of modeling the spatial changes of Base Flow Generation Potential (BFGP) using integrated Machine Learning Algorithms (MLAs) including Decision Tree Regression (DTR), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Random Forest (RF), Simple Linear Regression (SLR), Support Vector Machine (SVM) and Support Vector Regression (SVR) and optimal Multi-Criteria Decision Making (MCDM) methods including Best-Worst Method (BWM) and Fallback bargaining in the Cheshmeh-Kileh watershed, Iran. BFGP conditioning factors were selected for the Sub-Watershed (SW) and weighed using MCDM (BWM and Fallback bargaining algorithm) methods. BFGP maps of five classes were generated and analyzed. MCDM methods were also integrated with ML algorithms for optimum performance evaluation of the integrated unit. Based on the results, in the integrated model of BWM and Fallback bargaining algorithm with ML algorithms, SVR and RF algorithms was selected as the optimal model, respectively. In BWM in the Sehezar River, the upstream had the highest BFGP. The pattern of spatial changes based on the Fallback bargaining algorithm in the upstream of Sehezar River was similar to BWM. The combined approach of RF-GTA with the factors of minimum temperature (Tn), NDSI and elevation showed the highest correlation. It was observed that that the Fallback bargaining algorithm and BWM of the MCDM exhibited similarity in output of regarding the spatial change patterns of the BFGP. Also, Fallback bargaining exhibited a 67% similarity with the integrated RF-GTA in BFGP prioritization of the SWs, while BWM performed poorly. This suggests that the Fallback bargaining algorithm was more effective than BWM of the MCDM methods for SWs BFGP prioritization. The general summary indicated that the combined use of MCDM and MLAs were valuable tools in BF studies and helped in better understanding the complex hydrological processes. The findings of our research may be of help to Iran Water Resources Research Company using hydrological data arising from base flow studies to support their analysis. In conclusion, understanding the BF characteristics of SWs allows watershed managers to effectively prioritize conservation and restoration efforts aimed at protecting and enhancing the natural flow regime. •Base Flow modeling with conjunct application of MCDM and machine learning.•Combining MCDM and machine learning algorithms improved Base Flow modeling.•Game theory algorithm performed better than BWM in Base Flow modeling.•Base Flow generation potential was higher in the watershed upstream. The study of base flow is essential for sustainable water management. By understanding the dynamics of base flow, policymakers can make informed decisions to ensure the long-term health and availability of water resources. This study was conducted with the aim of modeling the spatial changes of Base Flow Generation Potential (BFGP) using integrated Machine Learning Algorithms (MLAs) including Decision Tree Regression (DTR), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Random Forest (RF), Simple Linear Regression (SLR), Support Vector Machine (SVM) and Support Vector Regression (SVR) and optimal Multi-Criteria Decision Making (MCDM) methods including Best-Worst Method (BWM) and Fallback bargaining in the Cheshmeh-Kileh watershed, Iran. BFGP conditioning factors were selected for the Sub-Watershed (SW) and weighed using MCDM (BWM and Fallback bargaining algorithm) methods. BFGP maps of five classes were generated and analyzed. MCDM methods were also integrated with ML algorithms for optimum performance evaluation of the integrated unit. Based on the results, in the integrated model of BWM and Fallback bargaining algorithm with ML algorithms, SVR and RF algorithms was selected as the optimal model, respectively. In BWM in the Sehezar River, the upstream had the highest BFGP. The pattern of spatial changes based on the Fallback bargaining algorithm in the upstream of Sehezar River was similar to BWM. The combined approach of RF-GTA with the factors of minimum temperature (Tn), NDSI and elevation showed the highest correlation. It was observed that that the Fallback bargaining algorithm and BWM of the MCDM exhibited similarity in output of regarding the spatial change patterns of the BFGP. Also, Fallback bargaining exhibited a 67% similarity with the integrated RF-GTA in BFGP prioritization of the SWs, while BWM performed poorly. This suggests that the Fallback bargaining algorithm was more effective than BWM of the MCDM methods for SWs BFGP prioritization. The general summary indicated that the combined use of MCDM and MLAs were valuable tools in BF studies and helped in better understanding the complex hydrological processes. The findings of our research may be of help to Iran Water Resources Research Company using hydrological data arising from base flow studies to support their analysis. In conclusion, understanding the BF characteristics of SWs allows watershed managers to effectively prioritize conservation and restoration efforts aimed at protecting and enhancing the natural flow regime.  | 
    
| ArticleNumber | 131220 | 
    
| Author | Nasiri Khiavi, Ali | 
    
| Author_xml | – sequence: 1 givenname: Ali surname: Nasiri Khiavi fullname: Nasiri Khiavi, Ali email: ali.nasirikhiavi@modares.ac.ir organization: Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor 46414-356, Iran  | 
    
| BookMark | eNqFkM1u1DAURi1UJKaFR0DyspsM_pukKQtURhSQWrEBsbRu7JsZD44dbE_RvATPTNJ0xaZeXFvyd74rnXNyFmJAQt5ytuaM1-8O68P-ZFP0a8GEWnPJhWAvyIpfNW0lGtackRVjQlS8btUrcp7zgU1HSrUif-_B7F1A6hFScGFHh2jRz4_Y0w4y0t7HP3SHARMUFwMdY8FQHPhrekPNnMjlaE9zvuyRmjh0U6GlMI7emYWZ_j7-vKcQLL0F7zswv6bytAP3uBP8LiZX9sNr8rIHn_HN031Bftx--r79Ut19-_x1e3NXGalEqVrW1C03HVMN2LrpmIRNJxnyepo1bBrT9K2wkilE0zJUgNCpKyHaRlmrmLwgl0vvmOLvI-aiB5cNeg8B4zFrKSZhkzkxRzdL1KSYc8Jej8kNkE6aMz371wf95F_P_vXif-Le_8cZVx5tlATOP0t_WGicLDw4TDobh8GgdQlN0Ta6Zxr-Ac1NqHk | 
    
| CitedBy_id | crossref_primary_10_1007_s11356_024_35712_6 crossref_primary_10_1007_s11356_024_34691_y  | 
    
| Cites_doi | 10.3390/rs9050398 10.3390/w6082519 10.1007/s00199-002-0318-3 10.3390/ijerph17144987 10.1016/j.jhydrol.2007.12.018 10.1023/A:1010933404324 10.1016/j.landusepol.2017.12.035 10.1007/s12145-022-00846-z 10.1016/j.jhydrol.2020.124715 10.5194/hess-26-183-2022 10.1016/j.scitotenv.2021.151760 10.1029/2005WR004314 10.3389/fenvs.2023.1152296 10.1016/j.jhydrol.2016.08.008 10.1038/s41598-022-21259-4 10.5194/hess-22-6209-2018 10.1029/2018WR024464 10.3390/s21113758 10.1016/j.jhydrol.2016.01.063 10.1016/j.jenvman.2023.118843 10.1016/j.watres.2021.117450 10.1061/(ASCE)HE.1943-5584.0002217 10.1109/ACCESS.2017.2696365 10.1016/j.jhydrol.2015.10.038 10.1080/15715124.2021.2002346 10.1007/s10980-008-9261-4 10.1007/s10661-023-11193-x 10.1016/j.ecolmodel.2011.12.007 10.1007/s00477-023-02417-0 10.1007/s11600-020-00428-x 10.1016/j.heliyon.2023.e22509 10.5194/hess-20-1621-2016 10.1016/S0022-1694(01)00391-2 10.1029/2007WR006737 10.1007/s10333-014-0448-9 10.1016/j.asoc.2021.107168 10.1080/15715124.2015.1081209 10.3390/w10070848 10.1016/j.jhydrol.2020.124780 10.3390/rs12203284 10.2166/ws.2019.074 10.1007/s12665-023-11059-y 10.1029/WR004i005p00985 10.1016/j.jenvman.2021.113040 10.1016/j.engappai.2015.09.014 10.1016/j.neucom.2017.01.026 10.1071/MF09285 10.1007/s00477-022-02276-1 10.1016/j.jhydrol.2008.01.005 10.1029/2004WR003608 10.1002/2013WR013918 10.3390/w14111745 10.1002/hyp.10422 10.1016/j.jenvman.2022.116207 10.3390/su142416651 10.1029/2020WR027349 10.1111/j.1752-1688.2007.00003.x 10.1029/2018WR023551 10.1016/j.geoderma.2011.10.010 10.1016/j.ejrh.2015.07.005 10.1016/j.jhydrol.2009.07.042 10.1007/s11600-022-00827-2 10.1016/j.jhydrol.2015.05.019 10.5194/hess-3-271-1999 10.1016/j.jhydrol.2019.124001 10.1111/nrm.12380 10.1002/fsh.10054 10.1016/j.envsoft.2021.104991 10.1007/s11269-012-0200-4 10.1016/j.ejrh.2015.04.008 10.5194/hess-27-2301-2023 10.1016/j.envsoft.2023.105684 10.1016/j.ecoleng.2018.10.007 10.3390/su151612465 10.1086/685084 10.1016/j.omega.2014.11.009 10.1007/s00500-021-05933-9 10.3390/w10101304 10.1038/s41598-020-60322-w 10.1016/j.jhydrol.2018.07.004 10.1371/journal.pone.0261859 10.1007/s11269-021-02856-w  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 | 
    
| Copyright_xml | – notice: 2024 | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.jhydrol.2024.131220 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 1879-2707 | 
    
| ExternalDocumentID | 10_1016_j_jhydrol_2024_131220 S0022169424006152  | 
    
| GeographicLocations | Iran | 
    
| GeographicLocations_xml | – name: Iran | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c342t-907691cb047ad67b03a5b30e16b306a57c7f92d304eec90e4aeab4822974dd403 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0022-1694 | 
    
| IngestDate | Thu Oct 02 22:51:06 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Wed Oct 01 02:36:36 EDT 2025 Sat Jun 29 15:30:28 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Environmental Flow Artificial Intelligence (AI) Python Programming Language Water Resources Management (WRM) Optimal Decision Making  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c342t-907691cb047ad67b03a5b30e16b306a57c7f92d304eec90e4aeab4822974dd403 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 3200270720 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_3200270720 crossref_primary_10_1016_j_jhydrol_2024_131220 crossref_citationtrail_10_1016_j_jhydrol_2024_131220 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2024_131220  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | June 2024 2024-06-00 20240601  | 
    
| PublicationDateYYYYMMDD | 2024-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Journal of hydrology (Amsterdam) | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Nasiri Khiavi, Mostafazadeh, Adhami (b0270) 2023 Kheimi, Almadani, Zounemat-Kermani (b0170) 2023 Segura, Noone, Warren, Jones, Tenny, Ganio (b0380) 2019; 55 Hellwig, Stahl (b0155) 2018; 22 Laub, Thiede, Macfarlane, Budy (b0190) 2018; 43 Breiman, Friedman, Stone, Olshen (b0085) 1984 Yan, Xu (b0450) 2022; 17 Mehrparvar, Ahmadi, Safavi (b0240) 2016; 14 Gentile, Canone, Ceperley, Gisolo, Previati, Zuecco, Schaefli, Ferraris (b0130) 2023; 27 Khiavi, Tavoosi, Kuriqi (b0175) 2023; 82 Beck, Van Dijk, Miralles, De Jeu, Bruijnzeel, McVicar, Schellekens (b0055) 2013; 49 Santhi, Allen, Muttiah, Arnold, Tuppad (b0375) 2008; 351 Blumstock, Tetzlaff, Malcolm, Nuetzmann, Soulsby (b0070) 2015; 527 Cartwright (b0090) 2022; 26 Gnann, Woods, Howden (b0135) 2019; 55 Richter, Gungle, Lacher, Turner, Bushman (b0340) 2014; 6 Crites, Kokelj, Lacelle (b0100) 2020; 10 Khalil, Almasri, McKee, Kaluarachchi (b0165) 2005; 41 Dunn (b0110) 1999; 3 Yaseen, El-Shafie, Jaafar, Afan, Sayl (b0460) 2015; 530 Li, Qian, Liu, Yan, Yang, Luo, Ma (b0210) 2022; 14 Alvandi, Soleimani-Sardo, Meshram, Farid Giglou, Dahmardeh Ghaleno (b0040) 2021; 25 Derepasko, Guillaume, Horne, Volk (b0105) 2021; 139 Tongal, Booij (b0420) 2023; 37 Muñoz-Villers, Geissert, Holwerda, McDonnell (b0260) 2016; 20 Haberlandt, Klöcking, Krysanova, Becker (b0150) 2001; 248 Tu, Chen, Wang, Li (b0425) 2020; 17 Adhami, Sadeghi, Sheikhmohammady (b0015) 2018; 72 Mishra, Khare, Gupta, Shukla (b0250) 2014; 2 Fathabadi, Seyedian, Malekian (b0125) 2022; 818 Afshar Ardekani, Sabzevari (b0025) 2020; 68 Liu, Pender (b0220) 2015; 46 Winter (b0440) 2007; 43 Zhang, Fang, Zhang, Ju, Zhong (b0470) 2023; 11 Santarosa, Gastmans, Gilmore, Boll, Betancur, Gonçalves (b0370) 2023; 21 Yang, Xiao, Liang, Zhang (b0455) 2019; 19 Zomlot, Verbeiren, Huysmans, Batelaan (b0490) 2015; 4 Guzmán, Batelaan, Huysmans, Wyseure (b0145) 2015; 29 Benos, Tagarakis, Dolias, Berruto, Kateris, Bochtis (b0060) 2021; 21 Bourel, Segura, Crisci, López, Sampognaro, Vidal, Kruk, Piccini, Perera (b0075) 2021; 202 Nasiri Khiavi, Vafakhah, Sadeghi (b0285) 2023 Liu, Zhu, Wang (b0225) 2021; 103 Tavakoli, Torabi, GhanavatiNejad, Nayeri (b0410) 2023 Nasiri Khiavi, Vafakhah, Sadeghi (b0290) 2023 Roy, Chandra Pal, Arabameri, Chakrabortty, Pradhan, Chowdhuri, Lee, Tien Bui (b0345) 2020; 12 Guo (b0140) 2022; 27 Lott, Stewart (b0230) 2016; 535 Rumsey, Miller, Sexstone (b0355) 2020; 584 Suen, Eheart (b0400) 2006; 42 Ozdemir, Yaqub, Yildirim (b0310) 2023 Tan, Liu, Tan (b0405) 2020; 56 Salerno, Tartari (b0365) 2009; 376 Su, Huang, Zhao, Li (b0395) 2023; 195 Avand, Khiavi, Khazaei, Tiefenbacher (b0045) 2021; 295 Kimambo, Mbungu, Massawe, Hamad, Ligate (b0180) 2023 Nasiri Khiavi, Vafakhah, Sadeghi (b0275) 2021; 8 Breiman (b0080) 2001; 45 Bhaskar, Beesley, Burns, Fletcher, Hamel, Oldham, Roy (b0065) 2016; 35 Vafakhah, Nasiri Khiavi, Janizadeh, Ganjkhanlo (b0430) 2022; 15 Vorpahl, Elsenbeer, Märker, Schröder (b0435) 2012; 239 Lee, Park, Kum, Jung, Kim, Hwang, Kim, Kim, Lim (b0195) 2014; 12 Li (b0205) 2023 Ließ, Glaser, Huwe (b0215) 2012; 170 Aires, da Silva, Fernandes Filho, Rodrigues, Uliana, Amorim, de Melo Ribeiro, Campos (b0030) 2022; 323 Yue, Li, Cheng, Gao (b0465) 2018; 10 Eckhardt (b0115) 2008; 352 Lee, Park, Min, Na (b0200) 2023; 15 Wu, Chau, Li (b0445) 2009; 45 Meshram, Adhami, Kisi, Meshram, Duc, Khedher (b0245) 2021; 35 Singh (b0385) 1968; 4 Baharad, Nitzan (b0050) 2003; 22 Nasiri Khiavi, Vafakhah, Sadeghi (b0295) 2023 Peters, Verhoest, Samson, Boeckx, De Baets (b0320) 2008; 23 Salem, Abduljaleel, DezsHo, Lóczy (b0360) 2023; 13 Nasiri Khiavi, Vafakhah, Sadeghi (b0280) 2023 Norman, Dunn, Bakker, Allen, de Albuquerque (b0305) 2013; 27 Montesinos López, Montesinos López, Crossa (b0255) 2022 Steyn (b0390) 2018 Zhou, Li, Wei, Li, Qiao, Armaghani (b0480) 2019; 9 Pijanowski, Wałkega, Ksikażek, Strużyński, Goleniowski, Zarzycki, Kowalik, Bogdał, Wyrkebek, Szeremeta (b0325) 2022; 14 Tongal, Booij (b0415) 2018; 564 Noi, Degener, Kappas (b0300) 2017; 9 Rezaei (b0335) 2016; 64 Aboelnour, Engel, Frisbee, Gitau, Flanagan (b0005) 2021; 35 Mao, Shi, Song, Xu, Tang, Li (b0235) 2023; 345 Choi, Kang, Lee (b0095) 2018; 10 Zhang, Zhang, Song, Cheng, Paul, Gan, Shi, Luo, Zhao (b0475) 2020; 585 Zhou, Pan, Wang, Vasilakos (b0485) 2017; 237 Aldous, Fitzsimons, Richter, Bach (b0035) 2011; 62 Adhami, Sadeghi, Duttmann, Sheikhmohammady (b0020) 2019; 577 Adhami, Sadeghi (b0010) 2016; 541 Elmeddahi, Ragab (b0120) 2022; 70 Jang, Engel, Ryu (b0160) 2018; 125 Nasiri Khiavi, Mostafazadeh, Esmali Ouri, Ghafarzadeh, Golshan (b0265) 2019; 11 Rezaei (b0330) 2015; 53 L’heureux, Grolinger, Elyamany, Capretz (b0185) 2017; 5 Pauta (b0315) 2023 Rumsey, Miller, Susong, Tillman, Anning (b0350) 2015; 4 Breiman (10.1016/j.jhydrol.2024.131220_b0080) 2001; 45 Guzmán (10.1016/j.jhydrol.2024.131220_b0145) 2015; 29 Singh (10.1016/j.jhydrol.2024.131220_b0385) 1968; 4 Aldous (10.1016/j.jhydrol.2024.131220_b0035) 2011; 62 Adhami (10.1016/j.jhydrol.2024.131220_b0020) 2019; 577 Zhang (10.1016/j.jhydrol.2024.131220_b0475) 2020; 585 Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0270) 2023 Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0280) 2023 Crites (10.1016/j.jhydrol.2024.131220_b0100) 2020; 10 Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0290) 2023 Rezaei (10.1016/j.jhydrol.2024.131220_b0335) 2016; 64 Ließ (10.1016/j.jhydrol.2024.131220_b0215) 2012; 170 Mehrparvar (10.1016/j.jhydrol.2024.131220_b0240) 2016; 14 Aires (10.1016/j.jhydrol.2024.131220_b0030) 2022; 323 Dunn (10.1016/j.jhydrol.2024.131220_b0110) 1999; 3 Winter (10.1016/j.jhydrol.2024.131220_b0440) 2007; 43 Zomlot (10.1016/j.jhydrol.2024.131220_b0490) 2015; 4 Gnann (10.1016/j.jhydrol.2024.131220_b0135) 2019; 55 Adhami (10.1016/j.jhydrol.2024.131220_b0010) 2016; 541 Muñoz-Villers (10.1016/j.jhydrol.2024.131220_b0260) 2016; 20 Vafakhah (10.1016/j.jhydrol.2024.131220_b0430) 2022; 15 Jang (10.1016/j.jhydrol.2024.131220_b0160) 2018; 125 Mishra (10.1016/j.jhydrol.2024.131220_b0250) 2014; 2 Norman (10.1016/j.jhydrol.2024.131220_b0305) 2013; 27 Tongal (10.1016/j.jhydrol.2024.131220_b0420) 2023; 37 Santhi (10.1016/j.jhydrol.2024.131220_b0375) 2008; 351 Yang (10.1016/j.jhydrol.2024.131220_b0455) 2019; 19 Noi (10.1016/j.jhydrol.2024.131220_b0300) 2017; 9 Salerno (10.1016/j.jhydrol.2024.131220_b0365) 2009; 376 Meshram (10.1016/j.jhydrol.2024.131220_b0245) 2021; 35 Li (10.1016/j.jhydrol.2024.131220_b0205) 2023 Kimambo (10.1016/j.jhydrol.2024.131220_b0180) 2023 Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0285) 2023 Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0295) 2023 Yan (10.1016/j.jhydrol.2024.131220_b0450) 2022; 17 Steyn (10.1016/j.jhydrol.2024.131220_b0390) 2018 Kheimi (10.1016/j.jhydrol.2024.131220_b0170) 2023 Khiavi (10.1016/j.jhydrol.2024.131220_b0175) 2023; 82 Santarosa (10.1016/j.jhydrol.2024.131220_b0370) 2023; 21 Zhang (10.1016/j.jhydrol.2024.131220_b0470) 2023; 11 Khalil (10.1016/j.jhydrol.2024.131220_b0165) 2005; 41 Lott (10.1016/j.jhydrol.2024.131220_b0230) 2016; 535 Salem (10.1016/j.jhydrol.2024.131220_b0360) 2023; 13 Su (10.1016/j.jhydrol.2024.131220_b0395) 2023; 195 Beck (10.1016/j.jhydrol.2024.131220_b0055) 2013; 49 Aboelnour (10.1016/j.jhydrol.2024.131220_b0005) 2021; 35 Pauta (10.1016/j.jhydrol.2024.131220_b0315) 2023 Elmeddahi (10.1016/j.jhydrol.2024.131220_b0120) 2022; 70 Zhou (10.1016/j.jhydrol.2024.131220_b0485) 2017; 237 Tavakoli (10.1016/j.jhydrol.2024.131220_b0410) 2023 Peters (10.1016/j.jhydrol.2024.131220_b0320) 2008; 23 Vorpahl (10.1016/j.jhydrol.2024.131220_b0435) 2012; 239 Mao (10.1016/j.jhydrol.2024.131220_b0235) 2023; 345 Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0275) 2021; 8 Liu (10.1016/j.jhydrol.2024.131220_b0220) 2015; 46 L’heureux (10.1016/j.jhydrol.2024.131220_b0185) 2017; 5 Tu (10.1016/j.jhydrol.2024.131220_b0425) 2020; 17 Lee (10.1016/j.jhydrol.2024.131220_b0195) 2014; 12 Yaseen (10.1016/j.jhydrol.2024.131220_b0460) 2015; 530 Afshar Ardekani (10.1016/j.jhydrol.2024.131220_b0025) 2020; 68 Hellwig (10.1016/j.jhydrol.2024.131220_b0155) 2018; 22 Bhaskar (10.1016/j.jhydrol.2024.131220_b0065) 2016; 35 Ozdemir (10.1016/j.jhydrol.2024.131220_b0310) 2023 Tongal (10.1016/j.jhydrol.2024.131220_b0415) 2018; 564 Eckhardt (10.1016/j.jhydrol.2024.131220_b0115) 2008; 352 Lee (10.1016/j.jhydrol.2024.131220_b0200) 2023; 15 Alvandi (10.1016/j.jhydrol.2024.131220_b0040) 2021; 25 Nasiri Khiavi (10.1016/j.jhydrol.2024.131220_b0265) 2019; 11 Richter (10.1016/j.jhydrol.2024.131220_b0340) 2014; 6 Yue (10.1016/j.jhydrol.2024.131220_b0465) 2018; 10 Fathabadi (10.1016/j.jhydrol.2024.131220_b0125) 2022; 818 Rezaei (10.1016/j.jhydrol.2024.131220_b0330) 2015; 53 Laub (10.1016/j.jhydrol.2024.131220_b0190) 2018; 43 Roy (10.1016/j.jhydrol.2024.131220_b0345) 2020; 12 Breiman (10.1016/j.jhydrol.2024.131220_b0085) 1984 Gentile (10.1016/j.jhydrol.2024.131220_b0130) 2023; 27 Zhou (10.1016/j.jhydrol.2024.131220_b0480) 2019; 9 Baharad (10.1016/j.jhydrol.2024.131220_b0050) 2003; 22 Segura (10.1016/j.jhydrol.2024.131220_b0380) 2019; 55 Benos (10.1016/j.jhydrol.2024.131220_b0060) 2021; 21 Wu (10.1016/j.jhydrol.2024.131220_b0445) 2009; 45 Li (10.1016/j.jhydrol.2024.131220_b0210) 2022; 14 Avand (10.1016/j.jhydrol.2024.131220_b0045) 2021; 295 Blumstock (10.1016/j.jhydrol.2024.131220_b0070) 2015; 527 Pijanowski (10.1016/j.jhydrol.2024.131220_b0325) 2022; 14 Liu (10.1016/j.jhydrol.2024.131220_b0225) 2021; 103 Rumsey (10.1016/j.jhydrol.2024.131220_b0350) 2015; 4 Haberlandt (10.1016/j.jhydrol.2024.131220_b0150) 2001; 248 Derepasko (10.1016/j.jhydrol.2024.131220_b0105) 2021; 139 Suen (10.1016/j.jhydrol.2024.131220_b0400) 2006; 42 Adhami (10.1016/j.jhydrol.2024.131220_b0015) 2018; 72 Guo (10.1016/j.jhydrol.2024.131220_b0140) 2022; 27 Rumsey (10.1016/j.jhydrol.2024.131220_b0355) 2020; 584 Tan (10.1016/j.jhydrol.2024.131220_b0405) 2020; 56 Bourel (10.1016/j.jhydrol.2024.131220_b0075) 2021; 202 Choi (10.1016/j.jhydrol.2024.131220_b0095) 2018; 10 Montesinos López (10.1016/j.jhydrol.2024.131220_b0255) 2022 Cartwright (10.1016/j.jhydrol.2024.131220_b0090) 2022; 26  | 
    
| References_xml | – volume: 72 start-page: 171 year: 2018 end-page: 180 ident: b0015 article-title: Making competent land use policy using a co-management framework publication-title: Land Use Policy – start-page: 105684 year: 2023 ident: b0310 article-title: A systematic literature review on lake water level prediction models publication-title: Environ. Model Softw. – volume: 37 start-page: 89 year: 2023 end-page: 112 ident: b0420 article-title: Simulated annealing coupled with a Naive Bayes model and base flow separation for streamflow simulation in a snow dominated basin publication-title: Stoch. Environ. Res. Risk Assess. – volume: 14 start-page: 33 year: 2016 end-page: 45 ident: b0240 article-title: Social resolution of conflicts over water resources allocation in a river basin using cooperative game theory approaches: a case study publication-title: Int. J. River Basin Manag. – volume: 42 year: 2006 ident: b0400 article-title: Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime publication-title: Water Resour. Res. – volume: 49 start-page: 7843 year: 2013 end-page: 7863 ident: b0055 article-title: Global patterns in base flow index and recession based on streamflow observations from 3394 catchments publication-title: Water Resour. Res. – volume: 13 start-page: 5061 year: 2023 ident: b0360 article-title: Integrated assessment of the impact of land use changes on groundwater recharge and groundwater level in the Drava floodplain, Hungary publication-title: Sci. Rep. – volume: 9 year: 2017 ident: b0300 article-title: Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data publication-title: Remote Sens. – volume: 11 start-page: 1152296 year: 2023 ident: b0470 article-title: Water resources optimal allocation model for coordinating regional multi-level water resources managers’ interests publication-title: Front. Environ. Sci. – volume: 6 start-page: 2519 year: 2014 end-page: 2538 ident: b0340 article-title: Development of a shared vision for groundwater management to protect and sustain baseflows of the Upper San Pedro River, Arizona, USA publication-title: Water – volume: 323 year: 2022 ident: b0030 article-title: Modeling of surface sediment concentration in the Doce River basin using satellite remote sensing publication-title: J. Environ. Manage. – year: 2023 ident: b0180 article-title: Rapid environmental flow assessment for sustainable water resource management in Tanzania’s lower Rufiji river basin: A scoping review publication-title: Heliyon – volume: 564 start-page: 266 year: 2018 end-page: 282 ident: b0415 article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation publication-title: J. Hydrol. – year: 2023 ident: b0410 article-title: An integrated decision-making framework for selecting the best strategies of water resources management in pandemic emergencies publication-title: Sci. Iran – volume: 584 year: 2020 ident: b0355 article-title: Relating hydroclimatic change to streamflow, baseflow, and hydrologic partitioning in the Upper Rio Grande Basin, 1980 to 2015 publication-title: J. Hydrol. – volume: 17 start-page: 4987 year: 2020 ident: b0425 article-title: Regional water resources security evaluation based on a hybrid fuzzy BWM-TOPSIS method publication-title: Int. J. Environ. Res. Public Health – volume: 4 start-page: 91 year: 2015 end-page: 107 ident: b0350 article-title: Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin publication-title: J. Hydrol. Reg. Stud. – volume: 139 year: 2021 ident: b0105 article-title: Considering scale within optimization procedures for water management decisions: Balancing environmental flows and human needs publication-title: Environ. Model. Softw. – start-page: 337 year: 2022 end-page: 378 ident: b0255 article-title: Support vector machines and support vector regression publication-title: Multivariate Statistical Machine Learning Methods for Genomic Prediction – start-page: 1 year: 2023 end-page: 19 ident: b0285 article-title: Flood-based critical sub-watershed mapping: comparative application of multi-criteria decision making methods and hydrological modeling approach publication-title: Stoch. Environ. Res. Risk Assess – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0080 article-title: Random forests publication-title: Mach. Learn. – volume: 10 start-page: 3283 year: 2020 ident: b0100 article-title: Icings and groundwater conditions in permafrost catchments of northwestern Canada publication-title: Sci. Rep. – volume: 14 start-page: 16651 year: 2022 ident: b0325 article-title: An expert approach to an assessment of the needs of land consolidation within the scope of improving water resource management publication-title: Sustainability – volume: 43 start-page: 15 year: 2007 end-page: 25 ident: b0440 article-title: The role of ground water in generating streamflow in headwater areas and in maintaining base flow 1 publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 20 start-page: 1621 year: 2016 end-page: 1635 ident: b0260 article-title: Factors influencing stream baseflow transit times in tropical montane watersheds publication-title: Hydrol. Earth Syst. Sci. – volume: 56 year: 2020 ident: b0405 article-title: Global changes in baseflow under the impacts of changing climate and vegetation publication-title: Water Resour. Res. – volume: 10 start-page: 848 year: 2018 ident: b0465 article-title: The value of environmental base flow in water-scarce basins: a case study of Wei River Basin, Northwest China publication-title: Water – volume: 29 start-page: 3051 year: 2015 end-page: 3064 ident: b0145 article-title: Comparative analysis of baseflow characteristics of two Andean catchments, Ecuador publication-title: Hydrol. Process. – volume: 17 start-page: e0261859 year: 2022 ident: b0450 article-title: Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes publication-title: PLoS One – volume: 3 start-page: 271 year: 1999 end-page: 284 ident: b0110 article-title: Imposing constraints on parameter values of a conceptual hydrological model using baseflow response publication-title: Hydrol. Earth Syst. Sci. – volume: 64 start-page: 126 year: 2016 end-page: 130 ident: b0335 article-title: Best-worst multi-criteria decision-making method: Some properties and a linear model publication-title: Omega (United Kingdom) – volume: 53 start-page: 49 year: 2015 end-page: 57 ident: b0330 article-title: Best-worst multi-criteria decision-making method publication-title: Omega – volume: 11 start-page: 851 year: 2019 end-page: 865 ident: b0265 article-title: Alteration of hydrologic flow indicators in Ardabil Balikhlouchai River under combined effects of change in climatic variables and Yamchi Dam construction using range of variability approach publication-title: Watershed Eng. Manag. – year: 2023 ident: b0315 article-title: Facultad de Ingenier{’i}a Doctorado en Recursos H{’i}dricos – volume: 4 start-page: 985 year: 1968 end-page: 999 ident: b0385 article-title: Some factors affecting baseflow publication-title: Water Resour. Res. – volume: 46 start-page: 223 year: 2015 end-page: 231 ident: b0220 article-title: A flood inundation modelling using v-support vector machine regression model publication-title: Eng. Appl. Artif. Intell. – volume: 351 start-page: 139 year: 2008 end-page: 153 ident: b0375 article-title: Regional estimation of base flow for the conterminous United States by hydrologic landscape regions publication-title: J. Hydrol. – volume: 248 start-page: 35 year: 2001 end-page: 53 ident: b0150 article-title: Regionalisation of the base flow index from dynamically simulated flow components—a case study in the Elbe River Basin publication-title: J. Hydrol. – year: 2023 ident: b0290 article-title: Flood-based critical sub-watershed mapping: comparative application of multi-criteria decision making methods and hydrological modeling approach publication-title: Stoch. Environ. Res. Risk Assess – volume: 15 start-page: 2431 year: 2022 end-page: 2445 ident: b0430 article-title: Evaluating different machine learning algorithms for snow water equivalent prediction publication-title: Earth Sci. Inf. – volume: 70 start-page: 1797 year: 2022 end-page: 1814 ident: b0120 article-title: Prediction of the groundwater quality index through machine learning in Western Middle Cheliff plain in North Algeria publication-title: Acta Geophys. – volume: 527 start-page: 1021 year: 2015 end-page: 1033 ident: b0070 article-title: Baseflow dynamics: Multi-tracer surveys to assess variable groundwater contributions to montane streams under low flows publication-title: J. Hydrol. – volume: 237 start-page: 350 year: 2017 end-page: 361 ident: b0485 article-title: Machine learning on big data: Opportunities and challenges publication-title: Neurocomputing – volume: 22 start-page: 6209 year: 2018 end-page: 6224 ident: b0155 article-title: An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times publication-title: Hydrol. Earth Syst. Sci. – start-page: 1 year: 2023 end-page: 15 ident: b0170 article-title: Stochastic (S [ARIMA]), shallow (NARnet, NAR-GMDH, OS-ELM), and deep learning (LSTM, Stacked-LSTM, CNN-GRU) models, application to river flow forecasting publication-title: Acta Geophys. – volume: 27 start-page: 535 year: 2013 end-page: 551 ident: b0305 article-title: Water security assessment: integrating governance and freshwater indicators publication-title: Water Resour. Manag. – year: 2018 ident: b0390 article-title: Short-term Stream Flow Forecasting and Downstream Gap Infilling Using Machine Learning Techniques – volume: 19 start-page: 1978 year: 2019 end-page: 1985 ident: b0455 article-title: Two baseflow separation methods based on daily average gage height and discharge publication-title: Water Supply – volume: 12 start-page: 3284 year: 2020 ident: b0345 article-title: Novel ensemble of multivariate adaptive regression spline with spatial logistic regression and boosted regression tree for gully erosion susceptibility publication-title: Remote Sens. – volume: 530 start-page: 829 year: 2015 end-page: 844 ident: b0460 article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015 publication-title: J. Hydrol. – volume: 35 year: 2021 ident: b0005 article-title: Impacts of watershed physical properties and land use on baseflow at regional scales publication-title: J. Hydrol. Reg. Stud. – volume: 21 start-page: 387 year: 2023 end-page: 400 ident: b0370 article-title: Baseflow and water resilience variability in two water management units in southeastern Brazil publication-title: Int. J. River Basin Manag. – volume: 43 start-page: 194 year: 2018 end-page: 206 ident: b0190 article-title: Evaluating the conservation potential of tributaries for native fishes in the upper Colorado River basin publication-title: Fisheries – volume: 23 start-page: 1049 year: 2008 end-page: 1065 ident: b0320 article-title: Wetland vegetation distribution modelling for the identification of constraining environmental variables publication-title: Landsc. Ecol. – volume: 62 start-page: 223 year: 2011 end-page: 231 ident: b0035 article-title: Droughts, floods and freshwater ecosystems: evaluating climate change impacts and developing adaptation strategies publication-title: Mar. Freshw. Res. – volume: 376 start-page: 295 year: 2009 end-page: 306 ident: b0365 article-title: A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments publication-title: J. Hydrol. – volume: 10 start-page: 1304 year: 2018 ident: b0095 article-title: Baseflow contribution to streamflow and aquatic habitats using physical habitat simulations publication-title: Water – year: 2023 ident: b0280 article-title: Application of participatory approach in identifying critical sub-watersheds based on flood generation potential in The Cheshmeh-Kileh Watershed, Mazandaran Province publication-title: Water Soil Manag. Model – volume: 21 start-page: 3758 year: 2021 ident: b0060 article-title: Machine learning in agriculture: A comprehensive updated review publication-title: Sensors – volume: 15 start-page: 12465 year: 2023 ident: b0200 article-title: Integrated assessment of the land use change and climate change impact on baseflow by using hydrologic model publication-title: Sustainability – volume: 8 start-page: 221 year: 2021 end-page: 234 ident: b0275 article-title: The Impressibility of Flood Regime from Rainfall and Land Use Changes in Cheshmeh Kileh Watershed publication-title: Iran. J. Ecohydrol. – volume: 2 start-page: 28 year: 2014 end-page: 41 ident: b0250 article-title: Impact of land use change on groundwater—a review publication-title: Adv. Water Resour. Prot. – volume: 9 start-page: 1 year: 2019 end-page: 16 ident: b0480 article-title: Random forests and cubist algorithms for predicting shear strengths of rockfill materials publication-title: Appl. Sci. – volume: 26 start-page: 183 year: 2022 end-page: 195 ident: b0090 article-title: Implications of variations in stream specific conductivity for estimating baseflow using chemical mass balance and calibrated hydrograph techniques publication-title: Hydrol. Earth Syst. Sci. – volume: 82 year: 2023 ident: b0175 article-title: Conjunct application of machine learning and game theory in groundwater quality mapping publication-title: Environ. Earth Sci. – volume: 535 start-page: 525 year: 2016 end-page: 533 ident: b0230 article-title: Base flow separation: A comparison of analytical and mass balance methods publication-title: J. Hydrol. – year: 1984 ident: b0085 article-title: Classification and Regression Trees – volume: 239 start-page: 27 year: 2012 end-page: 39 ident: b0435 article-title: How can statistical models help to determine driving factors of landslides? publication-title: Ecol. Modell. – volume: 125 start-page: 50 year: 2018 end-page: 67 ident: b0160 article-title: Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT) publication-title: Ecol. Eng. – volume: 35 start-page: 293 year: 2016 end-page: 310 ident: b0065 article-title: Will it rise or will it fall? Managing the complex effects of urbanization on base flow publication-title: Freshw. Sci. – start-page: e12380 year: 2023 ident: b0295 article-title: Comparative applicability of MCDM-SWOT based techniques for developing integrated watershed management framework publication-title: Nat. Resour. Model – volume: 577 year: 2019 ident: b0020 article-title: Changes in watershed hydrological behavior due to land use comanagement scenarios publication-title: J. Hydrol. – volume: 68 start-page: 773 year: 2020 end-page: 782 ident: b0025 article-title: Effects of hillslope geometry on soil moisture deficit and base flow using an excess saturation model publication-title: Acta Geophys. – volume: 541 start-page: 977 year: 2016 end-page: 987 ident: b0010 article-title: Sub-watershed prioritization based on sediment yield using game theory publication-title: J. Hydrol. – volume: 41 year: 2005 ident: b0165 article-title: Applicability of statistical learning algorithms in groundwater quality modeling publication-title: Water Resour. Res. – volume: 202 year: 2021 ident: b0075 article-title: Machine learning methods for imbalanced data set for prediction of faecal contamination in beach waters publication-title: Water Res. – volume: 27 start-page: 2301 year: 2023 end-page: 2323 ident: b0130 article-title: Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments publication-title: Hydrol. Earth Syst. Sci. – volume: 14 start-page: 1745 year: 2022 ident: b0210 article-title: LSTM-based model for predicting inland river runoff in arid region: A case study on Yarkant River, Northwest China publication-title: Water – volume: 45 year: 2009 ident: b0445 article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques publication-title: Water Resour. Res. – volume: 195 start-page: 581 year: 2023 ident: b0395 article-title: Spatial and temporal dynamics of base flow in semi-arid montane watersheds and the effects of landscape patterns and topography publication-title: Environ. Monit. Assess. – volume: 818 year: 2022 ident: b0125 article-title: Comparison of Bayesian, k-Nearest Neighbor and Gaussian process regression methods for quantifying uncertainty of suspended sediment concentration prediction publication-title: Sci. Total Environ. – volume: 27 start-page: 4022027 year: 2022 ident: b0140 article-title: Application of general unit hydrograph model for baseflow separation from rainfall and streamflow data publication-title: J. Hydrol. Eng. – volume: 5 start-page: 7776 year: 2017 end-page: 7797 ident: b0185 article-title: Machine learning with big data: Challenges and approaches publication-title: IEEE Access – volume: 55 start-page: 5238 year: 2019 end-page: 5254 ident: b0380 article-title: Climate, landforms, and geology affect baseflow sources in a mountain catchment publication-title: Water Resour. Res. – volume: 170 start-page: 70 year: 2012 end-page: 79 ident: b0215 article-title: Uncertainty in the spatial prediction of soil texture: comparison of regression tree and Random Forest models publication-title: Geoderma – volume: 585 year: 2020 ident: b0475 article-title: Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches publication-title: J. Hydrol. – volume: 345 year: 2023 ident: b0235 article-title: Response of the runoff process to meteorological drought: Baseflow index as an important indicator publication-title: J. Environ. Manage. – volume: 352 start-page: 168 year: 2008 end-page: 173 ident: b0115 article-title: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods publication-title: J. Hydrol. – volume: 35 start-page: 3105 year: 2021 end-page: 3120 ident: b0245 article-title: Identification of critical watershed for soil conservation using Game Theory-based approaches publication-title: Water Resour. Manag. – volume: 55 start-page: 2838 year: 2019 end-page: 2855 ident: b0135 article-title: Is there a baseflow Budyko curve? publication-title: Water Resour. Res. – volume: 4 start-page: 349 year: 2015 end-page: 368 ident: b0490 article-title: Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors publication-title: J. Hydrol. Reg. Stud. – volume: 12 start-page: 169 year: 2014 end-page: 183 ident: b0195 article-title: Assessing the effect of watershed slopes on recharge/baseflow and soil erosion publication-title: Paddy Water Environ. – volume: 103 year: 2021 ident: b0225 article-title: A weighting model based on best–worst method and its application for environmental performance evaluation publication-title: Appl. Soft Comput. – volume: 295 year: 2021 ident: b0045 article-title: Determination of flood probability and prioritization of sub-watersheds: A comparison of game theory to machine learning publication-title: J. Environ. Manage. – volume: 22 start-page: 685 year: 2003 end-page: 688 ident: b0050 article-title: The Borda rule, Condorcet consistency and Condorcet stability publication-title: Econ. Theory – start-page: 1 year: 2023 end-page: 18 ident: b0270 article-title: Groundwater quality modeling and determining critical points: a comparison of machine learning to Best-Worst Method publication-title: Environ. Sci. Pollut. Res. – volume: 25 start-page: 11363 year: 2021 end-page: 11375 ident: b0040 article-title: Using Improved TOPSIS and Best Worst Method in prioritizing management scenarios for the watershed management in arid and semi-arid environments publication-title: Soft Comput. – year: 2023 ident: b0205 article-title: Data Driven Discoveries in Streamflow, Vadose Zone, and Baseflow – volume: 9 year: 2017 ident: 10.1016/j.jhydrol.2024.131220_b0300 article-title: Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data publication-title: Remote Sens. doi: 10.3390/rs9050398 – volume: 6 start-page: 2519 year: 2014 ident: 10.1016/j.jhydrol.2024.131220_b0340 article-title: Development of a shared vision for groundwater management to protect and sustain baseflows of the Upper San Pedro River, Arizona, USA publication-title: Water doi: 10.3390/w6082519 – volume: 22 start-page: 685 year: 2003 ident: 10.1016/j.jhydrol.2024.131220_b0050 article-title: The Borda rule, Condorcet consistency and Condorcet stability publication-title: Econ. Theory doi: 10.1007/s00199-002-0318-3 – volume: 35 year: 2021 ident: 10.1016/j.jhydrol.2024.131220_b0005 article-title: Impacts of watershed physical properties and land use on baseflow at regional scales publication-title: J. Hydrol. Reg. Stud. – year: 1984 ident: 10.1016/j.jhydrol.2024.131220_b0085 – volume: 17 start-page: 4987 year: 2020 ident: 10.1016/j.jhydrol.2024.131220_b0425 article-title: Regional water resources security evaluation based on a hybrid fuzzy BWM-TOPSIS method publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17144987 – volume: 351 start-page: 139 year: 2008 ident: 10.1016/j.jhydrol.2024.131220_b0375 article-title: Regional estimation of base flow for the conterminous United States by hydrologic landscape regions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.12.018 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jhydrol.2024.131220_b0080 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 72 start-page: 171 year: 2018 ident: 10.1016/j.jhydrol.2024.131220_b0015 article-title: Making competent land use policy using a co-management framework publication-title: Land Use Policy doi: 10.1016/j.landusepol.2017.12.035 – volume: 15 start-page: 2431 year: 2022 ident: 10.1016/j.jhydrol.2024.131220_b0430 article-title: Evaluating different machine learning algorithms for snow water equivalent prediction publication-title: Earth Sci. Inf. doi: 10.1007/s12145-022-00846-z – volume: 584 year: 2020 ident: 10.1016/j.jhydrol.2024.131220_b0355 article-title: Relating hydroclimatic change to streamflow, baseflow, and hydrologic partitioning in the Upper Rio Grande Basin, 1980 to 2015 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124715 – volume: 26 start-page: 183 year: 2022 ident: 10.1016/j.jhydrol.2024.131220_b0090 article-title: Implications of variations in stream specific conductivity for estimating baseflow using chemical mass balance and calibrated hydrograph techniques publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-26-183-2022 – volume: 818 year: 2022 ident: 10.1016/j.jhydrol.2024.131220_b0125 article-title: Comparison of Bayesian, k-Nearest Neighbor and Gaussian process regression methods for quantifying uncertainty of suspended sediment concentration prediction publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.151760 – volume: 42 year: 2006 ident: 10.1016/j.jhydrol.2024.131220_b0400 article-title: Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime publication-title: Water Resour. Res. doi: 10.1029/2005WR004314 – volume: 11 start-page: 1152296 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0470 article-title: Water resources optimal allocation model for coordinating regional multi-level water resources managers’ interests publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2023.1152296 – volume: 541 start-page: 977 year: 2016 ident: 10.1016/j.jhydrol.2024.131220_b0010 article-title: Sub-watershed prioritization based on sediment yield using game theory publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.08.008 – volume: 13 start-page: 5061 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0360 article-title: Integrated assessment of the impact of land use changes on groundwater recharge and groundwater level in the Drava floodplain, Hungary publication-title: Sci. Rep. doi: 10.1038/s41598-022-21259-4 – volume: 22 start-page: 6209 year: 2018 ident: 10.1016/j.jhydrol.2024.131220_b0155 article-title: An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6209-2018 – volume: 55 start-page: 2838 year: 2019 ident: 10.1016/j.jhydrol.2024.131220_b0135 article-title: Is there a baseflow Budyko curve? publication-title: Water Resour. Res. doi: 10.1029/2018WR024464 – volume: 21 start-page: 3758 year: 2021 ident: 10.1016/j.jhydrol.2024.131220_b0060 article-title: Machine learning in agriculture: A comprehensive updated review publication-title: Sensors doi: 10.3390/s21113758 – volume: 535 start-page: 525 year: 2016 ident: 10.1016/j.jhydrol.2024.131220_b0230 article-title: Base flow separation: A comparison of analytical and mass balance methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.01.063 – volume: 345 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0235 article-title: Response of the runoff process to meteorological drought: Baseflow index as an important indicator publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2023.118843 – start-page: 1 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0170 article-title: Stochastic (S [ARIMA]), shallow (NARnet, NAR-GMDH, OS-ELM), and deep learning (LSTM, Stacked-LSTM, CNN-GRU) models, application to river flow forecasting publication-title: Acta Geophys. – volume: 202 year: 2021 ident: 10.1016/j.jhydrol.2024.131220_b0075 article-title: Machine learning methods for imbalanced data set for prediction of faecal contamination in beach waters publication-title: Water Res. doi: 10.1016/j.watres.2021.117450 – volume: 27 start-page: 4022027 year: 2022 ident: 10.1016/j.jhydrol.2024.131220_b0140 article-title: Application of general unit hydrograph model for baseflow separation from rainfall and streamflow data publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0002217 – volume: 5 start-page: 7776 year: 2017 ident: 10.1016/j.jhydrol.2024.131220_b0185 article-title: Machine learning with big data: Challenges and approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2696365 – volume: 530 start-page: 829 year: 2015 ident: 10.1016/j.jhydrol.2024.131220_b0460 article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.10.038 – volume: 21 start-page: 387 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0370 article-title: Baseflow and water resilience variability in two water management units in southeastern Brazil publication-title: Int. J. River Basin Manag. doi: 10.1080/15715124.2021.2002346 – volume: 23 start-page: 1049 year: 2008 ident: 10.1016/j.jhydrol.2024.131220_b0320 article-title: Wetland vegetation distribution modelling for the identification of constraining environmental variables publication-title: Landsc. Ecol. doi: 10.1007/s10980-008-9261-4 – volume: 195 start-page: 581 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0395 article-title: Spatial and temporal dynamics of base flow in semi-arid montane watersheds and the effects of landscape patterns and topography publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-023-11193-x – volume: 239 start-page: 27 year: 2012 ident: 10.1016/j.jhydrol.2024.131220_b0435 article-title: How can statistical models help to determine driving factors of landslides? publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2011.12.007 – volume: 8 start-page: 221 year: 2021 ident: 10.1016/j.jhydrol.2024.131220_b0275 article-title: The Impressibility of Flood Regime from Rainfall and Land Use Changes in Cheshmeh Kileh Watershed publication-title: Iran. J. Ecohydrol. – year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0290 article-title: Flood-based critical sub-watershed mapping: comparative application of multi-criteria decision making methods and hydrological modeling approach publication-title: Stoch. Environ. Res. Risk Assess doi: 10.1007/s00477-023-02417-0 – volume: 68 start-page: 773 year: 2020 ident: 10.1016/j.jhydrol.2024.131220_b0025 article-title: Effects of hillslope geometry on soil moisture deficit and base flow using an excess saturation model publication-title: Acta Geophys. doi: 10.1007/s11600-020-00428-x – year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0180 article-title: Rapid environmental flow assessment for sustainable water resource management in Tanzania’s lower Rufiji river basin: A scoping review publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e22509 – volume: 20 start-page: 1621 year: 2016 ident: 10.1016/j.jhydrol.2024.131220_b0260 article-title: Factors influencing stream baseflow transit times in tropical montane watersheds publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-1621-2016 – volume: 248 start-page: 35 year: 2001 ident: 10.1016/j.jhydrol.2024.131220_b0150 article-title: Regionalisation of the base flow index from dynamically simulated flow components—a case study in the Elbe River Basin publication-title: J. Hydrol. doi: 10.1016/S0022-1694(01)00391-2 – year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0315 – volume: 45 year: 2009 ident: 10.1016/j.jhydrol.2024.131220_b0445 article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques publication-title: Water Resour. Res. doi: 10.1029/2007WR006737 – volume: 12 start-page: 169 year: 2014 ident: 10.1016/j.jhydrol.2024.131220_b0195 article-title: Assessing the effect of watershed slopes on recharge/baseflow and soil erosion publication-title: Paddy Water Environ. doi: 10.1007/s10333-014-0448-9 – volume: 103 year: 2021 ident: 10.1016/j.jhydrol.2024.131220_b0225 article-title: A weighting model based on best–worst method and its application for environmental performance evaluation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107168 – volume: 14 start-page: 33 year: 2016 ident: 10.1016/j.jhydrol.2024.131220_b0240 article-title: Social resolution of conflicts over water resources allocation in a river basin using cooperative game theory approaches: a case study publication-title: Int. J. River Basin Manag. doi: 10.1080/15715124.2015.1081209 – volume: 10 start-page: 848 year: 2018 ident: 10.1016/j.jhydrol.2024.131220_b0465 article-title: The value of environmental base flow in water-scarce basins: a case study of Wei River Basin, Northwest China publication-title: Water doi: 10.3390/w10070848 – volume: 585 year: 2020 ident: 10.1016/j.jhydrol.2024.131220_b0475 article-title: Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124780 – start-page: 1 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0270 article-title: Groundwater quality modeling and determining critical points: a comparison of machine learning to Best-Worst Method publication-title: Environ. Sci. Pollut. Res. – volume: 12 start-page: 3284 year: 2020 ident: 10.1016/j.jhydrol.2024.131220_b0345 article-title: Novel ensemble of multivariate adaptive regression spline with spatial logistic regression and boosted regression tree for gully erosion susceptibility publication-title: Remote Sens. doi: 10.3390/rs12203284 – volume: 19 start-page: 1978 year: 2019 ident: 10.1016/j.jhydrol.2024.131220_b0455 article-title: Two baseflow separation methods based on daily average gage height and discharge publication-title: Water Supply doi: 10.2166/ws.2019.074 – volume: 82 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0175 article-title: Conjunct application of machine learning and game theory in groundwater quality mapping publication-title: Environ. Earth Sci. doi: 10.1007/s12665-023-11059-y – volume: 4 start-page: 985 year: 1968 ident: 10.1016/j.jhydrol.2024.131220_b0385 article-title: Some factors affecting baseflow publication-title: Water Resour. Res. doi: 10.1029/WR004i005p00985 – volume: 295 year: 2021 ident: 10.1016/j.jhydrol.2024.131220_b0045 article-title: Determination of flood probability and prioritization of sub-watersheds: A comparison of game theory to machine learning publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.113040 – volume: 46 start-page: 223 year: 2015 ident: 10.1016/j.jhydrol.2024.131220_b0220 article-title: A flood inundation modelling using v-support vector machine regression model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.09.014 – volume: 237 start-page: 350 year: 2017 ident: 10.1016/j.jhydrol.2024.131220_b0485 article-title: Machine learning on big data: Opportunities and challenges publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.026 – volume: 62 start-page: 223 year: 2011 ident: 10.1016/j.jhydrol.2024.131220_b0035 article-title: Droughts, floods and freshwater ecosystems: evaluating climate change impacts and developing adaptation strategies publication-title: Mar. Freshw. Res. doi: 10.1071/MF09285 – volume: 37 start-page: 89 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0420 article-title: Simulated annealing coupled with a Naive Bayes model and base flow separation for streamflow simulation in a snow dominated basin publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-022-02276-1 – year: 2018 ident: 10.1016/j.jhydrol.2024.131220_b0390 – volume: 352 start-page: 168 year: 2008 ident: 10.1016/j.jhydrol.2024.131220_b0115 article-title: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.01.005 – volume: 41 year: 2005 ident: 10.1016/j.jhydrol.2024.131220_b0165 article-title: Applicability of statistical learning algorithms in groundwater quality modeling publication-title: Water Resour. Res. doi: 10.1029/2004WR003608 – volume: 49 start-page: 7843 year: 2013 ident: 10.1016/j.jhydrol.2024.131220_b0055 article-title: Global patterns in base flow index and recession based on streamflow observations from 3394 catchments publication-title: Water Resour. Res. doi: 10.1002/2013WR013918 – volume: 14 start-page: 1745 year: 2022 ident: 10.1016/j.jhydrol.2024.131220_b0210 article-title: LSTM-based model for predicting inland river runoff in arid region: A case study on Yarkant River, Northwest China publication-title: Water doi: 10.3390/w14111745 – year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0205 – volume: 64 start-page: 126 year: 2016 ident: 10.1016/j.jhydrol.2024.131220_b0335 article-title: Best-worst multi-criteria decision-making method: Some properties and a linear model publication-title: Omega (United Kingdom) – volume: 29 start-page: 3051 year: 2015 ident: 10.1016/j.jhydrol.2024.131220_b0145 article-title: Comparative analysis of baseflow characteristics of two Andean catchments, Ecuador publication-title: Hydrol. Process. doi: 10.1002/hyp.10422 – volume: 323 year: 2022 ident: 10.1016/j.jhydrol.2024.131220_b0030 article-title: Modeling of surface sediment concentration in the Doce River basin using satellite remote sensing publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2022.116207 – volume: 14 start-page: 16651 year: 2022 ident: 10.1016/j.jhydrol.2024.131220_b0325 article-title: An expert approach to an assessment of the needs of land consolidation within the scope of improving water resource management publication-title: Sustainability doi: 10.3390/su142416651 – volume: 56 year: 2020 ident: 10.1016/j.jhydrol.2024.131220_b0405 article-title: Global changes in baseflow under the impacts of changing climate and vegetation publication-title: Water Resour. Res. doi: 10.1029/2020WR027349 – volume: 43 start-page: 15 year: 2007 ident: 10.1016/j.jhydrol.2024.131220_b0440 article-title: The role of ground water in generating streamflow in headwater areas and in maintaining base flow 1 publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2007.00003.x – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.jhydrol.2024.131220_b0480 article-title: Random forests and cubist algorithms for predicting shear strengths of rockfill materials publication-title: Appl. Sci. – volume: 55 start-page: 5238 year: 2019 ident: 10.1016/j.jhydrol.2024.131220_b0380 article-title: Climate, landforms, and geology affect baseflow sources in a mountain catchment publication-title: Water Resour. Res. doi: 10.1029/2018WR023551 – volume: 170 start-page: 70 year: 2012 ident: 10.1016/j.jhydrol.2024.131220_b0215 article-title: Uncertainty in the spatial prediction of soil texture: comparison of regression tree and Random Forest models publication-title: Geoderma doi: 10.1016/j.geoderma.2011.10.010 – start-page: 1 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0285 article-title: Flood-based critical sub-watershed mapping: comparative application of multi-criteria decision making methods and hydrological modeling approach publication-title: Stoch. Environ. Res. Risk Assess – volume: 4 start-page: 349 year: 2015 ident: 10.1016/j.jhydrol.2024.131220_b0490 article-title: Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2015.07.005 – volume: 376 start-page: 295 year: 2009 ident: 10.1016/j.jhydrol.2024.131220_b0365 article-title: A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.07.042 – volume: 70 start-page: 1797 year: 2022 ident: 10.1016/j.jhydrol.2024.131220_b0120 article-title: Prediction of the groundwater quality index through machine learning in Western Middle Cheliff plain in North Algeria publication-title: Acta Geophys. doi: 10.1007/s11600-022-00827-2 – volume: 527 start-page: 1021 year: 2015 ident: 10.1016/j.jhydrol.2024.131220_b0070 article-title: Baseflow dynamics: Multi-tracer surveys to assess variable groundwater contributions to montane streams under low flows publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.05.019 – volume: 3 start-page: 271 year: 1999 ident: 10.1016/j.jhydrol.2024.131220_b0110 article-title: Imposing constraints on parameter values of a conceptual hydrological model using baseflow response publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-3-271-1999 – volume: 577 year: 2019 ident: 10.1016/j.jhydrol.2024.131220_b0020 article-title: Changes in watershed hydrological behavior due to land use comanagement scenarios publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124001 – start-page: e12380 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0295 article-title: Comparative applicability of MCDM-SWOT based techniques for developing integrated watershed management framework publication-title: Nat. Resour. Model doi: 10.1111/nrm.12380 – volume: 43 start-page: 194 year: 2018 ident: 10.1016/j.jhydrol.2024.131220_b0190 article-title: Evaluating the conservation potential of tributaries for native fishes in the upper Colorado River basin publication-title: Fisheries doi: 10.1002/fsh.10054 – year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0410 article-title: An integrated decision-making framework for selecting the best strategies of water resources management in pandemic emergencies publication-title: Sci. Iran – volume: 139 year: 2021 ident: 10.1016/j.jhydrol.2024.131220_b0105 article-title: Considering scale within optimization procedures for water management decisions: Balancing environmental flows and human needs publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2021.104991 – year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0280 article-title: Application of participatory approach in identifying critical sub-watersheds based on flood generation potential in The Cheshmeh-Kileh Watershed, Mazandaran Province publication-title: Water Soil Manag. Model – volume: 27 start-page: 535 year: 2013 ident: 10.1016/j.jhydrol.2024.131220_b0305 article-title: Water security assessment: integrating governance and freshwater indicators publication-title: Water Resour. Manag. doi: 10.1007/s11269-012-0200-4 – volume: 4 start-page: 91 year: 2015 ident: 10.1016/j.jhydrol.2024.131220_b0350 article-title: Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2015.04.008 – volume: 2 start-page: 28 year: 2014 ident: 10.1016/j.jhydrol.2024.131220_b0250 article-title: Impact of land use change on groundwater—a review publication-title: Adv. Water Resour. Prot. – volume: 27 start-page: 2301 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0130 article-title: Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-27-2301-2023 – start-page: 105684 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0310 article-title: A systematic literature review on lake water level prediction models publication-title: Environ. Model Softw. doi: 10.1016/j.envsoft.2023.105684 – volume: 125 start-page: 50 year: 2018 ident: 10.1016/j.jhydrol.2024.131220_b0160 article-title: Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT) publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2018.10.007 – volume: 15 start-page: 12465 year: 2023 ident: 10.1016/j.jhydrol.2024.131220_b0200 article-title: Integrated assessment of the land use change and climate change impact on baseflow by using hydrologic model publication-title: Sustainability doi: 10.3390/su151612465 – volume: 35 start-page: 293 year: 2016 ident: 10.1016/j.jhydrol.2024.131220_b0065 article-title: Will it rise or will it fall? Managing the complex effects of urbanization on base flow publication-title: Freshw. Sci. doi: 10.1086/685084 – start-page: 337 year: 2022 ident: 10.1016/j.jhydrol.2024.131220_b0255 article-title: Support vector machines and support vector regression – volume: 11 start-page: 851 year: 2019 ident: 10.1016/j.jhydrol.2024.131220_b0265 article-title: Alteration of hydrologic flow indicators in Ardabil Balikhlouchai River under combined effects of change in climatic variables and Yamchi Dam construction using range of variability approach publication-title: Watershed Eng. Manag. – volume: 53 start-page: 49 year: 2015 ident: 10.1016/j.jhydrol.2024.131220_b0330 article-title: Best-worst multi-criteria decision-making method publication-title: Omega doi: 10.1016/j.omega.2014.11.009 – volume: 25 start-page: 11363 year: 2021 ident: 10.1016/j.jhydrol.2024.131220_b0040 article-title: Using Improved TOPSIS and Best Worst Method in prioritizing management scenarios for the watershed management in arid and semi-arid environments publication-title: Soft Comput. doi: 10.1007/s00500-021-05933-9 – volume: 10 start-page: 1304 year: 2018 ident: 10.1016/j.jhydrol.2024.131220_b0095 article-title: Baseflow contribution to streamflow and aquatic habitats using physical habitat simulations publication-title: Water doi: 10.3390/w10101304 – volume: 10 start-page: 3283 year: 2020 ident: 10.1016/j.jhydrol.2024.131220_b0100 article-title: Icings and groundwater conditions in permafrost catchments of northwestern Canada publication-title: Sci. Rep. doi: 10.1038/s41598-020-60322-w – volume: 564 start-page: 266 year: 2018 ident: 10.1016/j.jhydrol.2024.131220_b0415 article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.07.004 – volume: 17 start-page: e0261859 year: 2022 ident: 10.1016/j.jhydrol.2024.131220_b0450 article-title: Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes publication-title: PLoS One doi: 10.1371/journal.pone.0261859 – volume: 35 start-page: 3105 year: 2021 ident: 10.1016/j.jhydrol.2024.131220_b0245 article-title: Identification of critical watershed for soil conservation using Game Theory-based approaches publication-title: Water Resour. Manag. doi: 10.1007/s11269-021-02856-w  | 
    
| SSID | ssj0000334 | 
    
| Score | 2.46965 | 
    
| Snippet | •Base Flow modeling with conjunct application of MCDM and machine learning.•Combining MCDM and machine learning algorithms improved Base Flow modeling.•Game... The study of base flow is essential for sustainable water management. By understanding the dynamics of base flow, policymakers can make informed decisions to...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 131220 | 
    
| SubjectTerms | Artificial Intelligence (AI) base flow case studies decision support systems Environmental Flow hydrologic data Iran Optimal Decision Making prioritization Python Programming Language regression analysis rivers subwatersheds support vector machines temperature water management Water Resources Management (WRM)  | 
    
| Title | Machine learning modeling of base flow generation potential: A case study of the combined application of BWM and Fallback bargaining algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.jhydrol.2024.131220 https://www.proquest.com/docview/3200270720  | 
    
| Volume | 636 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection unibz customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaq9gAXRFlEWSojcc2MY7_Ek96GqqMBND1R0ZvlLbMQktGQquqFn8Bvxi9xWkBIlbhEWWzL8nPeovf5fYS848Y673WZcES4wqSARE_KNDFhv2gLufdd9nxxns8v4ONldrlHToezMAirjLq_1-mdto5vxnE1x9v1Gs_4cp7mBSAKMthl1MMAElkMRj_uYB5MCBgqhmPru1M8481os7pxuwYzEBxGqUg50n7_2z79pak78zN7TB5Fv5FO-6kdkj1fPyEPIoX56uYp-bnoYJGeRh6IJe1IbvCmKSkaK1pWzTVddnWmURx027SIFdLVCZ1Siy26YrPYPriFNCxJCJu9o78lufHb-y8LqmtHZ7qqjLZfw-C7ZU80QXW1bHbrdvXtGbmYnX0-nSeRbCGxAnibhCA5L1JrGEjtcmmY0JkRzKd5uOY6k1aWBXeCgfe2YB601wawXLwE54CJ52S_bmr_gtDMBTdNSxs8AQOZ1EYyAyaESmXJwHp2RGBYYmVjJXIkxKjUADnbqCgZhZJRvWSOyOi227YvxXFfh8kgP_XHnlLBXNzX9e0gbxX-N0yi6No3V9-VQFSLZJKzl_8__CvyEJ96yNlrst_urvyb4Ny05rjbvcfkYPrh0_z8F3mQ-yM | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaqcigXxCrKaiSumXHsl3jSW1sxGqDTUyt6s7xlFkIyGlKhXvoT-M31SxwKCKkSlyiKF1l-zlv0Pr-PkPfcWOe9LhOOCFeYFJDoSZkmJpwXbSH3vsuez0_z2Tl8usgudsjxcBcGYZVR9_c6vdPW8cs47uZ4s1rhHV_O07wAREEGuxz08D3IuMQIbHR9i_NgQsBQMhy7317jGa9H6-WV2zaYguAwSkXKkff73wbqL1Xd2Z_pQ_IgOo70sF_bI7Lj68dkL3KYL6-ekJ_zDhfpaSSCWNCO5QZfmpKitaJl1fygi67QNMqDbpoWwUK6OqCH1GKPrtos9g9-IQ17EuJm7-hvWW5sO_oyp7p2dKqrymj7NUy-XfRME1RXi2a7apffnpLz6Yez41kS2RYSK4C3SYiS8yK1hoHULpeGCZ0ZwXyah2euM2llWXAnGHhvC-ZBe20A68VLcA6YeEZ266b2zwnNXPDTtLTBFTCQSW0kM2BCrFSWDKxn-wSGLVY2liJHRoxKDZiztYqSUSgZ1Utmn4x-Ddv0tTjuGjAZ5Kf-OFQq2Iu7hr4b5K3CD4dZFF375vK7EghrkUxy9uL_p39L9mZn8xN18vH080tyH1t6_NkrsttuL_3r4Om05k13km8AQLL8uA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+modeling+of+base+flow+generation+potential%3A+A+case+study+of+the+combined+application+of+BWM+and+Fallback+bargaining+algorithm&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Nasiri+Khiavi%2C+Ali&rft.date=2024-06-01&rft.issn=0022-1694&rft.volume=636+p.131220-&rft_id=info:doi/10.1016%2Fj.jhydrol.2024.131220&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |