Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces

An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM)....

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 18; no. 18; pp. 12466 - 12475
Main Authors Yang, Chuan-Sen, Shang, Da-Shan, Chai, Yi-Sheng, Yan, Li-Qin, Shen, Bao-Gen, Sun, Young
Format Journal Article
LanguageEnglish
Published England 14.05.2016
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
DOI10.1039/c6cp00823b

Cover

Abstract An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM). In this work, we have investigated a solid state electrochemical cell with a simple Ag/MoO 3− x /fluorine-doped tin oxide (FTO) sandwich structure, which shows a normal ECM switching mode after an electroforming process. While in the lower voltage sweep range, the switching behavior changes to VCM-like mode with the opposite switching polarity to the ECM mode. By current-voltage measurements under different ambient atmospheres and X-ray photoemission spectroscopy analysis, electrochemical anodic passivation of the Ag electrode and valence change of molybdenum ions during resistance switching have been demonstrated. The crucial role of moisture adsorption in the switching mode transition has been clarified based on the Pourbaix diagram for the Ag-H 2 O system for the first time. These results provide a fundamental insight into the resistance switching mechanism model in solid state electrochemical cells. The crucial role of ambient moisture in the electrochemical processes and switching mode transition from electrochemical metallization memory (ECM) to valence change memory (VCM) is clarified based on the Pourbaix diagram for the Ag-H 2 O system and the Mo 5+ /Mo 6+ valence change.
AbstractList An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM). In this work, we have investigated a solid state electrochemical cell with a simple Ag/MoO sub(3-x)/fluorine-d oped tin oxide (FTO) sandwich structure, which shows a normal ECM switching mode after an electroforming process. While in the lower voltage sweep range, the switching behavior changes to VCM-like mode with the opposite switching polarity to the ECM mode. By current-voltage measurements under different ambient atmospheres and X-ray photoemission spectroscopy analysis, electrochemical anodic passivation of the Ag electrode and valence change of molybdenum ions during resistance switching have been demonstrated. The crucial role of moisture adsorption in the switching mode transition has been clarified based on the Pourbaix diagram for the Ag-H sub(2)O system for the first time. These results provide a fundamental insight into the resistance switching mechanism model in solid state electrochemical cells.
An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM). In this work, we have investigated a solid state electrochemical cell with a simple Ag/MoO3-x/fluorine-doped tin oxide (FTO) sandwich structure, which shows a normal ECM switching mode after an electroforming process. While in the lower voltage sweep range, the switching behavior changes to VCM-like mode with the opposite switching polarity to the ECM mode. By current-voltage measurements under different ambient atmospheres and X-ray photoemission spectroscopy analysis, electrochemical anodic passivation of the Ag electrode and valence change of molybdenum ions during resistance switching have been demonstrated. The crucial role of moisture adsorption in the switching mode transition has been clarified based on the Pourbaix diagram for the Ag-H2O system for the first time. These results provide a fundamental insight into the resistance switching mechanism model in solid state electrochemical cells.
An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM). In this work, we have investigated a solid state electrochemical cell with a simple Ag/MoO 3− x /fluorine-doped tin oxide (FTO) sandwich structure, which shows a normal ECM switching mode after an electroforming process. While in the lower voltage sweep range, the switching behavior changes to VCM-like mode with the opposite switching polarity to the ECM mode. By current-voltage measurements under different ambient atmospheres and X-ray photoemission spectroscopy analysis, electrochemical anodic passivation of the Ag electrode and valence change of molybdenum ions during resistance switching have been demonstrated. The crucial role of moisture adsorption in the switching mode transition has been clarified based on the Pourbaix diagram for the Ag-H 2 O system for the first time. These results provide a fundamental insight into the resistance switching mechanism model in solid state electrochemical cells. The crucial role of ambient moisture in the electrochemical processes and switching mode transition from electrochemical metallization memory (ECM) to valence change memory (VCM) is clarified based on the Pourbaix diagram for the Ag-H 2 O system and the Mo 5+ /Mo 6+ valence change.
An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental switching mechanisms, the memory has been classified into two modes, electrochemical metallization memory (ECM) and valence change memory (VCM). In this work, we have investigated a solid state electrochemical cell with a simple Ag/MoO 3−x /fluorine-doped tin oxide (FTO) sandwich structure, which shows a normal ECM switching mode after an electroforming process. While in the lower voltage sweep range, the switching behavior changes to VCM-like mode with the opposite switching polarity to the ECM mode. By current–voltage measurements under different ambient atmospheres and X-ray photoemission spectroscopy analysis, electrochemical anodic passivation of the Ag electrode and valence change of molybdenum ions during resistance switching have been demonstrated. The crucial role of moisture adsorption in the switching mode transition has been clarified based on the Pourbaix diagram for the Ag–H 2 O system for the first time. These results provide a fundamental insight into the resistance switching mechanism model in solid state electrochemical cells.
Author Chai, Yi-Sheng
Shang, Da-Shan
Shen, Bao-Gen
Yang, Chuan-Sen
Yan, Li-Qin
Sun, Young
AuthorAffiliation Beijing National Laboratory for Condensed Matter Physics and Institute of Physics
Chinese Academy of Sciences
AuthorAffiliation_xml – sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Beijing National Laboratory for Condensed Matter Physics and Institute of Physics
Author_xml – sequence: 1
  givenname: Chuan-Sen
  surname: Yang
  fullname: Yang, Chuan-Sen
– sequence: 2
  givenname: Da-Shan
  surname: Shang
  fullname: Shang, Da-Shan
– sequence: 3
  givenname: Yi-Sheng
  surname: Chai
  fullname: Chai, Yi-Sheng
– sequence: 4
  givenname: Li-Qin
  surname: Yan
  fullname: Yan, Li-Qin
– sequence: 5
  givenname: Bao-Gen
  surname: Shen
  fullname: Shen, Bao-Gen
– sequence: 6
  givenname: Young
  surname: Sun
  fullname: Sun, Young
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26996952$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1P3DAQxS0E4qtcuLfysULa4q_YyZGuSlsJBAd6jhx7zJom9tZ21PLf17CwlapKPc08-_dGo3lHaDfEAAidUvKBEt6dG2nWhLSMDzvokArJFx1pxe62V_IAHeX8QAihDeX76IDJrpNdww7R9-voc5kTYHAOTMk4BlxWVY5VpWhWMHmjR5xAm-Lrpw62ilxdOhjA-acvZuXDPdYFX9yfT3F8HCyEecLxl7eAfSiQnDaQ36A9p8cMJy_1GH27_HS3_LK4uvn8dXlxtTBcsLJQkjtoiVHEEQtCgG2ckAOTgrV0qE-cM9oopYE12pLOUAuyo9y4gQhFLT9G7zdz1yn-mCGXfvLZwDjqAHHOPW2pJEpQyf6PqlaJupCgFX33gs7DBLZfJz_p9Ni_3rICZxvApJhzArdFKOmfguqXcnn7HNTHCpO_YOOLfjpwSdqP_7a83VhSNtvRf7LnvwHOKp9v
CitedBy_id crossref_primary_10_1016_j_nantod_2024_102382
crossref_primary_10_1007_s10832_017_0070_5
crossref_primary_10_1088_1361_6463_ac2fd9
crossref_primary_10_1007_s10832_017_0095_9
crossref_primary_10_1038_s41598_021_03046_9
crossref_primary_10_1038_srep32712
crossref_primary_10_1063_1_5109267
crossref_primary_10_1088_1361_6463_ab2e9e
crossref_primary_10_1016_j_jmat_2018_11_001
crossref_primary_10_1039_C7RA05532C
crossref_primary_10_1209_0295_5075_119_27003
crossref_primary_10_1016_j_vacuum_2024_113266
crossref_primary_10_1039_D2MH01491B
crossref_primary_10_1016_j_apenergy_2024_123630
crossref_primary_10_1007_s12274_023_5789_5
crossref_primary_10_1039_C6CP06004H
crossref_primary_10_7498_aps_70_20201813
crossref_primary_10_1063_5_0053511
crossref_primary_10_1002_adfm_201804170
crossref_primary_10_1016_j_ssi_2016_07_009
crossref_primary_10_1002_adma_201700906
crossref_primary_10_1016_j_apmt_2025_102696
crossref_primary_10_1039_D1TC06005H
crossref_primary_10_1021_acsami_7b06918
crossref_primary_10_1007_s40843_023_2653_x
crossref_primary_10_1038_s41598_017_11657_4
crossref_primary_10_1007_s40010_023_00830_2
crossref_primary_10_1515_hf_2019_0291
crossref_primary_10_1088_1361_6528_abdd5f
crossref_primary_10_1021_acsami_3c17438
crossref_primary_10_4028_www_scientific_net_MSF_984_97
crossref_primary_10_1016_j_apsusc_2019_02_092
crossref_primary_10_1063_1_5118217
crossref_primary_10_1016_j_jcis_2017_10_113
crossref_primary_10_1063_1_4962655
crossref_primary_10_1088_1361_6463_abad63
crossref_primary_10_1016_j_jallcom_2018_11_275
crossref_primary_10_1109_TED_2018_2798710
crossref_primary_10_1021_acsami_9b13401
crossref_primary_10_1002_pssa_202000655
crossref_primary_10_1016_j_physb_2017_05_040
crossref_primary_10_1109_JSEN_2022_3164105
crossref_primary_10_1007_s42452_023_05314_x
crossref_primary_10_1038_s41598_017_12579_x
crossref_primary_10_1088_1361_6528_acb217
Cites_doi 10.1038/nmat1513
10.1002/adma.201502574
10.1038/nmat3307
10.1002/adfm.201500825
10.1002/adma.201502758
10.1039/C4NR07545E
10.1103/PhysRevB.62.11126
10.1038/ncomms5232
10.1002/adma.201104104
10.1002/adfm.201402286
10.1038/nnano.2015.221
10.1039/b105764m
10.1038/ncomms2784
10.1088/0957-4484/22/25/254008
10.1103/PhysRevB.41.3190
10.1088/1674-1056/22/6/067202
10.1002/adfm.201500444
10.1038/nnano.2009.456
10.1039/c0jm03815f
10.1016/0009-2614(95)00905-J
10.1149/1.2410919
10.1063/1.3556618
10.1021/nn4026614
10.1002/celc.201402106
10.1002/adma.200900375
10.1002/adfm.201101846
10.1088/0022-3727/42/13/135411
10.1021/nn3054544
10.1007/978-1-4757-4825-3
10.1088/0957-4484/22/25/254003
10.1038/nmat2023
10.1002/adfm.201501517
10.1088/0957-4484/21/42/425205
10.1038/ncomms3382
10.1002/9783527627868
10.1063/1.2793686
10.1021/cm702865r
10.1021/cm00046a022
10.1016/0169-4332(95)00317-7
10.1088/0957-4484/24/32/325202
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/c6cp00823b
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 12475
ExternalDocumentID 26996952
10_1039_C6CP00823B
c6cp00823b
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
2WC
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
0UZ
1TJ
6TJ
71~
9M8
AAYXX
ACHDF
ACRPL
ADNMO
AFFNX
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ALUYA
ANLMG
ASPBG
AVWKF
BBWZM
CAG
CITATION
COF
EEHRC
FEDTE
HVGLF
H~9
IDY
J3H
L-8
MVM
NDZJH
R56
RCLXC
RIG
XJT
XOL
ZCG
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c342t-763fe80c70f0de44ed5f46b264281b0de3321577ae25ad09c1de6913cfb0471d3
ISSN 1463-9076
IngestDate Thu Jul 10 22:34:35 EDT 2025
Fri Jul 11 15:45:41 EDT 2025
Wed Feb 19 01:55:47 EST 2025
Thu Apr 24 23:12:34 EDT 2025
Tue Jul 01 02:46:16 EDT 2025
Tue Dec 17 21:00:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-763fe80c70f0de44ed5f46b264281b0de3321577ae25ad09c1de6913cfb0471d3
Notes 10.1039/c6cp00823b
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26996952
PQID 1787476341
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_1787476341
proquest_miscellaneous_1816074162
crossref_primary_10_1039_C6CP00823B
crossref_citationtrail_10_1039_C6CP00823B
rsc_primary_c6cp00823b
pubmed_primary_26996952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-14
PublicationDateYYYYMMDD 2016-05-14
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2016
References Agmon (C6CP00823B-(cit43)/*[position()=1]) 1995; 244
Lübben (C6CP00823B-(cit22)/*[position()=1]) 2015; 27
Menzel (C6CP00823B-(cit18)/*[position()=1]) 2015; 25
Bockris (C6CP00823B-(cit41)/*[position()=1]) 1981
Kharton (C6CP00823B-(cit2)/*[position()=1]) 2009
Shang (C6CP00823B-(cit7)/*[position()=1]) 2013; 22
Ida (C6CP00823B-(cit40)/*[position()=1]) 2008; 20
Waser (C6CP00823B-(cit5)/*[position()=1]) 2007; 6
Shang (C6CP00823B-(cit21)/*[position()=1]) 2011; 22
Weaver (C6CP00823B-(cit32)/*[position()=1]) 1994; 6
Liu (C6CP00823B-(cit15)/*[position()=1]) 2012; 24
Valov (C6CP00823B-(cit20)/*[position()=1]) 2012; 11
Valov (C6CP00823B-(cit8)/*[position()=1]) 2011; 22
Hoflund (C6CP00823B-(cit33)/*[position()=1]) 2000; 62
Park (C6CP00823B-(cit10)/*[position()=1]) 2013; 4
Bard (C6CP00823B-(cit1)/*[position()=1]) 2001
Waser (C6CP00823B-(cit6)/*[position()=1]) 2009; 21
Wei (C6CP00823B-(cit13)/*[position()=1]) 2013; 24
Chen (C6CP00823B-(cit35)/*[position()=1]) 2011; 21
Yang (C6CP00823B-(cit27)/*[position()=1]) 2013; 7
Valov (C6CP00823B-(cit29)/*[position()=1]) 2013; 4
Tjeng (C6CP00823B-(cit31)/*[position()=1]) 1990; 41
Tsuruoka (C6CP00823B-(cit24)/*[position()=1]) 2010; 21
Raju (C6CP00823B-(cit36)/*[position()=1]) 2009; 42
Yang (C6CP00823B-(cit14)/*[position()=1]) 2014; 5
Ormerod (C6CP00823B-(cit3)/*[position()=1]) 2003; 32
Chen (C6CP00823B-(cit11)/*[position()=1]) 2015; 27
Maier (C6CP00823B-(cit4)/*[position()=1]) 2005; 4
Kwon (C6CP00823B-(cit9)/*[position()=1]) 2010; 5
Choi (C6CP00823B-(cit34)/*[position()=1]) 1996; 93
Tsuruoka (C6CP00823B-(cit25)/*[position()=1]) 2012; 22
Messerschmitt (C6CP00823B-(cit26)/*[position()=1]) 2015; 25
Winston Revie (C6CP00823B-(cit39)/*[position()=1]) 2000
Dong (C6CP00823B-(cit37)/*[position()=1]) 2011; 98
Shang (C6CP00823B-(cit16)/*[position()=1]) 2015; 7
Messerschmitt (C6CP00823B-(cit19)/*[position()=1]) 2015; 24
Tappertzhofen (C6CP00823B-(cit30)/*[position()=1]) 2014; 1
Tappertzhofen (C6CP00823B-(cit28)/*[position()=1]) 2013; 7
Wedig (C6CP00823B-(cit23)/*[position()=1]) 2016; 11
Tvarusko (C6CP00823B-(cit42)/*[position()=1]) 1968; 115
Guo (C6CP00823B-(cit17)/*[position()=1]) 2007; 91
Kwon (C6CP00823B-(cit12)/*[position()=1]) 2015; 25
Reed (C6CP00823B-(cit38)/*[position()=1]) 1972
References_xml – issn: 1981
  end-page: 197
  publication-title: Electrochemical Materials Science
  doi: Bockris Conway Yeager White
– issn: 1972
  publication-title: Free Energy of Formation of Binary Compounds
  doi: Reed
– issn: 2009
  publication-title: Solid State Electrochemistry I: Fundamentals, Materials and their Applications
  doi: Kharton
– issn: 2001
  publication-title: Electrochemicla Methods: Foundamentals and Applications
  doi: Bard Faulkner
– issn: 2000
  end-page: p 125-127
  publication-title: Uhlig's Corrosion Handbook
  doi: Winston Revie
– volume: 4
  start-page: 805
  year: 2005
  ident: C6CP00823B-(cit4)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1513
– volume: 27
  start-page: 6202
  year: 2015
  ident: C6CP00823B-(cit22)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502574
– volume: 11
  start-page: 530
  year: 2012
  ident: C6CP00823B-(cit20)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3307
– volume: 25
  start-page: 6306
  year: 2015
  ident: C6CP00823B-(cit18)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500825
– volume: 27
  start-page: 5028
  year: 2015
  ident: C6CP00823B-(cit11)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502758
– volume: 7
  start-page: 6023
  year: 2015
  ident: C6CP00823B-(cit16)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR07545E
– volume: 62
  start-page: 11126
  year: 2000
  ident: C6CP00823B-(cit33)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.62.11126
– volume: 5
  start-page: 4232
  year: 2014
  ident: C6CP00823B-(cit14)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5232
– volume: 24
  start-page: 1844
  year: 2012
  ident: C6CP00823B-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104104
– volume: 24
  start-page: 7448
  year: 2015
  ident: C6CP00823B-(cit19)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402286
– volume: 11
  start-page: 67
  year: 2016
  ident: C6CP00823B-(cit23)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.221
– volume: 32
  start-page: 17
  year: 2003
  ident: C6CP00823B-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b105764m
– volume-title: Uhlig's Corrosion Handbook
  year: 2000
  ident: C6CP00823B-(cit39)/*[position()=1]
– volume: 4
  start-page: 1771
  year: 2013
  ident: C6CP00823B-(cit29)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2784
– volume: 22
  start-page: 254008
  year: 2011
  ident: C6CP00823B-(cit21)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/25/254008
– volume: 41
  start-page: 3190
  year: 1990
  ident: C6CP00823B-(cit31)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.41.3190
– volume: 22
  start-page: 067202
  year: 2013
  ident: C6CP00823B-(cit7)/*[position()=1]
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/22/6/067202
– volume: 25
  start-page: 2876
  year: 2015
  ident: C6CP00823B-(cit12)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500444
– volume: 5
  start-page: 148
  year: 2010
  ident: C6CP00823B-(cit9)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.456
– volume: 21
  start-page: 5745
  year: 2011
  ident: C6CP00823B-(cit35)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03815f
– volume: 244
  start-page: 456
  year: 1995
  ident: C6CP00823B-(cit43)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(95)00905-J
– volume: 115
  start-page: 1105
  year: 1968
  ident: C6CP00823B-(cit42)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2410919
– volume: 98
  start-page: 072107
  year: 2011
  ident: C6CP00823B-(cit37)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3556618
– volume-title: Free Energy of Formation of Binary Compounds
  year: 1972
  ident: C6CP00823B-(cit38)/*[position()=1]
– volume: 7
  start-page: 6369
  year: 2013
  ident: C6CP00823B-(cit28)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn4026614
– volume: 1
  start-page: 1287
  year: 2014
  ident: C6CP00823B-(cit30)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402106
– volume: 21
  start-page: 2362
  year: 2009
  ident: C6CP00823B-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900375
– volume: 22
  start-page: 70
  year: 2012
  ident: C6CP00823B-(cit25)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101846
– volume: 42
  start-page: 135411
  year: 2009
  ident: C6CP00823B-(cit36)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/42/13/135411
– volume: 7
  start-page: 2302
  year: 2013
  ident: C6CP00823B-(cit27)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn3054544
– volume-title: Electrochemicla Methods: Foundamentals and Applications
  year: 2001
  ident: C6CP00823B-(cit1)/*[position()=1]
– volume-title: Electrochemical Materials Science
  year: 1981
  ident: C6CP00823B-(cit41)/*[position()=1]
  doi: 10.1007/978-1-4757-4825-3
– volume: 22
  start-page: 254003
  year: 2011
  ident: C6CP00823B-(cit8)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/25/254003
– volume: 6
  start-page: 833
  year: 2007
  ident: C6CP00823B-(cit5)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2023
– volume: 25
  start-page: 5117
  year: 2015
  ident: C6CP00823B-(cit26)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501517
– volume: 21
  start-page: 425205
  year: 2010
  ident: C6CP00823B-(cit24)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/42/425205
– volume: 4
  start-page: 2382
  year: 2013
  ident: C6CP00823B-(cit10)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3382
– volume-title: Solid State Electrochemistry I: Fundamentals, Materials and their Applications
  year: 2009
  ident: C6CP00823B-(cit2)/*[position()=1]
  doi: 10.1002/9783527627868
– volume: 91
  start-page: 133513
  year: 2007
  ident: C6CP00823B-(cit17)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2793686
– volume: 20
  start-page: 1254
  year: 2008
  ident: C6CP00823B-(cit40)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm702865r
– volume: 6
  start-page: 1693
  year: 1994
  ident: C6CP00823B-(cit32)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm00046a022
– volume: 93
  start-page: 143
  year: 1996
  ident: C6CP00823B-(cit34)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0169-4332(95)00317-7
– volume: 24
  start-page: 325202
  year: 2013
  ident: C6CP00823B-(cit13)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/32/325202
SSID ssj0001513
Score 2.411011
Snippet An important potential application of solid state electrochemical reactions is in redox-based resistive switching memory devices. Based on the fundamental...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12466
SubjectTerms Chemical reactions
Data storage
Electrochemical cells
Electrochemical machining
Electrodes
Molybdenum
Solid state
Switching
Title Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces
URI https://www.ncbi.nlm.nih.gov/pubmed/26996952
https://www.proquest.com/docview/1787476341
https://www.proquest.com/docview/1816074162
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 1463-9084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001513
  issn: 1463-9076
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELZK9wFeENdCuWQEQkKrsEmcuM1jCa0W1F2KtpW6T1HsOFCxJKVNxfFj-K2MryTQFVp4iZKJFSuez57xeA6EnqVCpqETvqNmYcBy7qRMwGaFhCJPmSyRJAOcj0_o0Tx4uwgXnc7PltfStmIv-Y8L40r-h6tAA77KKNl_4Gz9USDAPfAXrsBhuF6Kx8clMEmeANReGdpp0dS24TYZACiGpiK4ClbZSJ1R5Zb9uqy0L2VaHQxh0o8_l-ffWabc48tvy0yodBLrXPpttdXYqeUut_XiDurOtK1ko2wN0ziu48fOjGU6_rhNC-e0CUE7tTbr16kj71seB8rV4GwJZGEkrP6QtiY4703acGO18Kg8cNfRomahDShxYGNu0mC3abpk3O7qvK0f9FoLmgmlLcENz7oIy45UcIlMqsopX6mDRdbIPnvef_IuGc8nk2Q2Wsyer744siqZPL03JVquoD2_T6nfRXvD0ezNpJb1oC8RHb-m_8YmwCXRYdPd7yrPzj4GtJq1rTajtJrZDXTdbEfwUGPrJuqI4ha6Gluu3kafLMawwRguCwwYw39gDFuMYcAYbjCGa4zhtMLDD4cNwrBCGG4QdgfNx6NZfOSYAh0OJ4FfOSCbcjFwed_N3UwEgcjCPKDMl3tajwGJENAo-31YEMI0cyPuZYJGHuE5c0Epysg-6hZlIe4hTEI2YFwQUPjTIA3zKMtoLkSYe2Hu80G_h17YMUy4yV4vi6icJ8qLgkRJTOOpGu9XPfS0brvSOVsubPXEsiKBMZXnZGkhyu0m8UCIBfBvgfeXNgOZmRF2M34P3dV8rPvyaRTRKIQ3-8DYmtwA4v4lPvsAXWvmzUPUrdZb8Qj034o9NiD8BZ-ztWM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moisture+effects+on+the+electrochemical+reaction+and+resistance+switching+at+Ag%2Fmolybdenum+oxide+interfaces&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yang%2C+Chuan-Sen&rft.au=Shang%2C+Da-Shan&rft.au=Chai%2C+Yi-Sheng&rft.au=Yan%2C+Li-Qin&rft.date=2016-05-14&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=18&rft.issue=18&rft.spage=12466&rft.epage=12475&rft_id=info:doi/10.1039%2Fc6cp00823b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon