Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces
An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM)....
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 18; no. 18; pp. 12466 - 12475 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
14.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9076 1463-9084 |
DOI | 10.1039/c6cp00823b |
Cover
Abstract | An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM). In this work, we have investigated a solid state electrochemical cell with a simple Ag/MoO
3−
x
/fluorine-doped tin oxide (FTO) sandwich structure, which shows a normal ECM switching mode after an electroforming process. While in the lower voltage sweep range, the switching behavior changes to VCM-like mode with the opposite switching polarity to the ECM mode. By current-voltage measurements under different ambient atmospheres and X-ray photoemission spectroscopy analysis, electrochemical anodic passivation of the Ag electrode and valence change of molybdenum ions during resistance switching have been demonstrated. The crucial role of moisture adsorption in the switching mode transition has been clarified based on the Pourbaix diagram for the Ag-H
2
O system for the first time. These results provide a fundamental insight into the resistance switching mechanism model in solid state electrochemical cells.
The crucial role of ambient moisture in the electrochemical processes and switching mode transition from electrochemical metallization memory (ECM) to valence change memory (VCM) is clarified based on the Pourbaix diagram for the Ag-H
2
O system and the Mo
5+
/Mo
6+
valence change. |
---|---|
AbstractList | An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM). In this work, we have investigated a solid state electrochemical cell with a simple Ag/MoO sub(3-x)/fluorine-d oped tin oxide (FTO) sandwich structure, which shows a normal ECM switching mode after an electroforming process. While in the lower voltage sweep range, the switching behavior changes to VCM-like mode with the opposite switching polarity to the ECM mode. By current-voltage measurements under different ambient atmospheres and X-ray photoemission spectroscopy analysis, electrochemical anodic passivation of the Ag electrode and valence change of molybdenum ions during resistance switching have been demonstrated. The crucial role of moisture adsorption in the switching mode transition has been clarified based on the Pourbaix diagram for the Ag-H sub(2)O system for the first time. These results provide a fundamental insight into the resistance switching mechanism model in solid state electrochemical cells. An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM). In this work, we have investigated a solid state electrochemical cell with a simple Ag/MoO3-x/fluorine-doped tin oxide (FTO) sandwich structure, which shows a normal ECM switching mode after an electroforming process. While in the lower voltage sweep range, the switching behavior changes to VCM-like mode with the opposite switching polarity to the ECM mode. By current-voltage measurements under different ambient atmospheres and X-ray photoemission spectroscopy analysis, electrochemical anodic passivation of the Ag electrode and valence change of molybdenum ions during resistance switching have been demonstrated. The crucial role of moisture adsorption in the switching mode transition has been clarified based on the Pourbaix diagram for the Ag-H2O system for the first time. These results provide a fundamental insight into the resistance switching mechanism model in solid state electrochemical cells. An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM). In this work, we have investigated a solid state electrochemical cell with a simple Ag/MoO 3− x /fluorine-doped tin oxide (FTO) sandwich structure, which shows a normal ECM switching mode after an electroforming process. While in the lower voltage sweep range, the switching behavior changes to VCM-like mode with the opposite switching polarity to the ECM mode. By current-voltage measurements under different ambient atmospheres and X-ray photoemission spectroscopy analysis, electrochemical anodic passivation of the Ag electrode and valence change of molybdenum ions during resistance switching have been demonstrated. The crucial role of moisture adsorption in the switching mode transition has been clarified based on the Pourbaix diagram for the Ag-H 2 O system for the first time. These results provide a fundamental insight into the resistance switching mechanism model in solid state electrochemical cells. The crucial role of ambient moisture in the electrochemical processes and switching mode transition from electrochemical metallization memory (ECM) to valence change memory (VCM) is clarified based on the Pourbaix diagram for the Ag-H 2 O system and the Mo 5+ /Mo 6+ valence change. An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM). In this work, we have investigated a solid state electrochemical cell with a simple Ag/MoO 3−x /fluorine-doped tin oxide (FTO) sandwich structure, which shows a normal ECM switching mode after an electroforming process. While in the lower voltage sweep range, the switching behavior changes to VCM-like mode with the opposite switching polarity to the ECM mode. By current–voltage measurements under different ambient atmospheres and X-ray photoemission spectroscopy analysis, electrochemical anodic passivation of the Ag electrode and valence change of molybdenum ions during resistance switching have been demonstrated. The crucial role of moisture adsorption in the switching mode transition has been clarified based on the Pourbaix diagram for the Ag–H 2 O system for the first time. These results provide a fundamental insight into the resistance switching mechanism model in solid state electrochemical cells. |
Author | Chai, Yi-Sheng Shang, Da-Shan Shen, Bao-Gen Yang, Chuan-Sen Yan, Li-Qin Sun, Young |
AuthorAffiliation | Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences |
AuthorAffiliation_xml | – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Beijing National Laboratory for Condensed Matter Physics and Institute of Physics |
Author_xml | – sequence: 1 givenname: Chuan-Sen surname: Yang fullname: Yang, Chuan-Sen – sequence: 2 givenname: Da-Shan surname: Shang fullname: Shang, Da-Shan – sequence: 3 givenname: Yi-Sheng surname: Chai fullname: Chai, Yi-Sheng – sequence: 4 givenname: Li-Qin surname: Yan fullname: Yan, Li-Qin – sequence: 5 givenname: Bao-Gen surname: Shen fullname: Shen, Bao-Gen – sequence: 6 givenname: Young surname: Sun fullname: Sun, Young |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26996952$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1P3DAQxS0E4qtcuLfysULa4q_YyZGuSlsJBAd6jhx7zJom9tZ21PLf17CwlapKPc08-_dGo3lHaDfEAAidUvKBEt6dG2nWhLSMDzvokArJFx1pxe62V_IAHeX8QAihDeX76IDJrpNdww7R9-voc5kTYHAOTMk4BlxWVY5VpWhWMHmjR5xAm-Lrpw62ilxdOhjA-acvZuXDPdYFX9yfT3F8HCyEecLxl7eAfSiQnDaQ36A9p8cMJy_1GH27_HS3_LK4uvn8dXlxtTBcsLJQkjtoiVHEEQtCgG2ckAOTgrV0qE-cM9oopYE12pLOUAuyo9y4gQhFLT9G7zdz1yn-mCGXfvLZwDjqAHHOPW2pJEpQyf6PqlaJupCgFX33gs7DBLZfJz_p9Ni_3rICZxvApJhzArdFKOmfguqXcnn7HNTHCpO_YOOLfjpwSdqP_7a83VhSNtvRf7LnvwHOKp9v |
CitedBy_id | crossref_primary_10_1016_j_nantod_2024_102382 crossref_primary_10_1007_s10832_017_0070_5 crossref_primary_10_1088_1361_6463_ac2fd9 crossref_primary_10_1007_s10832_017_0095_9 crossref_primary_10_1038_s41598_021_03046_9 crossref_primary_10_1038_srep32712 crossref_primary_10_1063_1_5109267 crossref_primary_10_1088_1361_6463_ab2e9e crossref_primary_10_1016_j_jmat_2018_11_001 crossref_primary_10_1039_C7RA05532C crossref_primary_10_1209_0295_5075_119_27003 crossref_primary_10_1016_j_vacuum_2024_113266 crossref_primary_10_1039_D2MH01491B crossref_primary_10_1016_j_apenergy_2024_123630 crossref_primary_10_1007_s12274_023_5789_5 crossref_primary_10_1039_C6CP06004H crossref_primary_10_7498_aps_70_20201813 crossref_primary_10_1063_5_0053511 crossref_primary_10_1002_adfm_201804170 crossref_primary_10_1016_j_ssi_2016_07_009 crossref_primary_10_1002_adma_201700906 crossref_primary_10_1016_j_apmt_2025_102696 crossref_primary_10_1039_D1TC06005H crossref_primary_10_1021_acsami_7b06918 crossref_primary_10_1007_s40843_023_2653_x crossref_primary_10_1038_s41598_017_11657_4 crossref_primary_10_1007_s40010_023_00830_2 crossref_primary_10_1515_hf_2019_0291 crossref_primary_10_1088_1361_6528_abdd5f crossref_primary_10_1021_acsami_3c17438 crossref_primary_10_4028_www_scientific_net_MSF_984_97 crossref_primary_10_1016_j_apsusc_2019_02_092 crossref_primary_10_1063_1_5118217 crossref_primary_10_1016_j_jcis_2017_10_113 crossref_primary_10_1063_1_4962655 crossref_primary_10_1088_1361_6463_abad63 crossref_primary_10_1016_j_jallcom_2018_11_275 crossref_primary_10_1109_TED_2018_2798710 crossref_primary_10_1021_acsami_9b13401 crossref_primary_10_1002_pssa_202000655 crossref_primary_10_1016_j_physb_2017_05_040 crossref_primary_10_1109_JSEN_2022_3164105 crossref_primary_10_1007_s42452_023_05314_x crossref_primary_10_1038_s41598_017_12579_x crossref_primary_10_1088_1361_6528_acb217 |
Cites_doi | 10.1038/nmat1513 10.1002/adma.201502574 10.1038/nmat3307 10.1002/adfm.201500825 10.1002/adma.201502758 10.1039/C4NR07545E 10.1103/PhysRevB.62.11126 10.1038/ncomms5232 10.1002/adma.201104104 10.1002/adfm.201402286 10.1038/nnano.2015.221 10.1039/b105764m 10.1038/ncomms2784 10.1088/0957-4484/22/25/254008 10.1103/PhysRevB.41.3190 10.1088/1674-1056/22/6/067202 10.1002/adfm.201500444 10.1038/nnano.2009.456 10.1039/c0jm03815f 10.1016/0009-2614(95)00905-J 10.1149/1.2410919 10.1063/1.3556618 10.1021/nn4026614 10.1002/celc.201402106 10.1002/adma.200900375 10.1002/adfm.201101846 10.1088/0022-3727/42/13/135411 10.1021/nn3054544 10.1007/978-1-4757-4825-3 10.1088/0957-4484/22/25/254003 10.1038/nmat2023 10.1002/adfm.201501517 10.1088/0957-4484/21/42/425205 10.1038/ncomms3382 10.1002/9783527627868 10.1063/1.2793686 10.1021/cm702865r 10.1021/cm00046a022 10.1016/0169-4332(95)00317-7 10.1088/0957-4484/24/32/325202 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/c6cp00823b |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 12475 |
ExternalDocumentID | 26996952 10_1039_C6CP00823B c6cp00823b |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29O 2WC 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- OK1 P2P R7B R7C RAOCF RCNCU RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT 0UZ 1TJ 6TJ 71~ 9M8 AAYXX ACHDF ACRPL ADNMO AFFNX AFRZK AGQPQ AHGXI AKMSF ALSGL ALUYA ANLMG ASPBG AVWKF BBWZM CAG CITATION COF EEHRC FEDTE HVGLF H~9 IDY J3H L-8 MVM NDZJH R56 RCLXC RIG XJT XOL ZCG NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c342t-763fe80c70f0de44ed5f46b264281b0de3321577ae25ad09c1de6913cfb0471d3 |
ISSN | 1463-9076 |
IngestDate | Thu Jul 10 22:34:35 EDT 2025 Fri Jul 11 15:45:41 EDT 2025 Wed Feb 19 01:55:47 EST 2025 Thu Apr 24 23:12:34 EDT 2025 Tue Jul 01 02:46:16 EDT 2025 Tue Dec 17 21:00:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c342t-763fe80c70f0de44ed5f46b264281b0de3321577ae25ad09c1de6913cfb0471d3 |
Notes | 10.1039/c6cp00823b Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26996952 |
PQID | 1787476341 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_1787476341 proquest_miscellaneous_1816074162 crossref_primary_10_1039_C6CP00823B crossref_citationtrail_10_1039_C6CP00823B rsc_primary_c6cp00823b pubmed_primary_26996952 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-14 |
PublicationDateYYYYMMDD | 2016-05-14 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2016 |
References | Agmon (C6CP00823B-(cit43)/*[position()=1]) 1995; 244 Lübben (C6CP00823B-(cit22)/*[position()=1]) 2015; 27 Menzel (C6CP00823B-(cit18)/*[position()=1]) 2015; 25 Bockris (C6CP00823B-(cit41)/*[position()=1]) 1981 Kharton (C6CP00823B-(cit2)/*[position()=1]) 2009 Shang (C6CP00823B-(cit7)/*[position()=1]) 2013; 22 Ida (C6CP00823B-(cit40)/*[position()=1]) 2008; 20 Waser (C6CP00823B-(cit5)/*[position()=1]) 2007; 6 Shang (C6CP00823B-(cit21)/*[position()=1]) 2011; 22 Weaver (C6CP00823B-(cit32)/*[position()=1]) 1994; 6 Liu (C6CP00823B-(cit15)/*[position()=1]) 2012; 24 Valov (C6CP00823B-(cit20)/*[position()=1]) 2012; 11 Valov (C6CP00823B-(cit8)/*[position()=1]) 2011; 22 Hoflund (C6CP00823B-(cit33)/*[position()=1]) 2000; 62 Park (C6CP00823B-(cit10)/*[position()=1]) 2013; 4 Bard (C6CP00823B-(cit1)/*[position()=1]) 2001 Waser (C6CP00823B-(cit6)/*[position()=1]) 2009; 21 Wei (C6CP00823B-(cit13)/*[position()=1]) 2013; 24 Chen (C6CP00823B-(cit35)/*[position()=1]) 2011; 21 Yang (C6CP00823B-(cit27)/*[position()=1]) 2013; 7 Valov (C6CP00823B-(cit29)/*[position()=1]) 2013; 4 Tjeng (C6CP00823B-(cit31)/*[position()=1]) 1990; 41 Tsuruoka (C6CP00823B-(cit24)/*[position()=1]) 2010; 21 Raju (C6CP00823B-(cit36)/*[position()=1]) 2009; 42 Yang (C6CP00823B-(cit14)/*[position()=1]) 2014; 5 Ormerod (C6CP00823B-(cit3)/*[position()=1]) 2003; 32 Chen (C6CP00823B-(cit11)/*[position()=1]) 2015; 27 Maier (C6CP00823B-(cit4)/*[position()=1]) 2005; 4 Kwon (C6CP00823B-(cit9)/*[position()=1]) 2010; 5 Choi (C6CP00823B-(cit34)/*[position()=1]) 1996; 93 Tsuruoka (C6CP00823B-(cit25)/*[position()=1]) 2012; 22 Messerschmitt (C6CP00823B-(cit26)/*[position()=1]) 2015; 25 Winston Revie (C6CP00823B-(cit39)/*[position()=1]) 2000 Dong (C6CP00823B-(cit37)/*[position()=1]) 2011; 98 Shang (C6CP00823B-(cit16)/*[position()=1]) 2015; 7 Messerschmitt (C6CP00823B-(cit19)/*[position()=1]) 2015; 24 Tappertzhofen (C6CP00823B-(cit30)/*[position()=1]) 2014; 1 Tappertzhofen (C6CP00823B-(cit28)/*[position()=1]) 2013; 7 Wedig (C6CP00823B-(cit23)/*[position()=1]) 2016; 11 Tvarusko (C6CP00823B-(cit42)/*[position()=1]) 1968; 115 Guo (C6CP00823B-(cit17)/*[position()=1]) 2007; 91 Kwon (C6CP00823B-(cit12)/*[position()=1]) 2015; 25 Reed (C6CP00823B-(cit38)/*[position()=1]) 1972 |
References_xml | – issn: 1981 end-page: 197 publication-title: Electrochemical Materials Science doi: Bockris Conway Yeager White – issn: 1972 publication-title: Free Energy of Formation of Binary Compounds doi: Reed – issn: 2009 publication-title: Solid State Electrochemistry I: Fundamentals, Materials and their Applications doi: Kharton – issn: 2001 publication-title: Electrochemicla Methods: Foundamentals and Applications doi: Bard Faulkner – issn: 2000 end-page: p 125-127 publication-title: Uhlig's Corrosion Handbook doi: Winston Revie – volume: 4 start-page: 805 year: 2005 ident: C6CP00823B-(cit4)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1513 – volume: 27 start-page: 6202 year: 2015 ident: C6CP00823B-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502574 – volume: 11 start-page: 530 year: 2012 ident: C6CP00823B-(cit20)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3307 – volume: 25 start-page: 6306 year: 2015 ident: C6CP00823B-(cit18)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500825 – volume: 27 start-page: 5028 year: 2015 ident: C6CP00823B-(cit11)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502758 – volume: 7 start-page: 6023 year: 2015 ident: C6CP00823B-(cit16)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR07545E – volume: 62 start-page: 11126 year: 2000 ident: C6CP00823B-(cit33)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.62.11126 – volume: 5 start-page: 4232 year: 2014 ident: C6CP00823B-(cit14)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5232 – volume: 24 start-page: 1844 year: 2012 ident: C6CP00823B-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201104104 – volume: 24 start-page: 7448 year: 2015 ident: C6CP00823B-(cit19)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402286 – volume: 11 start-page: 67 year: 2016 ident: C6CP00823B-(cit23)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.221 – volume: 32 start-page: 17 year: 2003 ident: C6CP00823B-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b105764m – volume-title: Uhlig's Corrosion Handbook year: 2000 ident: C6CP00823B-(cit39)/*[position()=1] – volume: 4 start-page: 1771 year: 2013 ident: C6CP00823B-(cit29)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2784 – volume: 22 start-page: 254008 year: 2011 ident: C6CP00823B-(cit21)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/22/25/254008 – volume: 41 start-page: 3190 year: 1990 ident: C6CP00823B-(cit31)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.41.3190 – volume: 22 start-page: 067202 year: 2013 ident: C6CP00823B-(cit7)/*[position()=1] publication-title: Chin. Phys. B doi: 10.1088/1674-1056/22/6/067202 – volume: 25 start-page: 2876 year: 2015 ident: C6CP00823B-(cit12)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500444 – volume: 5 start-page: 148 year: 2010 ident: C6CP00823B-(cit9)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.456 – volume: 21 start-page: 5745 year: 2011 ident: C6CP00823B-(cit35)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm03815f – volume: 244 start-page: 456 year: 1995 ident: C6CP00823B-(cit43)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(95)00905-J – volume: 115 start-page: 1105 year: 1968 ident: C6CP00823B-(cit42)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2410919 – volume: 98 start-page: 072107 year: 2011 ident: C6CP00823B-(cit37)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3556618 – volume-title: Free Energy of Formation of Binary Compounds year: 1972 ident: C6CP00823B-(cit38)/*[position()=1] – volume: 7 start-page: 6369 year: 2013 ident: C6CP00823B-(cit28)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn4026614 – volume: 1 start-page: 1287 year: 2014 ident: C6CP00823B-(cit30)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201402106 – volume: 21 start-page: 2362 year: 2009 ident: C6CP00823B-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200900375 – volume: 22 start-page: 70 year: 2012 ident: C6CP00823B-(cit25)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101846 – volume: 42 start-page: 135411 year: 2009 ident: C6CP00823B-(cit36)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/13/135411 – volume: 7 start-page: 2302 year: 2013 ident: C6CP00823B-(cit27)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn3054544 – volume-title: Electrochemicla Methods: Foundamentals and Applications year: 2001 ident: C6CP00823B-(cit1)/*[position()=1] – volume-title: Electrochemical Materials Science year: 1981 ident: C6CP00823B-(cit41)/*[position()=1] doi: 10.1007/978-1-4757-4825-3 – volume: 22 start-page: 254003 year: 2011 ident: C6CP00823B-(cit8)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/22/25/254003 – volume: 6 start-page: 833 year: 2007 ident: C6CP00823B-(cit5)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2023 – volume: 25 start-page: 5117 year: 2015 ident: C6CP00823B-(cit26)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501517 – volume: 21 start-page: 425205 year: 2010 ident: C6CP00823B-(cit24)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/21/42/425205 – volume: 4 start-page: 2382 year: 2013 ident: C6CP00823B-(cit10)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3382 – volume-title: Solid State Electrochemistry I: Fundamentals, Materials and their Applications year: 2009 ident: C6CP00823B-(cit2)/*[position()=1] doi: 10.1002/9783527627868 – volume: 91 start-page: 133513 year: 2007 ident: C6CP00823B-(cit17)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2793686 – volume: 20 start-page: 1254 year: 2008 ident: C6CP00823B-(cit40)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm702865r – volume: 6 start-page: 1693 year: 1994 ident: C6CP00823B-(cit32)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm00046a022 – volume: 93 start-page: 143 year: 1996 ident: C6CP00823B-(cit34)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/0169-4332(95)00317-7 – volume: 24 start-page: 325202 year: 2013 ident: C6CP00823B-(cit13)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/24/32/325202 |
SSID | ssj0001513 |
Score | 2.411011 |
Snippet | An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12466 |
SubjectTerms | Chemical reactions Data storage Electrochemical cells Electrochemical machining Electrodes Molybdenum Solid state Switching |
Title | Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26996952 https://www.proquest.com/docview/1787476341 https://www.proquest.com/docview/1816074162 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 1463-9084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001513 issn: 1463-9076 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELZK9wFeENdCuWQEQkKrsEmcuM1jCa0W1F2KtpW6T1HsOFCxJKVNxfFj-K2MryTQFVp4iZKJFSuez57xeA6EnqVCpqETvqNmYcBy7qRMwGaFhCJPmSyRJAOcj0_o0Tx4uwgXnc7PltfStmIv-Y8L40r-h6tAA77KKNl_4Gz9USDAPfAXrsBhuF6Kx8clMEmeANReGdpp0dS24TYZACiGpiK4ClbZSJ1R5Zb9uqy0L2VaHQxh0o8_l-ffWabc48tvy0yodBLrXPpttdXYqeUut_XiDurOtK1ko2wN0ziu48fOjGU6_rhNC-e0CUE7tTbr16kj71seB8rV4GwJZGEkrP6QtiY4703acGO18Kg8cNfRomahDShxYGNu0mC3abpk3O7qvK0f9FoLmgmlLcENz7oIy45UcIlMqsopX6mDRdbIPnvef_IuGc8nk2Q2Wsyer744siqZPL03JVquoD2_T6nfRXvD0ezNpJb1oC8RHb-m_8YmwCXRYdPd7yrPzj4GtJq1rTajtJrZDXTdbEfwUGPrJuqI4ha6Gluu3kafLMawwRguCwwYw39gDFuMYcAYbjCGa4zhtMLDD4cNwrBCGG4QdgfNx6NZfOSYAh0OJ4FfOSCbcjFwed_N3UwEgcjCPKDMl3tajwGJENAo-31YEMI0cyPuZYJGHuE5c0Epysg-6hZlIe4hTEI2YFwQUPjTIA3zKMtoLkSYe2Hu80G_h17YMUy4yV4vi6icJ8qLgkRJTOOpGu9XPfS0brvSOVsubPXEsiKBMZXnZGkhyu0m8UCIBfBvgfeXNgOZmRF2M34P3dV8rPvyaRTRKIQ3-8DYmtwA4v4lPvsAXWvmzUPUrdZb8Qj034o9NiD8BZ-ztWM |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moisture+effects+on+the+electrochemical+reaction+and+resistance+switching+at+Ag%2Fmolybdenum+oxide+interfaces&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yang%2C+Chuan-Sen&rft.au=Shang%2C+Da-Shan&rft.au=Chai%2C+Yi-Sheng&rft.au=Yan%2C+Li-Qin&rft.date=2016-05-14&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=18&rft.issue=18&rft.spage=12466&rft.epage=12475&rft_id=info:doi/10.1039%2Fc6cp00823b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |