Detection of Internal Wire Broken in Mining Wire Ropes Based on WOA–VMD and PSO–LSSVM Algorithms

To quantitatively identify internal wire breakage damage in mining wire ropes, a wire rope internal wire breakage signal identification method is proposed. First, the whale optimization algorithm is used to find the optimal value of the variational mode decomposition parameter [K,α] to obtain the op...

Full description

Saved in:
Bibliographic Details
Published inAxioms Vol. 12; no. 10; p. 995
Main Authors Li, Pengbo, Tian, Jie, Zhou, Zeyang, Wang, Wei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text
ISSN2075-1680
2075-1680
DOI10.3390/axioms12100995

Cover

Abstract To quantitatively identify internal wire breakage damage in mining wire ropes, a wire rope internal wire breakage signal identification method is proposed. First, the whale optimization algorithm is used to find the optimal value of the variational mode decomposition parameter [K,α] to obtain the optimal combination of the parameters, which reduces the signal noise with a signal-to-noise ratio of 29.29 dB. Second, the minimum envelope entropy of the noise reduction signal is extracted and combined with the time-domain features (maximum and minimum) and frequency-domain features (frequency–amplitude average, average frequency, average power) to form a fusion feature set. Finally, we use a particle swarm optimization–least squares support vector machine model to identify the internal wire breakage of wire ropes. The experimental results show that the method can effectively identify the internal wire rope breakage damage, and the average recognition rate is as high as 99.32%, so the algorithm can greatly reduce the system noise and effectively identify the internal damage signal of the wire rope, which is superior to a certain extent.
AbstractList To quantitatively identify internal wire breakage damage in mining wire ropes, a wire rope internal wire breakage signal identification method is proposed. First, the whale optimization algorithm is used to find the optimal value of the variational mode decomposition parameter [K,α] to obtain the optimal combination of the parameters, which reduces the signal noise with a signal-to-noise ratio of 29.29 dB. Second, the minimum envelope entropy of the noise reduction signal is extracted and combined with the time-domain features (maximum and minimum) and frequency-domain features (frequency–amplitude average, average frequency, average power) to form a fusion feature set. Finally, we use a particle swarm optimization–least squares support vector machine model to identify the internal wire breakage of wire ropes. The experimental results show that the method can effectively identify the internal wire rope breakage damage, and the average recognition rate is as high as 99.32%, so the algorithm can greatly reduce the system noise and effectively identify the internal damage signal of the wire rope, which is superior to a certain extent.
Audience Academic
Author Wang, Wei
Li, Pengbo
Tian, Jie
Zhou, Zeyang
Author_xml – sequence: 1
  givenname: Pengbo
  surname: Li
  fullname: Li, Pengbo
– sequence: 2
  givenname: Jie
  surname: Tian
  fullname: Tian, Jie
– sequence: 3
  givenname: Zeyang
  surname: Zhou
  fullname: Zhou, Zeyang
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
BookMark eNqFUctOGzEUtRCVoMC2a0tdB_yazHgZoJRIiYIaCkvL40fqdGKntqPCjn_gD_kSnE7VQqWK64XtI59zj-95D3Z98AaADxgdU8rRibxzYZUwwQhxXu2AfYLqaoCHDdp9cd4DRyktUSmOaYPpPtDnJhuVXfAwWDj22UQvO3jrooGnMXw3HjoPp847v-jRL2FtEjyVyWhYWLez0dPD4830HEqv4dV8Vm6T-fxmCkfdIkSXv63SIXhnZZfM0e_9AHy9-HR9djmYzD6Pz0aTgaKM5EExZJtaMkR5i2rc1LyU1XXVUksJooQwxQhpNa44wtpwNGxb1RJFpByyhtEDMO51dZBLsY5uJeO9CNKJX0CICyFjdqozArNKY42YRoQxS1SjKq0MK40Vt4aionXSa238Wt7_lF33RxAjsZ25eD3zwvjYM9Yx_NiYlMUybLbTTII0DSFV-dJW97h_tZDFhvM25ChVWdqsnCqhWlfwUV1jjnHJ7S9BxZBSNPZtH-wfgnJZbiMunVz3P9oz3Z6zbg
CitedBy_id crossref_primary_10_1038_s41598_024_81262_9
crossref_primary_10_1016_j_jsasus_2024_02_001
Cites_doi 10.1023/A:1018628609742
10.1016/j.advengsoft.2016.01.008
10.3390/s18041110
10.3390/app122211552
10.3390/app10051696
10.1016/j.ndteint.2007.10.006
10.3390/en15238918
10.1109/TIM.2019.2915404
10.1155/2021/2530315
10.1177/00368504211026110
10.1007/s11668-020-01067-6
10.1109/JSEN.2020.2970070
10.1016/j.measurement.2020.108185
10.1109/ACCESS.2019.2963784
10.1109/TII.2020.2990962
10.1016/j.jece.2021.105677
10.1109/TII.2018.2869843
10.1109/TIM.2020.2983232
10.1109/ACCESS.2020.2999584
10.3390/machines10060443
10.3390/math10010028
10.1016/j.measurement.2022.111360
10.1016/j.ndteint.2020.102299
10.21595/jve.2022.22267
10.1109/JIOT.2019.2913176
10.3390/app12146969
10.1007/s10921-020-00732-y
10.1016/j.measurement.2019.01.026
10.1504/IJMME.2016.078359
10.1155/2021/7391524
10.1139/tcsme-2019-0114
10.1016/j.ymssp.2017.08.038
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/axioms12100995
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (Proquest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2075-1680
ExternalDocumentID oai_doaj_org_article_145d1d04d0244f2c8c5dce49b0c9fe30
10.3390/axioms12100995
A771911075
10_3390_axioms12100995
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
EAD
EAP
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
QF4
QN7
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c342t-813f87a4039b071879999fd75b3f3203224c422bd15901de906bbcb2c2aa64843
IEDL.DBID DOA
ISSN 2075-1680
IngestDate Fri Oct 03 12:44:24 EDT 2025
Tue Aug 19 16:08:14 EDT 2025
Fri Jul 25 11:55:57 EDT 2025
Mon Oct 20 16:56:48 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Thu Oct 16 04:28:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-813f87a4039b071879999fd75b3f3203224c422bd15901de906bbcb2c2aa64843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/145d1d04d0244f2c8c5dce49b0c9fe30
PQID 2882257180
PQPubID 2032429
ParticipantIDs doaj_primary_oai_doaj_org_article_145d1d04d0244f2c8c5dce49b0c9fe30
unpaywall_primary_10_3390_axioms12100995
proquest_journals_2882257180
gale_infotracacademiconefile_A771911075
crossref_primary_10_3390_axioms12100995
crossref_citationtrail_10_3390_axioms12100995
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Axioms
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_28) 2021; 104
Wang (ref_6) 2020; 69
Peng (ref_12) 2020; 21
He (ref_18) 2020; 69
Liu (ref_1) 2020; 39
Yousefi (ref_27) 2021; 9
ref_14
Gao (ref_30) 2019; 44
Wang (ref_32) 2021; 2021
ref_34
Zhang (ref_4) 2020; 114
Lu (ref_15) 2021; 2021
Chen (ref_21) 2019; 15
Jomdecha (ref_5) 2009; 42
Chen (ref_20) 2019; 6
Cai (ref_22) 2020; 8
Huang (ref_8) 2019; 139
ref_19
Alickovic (ref_23) 2018; 8
ref_16
Ouyang (ref_2) 2021; 2021
Li (ref_13) 2020; 166
Chen (ref_17) 2022; 24
Li (ref_35) 2021; 2021
Zhou (ref_24) 2020; 20
Li (ref_33) 2022; 198
Mirjalili (ref_31) 2016; 95
Jia (ref_26) 2020; 17
Wang (ref_11) 2018; 101
ref_29
ref_9
Qiao (ref_10) 2016; 7
Suykens (ref_25) 1999; 9
Zhang (ref_3) 2020; 8
ref_7
References_xml – volume: 9
  start-page: 293
  year: 1999
  ident: ref_25
  article-title: Least Squares Support Vector Machine Classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_31
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref_9
  doi: 10.3390/s18041110
– ident: ref_19
  doi: 10.3390/app122211552
– ident: ref_16
  doi: 10.3390/app10051696
– volume: 42
  start-page: 77
  year: 2009
  ident: ref_5
  article-title: Design of modified electromagnetic main-flux for steel wire rope inspection
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2007.10.006
– ident: ref_34
  doi: 10.3390/en15238918
– volume: 69
  start-page: 1493
  year: 2020
  ident: ref_18
  article-title: An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2915404
– volume: 2021
  start-page: 6627367
  year: 2021
  ident: ref_35
  article-title: A Classification Algorithm of Fault Modes-Integrated LSSVM and PSO with Parameters’ Optimization of VMD
  publication-title: Math. Probl. Eng.
– volume: 2021
  start-page: 2530315
  year: 2021
  ident: ref_15
  article-title: Fault Diagnosis of Rolling Bearing Based on Improved VMD and KNN
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/2530315
– volume: 104
  start-page: 368504211026110
  year: 2021
  ident: ref_28
  article-title: Compressor fault diagnosis system based on PCA-PSO-LSSVM algorithm
  publication-title: Sci. Prog.
  doi: 10.1177/00368504211026110
– volume: 21
  start-page: 280
  year: 2020
  ident: ref_12
  article-title: The Broken Wires Identification of Wire Rope Based on Multilevel Filtering Method Using EEMD and Wavelet Analysis
  publication-title: J. Fail. Anal. Prev.
  doi: 10.1007/s11668-020-01067-6
– volume: 20
  start-page: 8297
  year: 2020
  ident: ref_24
  article-title: A Hybrid Data-Driven Method for Wire Rope Surface Defect Detection
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2970070
– volume: 166
  start-page: 108185
  year: 2020
  ident: ref_13
  article-title: An optimized VMD method and its applications in bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108185
– volume: 8
  start-page: 6505
  year: 2020
  ident: ref_22
  article-title: PSO-ELM: A hybrid learning model for short-term traffic flow forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963784
– volume: 17
  start-page: 710
  year: 2020
  ident: ref_26
  article-title: Defect Prediction of Relay Protection Systems Based on LSSVM-BNDT
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2990962
– volume: 9
  start-page: 105677
  year: 2021
  ident: ref_27
  article-title: Comparison of LSSVM and RSM in simulating the removal of ciprofloxacin from aqueous solutions using magnetization of functionalized multi-walled carbon nanotubes: Process optimization using GA and RSM techniques
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105677
– volume: 15
  start-page: 2691
  year: 2019
  ident: ref_21
  article-title: A Novel Ensemble ELM for Human Activity Recognition Using Smartphone Sensors
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2869843
– volume: 69
  start-page: 7437
  year: 2020
  ident: ref_6
  article-title: Inspection of Mine Wire Rope Using Magnetic Aggregation Bridge Based on Magnetic Resistance Sensor Array
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2983232
– volume: 8
  start-page: 104165
  year: 2020
  ident: ref_3
  article-title: Quantitative Detection of Wire Rope Based on Three-Dimensional Magnetic Flux Leakage Color Imaging Technology
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2999584
– ident: ref_29
  doi: 10.3390/machines10060443
– ident: ref_14
  doi: 10.3390/math10010028
– volume: 198
  start-page: 111360
  year: 2022
  ident: ref_33
  article-title: A VME method based on the convergent tendency of VMD and its application in multi-fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111360
– volume: 114
  start-page: 102299
  year: 2020
  ident: ref_4
  article-title: A new signal processing method for the nondestructive testing of a steel wire rope using a small device
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2020.102299
– volume: 24
  start-page: 779
  year: 2022
  ident: ref_17
  article-title: Research on 3D MFL testing of wire rope based on empirical wavelet transform and SRCNN
  publication-title: J. Vibroeng.
  doi: 10.21595/jve.2022.22267
– volume: 6
  start-page: 6997
  year: 2019
  ident: ref_20
  article-title: A Two-Layer Nonlinear Combination Method for Short-Term Wind Speed Prediction Based on ELM, ENN, and LSTM
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2913176
– volume: 8
  start-page: 6505
  year: 2018
  ident: ref_23
  article-title: Ensemble SVM Method for Automatic Sleep Stage Classification
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_7
  doi: 10.3390/app12146969
– volume: 39
  start-page: 85
  year: 2020
  ident: ref_1
  article-title: A Review of Wire Rope Detection Methods, Sensors and Signal Processing Techniques
  publication-title: J. Nondestruct. Eval.
  doi: 10.1007/s10921-020-00732-y
– volume: 139
  start-page: 438
  year: 2019
  ident: ref_8
  article-title: Data decomposition method combining permutation entropy and spectral substitution with ensemble empirical mode decomposition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.026
– volume: 7
  start-page: 224
  year: 2016
  ident: ref_10
  article-title: Identification of mining steel rope broken wires based on improved EEMD
  publication-title: Int. J. Min. Miner. Eng.
  doi: 10.1504/IJMME.2016.078359
– volume: 2021
  start-page: 3744320
  year: 2021
  ident: ref_32
  article-title: Prediction of House Price Index Based on Bagging Integrated WOA-SVR Model
  publication-title: Math. Probl. Eng.
– volume: 2021
  start-page: 7391524
  year: 2021
  ident: ref_2
  article-title: Calibration and Analysis of Mechanical Modeling for Traction Wire Rope of Mountainous Orchard Carrier
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/7391524
– volume: 44
  start-page: 405
  year: 2019
  ident: ref_30
  article-title: Rolling bearing fault diagnosis of PSO–LSSVM based on CEEMD entropy fusion
  publication-title: Trans. Can. Soc. Mech. Eng.
  doi: 10.1139/tcsme-2019-0114
– volume: 101
  start-page: 292
  year: 2018
  ident: ref_11
  article-title: Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.08.038
SSID ssj0000913813
Score 2.2500503
Snippet To quantitatively identify internal wire breakage damage in mining wire ropes, a wire rope internal wire breakage signal identification method is proposed....
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 995
SubjectTerms Accuracy
Algorithms
Breakage
Damage detection
Entropy
Fault diagnosis
Fault location (Engineering)
Identification
Identification methods
internal damage of wire rope
Magnetic fields
Mechanical properties
Methods
Neural networks
Noise reduction
Parameters
Particle swarm optimization
Permeability
PSO–LSSVM axiom
Signal processing
Signal to noise ratio
Support vector machines
Wavelet transforms
Wire rope
WOA–VMD axiom
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELbK9gA9oPKnLhTkAxJcoia2s0kOCO3SVhUi26pLS2-R_1Iq0mRpUkFvfQfekCfpTOIEKgQcYzmxPR7bM87M9xHyUkjT8h55ahIYT2iLQQBWe0ESGsF9zUyMicLpfLJ3JN6fhCcrZN7nwmBYZb8nthu1qTTekW8xMAVBvYLYf7v86iFrFP5d7Sk0pKNWMG9aiLE7ZJUhMtaIrM525geHw60LomDGAe_QGzn4-1vy-1l1XmNlsJXCW6dTC-L_51a9Ru5elkt59U0WxW9n0e46ue-MSDrtZv0BWbHlQ7KWDgis9SNitm3TRlmVtMqpu_crKAa7UnC9v9iSnpU0bekhutLDamlrOoNTzVB469P-9Of1j-N0m8rS0IPFPjx9WCyOUzotTkEwzefz-jE52t35-G7Pc4wKnuaCNR4MPY8jKXyeKLAt4gjMwyQ3Uah4zpFLnQktGFMmwJRUYxN_opRWTDMpJyIW_AkZlVVpNzDX23ImFSxvMEKERmJAMFZCHYo8ECrQY-L1ksy0gxtH1osiA7cDJZ_dlvyYvBrqLzugjb_WnOHEDLUQILstqC5OM7fewKMJTWB8AZooRM50rEOjrYBh6yS33IfmcFozXMbQLS1dNgIMDgGxsmkUgScLvjE0t9nPfObWd5390sYxeT1ow386_vTfX3pG7iGXfRcpuElGzcWlfQ4WT6NeODW-ATj6_2M
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVguoAueCMKBXmBBJt04lceK5RSqgoxbcUwpaxSv1JGTZPRJMNrxT_wh3wJ14lnREEIJJax7NiWr6_Psa7PRegxl6bLexSoiJiAa-uCAKwOSCoMZ6GmJnEPhUf70d6EvzwWxz7PaePDKoGKTzsnTeE8C0iUhENCYXsP01QMZ6Z49sFfJZEoTVgigDZfRmuRADA-QGuT_cPsnUspt2zcSzUyIPdD-WlanzdOMwuAkbhwFHWK_b_75XV0ZVHN5OePsix_Onh2r6OT5ZD7eJOzrUWrtvSXX9Qc_2NON9A1D0px1lvRTXTJVrfQ-mil6NrcRmbHtl3UVoXrAvt7xBK74FkMVP7MVnha4VGXbqIvfV3PbIO34ZQ0GFq9Pci-f_12NNrBsjL4cHwAX6_G46MRzsrTej5t3583d9Bk98Wb53uBz9AQaMZpGySEFUksechSBVgliQFupoWJhWIFc7nZKdecUmWIe-JqbBpGSmlFNZUy4glnd9Ggqit7z70dt4xKBe4CQA3XLtEggB-hBS8IV0RvoGC5WLn28uUui0aZA41xi5tfXNwN9GRVf9YLd_yx5rZb-1UtJ7jdFdTz09zvX2BIwhATcrBszguqEy2MthymrdPCshC6c5aTO7cAw9LSv26AyTmBrTyLY2DGwLWhu82lceXeXzQ5BaIDzpMk8KOnK4P7y8Dv_3vVB-gqBXTWRyFuokE7X9iHgKZa9cjvmB-77Bhn
  priority: 102
  providerName: Unpaywall
Title Detection of Internal Wire Broken in Mining Wire Ropes Based on WOA–VMD and PSO–LSSVM Algorithms
URI https://www.proquest.com/docview/2882257180
https://www.mdpi.com/2075-1680/12/10/995/pdf?version=1698385987
https://doaj.org/article/145d1d04d0244f2c8c5dce49b0c9fe30
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: AMVHM
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHKAHxFMtlJUPSHCJGj-ySY5Z2qVCZLvqsqWcIr8CK9Jk1aRqufU_9B_yS5hJ0tVWCPVCbo4cezwe2zPR-PsIeSuVbXmPPD1k1pPGYRKAMx6LAyuFb7iN8KJwOhkezOWnk-BkjeoLc8I6eOBOcbtMBpZZX0KTUubcRCawxslY-ybOnWijdT-K14Kpdg-OGRxFokNpFBDX76rLRXVaI1wW-ETBrVOoBev_e0veJA_Py6X6daGKYu3MGT8hj3tnkSadkE_JPVc-I5vpCmm1fk7snmvabKqSVjnt_-8VFJNaKYTYP11JFyVNWxqI7u1RtXQ1HcHpZSl89fUw-X11fZzuUVVaOp0dQunzbHac0qT4Xp0tmh-n9QsyH-9_-XDg9cwJnhGSNx4MPY9CJX0BegqRUBye3IaBFrlAznQujeRcW4ZXT62L_aHWRnPDlRrKSIqXZKOsSreFd7qd4ErDMgZnQxokAASnJDCBzJnUzGwT70aTmelhxZHdosggvEDNZ7c1v03ereovO0CNf9Yc4cSsaiEQdvsCzCPrzSO7yzygO5zWDJcriGVUf-sABofAV1kShhCxQgwM3e3czHzWr-M64xCAwKbGImjo_coa7hD81f8Q_DV5hMz2Xd7gDtlozs7dG_B_Gj0g96PxxwF5MNqfTI8GreFDaT6ZJt_-AFpGBf0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NUtRAEJ5COCAHy99yFXUOWnpJkcxMNsmBsnZdqEU2C8UCcgvzF6QMyUpCITffwffxYXwSe5JJlLLUE8ekJplkutM_k-7vQ-gl46rmPXJE31MOk9oUAWjpeJGvGHUlUaFpFI6n_fEBe3_kHy2g720vjCmrbG1ibahVIc0e-RqBUBDUywvdt_PPjmGNMn9XWwoNbqkV1HoNMWYbO7b11SWkcOX61gjk_YqQzY39d2PHsgw4kjJSOaFH0zDgzKWRAH8bBhAyRakKfEFTavjFCZOMEKE806apdOT2hZCCSMJ5n4WMwn1voSVGWQTJ39JwY7q71-3yGNRNmKBBi6Q0ctf4l9PirDSwXRCb-de8YU0a8KdrWEHLF_mcX13yLPvN923eRXds0IoHjZbdQws6v49W4g7xtXyA1EhXdVVXjosU233GDJviWgyp_ied49McxzUdRXN2r5jrEg_BiyoMV33YGfz4-u0wHmGeK7w724GjyWx2GONBdgKCqD6elQ_RwY2s7SO0mBe5fmx6yzUlXIA5gaCHSUNECMGRL32Wekx4soecdiUTaeHNDctGlkCaY1Y-ub7yPfS6Gz9vgD3-OnJoBNONMoDc9Yni_CSx3zdkUL7ylMtA8xlLiQylr6Rm8NoySjV1YToj1sSYDXgsyW33A7ycAeBKBkEAmTPk4jDdaiv5xNqTMvml_T30ptOG_zz4k3_f6QVaHu_Hk2SyNd1-im4TiN6aKsVVtFidX-hnEG1V4rlVaYyOb_or-gmYdDpC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FIAE5IFYxEKAPILhYsbvbY_uA0IRhSEicRAxZbqY3J1Ece4gdhdz4B_6Gz-FLqPIGEQJOOY7V07arq2tpV71HyDMhTc175KihZxyhLRYBWO14kW8EdzUzITYKxxvDlW3xfs_fmyPfu14YLKvsbGJtqE2h8Yx8iUEoCOqFnclpWxaxNZ68nn12kEEKv7R2dBqNiqzZ8zNI38pXq2NY6-eMTd5-fLPitAwDjuaCVU7o8TQMpHB5pMDXhgGES1FqAl_xlCO3OBNaMKaMhy2axkbuUCmtmGZSDkUoOMx7hVwNEMUdu9Qn7_rzHcTbhOkbnEjOI3dJfjksjksE7IKozL_gB2u6gD-dwgK5fprP5PmZzLLfvN7kFrnZhqt01OjXbTJn8ztkIe6xXsu7xIxtVddz5bRIaXvCmFEsq6WQ5B_ZnB7mNK6JKJqrH4qZLeky-E9D4V-7m6MfX7_txGMqc0O3ppvwa3063YnpKNsHsVcHx-U9sn0pkr1P5vMitw-wq9xyJhUYEgh3hEYKQgiLfO2L1BPK0wPidJJMdAtsjvwaWQIJDko-uSj5AXnRj581kB5_HbmMC9OPQiju-kJxsp-0OxtyJ994xhWg80KkTIfaN9oKeG0dpZa7cDtc1gQNBjyWlm3fA7wcQm8loyCAnBmycLjdYrfySWtJyuSX3g_Iy14b_vPgD_8901NyDfZOsr66sfaI3GAQtjXliYtkvjo5tY8hzKrUk1qfKfl02RvoJ_aPN9w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVguoAueCMKBXmBBJt04lceK5RSqgoxbcUwpaxSv1JGTZPRJMNrxT_wh3wJ14lnREEIJJax7NiWr6_Psa7PRegxl6bLexSoiJiAa-uCAKwOSCoMZ6GmJnEPhUf70d6EvzwWxz7PaePDKoGKTzsnTeE8C0iUhENCYXsP01QMZ6Z49sFfJZEoTVgigDZfRmuRADA-QGuT_cPsnUspt2zcSzUyIPdD-WlanzdOMwuAkbhwFHWK_b_75XV0ZVHN5OePsix_Onh2r6OT5ZD7eJOzrUWrtvSXX9Qc_2NON9A1D0px1lvRTXTJVrfQ-mil6NrcRmbHtl3UVoXrAvt7xBK74FkMVP7MVnha4VGXbqIvfV3PbIO34ZQ0GFq9Pci-f_12NNrBsjL4cHwAX6_G46MRzsrTej5t3583d9Bk98Wb53uBz9AQaMZpGySEFUksechSBVgliQFupoWJhWIFc7nZKdecUmWIe-JqbBpGSmlFNZUy4glnd9Ggqit7z70dt4xKBe4CQA3XLtEggB-hBS8IV0RvoGC5WLn28uUui0aZA41xi5tfXNwN9GRVf9YLd_yx5rZb-1UtJ7jdFdTz09zvX2BIwhATcrBszguqEy2MthymrdPCshC6c5aTO7cAw9LSv26AyTmBrTyLY2DGwLWhu82lceXeXzQ5BaIDzpMk8KOnK4P7y8Dv_3vVB-gqBXTWRyFuokE7X9iHgKZa9cjvmB-77Bhn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Internal+Wire+Broken+in+Mining+Wire+Ropes+Based+on+WOA%E2%80%93VMD+and+PSO%E2%80%93LSSVM+Algorithms&rft.jtitle=Axioms&rft.au=Pengbo+Li&rft.au=Jie+Tian&rft.au=Zeyang+Zhou&rft.au=Wei+Wang&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2075-1680&rft.volume=12&rft.issue=10&rft.spage=995&rft_id=info:doi/10.3390%2Faxioms12100995&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_145d1d04d0244f2c8c5dce49b0c9fe30
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon