Self-supervised fusion of deep soft assignments for multi-view diagnosis of machine faults
Fault patterns are often unavailable for machine fault diagnosis without prior knowledge. This makes it challenging to diagnose the existence of machine faults and their types. To address this issue, a novel scheme of deep soft assignments fusion network (DSAFN) is proposed for the self-supervised m...
Saved in:
| Published in | Journal of intelligent manufacturing Vol. 36; no. 4; pp. 2493 - 2507 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.04.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0956-5515 1572-8145 |
| DOI | 10.1007/s10845-024-02360-z |
Cover
| Abstract | Fault patterns are often unavailable for machine fault diagnosis without prior knowledge. This makes it challenging to diagnose the existence of machine faults and their types. To address this issue, a novel scheme of deep soft assignments fusion network (DSAFN) is proposed for the self-supervised multi-view diagnosis of machine faults. To enhance the robustness of the model and prevent overfitting, random noise is added to the collected signals. In each view, vibration features are extracted by a denoising autoencoder. Using the extracted deep features, a soft assignment fusion strategy is proposed to fully utilize both the public and complementary information of multiple views. Critical diagnosis missions, including novel fault detection and fault clustering, are accomplished through binary clustering and multi-class clustering of DSAFN, respectively. Two diagnostic experiments are conducted to validate the proposed method. The results indicate that the proposed method performs better than state-of-the-art peer methods in terms of diagnostic accuracy and noise robustness. |
|---|---|
| AbstractList | Fault patterns are often unavailable for machine fault diagnosis without prior knowledge. This makes it challenging to diagnose the existence of machine faults and their types. To address this issue, a novel scheme of deep soft assignments fusion network (DSAFN) is proposed for the self-supervised multi-view diagnosis of machine faults. To enhance the robustness of the model and prevent overfitting, random noise is added to the collected signals. In each view, vibration features are extracted by a denoising autoencoder. Using the extracted deep features, a soft assignment fusion strategy is proposed to fully utilize both the public and complementary information of multiple views. Critical diagnosis missions, including novel fault detection and fault clustering, are accomplished through binary clustering and multi-class clustering of DSAFN, respectively. Two diagnostic experiments are conducted to validate the proposed method. The results indicate that the proposed method performs better than state-of-the-art peer methods in terms of diagnostic accuracy and noise robustness. |
| Author | Yang, Shuai Li, Chuan Xiong, Manjun Bai, Yun Wu, Yifan |
| Author_xml | – sequence: 1 givenname: Chuan orcidid: 0000-0003-0004-1497 surname: Li fullname: Li, Chuan email: chuanli@21cn.com organization: School of Management Science and Engineering, Chongqing Technology and Business University, Research Center of System Health Maintenance, Chongqing Technology and Business University – sequence: 2 givenname: Yifan surname: Wu fullname: Wu, Yifan organization: School of Management Science and Engineering, Chongqing Technology and Business University, Research Center of System Health Maintenance, Chongqing Technology and Business University – sequence: 3 givenname: Manjun surname: Xiong fullname: Xiong, Manjun email: xiongmanjun@ctbu.edu.cn organization: School of Management Science and Engineering, Chongqing Technology and Business University, Research Center of System Health Maintenance, Chongqing Technology and Business University – sequence: 4 givenname: Shuai surname: Yang fullname: Yang, Shuai organization: School of Management Science and Engineering, Chongqing Technology and Business University, Research Center of System Health Maintenance, Chongqing Technology and Business University – sequence: 5 givenname: Yun surname: Bai fullname: Bai, Yun organization: School of Management Science and Engineering, Chongqing Technology and Business University, Research Center of System Health Maintenance, Chongqing Technology and Business University |
| BookMark | eNp9kE1LAzEQQIMoWKt_wFPAc3SSzcfuUYpfUPCgXryEdJvUlDapmV3F_nq3VvDmYZjLezPwTshhyskTcs7hkgOYK-RQS8VAyGEqDWx7QEZcGcFqLtUhGUGjNFOKq2NygrgEgKbWfERen_wqMOw3vnxE9HMaeow50Rzo3PsNxRw66hDjIq196pCGXOi6X3WRfUT_SefRLVLGiDtj7dq3mDwNbgDwlBwFt0J_9rvH5OX25nlyz6aPdw-T6ylrKyk6VutWaiEEzIQxHGZyLoVRM2WgMaZ1SrjQBG2kh5ob38xkC6GRGmqtdAuVq8bkYn93U_J777Gzy9yXNLy0FW-gkXWl64ESe6otGbH4YDclrl35shzsrqHdN7RDQ_vT0G4HqdpLOMBp4cvf6X-sb1CwdmI |
| Cites_doi | 10.1109/TIE.2022.3140403 10.1016/j.ymssp.2016.12.040 10.1109/JSEN.2022.3174396 10.1016/j.ymssp.2015.04.021 10.1016/j.eswa.2022.119057 10.3390/app122211410 10.1016/j.ins.2020.12.073 10.1109/ICDSCA53499.2021.9650301 10.1007/s10845-022-02020-0 10.1016/j.neunet.2020.07.005 10.1016/j.inffus.2018.10.005 10.1016/j.engappai.2023.106138 10.48550/arXiv.1906.02694 10.1109/ACCESS.2019.2919126 10.1109/TFUZZ.2017.2686804 10.1109/TIP.2020.2984360 10.1109/TNNLS.2022.3209332 10.1007/s10845-018-1431-x 10.1007/s42417-022-00498-9 10.1109/TKDE.2022.3193569 10.1109/MCI.2021.3084495 10.1007/s10845-017-1343-1 10.1109/TKDE.2018.2872063 10.1007/s10845-020-01543-8 10.1109/ACCESS.2019.2893206 10.1145/1390156.1390294 10.1016/j.measurement.2020.108777 10.1016/j.measurement.2022.111159 10.1109/TIE.2021.3108719 10.1007/s10489-021-02504-1 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 K9. L7M L~C L~D |
| DOI | 10.1007/s10845-024-02360-z |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1572-8145 |
| EndPage | 2507 |
| ExternalDocumentID | 10_1007_s10845_024_02360_z |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52175080 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 3-Y 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FE 8FG 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M4Y M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I OAM OVD P19 P2P P62 P9P PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZMTXR ZYFGU ~A9 ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM PQGLB PUEGO 7SC 7TB 8FD FR3 JQ2 K9. L7M L~C L~D |
| ID | FETCH-LOGICAL-c342t-86c462220b27710b4d4275b570977ca52af9f674e0817e9b4c0f94608656c03a3 |
| IEDL.DBID | AGYKE |
| ISSN | 0956-5515 |
| IngestDate | Sat Aug 16 22:22:36 EDT 2025 Wed Oct 01 06:33:11 EDT 2025 Fri Apr 11 01:27:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Multi-view diagnosis Denoising autoencoder Self-supervised fusion Deep soft assignment Machine fault |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c342t-86c462220b27710b4d4275b570977ca52af9f674e0817e9b4c0f94608656c03a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0004-1497 |
| PQID | 3190948368 |
| PQPubID | 32407 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3190948368 crossref_primary_10_1007_s10845_024_02360_z springer_journals_10_1007_s10845_024_02360_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: London |
| PublicationTitle | Journal of intelligent manufacturing |
| PublicationTitleAbbrev | J Intell Manuf |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | N Mrabah (2360_CR14) 2020; 130 W Wan (2360_CR24) 2022 Y Yan (2360_CR30) 2020; 29 T Zhang (2360_CR31) 2022; 69 N Lu (2360_CR13) 2023; 213 H Li (2360_CR8) 2022; 12 G Tang (2360_CR22) 2021; 171 A Diez-Olivan (2360_CR2) 2019; 50 P Jieyang (2360_CR7) 2023; 34 J Gu (2360_CR3) 2017; 26 B Peng (2360_CR15) 2021; 16 J Xu (2360_CR28) 2021; 573 Q Jiang (2360_CR5) 2019; 7 J Cen (2360_CR1) 2022; 10 2360_CR18 WA Smith (2360_CR19) 2015; 64 Z Pu (2360_CR16) 2021; 69 2360_CR32 A Rodríguez Ramos (2360_CR17) 2019; 30 G Jiang (2360_CR6) 2022; 196 Z Tang (2360_CR21) 2022; 52 J Xu (2360_CR29) 2022; 35 Y Li (2360_CR11) 2017; 91 J Li (2360_CR9) 2020; 31 2360_CR27 Q Hu (2360_CR4) 2022; 22 Z Sun (2360_CR20) 2019; 7 Y Li (2360_CR12) 2018; 31 2360_CR23 X Liu (2360_CR10) 2023; 122 2360_CR26 2360_CR25 |
| References_xml | – volume: 69 start-page: 10573 issue: 10 year: 2022 ident: 2360_CR31 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2022.3140403 – volume: 91 start-page: 295 year: 2017 ident: 2360_CR11 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2016.12.040 – volume: 22 start-page: 12139 issue: 12 year: 2022 ident: 2360_CR4 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2022.3174396 – volume: 64 start-page: 100 year: 2015 ident: 2360_CR19 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2015.04.021 – volume: 213 start-page: 119057 year: 2023 ident: 2360_CR13 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.119057 – volume: 12 start-page: 11410 issue: 22 year: 2022 ident: 2360_CR8 publication-title: Applied Sciences doi: 10.3390/app122211410 – volume: 573 start-page: 279 year: 2021 ident: 2360_CR28 publication-title: Information Sciences doi: 10.1016/j.ins.2020.12.073 – ident: 2360_CR32 doi: 10.1109/ICDSCA53499.2021.9650301 – ident: 2360_CR27 – volume: 34 start-page: 3277 year: 2023 ident: 2360_CR7 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-022-02020-0 – volume: 130 start-page: 206 year: 2020 ident: 2360_CR14 publication-title: Neural Networks doi: 10.1016/j.neunet.2020.07.005 – volume: 50 start-page: 92 year: 2019 ident: 2360_CR2 publication-title: Information Fusion doi: 10.1016/j.inffus.2018.10.005 – volume: 122 start-page: 106138 year: 2023 ident: 2360_CR10 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.106138 – ident: 2360_CR18 doi: 10.48550/arXiv.1906.02694 – volume: 7 start-page: 69795 year: 2019 ident: 2360_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919126 – volume: 26 start-page: 612 issue: 2 year: 2017 ident: 2360_CR3 publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2017.2686804 – volume: 29 start-page: 5652 year: 2020 ident: 2360_CR30 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2020.2984360 – year: 2022 ident: 2360_CR24 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2022.3209332 – ident: 2360_CR25 doi: 10.1007/s10845-018-1431-x – volume: 10 start-page: 2481 issue: 7 year: 2022 ident: 2360_CR1 publication-title: Journal of Vibration Engineering & Technologies doi: 10.1007/s42417-022-00498-9 – volume: 35 start-page: 7470 issue: 7 year: 2022 ident: 2360_CR29 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2022.3193569 – volume: 16 start-page: 79 issue: 3 year: 2021 ident: 2360_CR15 publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2021.3084495 – volume: 30 start-page: 1601 issue: 4 year: 2019 ident: 2360_CR17 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-017-1343-1 – volume: 31 start-page: 1863 issue: 10 year: 2018 ident: 2360_CR12 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2872063 – volume: 31 start-page: 1899 year: 2020 ident: 2360_CR9 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01543-8 – volume: 7 start-page: 13078 year: 2019 ident: 2360_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2893206 – ident: 2360_CR23 doi: 10.1145/1390156.1390294 – ident: 2360_CR26 doi: 10.1016/j.measurement.2020.108777 – volume: 196 start-page: 111159 year: 2022 ident: 2360_CR6 publication-title: Measurement doi: 10.1016/j.measurement.2022.111159 – volume: 69 start-page: 8411 issue: 8 year: 2021 ident: 2360_CR16 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2021.3108719 – volume: 52 start-page: 1703 issue: 2 year: 2022 ident: 2360_CR21 publication-title: Applied Intelligence doi: 10.1007/s10489-021-02504-1 – volume: 171 start-page: 108777 year: 2021 ident: 2360_CR22 publication-title: Measurement doi: 10.1016/j.measurement.2020.108777 |
| SSID | ssj0009861 |
| Score | 2.4270666 |
| Snippet | Fault patterns are often unavailable for machine fault diagnosis without prior knowledge. This makes it challenging to diagnose the existence of machine faults... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2493 |
| SubjectTerms | Accuracy Algorithms Business and Management Clustering Collaboration Control Fault detection Fault diagnosis Faults Feature extraction Machines Manufacturing Mechatronics Methods Processes Production Random noise Robotics Robustness Sensors Signal processing |
| Title | Self-supervised fusion of deep soft assignments for multi-view diagnosis of machine faults |
| URI | https://link.springer.com/article/10.1007/s10845-024-02360-z https://www.proquest.com/docview/3190948368 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8DAN6JQKg9sYBQS23HHFlEqECwQqbBEiWOjCigVaZf-es5OokAFA2viWMnd-fycu3sHcIKQGg_JktNMZIoypdAP4gWa-Ux7oeYi6dpC4bt7MYzYzYiPyqKwvMp2r0KSzlN_K3aTzFYTM2pZzz26WIWm49tqQLN3_XR7VZPtSseT6jj2EBHwsljm91l-bkg1ylwKjLr9ZrAJUfWmRZrJ6_l8lp6rxRKJ438_ZQs2SgBKeoXFbMOKnuzAZtXcgZRrfQfWvzEV7sLzg34zNJ9PrWvJdUbM3P5mIx-GZFpPSY7enCAOH78UNXMEsTBxyYrUxh5IVmT0jXP7xLtL4NTEJDgg34NocPV4OaRlWwaqAubPqBSKCYQVXuqHiE9SljE_5CkPPcSSKuF-YrpGhKhreRHqbsqUZ7pM4NmJC-UFSbAPjcnHRB8AQfzBTCBNplJERtpLONdSJ5J7TIcpS1pwWukmnhbsG3HNs2yFGKMQYyfEeNGCdqW-uFyJeYwuBk-wMhCyBWeVNurbf892-L_hR7Dm29bALqmnDY3Z51wfI16ZpR00z0G_f98pzbQDq5Hf-wI3OeMA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1gKju04Y4WoCrRdaKWKJUocG1WCtiLt0l_POR9qQTCwJo6HZ_vuXXz3DuAaKTUGyUrQVKaacq3RDuIDmjJuvMAIGYeuULjXl50hfxqJUVkUllXZ7tWVZG6p14rdFHfVxJw61XOPLjdhywlYOcX8IWutpHZVrpKaK-whHxBlqczvc3x3RyuO-eNaNPc27QPYK2kiaRXreggbZlKH_aoFAylPZB121_QEj-D1xbxbmi1mzgBkJiV24X6GkaklqTEzkqHNJciWx29FZRtBxkrylELqbghIWuTdjTP3xUeeZmmIjXFAdgzD9sPgvkPL5glU-5zNqZKaS3T-XsICZBEJTzkLRCICDxmfjgWLbWhlgCui7gITJlx7NuQSIxwhtefH_gnUJtOJOQWCLIFbX9lUJ8hfjBcLYZSJlfC4CRIeN-CmwjCaFRoZ0UoN2SEeIeJRjni0bECzgjkqz0sWoSHAOFP5UjXgtoJ-9frv2c7-N_wKtjuDXjfqPvafz2GHuWa-uDMZb0Jt_rkwF8gw5sllvqG-AAg7xko |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMvBHl6YENLEJiO85YAVV5CgkqIZYo8QMhQalIu_TXc3YSpSAYWBPHw9k-f5e77zuAQ4TUGCRLTrXQijKl0A_iA6pDZoLYcJEljih8eyd6fXb1xJ-mWPy-2r1OSZacBqfSNBidDLU9mSK-SeaYxYw6BfSATmZhjjmhBNzR_bDTyO5Kr5jq1fYQG_CKNvP7HN-vpgZv_kiR-punuwJLFWQknXKNV2HGDNZguW7HQKrTuQaLU9qC6_D8YN4sLcZD5wwKo4kdux9j5MMSbcyQFOh_CSLn15eS5UYQvRJfXkhdtoDosgbvtXBfvPuSS0NshgOKDeh3Lx7PerRqpEBVxMIRlUIxgUAgyMMYEUXONAtjnvM4QPSnMh5mNrEixtWRp7FJcqYCmzCB0Q4XKoiyaBNag4-B2QKCiIHZSFqtcsQyJsg4N9JkkgfMxDnL2nBU2zAdlnoZaaOM7CyeosVTb_F00obd2sxpdXaKFJ0CxpwyErINx7Xpm9d_z7b9v-EHMH9_3k1vLu-ud2AhdH19fUXOLrRGn2Ozh2BjlO_7_fQFvgbKgQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+fusion+of+deep+soft+assignments+for+multi-view+diagnosis+of+machine+faults&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Li%2C+Chuan&rft.au=Wu%2C+Yifan&rft.au=Xiong%2C+Manjun&rft.au=Yang%2C+Shuai&rft.date=2025-04-01&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=36&rft.issue=4&rft.spage=2493&rft.epage=2507&rft_id=info:doi/10.1007%2Fs10845-024-02360-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10845_024_02360_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon |