minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers

We introduce a novel implementation in ANSI C of the MINE family of algorithms for computing maximal information-based measures of dependence between two variables in large datasets, with the aim of a low memory footprint and ease of integration within bioinformatics pipelines. We provide the librar...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 29; no. 3; pp. 407 - 408
Main Authors Albanese, Davide, Filosi, Michele, Visintainer, Roberto, Riccadonna, Samantha, Jurman, Giuseppe, Furlanello, Cesare
Format Journal Article
LanguageEnglish
Published England 01.02.2013
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
1460-2059
DOI10.1093/bioinformatics/bts707

Cover

More Information
Summary:We introduce a novel implementation in ANSI C of the MINE family of algorithms for computing maximal information-based measures of dependence between two variables in large datasets, with the aim of a low memory footprint and ease of integration within bioinformatics pipelines. We provide the libraries minerva (with the R interface) and minepy for Python, MATLAB, Octave and C++. The C solution reduces the large memory requirement of the original Java implementation, has good upscaling properties and offers a native parallelization for the R interface. Low memory requirements are demonstrated on the MINE benchmarks as well as on large ( = 1340) microarray and Illumina GAII RNA-seq transcriptomics datasets. Availability and implementation: Source code and binaries are freely available for download under GPL3 licence at http://minepy.sourceforge.net for minepy and through the CRAN repository http://cran.r-project.org for the R package minerva. All software is multiplatform (MS Windows, Linux and OSX). Contact:  furlan@fbk.eu Supplementary information:  Supplementary data are available at Bioinformatics online.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1367-4811
1367-4811
1460-2059
DOI:10.1093/bioinformatics/bts707