Detection of Internal Wire Broken in Mining Wire Ropes Based on WOA–VMD and PSO–LSSVM Algorithms
To quantitatively identify internal wire breakage damage in mining wire ropes, a wire rope internal wire breakage signal identification method is proposed. First, the whale optimization algorithm is used to find the optimal value of the variational mode decomposition parameter [K,α] to obtain the op...
Saved in:
| Published in | Axioms Vol. 12; no. 10; p. 995 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.10.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-1680 2075-1680 |
| DOI | 10.3390/axioms12100995 |
Cover
| Abstract | To quantitatively identify internal wire breakage damage in mining wire ropes, a wire rope internal wire breakage signal identification method is proposed. First, the whale optimization algorithm is used to find the optimal value of the variational mode decomposition parameter [K,α] to obtain the optimal combination of the parameters, which reduces the signal noise with a signal-to-noise ratio of 29.29 dB. Second, the minimum envelope entropy of the noise reduction signal is extracted and combined with the time-domain features (maximum and minimum) and frequency-domain features (frequency–amplitude average, average frequency, average power) to form a fusion feature set. Finally, we use a particle swarm optimization–least squares support vector machine model to identify the internal wire breakage of wire ropes. The experimental results show that the method can effectively identify the internal wire rope breakage damage, and the average recognition rate is as high as 99.32%, so the algorithm can greatly reduce the system noise and effectively identify the internal damage signal of the wire rope, which is superior to a certain extent. |
|---|---|
| AbstractList | To quantitatively identify internal wire breakage damage in mining wire ropes, a wire rope internal wire breakage signal identification method is proposed. First, the whale optimization algorithm is used to find the optimal value of the variational mode decomposition parameter [K,α] to obtain the optimal combination of the parameters, which reduces the signal noise with a signal-to-noise ratio of 29.29 dB. Second, the minimum envelope entropy of the noise reduction signal is extracted and combined with the time-domain features (maximum and minimum) and frequency-domain features (frequency–amplitude average, average frequency, average power) to form a fusion feature set. Finally, we use a particle swarm optimization–least squares support vector machine model to identify the internal wire breakage of wire ropes. The experimental results show that the method can effectively identify the internal wire rope breakage damage, and the average recognition rate is as high as 99.32%, so the algorithm can greatly reduce the system noise and effectively identify the internal damage signal of the wire rope, which is superior to a certain extent. |
| Audience | Academic |
| Author | Wang, Wei Li, Pengbo Tian, Jie Zhou, Zeyang |
| Author_xml | – sequence: 1 givenname: Pengbo surname: Li fullname: Li, Pengbo – sequence: 2 givenname: Jie surname: Tian fullname: Tian, Jie – sequence: 3 givenname: Zeyang surname: Zhou fullname: Zhou, Zeyang – sequence: 4 givenname: Wei surname: Wang fullname: Wang, Wei |
| BookMark | eNqFUctOGzEUtRCVoMC2a0tdB_yazHgZoJRIiYIaCkvL40fqdGKntqPCjn_gD_kSnE7VQqWK64XtI59zj-95D3Z98AaADxgdU8rRibxzYZUwwQhxXu2AfYLqaoCHDdp9cd4DRyktUSmOaYPpPtDnJhuVXfAwWDj22UQvO3jrooGnMXw3HjoPp847v-jRL2FtEjyVyWhYWLez0dPD4830HEqv4dV8Vm6T-fxmCkfdIkSXv63SIXhnZZfM0e_9AHy9-HR9djmYzD6Pz0aTgaKM5EExZJtaMkR5i2rc1LyU1XXVUksJooQwxQhpNa44wtpwNGxb1RJFpByyhtEDMO51dZBLsY5uJeO9CNKJX0CICyFjdqozArNKY42YRoQxS1SjKq0MK40Vt4aionXSa238Wt7_lF33RxAjsZ25eD3zwvjYM9Yx_NiYlMUybLbTTII0DSFV-dJW97h_tZDFhvM25ChVWdqsnCqhWlfwUV1jjnHJ7S9BxZBSNPZtH-wfgnJZbiMunVz3P9oz3Z6zbg |
| CitedBy_id | crossref_primary_10_1038_s41598_024_81262_9 crossref_primary_10_1016_j_jsasus_2024_02_001 |
| Cites_doi | 10.1023/A:1018628609742 10.1016/j.advengsoft.2016.01.008 10.3390/s18041110 10.3390/app122211552 10.3390/app10051696 10.1016/j.ndteint.2007.10.006 10.3390/en15238918 10.1109/TIM.2019.2915404 10.1155/2021/2530315 10.1177/00368504211026110 10.1007/s11668-020-01067-6 10.1109/JSEN.2020.2970070 10.1016/j.measurement.2020.108185 10.1109/ACCESS.2019.2963784 10.1109/TII.2020.2990962 10.1016/j.jece.2021.105677 10.1109/TII.2018.2869843 10.1109/TIM.2020.2983232 10.1109/ACCESS.2020.2999584 10.3390/machines10060443 10.3390/math10010028 10.1016/j.measurement.2022.111360 10.1016/j.ndteint.2020.102299 10.21595/jve.2022.22267 10.1109/JIOT.2019.2913176 10.3390/app12146969 10.1007/s10921-020-00732-y 10.1016/j.measurement.2019.01.026 10.1504/IJMME.2016.078359 10.1155/2021/7391524 10.1139/tcsme-2019-0114 10.1016/j.ymssp.2017.08.038 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/axioms12100995 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2075-1680 |
| ExternalDocumentID | oai_doaj_org_article_145d1d04d0244f2c8c5dce49b0c9fe30 10.3390/axioms12100995 A771911075 10_3390_axioms12100995 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO EAD EAP ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS QF4 QN7 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c342t-813f87a4039b071879999fd75b3f3203224c422bd15901de906bbcb2c2aa64843 |
| IEDL.DBID | DOA |
| ISSN | 2075-1680 |
| IngestDate | Fri Oct 03 12:44:24 EDT 2025 Tue Aug 19 16:08:14 EDT 2025 Fri Jul 25 11:55:57 EDT 2025 Mon Oct 20 16:56:48 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 Thu Oct 16 04:28:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c342t-813f87a4039b071879999fd75b3f3203224c422bd15901de906bbcb2c2aa64843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/145d1d04d0244f2c8c5dce49b0c9fe30 |
| PQID | 2882257180 |
| PQPubID | 2032429 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_145d1d04d0244f2c8c5dce49b0c9fe30 unpaywall_primary_10_3390_axioms12100995 proquest_journals_2882257180 gale_infotracacademiconefile_A771911075 crossref_primary_10_3390_axioms12100995 crossref_citationtrail_10_3390_axioms12100995 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Axioms |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_28) 2021; 104 Wang (ref_6) 2020; 69 Peng (ref_12) 2020; 21 He (ref_18) 2020; 69 Liu (ref_1) 2020; 39 Yousefi (ref_27) 2021; 9 ref_14 Gao (ref_30) 2019; 44 Wang (ref_32) 2021; 2021 ref_34 Zhang (ref_4) 2020; 114 Lu (ref_15) 2021; 2021 Chen (ref_21) 2019; 15 Jomdecha (ref_5) 2009; 42 Chen (ref_20) 2019; 6 Cai (ref_22) 2020; 8 Huang (ref_8) 2019; 139 ref_19 Alickovic (ref_23) 2018; 8 ref_16 Ouyang (ref_2) 2021; 2021 Li (ref_13) 2020; 166 Chen (ref_17) 2022; 24 Li (ref_35) 2021; 2021 Zhou (ref_24) 2020; 20 Li (ref_33) 2022; 198 Mirjalili (ref_31) 2016; 95 Jia (ref_26) 2020; 17 Wang (ref_11) 2018; 101 ref_29 ref_9 Qiao (ref_10) 2016; 7 Suykens (ref_25) 1999; 9 Zhang (ref_3) 2020; 8 ref_7 |
| References_xml | – volume: 9 start-page: 293 year: 1999 ident: ref_25 article-title: Least Squares Support Vector Machine Classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 95 start-page: 51 year: 2016 ident: ref_31 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_9 doi: 10.3390/s18041110 – ident: ref_19 doi: 10.3390/app122211552 – ident: ref_16 doi: 10.3390/app10051696 – volume: 42 start-page: 77 year: 2009 ident: ref_5 article-title: Design of modified electromagnetic main-flux for steel wire rope inspection publication-title: NDT E Int. doi: 10.1016/j.ndteint.2007.10.006 – ident: ref_34 doi: 10.3390/en15238918 – volume: 69 start-page: 1493 year: 2020 ident: ref_18 article-title: An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2915404 – volume: 2021 start-page: 6627367 year: 2021 ident: ref_35 article-title: A Classification Algorithm of Fault Modes-Integrated LSSVM and PSO with Parameters’ Optimization of VMD publication-title: Math. Probl. Eng. – volume: 2021 start-page: 2530315 year: 2021 ident: ref_15 article-title: Fault Diagnosis of Rolling Bearing Based on Improved VMD and KNN publication-title: Math. Probl. Eng. doi: 10.1155/2021/2530315 – volume: 104 start-page: 368504211026110 year: 2021 ident: ref_28 article-title: Compressor fault diagnosis system based on PCA-PSO-LSSVM algorithm publication-title: Sci. Prog. doi: 10.1177/00368504211026110 – volume: 21 start-page: 280 year: 2020 ident: ref_12 article-title: The Broken Wires Identification of Wire Rope Based on Multilevel Filtering Method Using EEMD and Wavelet Analysis publication-title: J. Fail. Anal. Prev. doi: 10.1007/s11668-020-01067-6 – volume: 20 start-page: 8297 year: 2020 ident: ref_24 article-title: A Hybrid Data-Driven Method for Wire Rope Surface Defect Detection publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2970070 – volume: 166 start-page: 108185 year: 2020 ident: ref_13 article-title: An optimized VMD method and its applications in bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2020.108185 – volume: 8 start-page: 6505 year: 2020 ident: ref_22 article-title: PSO-ELM: A hybrid learning model for short-term traffic flow forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963784 – volume: 17 start-page: 710 year: 2020 ident: ref_26 article-title: Defect Prediction of Relay Protection Systems Based on LSSVM-BNDT publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.2990962 – volume: 9 start-page: 105677 year: 2021 ident: ref_27 article-title: Comparison of LSSVM and RSM in simulating the removal of ciprofloxacin from aqueous solutions using magnetization of functionalized multi-walled carbon nanotubes: Process optimization using GA and RSM techniques publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105677 – volume: 15 start-page: 2691 year: 2019 ident: ref_21 article-title: A Novel Ensemble ELM for Human Activity Recognition Using Smartphone Sensors publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2869843 – volume: 69 start-page: 7437 year: 2020 ident: ref_6 article-title: Inspection of Mine Wire Rope Using Magnetic Aggregation Bridge Based on Magnetic Resistance Sensor Array publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2983232 – volume: 8 start-page: 104165 year: 2020 ident: ref_3 article-title: Quantitative Detection of Wire Rope Based on Three-Dimensional Magnetic Flux Leakage Color Imaging Technology publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2999584 – ident: ref_29 doi: 10.3390/machines10060443 – ident: ref_14 doi: 10.3390/math10010028 – volume: 198 start-page: 111360 year: 2022 ident: ref_33 article-title: A VME method based on the convergent tendency of VMD and its application in multi-fault diagnosis of rolling bearings publication-title: Measurement doi: 10.1016/j.measurement.2022.111360 – volume: 114 start-page: 102299 year: 2020 ident: ref_4 article-title: A new signal processing method for the nondestructive testing of a steel wire rope using a small device publication-title: NDT E Int. doi: 10.1016/j.ndteint.2020.102299 – volume: 24 start-page: 779 year: 2022 ident: ref_17 article-title: Research on 3D MFL testing of wire rope based on empirical wavelet transform and SRCNN publication-title: J. Vibroeng. doi: 10.21595/jve.2022.22267 – volume: 6 start-page: 6997 year: 2019 ident: ref_20 article-title: A Two-Layer Nonlinear Combination Method for Short-Term Wind Speed Prediction Based on ELM, ENN, and LSTM publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2913176 – volume: 8 start-page: 6505 year: 2018 ident: ref_23 article-title: Ensemble SVM Method for Automatic Sleep Stage Classification publication-title: IEEE Trans. Instrum. Meas. – ident: ref_7 doi: 10.3390/app12146969 – volume: 39 start-page: 85 year: 2020 ident: ref_1 article-title: A Review of Wire Rope Detection Methods, Sensors and Signal Processing Techniques publication-title: J. Nondestruct. Eval. doi: 10.1007/s10921-020-00732-y – volume: 139 start-page: 438 year: 2019 ident: ref_8 article-title: Data decomposition method combining permutation entropy and spectral substitution with ensemble empirical mode decomposition publication-title: Measurement doi: 10.1016/j.measurement.2019.01.026 – volume: 7 start-page: 224 year: 2016 ident: ref_10 article-title: Identification of mining steel rope broken wires based on improved EEMD publication-title: Int. J. Min. Miner. Eng. doi: 10.1504/IJMME.2016.078359 – volume: 2021 start-page: 3744320 year: 2021 ident: ref_32 article-title: Prediction of House Price Index Based on Bagging Integrated WOA-SVR Model publication-title: Math. Probl. Eng. – volume: 2021 start-page: 7391524 year: 2021 ident: ref_2 article-title: Calibration and Analysis of Mechanical Modeling for Traction Wire Rope of Mountainous Orchard Carrier publication-title: Math. Probl. Eng. doi: 10.1155/2021/7391524 – volume: 44 start-page: 405 year: 2019 ident: ref_30 article-title: Rolling bearing fault diagnosis of PSO–LSSVM based on CEEMD entropy fusion publication-title: Trans. Can. Soc. Mech. Eng. doi: 10.1139/tcsme-2019-0114 – volume: 101 start-page: 292 year: 2018 ident: ref_11 article-title: Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.08.038 |
| SSID | ssj0000913813 |
| Score | 2.2500503 |
| Snippet | To quantitatively identify internal wire breakage damage in mining wire ropes, a wire rope internal wire breakage signal identification method is proposed.... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 995 |
| SubjectTerms | Accuracy Algorithms Breakage Damage detection Entropy Fault diagnosis Fault location (Engineering) Identification Identification methods internal damage of wire rope Magnetic fields Mechanical properties Methods Neural networks Noise reduction Parameters Particle swarm optimization Permeability PSO–LSSVM axiom Signal processing Signal to noise ratio Support vector machines Wavelet transforms Wire rope WOA–VMD axiom |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELbK9gA9oPKnLhTkAxJcoia2s0kOCO3SVhUi26pLS2-R_1Iq0mRpUkFvfQfekCfpTOIEKgQcYzmxPR7bM87M9xHyUkjT8h55ahIYT2iLQQBWe0ESGsF9zUyMicLpfLJ3JN6fhCcrZN7nwmBYZb8nthu1qTTekW8xMAVBvYLYf7v86iFrFP5d7Sk0pKNWMG9aiLE7ZJUhMtaIrM525geHw60LomDGAe_QGzn4-1vy-1l1XmNlsJXCW6dTC-L_51a9Ru5elkt59U0WxW9n0e46ue-MSDrtZv0BWbHlQ7KWDgis9SNitm3TRlmVtMqpu_crKAa7UnC9v9iSnpU0bekhutLDamlrOoNTzVB469P-9Of1j-N0m8rS0IPFPjx9WCyOUzotTkEwzefz-jE52t35-G7Pc4wKnuaCNR4MPY8jKXyeKLAt4gjMwyQ3Uah4zpFLnQktGFMmwJRUYxN_opRWTDMpJyIW_AkZlVVpNzDX23ImFSxvMEKERmJAMFZCHYo8ECrQY-L1ksy0gxtH1osiA7cDJZ_dlvyYvBrqLzugjb_WnOHEDLUQILstqC5OM7fewKMJTWB8AZooRM50rEOjrYBh6yS33IfmcFozXMbQLS1dNgIMDgGxsmkUgScLvjE0t9nPfObWd5390sYxeT1ow386_vTfX3pG7iGXfRcpuElGzcWlfQ4WT6NeODW-ATj6_2M priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVguoAueCMKBXmBBJt04lceK5RSqgoxbcUwpaxSv1JGTZPRJMNrxT_wh3wJ14lnREEIJJax7NiWr6_Psa7PRegxl6bLexSoiJiAa-uCAKwOSCoMZ6GmJnEPhUf70d6EvzwWxz7PaePDKoGKTzsnTeE8C0iUhENCYXsP01QMZ6Z49sFfJZEoTVgigDZfRmuRADA-QGuT_cPsnUspt2zcSzUyIPdD-WlanzdOMwuAkbhwFHWK_b_75XV0ZVHN5OePsix_Onh2r6OT5ZD7eJOzrUWrtvSXX9Qc_2NON9A1D0px1lvRTXTJVrfQ-mil6NrcRmbHtl3UVoXrAvt7xBK74FkMVP7MVnha4VGXbqIvfV3PbIO34ZQ0GFq9Pci-f_12NNrBsjL4cHwAX6_G46MRzsrTej5t3583d9Bk98Wb53uBz9AQaMZpGySEFUksechSBVgliQFupoWJhWIFc7nZKdecUmWIe-JqbBpGSmlFNZUy4glnd9Ggqit7z70dt4xKBe4CQA3XLtEggB-hBS8IV0RvoGC5WLn28uUui0aZA41xi5tfXNwN9GRVf9YLd_yx5rZb-1UtJ7jdFdTz09zvX2BIwhATcrBszguqEy2MthymrdPCshC6c5aTO7cAw9LSv26AyTmBrTyLY2DGwLWhu82lceXeXzQ5BaIDzpMk8KOnK4P7y8Dv_3vVB-gqBXTWRyFuokE7X9iHgKZa9cjvmB-77Bhn priority: 102 providerName: Unpaywall |
| Title | Detection of Internal Wire Broken in Mining Wire Ropes Based on WOA–VMD and PSO–LSSVM Algorithms |
| URI | https://www.proquest.com/docview/2882257180 https://www.mdpi.com/2075-1680/12/10/995/pdf?version=1698385987 https://doaj.org/article/145d1d04d0244f2c8c5dce49b0c9fe30 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: AMVHM dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHKAHxFMtlJUPSHCJGj-ySY5Z2qVCZLvqsqWcIr8CK9Jk1aRqufU_9B_yS5hJ0tVWCPVCbo4cezwe2zPR-PsIeSuVbXmPPD1k1pPGYRKAMx6LAyuFb7iN8KJwOhkezOWnk-BkjeoLc8I6eOBOcbtMBpZZX0KTUubcRCawxslY-ybOnWijdT-K14Kpdg-OGRxFokNpFBDX76rLRXVaI1wW-ETBrVOoBev_e0veJA_Py6X6daGKYu3MGT8hj3tnkSadkE_JPVc-I5vpCmm1fk7snmvabKqSVjnt_-8VFJNaKYTYP11JFyVNWxqI7u1RtXQ1HcHpZSl89fUw-X11fZzuUVVaOp0dQunzbHac0qT4Xp0tmh-n9QsyH-9_-XDg9cwJnhGSNx4MPY9CJX0BegqRUBye3IaBFrlAznQujeRcW4ZXT62L_aHWRnPDlRrKSIqXZKOsSreFd7qd4ErDMgZnQxokAASnJDCBzJnUzGwT70aTmelhxZHdosggvEDNZ7c1v03ereovO0CNf9Yc4cSsaiEQdvsCzCPrzSO7yzygO5zWDJcriGVUf-sABofAV1kShhCxQgwM3e3czHzWr-M64xCAwKbGImjo_coa7hD81f8Q_DV5hMz2Xd7gDtlozs7dG_B_Gj0g96PxxwF5MNqfTI8GreFDaT6ZJt_-AFpGBf0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NUtRAEJ5COCAHy99yFXUOWnpJkcxMNsmBsnZdqEU2C8UCcgvzF6QMyUpCITffwffxYXwSe5JJlLLUE8ekJplkutM_k-7vQ-gl46rmPXJE31MOk9oUAWjpeJGvGHUlUaFpFI6n_fEBe3_kHy2g720vjCmrbG1ibahVIc0e-RqBUBDUywvdt_PPjmGNMn9XWwoNbqkV1HoNMWYbO7b11SWkcOX61gjk_YqQzY39d2PHsgw4kjJSOaFH0zDgzKWRAH8bBhAyRakKfEFTavjFCZOMEKE806apdOT2hZCCSMJ5n4WMwn1voSVGWQTJ39JwY7q71-3yGNRNmKBBi6Q0ctf4l9PirDSwXRCb-de8YU0a8KdrWEHLF_mcX13yLPvN923eRXds0IoHjZbdQws6v49W4g7xtXyA1EhXdVVXjosU233GDJviWgyp_ied49McxzUdRXN2r5jrEg_BiyoMV33YGfz4-u0wHmGeK7w724GjyWx2GONBdgKCqD6elQ_RwY2s7SO0mBe5fmx6yzUlXIA5gaCHSUNECMGRL32Wekx4soecdiUTaeHNDctGlkCaY1Y-ub7yPfS6Gz9vgD3-OnJoBNONMoDc9Yni_CSx3zdkUL7ylMtA8xlLiQylr6Rm8NoySjV1YToj1sSYDXgsyW33A7ycAeBKBkEAmTPk4jDdaiv5xNqTMvml_T30ptOG_zz4k3_f6QVaHu_Hk2SyNd1-im4TiN6aKsVVtFidX-hnEG1V4rlVaYyOb_or-gmYdDpC |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FIAE5IFYxEKAPILhYsbvbY_uA0IRhSEicRAxZbqY3J1Ece4gdhdz4B_6Gz-FLqPIGEQJOOY7V07arq2tpV71HyDMhTc175KihZxyhLRYBWO14kW8EdzUzITYKxxvDlW3xfs_fmyPfu14YLKvsbGJtqE2h8Yx8iUEoCOqFnclpWxaxNZ68nn12kEEKv7R2dBqNiqzZ8zNI38pXq2NY6-eMTd5-fLPitAwDjuaCVU7o8TQMpHB5pMDXhgGES1FqAl_xlCO3OBNaMKaMhy2axkbuUCmtmGZSDkUoOMx7hVwNEMUdu9Qn7_rzHcTbhOkbnEjOI3dJfjksjksE7IKozL_gB2u6gD-dwgK5fprP5PmZzLLfvN7kFrnZhqt01OjXbTJn8ztkIe6xXsu7xIxtVddz5bRIaXvCmFEsq6WQ5B_ZnB7mNK6JKJqrH4qZLeky-E9D4V-7m6MfX7_txGMqc0O3ppvwa3063YnpKNsHsVcHx-U9sn0pkr1P5vMitw-wq9xyJhUYEgh3hEYKQgiLfO2L1BPK0wPidJJMdAtsjvwaWQIJDko-uSj5AXnRj581kB5_HbmMC9OPQiju-kJxsp-0OxtyJ994xhWg80KkTIfaN9oKeG0dpZa7cDtc1gQNBjyWlm3fA7wcQm8loyCAnBmycLjdYrfySWtJyuSX3g_Iy14b_vPgD_8901NyDfZOsr66sfaI3GAQtjXliYtkvjo5tY8hzKrUk1qfKfl02RvoJ_aPN9w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVguoAueCMKBXmBBJt04lceK5RSqgoxbcUwpaxSv1JGTZPRJMNrxT_wh3wJ14lnREEIJJax7NiWr6_Psa7PRegxl6bLexSoiJiAa-uCAKwOSCoMZ6GmJnEPhUf70d6EvzwWxz7PaePDKoGKTzsnTeE8C0iUhENCYXsP01QMZ6Z49sFfJZEoTVgigDZfRmuRADA-QGuT_cPsnUspt2zcSzUyIPdD-WlanzdOMwuAkbhwFHWK_b_75XV0ZVHN5OePsix_Onh2r6OT5ZD7eJOzrUWrtvSXX9Qc_2NON9A1D0px1lvRTXTJVrfQ-mil6NrcRmbHtl3UVoXrAvt7xBK74FkMVP7MVnha4VGXbqIvfV3PbIO34ZQ0GFq9Pci-f_12NNrBsjL4cHwAX6_G46MRzsrTej5t3583d9Bk98Wb53uBz9AQaMZpGySEFUksechSBVgliQFupoWJhWIFc7nZKdecUmWIe-JqbBpGSmlFNZUy4glnd9Ggqit7z70dt4xKBe4CQA3XLtEggB-hBS8IV0RvoGC5WLn28uUui0aZA41xi5tfXNwN9GRVf9YLd_yx5rZb-1UtJ7jdFdTz09zvX2BIwhATcrBszguqEy2MthymrdPCshC6c5aTO7cAw9LSv26AyTmBrTyLY2DGwLWhu82lceXeXzQ5BaIDzpMk8KOnK4P7y8Dv_3vVB-gqBXTWRyFuokE7X9iHgKZa9cjvmB-77Bhn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Internal+Wire+Broken+in+Mining+Wire+Ropes+Based+on+WOA%E2%80%93VMD+and+PSO%E2%80%93LSSVM+Algorithms&rft.jtitle=Axioms&rft.au=Pengbo+Li&rft.au=Jie+Tian&rft.au=Zeyang+Zhou&rft.au=Wei+Wang&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2075-1680&rft.volume=12&rft.issue=10&rft.spage=995&rft_id=info:doi/10.3390%2Faxioms12100995&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_145d1d04d0244f2c8c5dce49b0c9fe30 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon |