Self-supervised fusion of deep soft assignments for multi-view diagnosis of machine faults

Fault patterns are often unavailable for machine fault diagnosis without prior knowledge. This makes it challenging to diagnose the existence of machine faults and their types. To address this issue, a novel scheme of deep soft assignments fusion network (DSAFN) is proposed for the self-supervised m...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent manufacturing Vol. 36; no. 4; pp. 2493 - 2507
Main Authors Li, Chuan, Wu, Yifan, Xiong, Manjun, Yang, Shuai, Bai, Yun
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0956-5515
1572-8145
DOI10.1007/s10845-024-02360-z

Cover

Abstract Fault patterns are often unavailable for machine fault diagnosis without prior knowledge. This makes it challenging to diagnose the existence of machine faults and their types. To address this issue, a novel scheme of deep soft assignments fusion network (DSAFN) is proposed for the self-supervised multi-view diagnosis of machine faults. To enhance the robustness of the model and prevent overfitting, random noise is added to the collected signals. In each view, vibration features are extracted by a denoising autoencoder. Using the extracted deep features, a soft assignment fusion strategy is proposed to fully utilize both the public and complementary information of multiple views. Critical diagnosis missions, including novel fault detection and fault clustering, are accomplished through binary clustering and multi-class clustering of DSAFN, respectively. Two diagnostic experiments are conducted to validate the proposed method. The results indicate that the proposed method performs better than state-of-the-art peer methods in terms of diagnostic accuracy and noise robustness.
AbstractList Fault patterns are often unavailable for machine fault diagnosis without prior knowledge. This makes it challenging to diagnose the existence of machine faults and their types. To address this issue, a novel scheme of deep soft assignments fusion network (DSAFN) is proposed for the self-supervised multi-view diagnosis of machine faults. To enhance the robustness of the model and prevent overfitting, random noise is added to the collected signals. In each view, vibration features are extracted by a denoising autoencoder. Using the extracted deep features, a soft assignment fusion strategy is proposed to fully utilize both the public and complementary information of multiple views. Critical diagnosis missions, including novel fault detection and fault clustering, are accomplished through binary clustering and multi-class clustering of DSAFN, respectively. Two diagnostic experiments are conducted to validate the proposed method. The results indicate that the proposed method performs better than state-of-the-art peer methods in terms of diagnostic accuracy and noise robustness.
Author Yang, Shuai
Li, Chuan
Xiong, Manjun
Bai, Yun
Wu, Yifan
Author_xml – sequence: 1
  givenname: Chuan
  orcidid: 0000-0003-0004-1497
  surname: Li
  fullname: Li, Chuan
  email: chuanli@21cn.com
  organization: School of Management Science and Engineering, Chongqing Technology and Business University, Research Center of System Health Maintenance, Chongqing Technology and Business University
– sequence: 2
  givenname: Yifan
  surname: Wu
  fullname: Wu, Yifan
  organization: School of Management Science and Engineering, Chongqing Technology and Business University, Research Center of System Health Maintenance, Chongqing Technology and Business University
– sequence: 3
  givenname: Manjun
  surname: Xiong
  fullname: Xiong, Manjun
  email: xiongmanjun@ctbu.edu.cn
  organization: School of Management Science and Engineering, Chongqing Technology and Business University, Research Center of System Health Maintenance, Chongqing Technology and Business University
– sequence: 4
  givenname: Shuai
  surname: Yang
  fullname: Yang, Shuai
  organization: School of Management Science and Engineering, Chongqing Technology and Business University, Research Center of System Health Maintenance, Chongqing Technology and Business University
– sequence: 5
  givenname: Yun
  surname: Bai
  fullname: Bai, Yun
  organization: School of Management Science and Engineering, Chongqing Technology and Business University, Research Center of System Health Maintenance, Chongqing Technology and Business University
BookMark eNp9kE1LAzEQQIMoWKt_wFPAc3SSzcfuUYpfUPCgXryEdJvUlDapmV3F_nq3VvDmYZjLezPwTshhyskTcs7hkgOYK-RQS8VAyGEqDWx7QEZcGcFqLtUhGUGjNFOKq2NygrgEgKbWfERen_wqMOw3vnxE9HMaeow50Rzo3PsNxRw66hDjIq196pCGXOi6X3WRfUT_SefRLVLGiDtj7dq3mDwNbgDwlBwFt0J_9rvH5OX25nlyz6aPdw-T6ylrKyk6VutWaiEEzIQxHGZyLoVRM2WgMaZ1SrjQBG2kh5ob38xkC6GRGmqtdAuVq8bkYn93U_J777Gzy9yXNLy0FW-gkXWl64ESe6otGbH4YDclrl35shzsrqHdN7RDQ_vT0G4HqdpLOMBp4cvf6X-sb1CwdmI
Cites_doi 10.1109/TIE.2022.3140403
10.1016/j.ymssp.2016.12.040
10.1109/JSEN.2022.3174396
10.1016/j.ymssp.2015.04.021
10.1016/j.eswa.2022.119057
10.3390/app122211410
10.1016/j.ins.2020.12.073
10.1109/ICDSCA53499.2021.9650301
10.1007/s10845-022-02020-0
10.1016/j.neunet.2020.07.005
10.1016/j.inffus.2018.10.005
10.1016/j.engappai.2023.106138
10.48550/arXiv.1906.02694
10.1109/ACCESS.2019.2919126
10.1109/TFUZZ.2017.2686804
10.1109/TIP.2020.2984360
10.1109/TNNLS.2022.3209332
10.1007/s10845-018-1431-x
10.1007/s42417-022-00498-9
10.1109/TKDE.2022.3193569
10.1109/MCI.2021.3084495
10.1007/s10845-017-1343-1
10.1109/TKDE.2018.2872063
10.1007/s10845-020-01543-8
10.1109/ACCESS.2019.2893206
10.1145/1390156.1390294
10.1016/j.measurement.2020.108777
10.1016/j.measurement.2022.111159
10.1109/TIE.2021.3108719
10.1007/s10489-021-02504-1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
DOI 10.1007/s10845-024-02360-z
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1572-8145
EndPage 2507
ExternalDocumentID 10_1007_s10845_024_02360_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52175080
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FE
8FG
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
OAM
OVD
P19
P2P
P62
P9P
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZYFGU
~A9
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
PUEGO
7SC
7TB
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
ID FETCH-LOGICAL-c342t-86c462220b27710b4d4275b570977ca52af9f674e0817e9b4c0f94608656c03a3
IEDL.DBID AGYKE
ISSN 0956-5515
IngestDate Sat Aug 16 22:22:36 EDT 2025
Wed Oct 01 06:33:11 EDT 2025
Fri Apr 11 01:27:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Multi-view diagnosis
Denoising autoencoder
Self-supervised fusion
Deep soft assignment
Machine fault
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-86c462220b27710b4d4275b570977ca52af9f674e0817e9b4c0f94608656c03a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0004-1497
PQID 3190948368
PQPubID 32407
PageCount 15
ParticipantIDs proquest_journals_3190948368
crossref_primary_10_1007_s10845_024_02360_z
springer_journals_10_1007_s10845_024_02360_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: London
PublicationTitle Journal of intelligent manufacturing
PublicationTitleAbbrev J Intell Manuf
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References N Mrabah (2360_CR14) 2020; 130
W Wan (2360_CR24) 2022
Y Yan (2360_CR30) 2020; 29
T Zhang (2360_CR31) 2022; 69
N Lu (2360_CR13) 2023; 213
H Li (2360_CR8) 2022; 12
G Tang (2360_CR22) 2021; 171
A Diez-Olivan (2360_CR2) 2019; 50
P Jieyang (2360_CR7) 2023; 34
J Gu (2360_CR3) 2017; 26
B Peng (2360_CR15) 2021; 16
J Xu (2360_CR28) 2021; 573
Q Jiang (2360_CR5) 2019; 7
J Cen (2360_CR1) 2022; 10
2360_CR18
WA Smith (2360_CR19) 2015; 64
Z Pu (2360_CR16) 2021; 69
2360_CR32
A Rodríguez Ramos (2360_CR17) 2019; 30
G Jiang (2360_CR6) 2022; 196
Z Tang (2360_CR21) 2022; 52
J Xu (2360_CR29) 2022; 35
Y Li (2360_CR11) 2017; 91
J Li (2360_CR9) 2020; 31
2360_CR27
Q Hu (2360_CR4) 2022; 22
Z Sun (2360_CR20) 2019; 7
Y Li (2360_CR12) 2018; 31
2360_CR23
X Liu (2360_CR10) 2023; 122
2360_CR26
2360_CR25
References_xml – volume: 69
  start-page: 10573
  issue: 10
  year: 2022
  ident: 2360_CR31
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2022.3140403
– volume: 91
  start-page: 295
  year: 2017
  ident: 2360_CR11
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2016.12.040
– volume: 22
  start-page: 12139
  issue: 12
  year: 2022
  ident: 2360_CR4
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2022.3174396
– volume: 64
  start-page: 100
  year: 2015
  ident: 2360_CR19
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2015.04.021
– volume: 213
  start-page: 119057
  year: 2023
  ident: 2360_CR13
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119057
– volume: 12
  start-page: 11410
  issue: 22
  year: 2022
  ident: 2360_CR8
  publication-title: Applied Sciences
  doi: 10.3390/app122211410
– volume: 573
  start-page: 279
  year: 2021
  ident: 2360_CR28
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.12.073
– ident: 2360_CR32
  doi: 10.1109/ICDSCA53499.2021.9650301
– ident: 2360_CR27
– volume: 34
  start-page: 3277
  year: 2023
  ident: 2360_CR7
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-022-02020-0
– volume: 130
  start-page: 206
  year: 2020
  ident: 2360_CR14
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.07.005
– volume: 50
  start-page: 92
  year: 2019
  ident: 2360_CR2
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.10.005
– volume: 122
  start-page: 106138
  year: 2023
  ident: 2360_CR10
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.106138
– ident: 2360_CR18
  doi: 10.48550/arXiv.1906.02694
– volume: 7
  start-page: 69795
  year: 2019
  ident: 2360_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919126
– volume: 26
  start-page: 612
  issue: 2
  year: 2017
  ident: 2360_CR3
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2017.2686804
– volume: 29
  start-page: 5652
  year: 2020
  ident: 2360_CR30
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.2984360
– year: 2022
  ident: 2360_CR24
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2022.3209332
– ident: 2360_CR25
  doi: 10.1007/s10845-018-1431-x
– volume: 10
  start-page: 2481
  issue: 7
  year: 2022
  ident: 2360_CR1
  publication-title: Journal of Vibration Engineering & Technologies
  doi: 10.1007/s42417-022-00498-9
– volume: 35
  start-page: 7470
  issue: 7
  year: 2022
  ident: 2360_CR29
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2022.3193569
– volume: 16
  start-page: 79
  issue: 3
  year: 2021
  ident: 2360_CR15
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2021.3084495
– volume: 30
  start-page: 1601
  issue: 4
  year: 2019
  ident: 2360_CR17
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-017-1343-1
– volume: 31
  start-page: 1863
  issue: 10
  year: 2018
  ident: 2360_CR12
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2872063
– volume: 31
  start-page: 1899
  year: 2020
  ident: 2360_CR9
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01543-8
– volume: 7
  start-page: 13078
  year: 2019
  ident: 2360_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2893206
– ident: 2360_CR23
  doi: 10.1145/1390156.1390294
– ident: 2360_CR26
  doi: 10.1016/j.measurement.2020.108777
– volume: 196
  start-page: 111159
  year: 2022
  ident: 2360_CR6
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111159
– volume: 69
  start-page: 8411
  issue: 8
  year: 2021
  ident: 2360_CR16
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2021.3108719
– volume: 52
  start-page: 1703
  issue: 2
  year: 2022
  ident: 2360_CR21
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-02504-1
– volume: 171
  start-page: 108777
  year: 2021
  ident: 2360_CR22
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108777
SSID ssj0009861
Score 2.4270666
Snippet Fault patterns are often unavailable for machine fault diagnosis without prior knowledge. This makes it challenging to diagnose the existence of machine faults...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2493
SubjectTerms Accuracy
Algorithms
Business and Management
Clustering
Collaboration
Control
Fault detection
Fault diagnosis
Faults
Feature extraction
Machines
Manufacturing
Mechatronics
Methods
Processes
Production
Random noise
Robotics
Robustness
Sensors
Signal processing
Title Self-supervised fusion of deep soft assignments for multi-view diagnosis of machine faults
URI https://link.springer.com/article/10.1007/s10845-024-02360-z
https://www.proquest.com/docview/3190948368
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8DAN6JQKg9sYBQS23HHFlEqECwQqbBEiWOjCigVaZf-es5OokAFA2viWMnd-fycu3sHcIKQGg_JktNMZIoypdAP4gWa-Ux7oeYi6dpC4bt7MYzYzYiPyqKwvMp2r0KSzlN_K3aTzFYTM2pZzz26WIWm49tqQLN3_XR7VZPtSseT6jj2EBHwsljm91l-bkg1ylwKjLr9ZrAJUfWmRZrJ6_l8lp6rxRKJ438_ZQs2SgBKeoXFbMOKnuzAZtXcgZRrfQfWvzEV7sLzg34zNJ9PrWvJdUbM3P5mIx-GZFpPSY7enCAOH78UNXMEsTBxyYrUxh5IVmT0jXP7xLtL4NTEJDgg34NocPV4OaRlWwaqAubPqBSKCYQVXuqHiE9SljE_5CkPPcSSKuF-YrpGhKhreRHqbsqUZ7pM4NmJC-UFSbAPjcnHRB8AQfzBTCBNplJERtpLONdSJ5J7TIcpS1pwWukmnhbsG3HNs2yFGKMQYyfEeNGCdqW-uFyJeYwuBk-wMhCyBWeVNurbf892-L_hR7Dm29bALqmnDY3Z51wfI16ZpR00z0G_f98pzbQDq5Hf-wI3OeMA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1gKju04Y4WoCrRdaKWKJUocG1WCtiLt0l_POR9qQTCwJo6HZ_vuXXz3DuAaKTUGyUrQVKaacq3RDuIDmjJuvMAIGYeuULjXl50hfxqJUVkUllXZ7tWVZG6p14rdFHfVxJw61XOPLjdhywlYOcX8IWutpHZVrpKaK-whHxBlqczvc3x3RyuO-eNaNPc27QPYK2kiaRXreggbZlKH_aoFAylPZB121_QEj-D1xbxbmi1mzgBkJiV24X6GkaklqTEzkqHNJciWx29FZRtBxkrylELqbghIWuTdjTP3xUeeZmmIjXFAdgzD9sPgvkPL5glU-5zNqZKaS3T-XsICZBEJTzkLRCICDxmfjgWLbWhlgCui7gITJlx7NuQSIxwhtefH_gnUJtOJOQWCLIFbX9lUJ8hfjBcLYZSJlfC4CRIeN-CmwjCaFRoZ0UoN2SEeIeJRjni0bECzgjkqz0sWoSHAOFP5UjXgtoJ-9frv2c7-N_wKtjuDXjfqPvafz2GHuWa-uDMZb0Jt_rkwF8gw5sllvqG-AAg7xko
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMvBHl6YENLEJiO85YAVV5CgkqIZYo8QMhQalIu_TXc3YSpSAYWBPHw9k-f5e77zuAQ4TUGCRLTrXQijKl0A_iA6pDZoLYcJEljih8eyd6fXb1xJ-mWPy-2r1OSZacBqfSNBidDLU9mSK-SeaYxYw6BfSATmZhjjmhBNzR_bDTyO5Kr5jq1fYQG_CKNvP7HN-vpgZv_kiR-punuwJLFWQknXKNV2HGDNZguW7HQKrTuQaLU9qC6_D8YN4sLcZD5wwKo4kdux9j5MMSbcyQFOh_CSLn15eS5UYQvRJfXkhdtoDosgbvtXBfvPuSS0NshgOKDeh3Lx7PerRqpEBVxMIRlUIxgUAgyMMYEUXONAtjnvM4QPSnMh5mNrEixtWRp7FJcqYCmzCB0Q4XKoiyaBNag4-B2QKCiIHZSFqtcsQyJsg4N9JkkgfMxDnL2nBU2zAdlnoZaaOM7CyeosVTb_F00obd2sxpdXaKFJ0CxpwyErINx7Xpm9d_z7b9v-EHMH9_3k1vLu-ud2AhdH19fUXOLrRGn2Ozh2BjlO_7_fQFvgbKgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+fusion+of+deep+soft+assignments+for+multi-view+diagnosis+of+machine+faults&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Li%2C+Chuan&rft.au=Wu%2C+Yifan&rft.au=Xiong%2C+Manjun&rft.au=Yang%2C+Shuai&rft.date=2025-04-01&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=36&rft.issue=4&rft.spage=2493&rft.epage=2507&rft_id=info:doi/10.1007%2Fs10845-024-02360-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10845_024_02360_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon