Application of machine learning and emerging remote sensing techniques in hydrology: A state-of-the-art review and current research trends

•A review has been conducted on the application of ML and RS in hydrology domain.•Analyses were conducted on surface hydrology, hydro-climatic extremes and GWM & WQ.•GIS and ML algorithms prove valuable in the realm of hydrological investigations.•State-of-the-art approach is attributed to hydro...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 632; p. 130907
Main Authors Saha, Asish, Chandra Pal, Subodh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2024
Subjects
Online AccessGet full text
ISSN0022-1694
1879-2707
DOI10.1016/j.jhydrol.2024.130907

Cover

Abstract •A review has been conducted on the application of ML and RS in hydrology domain.•Analyses were conducted on surface hydrology, hydro-climatic extremes and GWM & WQ.•GIS and ML algorithms prove valuable in the realm of hydrological investigations.•State-of-the-art approach is attributed to hydrology and water resources. Water, one of the most valuable resources on Earth, is the subject of the study of hydrology, which is of utmost importance. Satellite remote sensing (RS) has emerged as a critical tool for comprehending Earth and atmospheric dynamics, including hydrology. With the assistance of satellite RS, the scientific community has achieved significant progress in recent years. Since machine learning (ML)and RS techniques were initially applied to the study of hydrology, there has been a tremendous increase in interest in studying potential areas for future advancements in hydrology. The growth can see in the publications of related papers. Considering these initiatives, the current review paper attempts to give a thorough analysis of the function of ML and RS techniques in four fields of hydrology. This review study considers hydrological topics of streamflow, rainfall-runoff, groundwater modelling and water quality, and hydroclimatic extremes. The use of learning strategies in the hydrological sciences is examined in all reviews and research papers. Several databases were utilised for this purpose, including Scopus-index, science direct, Web of Science, and Google Scholar. The overall results of this study show that employing RS techniques, ML and ensemble approaches is incomparably superior to using traditional methods in hydrological studies.
AbstractList Water, one of the most valuable resources on Earth, is the subject of the study of hydrology, which is of utmost importance. Satellite remote sensing (RS) has emerged as a critical tool for comprehending Earth and atmospheric dynamics, including hydrology. With the assistance of satellite RS, the scientific community has achieved significant progress in recent years. Since machine learning (ML)and RS techniques were initially applied to the study of hydrology, there has been a tremendous increase in interest in studying potential areas for future advancements in hydrology. The growth can see in the publications of related papers. Considering these initiatives, the current review paper attempts to give a thorough analysis of the function of ML and RS techniques in four fields of hydrology. This review study considers hydrological topics of streamflow, rainfall-runoff, groundwater modelling and water quality, and hydroclimatic extremes. The use of learning strategies in the hydrological sciences is examined in all reviews and research papers. Several databases were utilised for this purpose, including Scopus-index, science direct, Web of Science, and Google Scholar. The overall results of this study show that employing RS techniques, ML and ensemble approaches is incomparably superior to using traditional methods in hydrological studies.
•A review has been conducted on the application of ML and RS in hydrology domain.•Analyses were conducted on surface hydrology, hydro-climatic extremes and GWM & WQ.•GIS and ML algorithms prove valuable in the realm of hydrological investigations.•State-of-the-art approach is attributed to hydrology and water resources. Water, one of the most valuable resources on Earth, is the subject of the study of hydrology, which is of utmost importance. Satellite remote sensing (RS) has emerged as a critical tool for comprehending Earth and atmospheric dynamics, including hydrology. With the assistance of satellite RS, the scientific community has achieved significant progress in recent years. Since machine learning (ML)and RS techniques were initially applied to the study of hydrology, there has been a tremendous increase in interest in studying potential areas for future advancements in hydrology. The growth can see in the publications of related papers. Considering these initiatives, the current review paper attempts to give a thorough analysis of the function of ML and RS techniques in four fields of hydrology. This review study considers hydrological topics of streamflow, rainfall-runoff, groundwater modelling and water quality, and hydroclimatic extremes. The use of learning strategies in the hydrological sciences is examined in all reviews and research papers. Several databases were utilised for this purpose, including Scopus-index, science direct, Web of Science, and Google Scholar. The overall results of this study show that employing RS techniques, ML and ensemble approaches is incomparably superior to using traditional methods in hydrological studies.
ArticleNumber 130907
Author Saha, Asish
Chandra Pal, Subodh
Author_xml – sequence: 1
  givenname: Asish
  surname: Saha
  fullname: Saha, Asish
– sequence: 2
  givenname: Subodh
  surname: Chandra Pal
  fullname: Chandra Pal, Subodh
  email: geo.subodh@gmail.com
BookMark eNqFUU2L2zAUFGUXmmT7Ewo67sWpvmxH7aGEsG0XAr1sz0KRn2MFW8pKSkv-Qn_1ynFOe8lDIEa8mfc0M0d3zjtA6DMlS0po9eWwPHTnJvh-yQgTS8qJJPUHNKOrWhasJvUdmhHCWEErKT6ieYwHkotzMUP_18djb41O1jvsWzxo01kHuAcdnHV7rF2DYYCwH0GAwSfAEVwcYQLTOft6goitw9MOfn_-itc4Jp2g8G2ROih0SJn618K_i5w5hQBufIp5iulwyrCJD-i-1X2ET9d7gf78eHrZ_Cq2v38-b9bbwnDBUiEaU7WCjbXLH6X1CioBdbkzdCeMFFITUpOyKkveMslWDBpJOGTGShAuS75Aj5PuMfhx96QGGw30vXbgT1FxWuYjhWC59dvUaoKPMUCrjE0Xr1LQtleUqDEBdVDXBNSYgJoSyOzyHfsY7KDD-Sbv-8SD7EJ2LahoLDgDjQ1gkmq8vaHwBmdEpto
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_175999
crossref_primary_10_1007_s00477_024_02905_x
crossref_primary_10_1016_j_watcyc_2024_07_001
crossref_primary_10_1016_j_hazadv_2025_100678
crossref_primary_10_3390_agronomy14091975
crossref_primary_10_1016_j_scitotenv_2024_177180
crossref_primary_10_1016_j_eja_2024_127297
crossref_primary_10_1007_s12145_025_01820_1
crossref_primary_10_3390_rs17020200
crossref_primary_10_1016_j_agwat_2024_109056
crossref_primary_10_3389_fmars_2024_1473104
crossref_primary_10_1051_e3sconf_202560100078
Cites_doi 10.1111/j.1752-1688.2002.tb00991.x
10.1016/j.scitotenv.2023.161394
10.38094/jastt1457
10.1016/j.jhydrol.2016.02.018
10.1007/s00170-006-0755-4
10.1007/BF02990649
10.2166/nh.2002.0012
10.1007/s10040-006-0140-2
10.1016/j.jhydrol.2022.128495
10.1016/j.agsy.2021.103141
10.1016/j.jhydrol.2020.125133
10.1038/s41598-021-96751-4
10.1016/j.jhydrol.2011.11.039
10.1016/j.asoc.2021.107081
10.21606/drs.2022.667
10.1007/s11069-020-04371-4
10.1016/j.gsf.2021.101249
10.1016/j.scitotenv.2020.139012
10.1007/s00477-021-02111-z
10.1029/2006GL026855
10.1016/j.asoc.2016.12.052
10.1109/ACCESS.2021.3074305
10.1007/s11269-006-9116-1
10.1111/ejss.12350
10.1111/j.1752-1688.2001.tb00980.x
10.1007/s10040-006-0126-0
10.1016/j.jhydrol.2021.126266
10.1109/ICNN.1995.488968
10.1016/j.jclepro.2021.127594
10.1088/1755-1315/1086/1/012036
10.3390/rs12223675
10.1161/JAHA.119.013924
10.1007/s12145-020-00477-2
10.5923/j.ajgis.20130201.01
10.3390/rs13204147
10.1109/4235.985692
10.1080/19475705.2017.1294113
10.1007/s11269-006-9016-4
10.3390/w11081654
10.1016/j.scitotenv.2018.07.054
10.1016/j.knosys.2020.105596
10.3390/w15132448
10.1002/hyp.5862
10.1029/2019WR025103
10.1016/j.rse.2019.111291
10.1016/j.jhydrol.2018.09.064
10.1002/wat2.1533
10.1029/2019WR026933
10.1016/j.jhydrol.2020.125376
10.3390/rs9090938
10.4249/scholarpedia.2776
10.5194/hess-25-4373-2021
10.1109/5.726791
10.2166/hydro.2021.179
10.1029/2018RG000598
10.1080/07038992.1994.10874582
10.1016/j.jhydrol.2019.123913
10.1016/j.jhydrol.2011.10.025
10.1016/j.ijepes.2015.03.024
10.1007/s11269-017-1719-1
10.1007/s12665-020-09190-1
10.1038/s41598-022-07693-4
10.1080/01431161.2017.1392635
10.3390/s20061723
10.1016/j.rse.2020.111664
10.1016/j.agwat.2020.106625
10.1016/S0893-6080(05)80023-1
10.1007/s11269-010-9633-9
10.1016/j.scitotenv.2019.03.045
10.1016/j.neunet.2006.01.001
10.1016/j.jhydrol.2011.10.039
10.1080/02626669609491518
10.5194/hess-15-39-2011
10.3390/rs13071359
10.1016/j.catena.2014.04.011
10.1038/s41586-019-0912-1
10.1016/j.scitotenv.2023.162998
10.1007/s11069-017-3024-y
10.1002/hyp.14596
10.2166/wst.2020.369
10.1002/2016WR019933
10.3390/atmos11010111
10.1016/j.envpol.2022.120203
10.2166/hydro.2009.041
10.2307/2346830
10.3390/rs8040342
10.1016/j.neucom.2016.09.010
10.3390/proceedings2110697
10.1016/j.chemosphere.2021.130265
10.1016/j.jhydrol.2020.124826
10.1016/j.catena.2019.104396
10.1007/s00477-020-01910-0
10.1007/s11269-005-3281-5
10.5194/hess-27-1791-2023
10.1016/j.jwpe.2023.103889
10.1111/j.1752-1688.2003.tb04386.x
10.1038/s41598-020-75291-3
10.1080/01431160600554983
10.1007/s11269-020-02659-5
10.1109/ICARCV.2014.7064414
10.1016/j.jhydrol.2015.04.032
10.1016/S0142-0615(01)00067-9
10.1029/95RG00403
10.1029/2020WR028205
10.1111/j.1752-1688.1974.tb00625.x
10.1016/j.scitotenv.2017.09.262
10.1016/j.ejrad.2019.02.038
10.1029/2007RG000243
10.1016/j.jhydrol.2014.03.057
10.1007/s13762-014-0613-0
10.1080/19475705.2017.1388853
10.1007/s11269-010-9639-3
10.1016/j.neucom.2018.04.006
10.5194/hess-20-2611-2016
10.1007/s100640050066
10.1016/j.jhydrol.2020.124780
10.1023/A:1014596120381
10.1029/2019GL085291
10.1007/s12517-021-06493-w
10.2166/hydro.2000.0004
10.1007/s12665-016-5919-4
10.1007/s11269-019-02301-z
10.1016/j.scitotenv.2020.137231
10.1016/j.jhydrol.2012.12.042
10.1007/s00521-020-05172-3
10.5194/hess-21-3879-2017
10.1029/2017WR022437
10.3390/ijerph20064977
10.3390/w15040620
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2024.130907
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2024_130907
S0022169424003019
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
ADVLN
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-4dc6f422222b090178e64e75bc1b4c949a007056553f29282ed903e4228403953
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Thu Oct 02 11:13:28 EDT 2025
Wed Oct 01 02:36:34 EDT 2025
Thu Apr 24 23:00:45 EDT 2025
Sat Jul 13 15:30:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrology
Hydroclimatic extremes
State-of-the-art approach
Remote sensing
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-4dc6f422222b090178e64e75bc1b4c949a007056553f29282ed903e4228403953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153159442
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153159442
crossref_citationtrail_10_1016_j_jhydrol_2024_130907
crossref_primary_10_1016_j_jhydrol_2024_130907
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2024_130907
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sun, Green, Swenson, Rodell (b0670) 2012; 422–423
Pal, Arabameri, Blaschke, Chowdhuri, Saha, Chakrabortty, Lee, Band (b0510) 2020; 12
Mahmoud (b0435) 2014; 120
Black, Tarnavsky, Maidment, Greatrex, Mookerjee, Quaife, Brown (b0065) 2016; 8
Yunus, Masago, Hijioka (b0770) 2020; 731
Alfwzan, Selim, Althobaiti, Hussin (b0030) 2023; 53
Jacobs, Myers, Whitfield (b0270) 2003; 39
Sahoo, Russo, Elliott, Foster (b0605) 2017; 53
Saraiva, S.V., Carvalho, F. de O., Santos, C.A.G., Barreto, L.C., Freire, P.K. de M.M., 2021. Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Applied Soft Computing 102, 107081. https://doi.org/10.1016/j.asoc.2021.107081.
Brakenridge, G.R., Anderson, E., Nghiem, S.V., Caquard, S., Shabaneh, T.B., 2003. Flood warnings, flood disaster assessments, and flood hazard reduction: The roles of orbital remote sensing.
Tien Bui, Ho, Pradhan, Pham, Nhu, Revhaug (b0675) 2016; 75
Georgescu, Moldovanu, Iticescu, Calmuc, Calmuc, Topa, Moraru (b0185) 2023; 879
Babovic (b0050) 2009; 11
Mehrabi, Pradhan, Moayedi, Alamri (b0450) 2020; 20
Zhou (b0785) 2021
El-Rawy, Batelaan, Alshehri, Almadani, Ahmed, Elbeltagi (b0165) 2023; 15
Hussain, Hussain, Khan, Naqvi, Jamil (b0265) 2020; 13
Kim, Han, Johnson, Lim, Cifelli (b0345) 2019; 577
Tyralis, Papacharalampous, Langousis (b0685) 2021; 33
Ghimire, Yaseen, Farooque, Deo, Zhang, Tao (b0190) 2021; 11
Razavi Termeh, Kornejady, Pourghasemi, Keesstra (b0560) 2018; 615
Danandeh Mehr, Kahya, Şahin, Nazemosadat (b0130) 2015; 12
LeCun, Bottou, Bengio, Haffner (b0395) 1998; 86
Peddle, Foody, Zhang, Franklin, LeDrew (b0520) 1994; 20
Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Van Diemen, R., 2019. IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
Xu, Liang (b0750) 2021; 8
Dewan, Islam, Kumamoto, Nishigaki (b0145) 2007; 21
Li, Zhang, Zhang (b0420) 2021; 191
Li, Yan, Wang, Weng, Qin, Liu (b0415) 2019; 11
Jain, Saraf, Goswami, Ahmad (b0280) 2006; 20
Mishra, Coulibaly (b0470) 2009; 47
Khan, Baharudin, Lee, Khan (b0330) 2010; 1
Akurugu, Obuobie, Yidana, Stisen, Seidenfaden, Chegbeleh (b0020) 2022; 40
Costache (b0125) 2019; 33
Herath, Chadalawada, Babovic (b0235) 2021; 23
Adnan, Petroselli, Heddam, Santos, Kisi (b0010) 2021; 35
Kabenge, Elaru, Wang, Li (b0300) 2017; 89
Maulud, Abdulazeez (b0440) 2020; 1
Phootrakornchai, Jiriwibhakorn (b0525) 2015; 73
Hadri, Saidi, Boudhar (b0210) 2021; 14
Mokhtar, Jalali, He, Al-Ansari, Elbeltagi, Alsafadi, Abdo, Sammen, Gyasi-Agyei, Rodrigo-Comino (b0485) 2021; 9
Chawla, Karthikeyan, Mishra (b0105) 2020; 585
Ji, Li, Yang, Liu, He (b0290) 2018; 39
Kratzert, Klotz, Shalev, Klambauer, Hochreiter, Nearing (b0365) 2019; 2019
Adnan, Mostafa, Elbeltagi, Yaseen, Shahid, Kisi (b0015) 2022; 36
Babovic, Keijzer (b0060) 2002; 33
Han, Merwade, Heathman (b0215) 2012; 416
Zhao, Gentine, Reichstein, Zhang, Zhou, Wen, Lin, Li, Qiu (b0780) 2019; 46
Knoll, Breuer, Bach (b0355) 2019; 668
Tikhamarine, Souag-Gamane, Ahmed, Sammen, Kisi, Huang, El-Shafie (b0680) 2020; 589
Rahman, Chen, Islam, Mahmud, Pourghasemi, Alam, Rahim, Baig, Bhattacharjee, Dewan (b0540) 2021; 311
Wu, Ke, Chen, Liang, Zhao, Hong (b0735) 2020; 187
Cai, Liu, Shi, Zhou, Jiang, Babovic (b0085) 2022; 613
Nourani, Baghanam, Adamowski, Kisi (b0500) 2014; 514
Wwap (b0745) 2012
Saha, Pal, Chowdhuri, Roy, Chakrabortty, Shit (b0600) 2022
Young, Liu, Wu (b0755) 2017; 53
Sra, Nowozin, Wright (b0660) 2012
Engman (b0170) 1995; 33
Dang, Kumar (b0135) 2017; 8
Srivastava, Bhattacharya (b0665) 2006; 27
Mistry, S., Parekh, F., 2022. Flood Forecasting Using Artificial Neural Network. IOP Conf. Ser.: Earth Environ. Sci. 1086, 012036. https://doi.org/10.1088/1755-1315/1086/1/012036.
Kafy, Bakshi, Saha, Faisal, Almulhim, Rahaman, Mohammad (b0310) 2023; 867
West, Quinn, Horswell (b0720) 2019; 232
Jasrotia, Dhiman, Aggarwal (b0285) 2002; 30
Kumanan, Jesuthanam, Ashok Kumar (b0375) 2008; 35
Murray-Rust, D., Nicenboim, I., Lockton, D., 2022. Metaphors for designers working with AI.
Giardino, Bresciani, Villa, Martinelli (b0200) 2010; 24
Singha, Pasupuleti, Singha, Singh, Kumar (b0650) 2021; 276
Rasouli, Hsieh, Cannon (b0550) 2012; 414–415
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, pp. 1942–1948.
Babovic, Keijzer (b0055) 2000; 2
Saba, Biswas, Kuppili, Godia, Suri, Edla, Omerzu, Laird, Khanna, Mavrogeni (b0590) 2019; 114
Razavi, Hannah, Elshorbagy, Kumar, Marshall, Solomatine, Dezfuli, Sadegh, Famiglietti (b0555) 2022; 36
Zhang, Zhang, Song, Cheng, Paul, Gan, Shi, Luo, Zhao (b0775) 2020; 585
Yousefi, Pourghasemi, Emami, Rahmati, Tavangar, Pouyan, Tiefenbacher, Shamsoddini, Nekoeimehr (b0760) 2020; 10
Zounemat-Kermani, Batelaan, Fadaee, Hinkelmann (b0795) 2021; 598
Moradkhani, Hsu, Hong, Sorooshian (b0490) 2006; 33
Cai, Shi, Liu, Babovic (b0080) 2021; 37
Hoffmann, Sander (b0240) 2007; 15
Russell (b0585) 2016
Shortridge, Guikema, Zaitchik (b0635) 2016; 20
Liong, Gautam, Khu, Babovic, Keijzer, Muttil (b0430) 2002; 38
Orr, R.J., Murray, P.J., Eyles, C.J., Blackwell, M.S.A., Cardenas, L.M., Collins, A.L., Dungait, J. a. J., Goulding, K.W.T., Griffith, B.A., Gurr, S.J., Harris, P., Hawkins, J.M.B., Misselbrook, T.H., Rawlings, C., Shepherd, A., Sint, H., Takahashi, T., Tozer, K.N., Whitmore, A. p., Wu, L., Lee, M.R.F., 2016. The North Wyke Farm Platform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics. European Journal of Soil Science 67, 374–385. https://doi.org/10.1111/ejss.12350.
Abido (b0005) 2002; 24
Haznedar, Kalinli (b0225) 2018; 302
Mijwel, M.M., 2018. Artificial neural networks advantages and disadvantages. Retrieved from LinkedIn https//www. linkedin. com/pulse/artificial-neuralnet Work.
Parisouj, Mohebzadeh, Lee (b0515) 2020; 34
Alquraish, Khadr (b0035) 2021; 13
Breiman (b0075) 1996; 24
Meshgi, Schmitter, Chui, Babovic (b0460) 2015; 525
Sajedi-Hosseini, Malekian, Choubin, Rahmati, Cipullo, Coulon, Pradhan (b0610) 2018; 644
Chadalawada, Havlicek, Babovic (b0095) 2017; 31
Essam, Huang, Ng, Birima, Ahmed, El-Shafie (b0175) 2022; 12
Sevakula, Au-Yeung, Singh, Heist, Isselbacher, Armoundas (b0625) 2020; 9
Wang, Dong, Lall, Dong, Yang (b0705) 2019; 55
Hu, Mei, Zhang, Li, Li (b0250) 2021; 105
Khan, Shoaib, Hammad, Salahudin, Ahmad, Ahmad (b0335) 2021; 13
Sengupta, Basak, Saikia, Paul, Tsalavoutis, Atiah, Ravi, Peters (b0620) 2020; 194
Cheng, Fang, Kinouchi, Navon, Pain (b0110) 2020; 590
Wu, Cheng, Lo, Chen (b0730) 2010; 24
Yu, Jia, Xu (b0765) 2017; 219
Ko, Jeong, Lee, Kim (b0360) 2020; 11
Keijzer, Babovic (b0315) 2002; 3
Leblanc, Favreau, Tweed, Leduc, Razack, Mofor (b0390) 2007; 15
Uddin, Gurung, Giriraj, Shrestha (b0690) 2013; 2
Zhou, Teng, Situ, Liao, Feng, Chen, Zhang, Lu (b0790) 2023; 27
Polikar (b0530) 2009; 4
Khu, Liong, Babovic, Madsen, Muttil (b0340) 2001; 37
Aleotti, Chowdhury (b0025) 1999; 58
Klir, Yuan (b0350) 1995
Cf (b0090) 2015
Ritchie, Rango (b0570) 1996; 41
Wolpert (b0725) 1992; 5
Vélez-Nicolás, García-López, Barbero, Ruiz-Ortiz, Sánchez-Bellón (b0700) 2021; 13
Cherkassky, Krasnopolsky, Solomatine, Valdes (b0115) 2006; 19
Mojaddadi, Pradhan, Nampak, Ahmad, Ghazali, bin (b0480) 2017; 8
Singh (b0645) 2013; 481
Wu, Wang (b0740) 2023; 20
Huang, Qin, Zhang, Tang, Liu, Xia, Chiew, Post (b0260) 2020; 56
Jiang, Zheng, Babovic, Tian, Han (b0295) 2018; 567
Babovic (b0040) 1996
Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M., 2014. Medical image classification with convolutional neural network, in: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). IEEE, pp. 844–848.
Wang, Wang, Niu, Peng (b0710) 2017; 9
Hong, Liu, Zhu (b0245) 2020; 718
Jain, Singh, Jain, Lohani (b0275) 2005; 19
Huang, Chen, Zhang, Wu (b0255) 2018; 56
El Bilali, Taleb, Brouziyne (b0160) 2021; 245
Saha, Pal, Chowdhuri, Roy, Chakrabortty (b0595) 2022; 314
McCabe, Rodell, Alsdorf, Miralles, Uijlenhoet, Wagner, Lucieer, Houborg, Verhoest, Franz (b0445) 2017; 21
Van Dijk, Renzullo (b0695) 2011; 15
Ganjisaffar, Caruana, Lopes (b0180) 2011
Ghobadi, Kang (b0195) 2023; 15
LeCun, Bengio, Hinton (b0400) 2015; 521
Clerc, Kennedy (b0120) 2002; 6
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (b0565) 2019; 566
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25.
Sit, Demiray, Xiang, Ewing, Sermet, Demir (b0655) 2020; 82
Dziugaite, G.K., Roy, D.M., 2017. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data.
Lange, Sippel (b0385) 2020
Rango, Anderson (b0545) 1974; 10
Poursaeid, Mastouri, Shabanlou, Najarchi (b0535) 2020; 79
Guo, Shi, Huang, Fan, Huang (b0205) 2021; 12
Babovic (b0045) 2005; 19
DeVries, Huang, Armston, Huang, Jones, Lang (b0140) 2020; 240
Kenda, K., Čerin, M., Bogataj, M., Senožetnik, M., Klemen, K., Pergar, P., Laspidou, C., Mladenić, D., 2018. Groundwater Modeling with Machine Learning Techniques: Ljubljana polje Aquifer. Proceedings 2, 697. https://doi.org/10.3390/proceedings2110697.
Hartigan, Wong (b0220) 1979; 28
Chadalawada, Herath, Babovic (b0100) 2020; 56
Ding, He (b0150) 2004
Kunnath-Poovakka, Ryu, Renzullo, George (b0380) 2016; 535
Herath, Chadalawada, Babovic (b0230) 2021; 25
Sheffield, Wood, Pan, Beck, Coccia, Serrat-Capdevila, Verbist (b0630) 2018; 54
Young (10.1016/j.jhydrol.2024.130907_b0755) 2017; 53
Giardino (10.1016/j.jhydrol.2024.130907_b0200) 2010; 24
10.1016/j.jhydrol.2024.130907_b0615
Zhao (10.1016/j.jhydrol.2024.130907_b0780) 2019; 46
Babovic (10.1016/j.jhydrol.2024.130907_b0040) 1996
Herath (10.1016/j.jhydrol.2024.130907_b0235) 2021; 23
Rasouli (10.1016/j.jhydrol.2024.130907_b0550) 2012; 414–415
Cherkassky (10.1016/j.jhydrol.2024.130907_b0115) 2006; 19
Han (10.1016/j.jhydrol.2024.130907_b0215) 2012; 416
Tien Bui (10.1016/j.jhydrol.2024.130907_b0675) 2016; 75
LeCun (10.1016/j.jhydrol.2024.130907_b0395) 1998; 86
Knoll (10.1016/j.jhydrol.2024.130907_b0355) 2019; 668
Hoffmann (10.1016/j.jhydrol.2024.130907_b0240) 2007; 15
Cf (10.1016/j.jhydrol.2024.130907_b0090) 2015
Babovic (10.1016/j.jhydrol.2024.130907_b0055) 2000; 2
Kunnath-Poovakka (10.1016/j.jhydrol.2024.130907_b0380) 2016; 535
10.1016/j.jhydrol.2024.130907_b0465
Ganjisaffar (10.1016/j.jhydrol.2024.130907_b0180) 2011
Zhou (10.1016/j.jhydrol.2024.130907_b0785) 2021
Kabenge (10.1016/j.jhydrol.2024.130907_b0300) 2017; 89
10.1016/j.jhydrol.2024.130907_b0505
Zhang (10.1016/j.jhydrol.2024.130907_b0775) 2020; 585
Klir (10.1016/j.jhydrol.2024.130907_b0350) 1995
Xu (10.1016/j.jhydrol.2024.130907_b0750) 2021; 8
Saha (10.1016/j.jhydrol.2024.130907_b0600) 2022
Li (10.1016/j.jhydrol.2024.130907_b0420) 2021; 191
Cheng (10.1016/j.jhydrol.2024.130907_b0110) 2020; 590
Liong (10.1016/j.jhydrol.2024.130907_b0430) 2002; 38
Adnan (10.1016/j.jhydrol.2024.130907_b0015) 2022; 36
Babovic (10.1016/j.jhydrol.2024.130907_b0060) 2002; 33
Parisouj (10.1016/j.jhydrol.2024.130907_b0515) 2020; 34
Sevakula (10.1016/j.jhydrol.2024.130907_b0625) 2020; 9
10.1016/j.jhydrol.2024.130907_b0070
Cai (10.1016/j.jhydrol.2024.130907_b0085) 2022; 613
10.1016/j.jhydrol.2024.130907_b0475
Khu (10.1016/j.jhydrol.2024.130907_b0340) 2001; 37
Babovic (10.1016/j.jhydrol.2024.130907_b0045) 2005; 19
Poursaeid (10.1016/j.jhydrol.2024.130907_b0535) 2020; 79
LeCun (10.1016/j.jhydrol.2024.130907_b0400) 2015; 521
El-Rawy (10.1016/j.jhydrol.2024.130907_b0165) 2023; 15
Yunus (10.1016/j.jhydrol.2024.130907_b0770) 2020; 731
Mishra (10.1016/j.jhydrol.2024.130907_b0470) 2009; 47
Rango (10.1016/j.jhydrol.2024.130907_b0545) 1974; 10
Sengupta (10.1016/j.jhydrol.2024.130907_b0620) 2020; 194
Chadalawada (10.1016/j.jhydrol.2024.130907_b0095) 2017; 31
Saba (10.1016/j.jhydrol.2024.130907_b0590) 2019; 114
McCabe (10.1016/j.jhydrol.2024.130907_b0445) 2017; 21
Huang (10.1016/j.jhydrol.2024.130907_b0255) 2018; 56
Sahoo (10.1016/j.jhydrol.2024.130907_b0605) 2017; 53
Uddin (10.1016/j.jhydrol.2024.130907_b0690) 2013; 2
Jasrotia (10.1016/j.jhydrol.2024.130907_b0285) 2002; 30
Costache (10.1016/j.jhydrol.2024.130907_b0125) 2019; 33
10.1016/j.jhydrol.2024.130907_b0640
Alfwzan (10.1016/j.jhydrol.2024.130907_b0030) 2023; 53
10.1016/j.jhydrol.2024.130907_b0405
Dewan (10.1016/j.jhydrol.2024.130907_b0145) 2007; 21
Guo (10.1016/j.jhydrol.2024.130907_b0205) 2021; 12
Engman (10.1016/j.jhydrol.2024.130907_b0170) 1995; 33
Zhou (10.1016/j.jhydrol.2024.130907_b0790) 2023; 27
Chadalawada (10.1016/j.jhydrol.2024.130907_b0100) 2020; 56
Herath (10.1016/j.jhydrol.2024.130907_b0230) 2021; 25
Khan (10.1016/j.jhydrol.2024.130907_b0335) 2021; 13
Ghimire (10.1016/j.jhydrol.2024.130907_b0190) 2021; 11
Russell (10.1016/j.jhydrol.2024.130907_b0585) 2016
Sit (10.1016/j.jhydrol.2024.130907_b0655) 2020; 82
Lange (10.1016/j.jhydrol.2024.130907_b0385) 2020
Van Dijk (10.1016/j.jhydrol.2024.130907_b0695) 2011; 15
Hartigan (10.1016/j.jhydrol.2024.130907_b0220) 1979; 28
Sra (10.1016/j.jhydrol.2024.130907_b0660) 2012
Jiang (10.1016/j.jhydrol.2024.130907_b0295) 2018; 567
Chawla (10.1016/j.jhydrol.2024.130907_b0105) 2020; 585
DeVries (10.1016/j.jhydrol.2024.130907_b0140) 2020; 240
10.1016/j.jhydrol.2024.130907_b0370
Kumanan (10.1016/j.jhydrol.2024.130907_b0375) 2008; 35
Srivastava (10.1016/j.jhydrol.2024.130907_b0665) 2006; 27
Razavi Termeh (10.1016/j.jhydrol.2024.130907_b0560) 2018; 615
Adnan (10.1016/j.jhydrol.2024.130907_b0010) 2021; 35
10.1016/j.jhydrol.2024.130907_b0495
Mojaddadi (10.1016/j.jhydrol.2024.130907_b0480) 2017; 8
Zounemat-Kermani (10.1016/j.jhydrol.2024.130907_b0795) 2021; 598
Hong (10.1016/j.jhydrol.2024.130907_b0245) 2020; 718
Nourani (10.1016/j.jhydrol.2024.130907_b0500) 2014; 514
Wu (10.1016/j.jhydrol.2024.130907_b0730) 2010; 24
Clerc (10.1016/j.jhydrol.2024.130907_b0120) 2002; 6
Vélez-Nicolás (10.1016/j.jhydrol.2024.130907_b0700) 2021; 13
Yousefi (10.1016/j.jhydrol.2024.130907_b0760) 2020; 10
Kratzert (10.1016/j.jhydrol.2024.130907_b0365) 2019; 2019
Pal (10.1016/j.jhydrol.2024.130907_b0510) 2020; 12
Wang (10.1016/j.jhydrol.2024.130907_b0705) 2019; 55
Wolpert (10.1016/j.jhydrol.2024.130907_b0725) 1992; 5
Ghobadi (10.1016/j.jhydrol.2024.130907_b0195) 2023; 15
Meshgi (10.1016/j.jhydrol.2024.130907_b0460) 2015; 525
Moradkhani (10.1016/j.jhydrol.2024.130907_b0490) 2006; 33
Kim (10.1016/j.jhydrol.2024.130907_b0345) 2019; 577
Singh (10.1016/j.jhydrol.2024.130907_b0645) 2013; 481
Shortridge (10.1016/j.jhydrol.2024.130907_b0635) 2016; 20
Huang (10.1016/j.jhydrol.2024.130907_b0260) 2020; 56
Reichstein (10.1016/j.jhydrol.2024.130907_b0565) 2019; 566
West (10.1016/j.jhydrol.2024.130907_b0720) 2019; 232
El Bilali (10.1016/j.jhydrol.2024.130907_b0160) 2021; 245
Sheffield (10.1016/j.jhydrol.2024.130907_b0630) 2018; 54
Ding (10.1016/j.jhydrol.2024.130907_b0150) 2004
Wu (10.1016/j.jhydrol.2024.130907_b0735) 2020; 187
Jain (10.1016/j.jhydrol.2024.130907_b0275) 2005; 19
Haznedar (10.1016/j.jhydrol.2024.130907_b0225) 2018; 302
Aleotti (10.1016/j.jhydrol.2024.130907_b0025) 1999; 58
Jain (10.1016/j.jhydrol.2024.130907_b0280) 2006; 20
Babovic (10.1016/j.jhydrol.2024.130907_b0050) 2009; 11
Ko (10.1016/j.jhydrol.2024.130907_b0360) 2020; 11
Abido (10.1016/j.jhydrol.2024.130907_b0005) 2002; 24
Phootrakornchai (10.1016/j.jhydrol.2024.130907_b0525) 2015; 73
10.1016/j.jhydrol.2024.130907_b0155
Peddle (10.1016/j.jhydrol.2024.130907_b0520) 1994; 20
Alquraish (10.1016/j.jhydrol.2024.130907_b0035) 2021; 13
Jacobs (10.1016/j.jhydrol.2024.130907_b0270) 2003; 39
Keijzer (10.1016/j.jhydrol.2024.130907_b0315) 2002; 3
Yu (10.1016/j.jhydrol.2024.130907_b0765) 2017; 219
Georgescu (10.1016/j.jhydrol.2024.130907_b0185) 2023; 879
Saha (10.1016/j.jhydrol.2024.130907_b0595) 2022; 314
Danandeh Mehr (10.1016/j.jhydrol.2024.130907_b0130) 2015; 12
Rahman (10.1016/j.jhydrol.2024.130907_b0540) 2021; 311
Tikhamarine (10.1016/j.jhydrol.2024.130907_b0680) 2020; 589
Breiman (10.1016/j.jhydrol.2024.130907_b0075) 1996; 24
Ji (10.1016/j.jhydrol.2024.130907_b0290) 2018; 39
Wang (10.1016/j.jhydrol.2024.130907_b0710) 2017; 9
Dang (10.1016/j.jhydrol.2024.130907_b0135) 2017; 8
Hu (10.1016/j.jhydrol.2024.130907_b0250) 2021; 105
Razavi (10.1016/j.jhydrol.2024.130907_b0555) 2022; 36
10.1016/j.jhydrol.2024.130907_b0320
Khan (10.1016/j.jhydrol.2024.130907_b0330) 2010; 1
Sajedi-Hosseini (10.1016/j.jhydrol.2024.130907_b0610) 2018; 644
Sun (10.1016/j.jhydrol.2024.130907_b0670) 2012; 422–423
Akurugu (10.1016/j.jhydrol.2024.130907_b0020) 2022; 40
10.1016/j.jhydrol.2024.130907_b0325
Cai (10.1016/j.jhydrol.2024.130907_b0080) 2021; 37
Hadri (10.1016/j.jhydrol.2024.130907_b0210) 2021; 14
Singha (10.1016/j.jhydrol.2024.130907_b0650) 2021; 276
Kafy (10.1016/j.jhydrol.2024.130907_b0310) 2023; 867
Leblanc (10.1016/j.jhydrol.2024.130907_b0390) 2007; 15
Mahmoud (10.1016/j.jhydrol.2024.130907_b0435) 2014; 120
Mehrabi (10.1016/j.jhydrol.2024.130907_b0450) 2020; 20
Li (10.1016/j.jhydrol.2024.130907_b0415) 2019; 11
Essam (10.1016/j.jhydrol.2024.130907_b0175) 2022; 12
Wu (10.1016/j.jhydrol.2024.130907_b0740) 2023; 20
Tyralis (10.1016/j.jhydrol.2024.130907_b0685) 2021; 33
Mokhtar (10.1016/j.jhydrol.2024.130907_b0485) 2021; 9
Ritchie (10.1016/j.jhydrol.2024.130907_b0570) 1996; 41
Polikar (10.1016/j.jhydrol.2024.130907_b0530) 2009; 4
Black (10.1016/j.jhydrol.2024.130907_b0065) 2016; 8
Wwap (10.1016/j.jhydrol.2024.130907_b0745) 2012
Hussain (10.1016/j.jhydrol.2024.130907_b0265) 2020; 13
Maulud (10.1016/j.jhydrol.2024.130907_b0440) 2020; 1
References_xml – reference: Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25.
– reference: Brakenridge, G.R., Anderson, E., Nghiem, S.V., Caquard, S., Shabaneh, T.B., 2003. Flood warnings, flood disaster assessments, and flood hazard reduction: The roles of orbital remote sensing.
– start-page: 29
  year: 2004
  ident: b0150
  article-title: K-means clustering via principal component analysis
  publication-title: In: Proceedings of the Twenty-First International Conference on Machine Learning
– year: 2012
  ident: b0660
  article-title: Optimization for machine learning
– volume: 11
  start-page: 17497
  year: 2021
  ident: b0190
  article-title: Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks
  publication-title: Sci. Rep.
– volume: 56
  start-page: 333
  year: 2018
  end-page: 360
  ident: b0255
  article-title: Detecting, extracting, and monitoring surface water from space using optical sensors: A review
  publication-title: Rev. Geophys.
– volume: 30
  start-page: 167
  year: 2002
  end-page: 180
  ident: b0285
  article-title: Rainfall-runoff and soil erosion modeling using Remote Sensing and GIS technique — a case study of tons watershed
  publication-title: J Indian Soc Remote Sens
– volume: 3
  start-page: 41
  year: 2002
  end-page: 79
  ident: b0315
  article-title: Declarative and preferential bias in GP-based scientific discovery
  publication-title: Genet. Program Evolvable Mach.
– volume: 47
  year: 2009
  ident: b0470
  article-title: Developments in hydrometric network design: A review
  publication-title: Rev. Geophys.
– volume: 33
  year: 2006
  ident: b0490
  article-title: Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting
  publication-title: Geophys. Res. Lett.
– reference: Mijwel, M.M., 2018. Artificial neural networks advantages and disadvantages. Retrieved from LinkedIn https//www. linkedin. com/pulse/artificial-neuralnet Work.
– reference: Mistry, S., Parekh, F., 2022. Flood Forecasting Using Artificial Neural Network. IOP Conf. Ser.: Earth Environ. Sci. 1086, 012036. https://doi.org/10.1088/1755-1315/1086/1/012036.
– volume: 1
  start-page: 140
  year: 2020
  end-page: 147
  ident: b0440
  article-title: A review on linear regression comprehensive in machine learning
  publication-title: Journal of Applied Science and Technology Trends
– volume: 56
  year: 2020
  ident: b0100
  article-title: Hydrologically Informed Machine Learning for Rainfall-Runoff Modeling: A Genetic Programming-Based Toolkit for Automatic Model Induction
  publication-title: Water Resour. Res.
– volume: 414–415
  start-page: 284
  year: 2012
  end-page: 293
  ident: b0550
  article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs
  publication-title: J. Hydrol.
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: b0220
  article-title: A k-means clustering algorithm
  publication-title: Appl. Stat.
– volume: 8
  start-page: 1792
  year: 2017
  end-page: 1811
  ident: b0135
  article-title: Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: a case study of District 8, Ho Chi Minh city
  publication-title: Vietnam. Geomatics, Natural Hazards and Risk
– volume: 33
  start-page: 3053
  year: 2021
  end-page: 3068
  ident: b0685
  article-title: Super ensemble learning for daily streamflow forecasting: large-scale demonstration and comparison with multiple machine learning algorithms
  publication-title: Neural Comput & Applic
– volume: 867
  year: 2023
  ident: b0310
  article-title: Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms
  publication-title: Sci. Total Environ.
– volume: 36
  start-page: 999
  year: 2022
  end-page: 1033
  ident: b0015
  article-title: Development of new machine learning model for streamflow prediction: case studies in Pakistan
  publication-title: Stoch Environ Res Risk Assess
– volume: 105
  start-page: 1663
  year: 2021
  end-page: 1689
  ident: b0250
  article-title: Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China
  publication-title: Nat Hazards
– volume: 590
  year: 2020
  ident: b0110
  article-title: Long lead-time daily and monthly streamflow forecasting using machine learning methods
  publication-title: J. Hydrol.
– volume: 13
  start-page: 1359
  year: 2021
  ident: b0700
  article-title: Applications of unmanned aerial systems (UASs) in hydrology: A review
  publication-title: Remote Sens. (Basel)
– volume: 191
  year: 2021
  ident: b0420
  article-title: Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data
  publication-title: Agr. Syst.
– volume: 8
  start-page: 1080
  year: 2017
  end-page: 1102
  ident: b0480
  article-title: Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS
  publication-title: Geomat. Nat. Haz. Risk
– volume: 75
  start-page: 1
  year: 2016
  end-page: 22
  ident: b0675
  article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks
  publication-title: Environ. Earth Sci.
– volume: 24
  start-page: 3773
  year: 2010
  end-page: 3797
  ident: b0730
  article-title: Application of SEBAL and Markov Models for Future Stream Flow Simulation Through Remote Sensing
  publication-title: Water Resour Manage
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0075
  publication-title: Bagging Predictors. Machine Learning
– volume: 15
  start-page: 1
  year: 2007
  end-page: 3
  ident: b0240
  article-title: Remote sensing and GIS in hydrogeology
  publication-title: Hydrogeol J
– volume: 13
  start-page: 4147
  year: 2021
  ident: b0035
  article-title: Remote-Sensing-Based Streamflow Forecasting Using Artificial Neural Network and Support Vector Machine Models
  publication-title: Remote Sens. (Basel)
– volume: 15
  start-page: 97
  year: 2007
  end-page: 100
  ident: b0390
  article-title: Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa
  publication-title: Hydrogeol J
– volume: 20
  start-page: 2611
  year: 2016
  end-page: 2628
  ident: b0635
  article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 13
  start-page: 915
  year: 2020
  end-page: 927
  ident: b0265
  article-title: A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin
  publication-title: Earth Sci Inform
– volume: 34
  start-page: 4113
  year: 2020
  end-page: 4131
  ident: b0515
  article-title: Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States
  publication-title: Water Resour Manage
– volume: 20
  start-page: 949
  year: 2006
  end-page: 959
  ident: b0280
  article-title: Flood inundation mapping using NOAA AVHRR data
  publication-title: Water Resour Manage
– volume: 55
  start-page: 7606
  year: 2019
  end-page: 7621
  ident: b0705
  article-title: Monthly streamflow simulation for the headwater catchment of the Yellow River basin with a hybrid statistical-dynamical model
  publication-title: Water Resour. Res.
– volume: 8
  start-page: 342
  year: 2016
  ident: b0065
  article-title: The Use of Remotely Sensed Rainfall for Managing Drought Risk: A Case Study of Weather Index Insurance in Zambia
  publication-title: Remote Sens. (Basel)
– volume: 21
  start-page: 3879
  year: 2017
  end-page: 3914
  ident: b0445
  article-title: The future of Earth observation in hydrology
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 37
  year: 2021
  ident: b0080
  article-title: Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 11
  start-page: 1654
  year: 2019
  ident: b0415
  article-title: Flood Risk Assessment of Global Watersheds Based on Multiple Machine Learning Models
  publication-title: Water
– volume: 12
  start-page: 2191
  year: 2015
  end-page: 2200
  ident: b0130
  article-title: Successive-station monthly streamflow prediction using different artificial neural network algorithms
  publication-title: Int. J. Environ. Sci. Technol.
– start-page: 85
  year: 2011
  end-page: 94
  ident: b0180
  article-title: Bagging gradient-boosted trees for high precision, low variance ranking models, in
  publication-title: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval
– reference: Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M., 2014. Medical image classification with convolutional neural network, in: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). IEEE, pp. 844–848.
– volume: 4
  start-page: 2776
  year: 2009
  ident: b0530
  publication-title: Ensemble Learning. Scholarpedia
– volume: 39
  start-page: 313
  year: 2003
  end-page: 324
  ident: b0270
  article-title: Improved Rainfall/Runoff Estimates Using Remo
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 41
  start-page: 429
  year: 1996
  end-page: 431
  ident: b0570
  article-title: Remote sensing applications to hydrology: introduction
  publication-title: Hydrol. Sci. J.
– volume: 15
  start-page: 2448
  year: 2023
  ident: b0165
  article-title: An Integrated GIS and Machine-Learning Technique for Groundwater Quality Assessment and Prediction in Southern Saudi Arabia
  publication-title: Water
– volume: 24
  start-page: 3885
  year: 2010
  end-page: 3899
  ident: b0200
  article-title: Application of Remote Sensing in Water Resource Management: The Case Study of Lake Trasimeno, Italy
  publication-title: Water Resour Manage
– volume: 187
  year: 2020
  ident: b0735
  article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping
  publication-title: Catena
– volume: 731
  year: 2020
  ident: b0770
  article-title: COVID-19 and surface water quality: Improved lake water quality during the lockdown
  publication-title: Sci. Total Environ.
– volume: 73
  start-page: 170
  year: 2015
  end-page: 181
  ident: b0525
  article-title: Online critical clearing time estimation using an adaptive neuro-fuzzy inference system (ANFIS)
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 58
  start-page: 21
  year: 1999
  end-page: 44
  ident: b0025
  article-title: Landslide hazard assessment: summary review and new perspectives
  publication-title: Bull. Eng. Geol. Environ.
– volume: 311
  year: 2021
  ident: b0540
  article-title: Development of flood hazard map and emergency relief operation system using hydrodynamic modeling and machine learning algorithm
  publication-title: J. Clean. Prod.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0400
  publication-title: Deep Learning. Nature
– reference: Saraiva, S.V., Carvalho, F. de O., Santos, C.A.G., Barreto, L.C., Freire, P.K. de M.M., 2021. Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Applied Soft Computing 102, 107081. https://doi.org/10.1016/j.asoc.2021.107081.
– volume: 879
  year: 2023
  ident: b0185
  article-title: Assessing and forecasting water quality in the Danube River by using neural network approaches
  publication-title: Sci. Total Environ.
– volume: 589
  year: 2020
  ident: b0680
  article-title: Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization
  publication-title: J. Hydrol.
– volume: 114
  start-page: 14
  year: 2019
  end-page: 24
  ident: b0590
  article-title: The present and future of deep learning in radiology
  publication-title: Eur. J. Radiol.
– volume: 35
  start-page: 597
  year: 2021
  end-page: 616
  ident: b0010
  article-title: Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model
  publication-title: Stoch Environ Res Risk Assess
– volume: 27
  start-page: 1791
  year: 2023
  end-page: 1808
  ident: b0790
  article-title: A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
  publication-title: Hydrol. Earth Syst. Sci.
– start-page: 233
  year: 2020
  end-page: 257
  ident: b0385
  article-title: Machine Learning Applications in Hydrology
  publication-title: Forest-Water Interactions, Ecological Studies
– volume: 53
  start-page: 3878
  year: 2017
  end-page: 3895
  ident: b0605
  article-title: Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US
  publication-title: Water Resour. Res.
– reference: Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Van Diemen, R., 2019. IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
– volume: 11
  start-page: 181
  year: 2009
  end-page: 193
  ident: b0050
  article-title: Introducing knowledge into learning based on genetic programming
  publication-title: J. Hydroinf.
– volume: 31
  start-page: 3975
  year: 2017
  end-page: 3992
  ident: b0095
  article-title: A Genetic Programming Approach to System Identification of Rainfall-Runoff Models
  publication-title: Water Resour Manage
– volume: 668
  start-page: 1317
  year: 2019
  end-page: 1327
  ident: b0355
  article-title: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning
  publication-title: Sci. Total Environ.
– volume: 23
  start-page: 740
  year: 2021
  end-page: 763
  ident: b0235
  article-title: Genetic programming for hydrological applications: to model or to forecast that is the question
  publication-title: J. Hydroinf.
– reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, pp. 1942–1948.
– volume: 15
  start-page: 39
  year: 2011
  end-page: 55
  ident: b0695
  article-title: Water resource monitoring systems and the role of satellite observations
  publication-title: Hydrol. Earth Syst. Sci.
– year: 2022
  ident: b0600
  article-title: Vulnerability assessment of drought in India: insights from meteorological, hydrological, agricultural and socio-economic perspectives
  publication-title: Gondw. Res.
– volume: 245
  year: 2021
  ident: b0160
  article-title: Groundwater quality forecasting using machine learning algorithms for irrigation purposes
  publication-title: Agric Water Manag
– volume: 12
  start-page: 3675
  year: 2020
  ident: b0510
  article-title: Ensemble of Machine-Learning Methods for Predicting Gully Erosion Susceptibility
  publication-title: Remote Sens. (Basel)
– volume: 38
  start-page: 705
  year: 2002
  end-page: 718
  ident: b0430
  article-title: GENETIC PROGRAMMING: A NEW PARADIGM IN RAINFALL RUNOFF MODELING
  publication-title: J Am Water Resources Assoc
– volume: 416
  start-page: 98
  year: 2012
  end-page: 117
  ident: b0215
  article-title: Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model
  publication-title: J. Hydrol.
– volume: 585
  year: 2020
  ident: b0105
  article-title: A review of remote sensing applications for water security: Quantity, quality, and extremes
  publication-title: J. Hydrol.
– volume: 481
  start-page: 220
  year: 2013
  end-page: 229
  ident: b0645
  article-title: Groundwater modelling for the assessment of water management alternatives
  publication-title: J. Hydrol.
– volume: 613
  year: 2022
  ident: b0085
  article-title: Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method
  publication-title: J. Hydrol.
– year: 2021
  ident: b0785
  article-title: Machine learning
– volume: 302
  start-page: 66
  year: 2018
  end-page: 74
  ident: b0225
  article-title: Training ANFIS structure using simulated annealing algorithm for dynamic systems identification
  publication-title: Neurocomputing
– year: 1995
  ident: b0350
  article-title: Fuzzy sets and fuzzy logic
– year: 2015
  ident: b0090
  article-title: Transforming our world: the 2030 Agenda for Sustainable Development
– volume: 240
  year: 2020
  ident: b0140
  article-title: Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 118
  year: 2021
  ident: b0210
  article-title: Multiscale drought monitoring and comparison using remote sensing in a Mediterranean arid region: a case study from west-central Morocco
  publication-title: Arab J Geosci
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 32
  ident: b0365
  article-title: Benchmarking a catchment-aware long short-term memory network (LSTM) for large-scale hydrological modeling
  publication-title: Hydrol. Earth Syst. Sci. Discuss
– year: 1996
  ident: b0040
  article-title: Emergence, evolution, intelligence; hydroinformatics: a study of distributed and decentralised computing using intelligent agents
  publication-title: Citeseer.
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: b0565
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
– volume: 567
  start-page: 25
  year: 2018
  end-page: 40
  ident: b0295
  article-title: A computer vision-based approach to fusing spatiotemporal data for hydrological modeling
  publication-title: J. Hydrol.
– volume: 8
  start-page: e1533
  year: 2021
  ident: b0750
  article-title: Machine learning for hydrologic sciences: An introductory overview
  publication-title: Wiley Interdiscip. Rev. Water
– volume: 615
  start-page: 438
  year: 2018
  end-page: 451
  ident: b0560
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
– volume: 219
  start-page: 88
  year: 2017
  end-page: 98
  ident: b0765
  article-title: Convolutional neural networks for hyperspectral image classification
  publication-title: Neurocomputing
– volume: 9
  start-page: 65503
  year: 2021
  end-page: 65523
  ident: b0485
  article-title: Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms
  publication-title: IEEE Access
– volume: 422–423
  start-page: 1
  year: 2012
  end-page: 9
  ident: b0670
  article-title: Toward calibration of regional groundwater models using GRACE data
  publication-title: J. Hydrol.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: b0120
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 535
  start-page: 509
  year: 2016
  end-page: 524
  ident: b0380
  article-title: The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction
  publication-title: J. Hydrol.
– volume: 53
  start-page: 205
  year: 2017
  end-page: 216
  ident: b0755
  article-title: A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events
  publication-title: Appl. Soft Comput.
– volume: 644
  start-page: 954
  year: 2018
  end-page: 962
  ident: b0610
  article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination
  publication-title: Sci. Total Environ.
– volume: 36
  start-page: e14596
  year: 2022
  ident: b0555
  article-title: Coevolution of machine learning and process-based modelling to revolutionize Earth and environmental sciences: A perspective
  publication-title: Hydrol. Process.
– volume: 33
  start-page: 3239
  year: 2019
  end-page: 3256
  ident: b0125
  article-title: Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management
  publication-title: Water Resour Manage
– reference: Murray-Rust, D., Nicenboim, I., Lockton, D., 2022. Metaphors for designers working with AI.
– volume: 40
  year: 2022
  ident: b0020
  article-title: Groundwater resources assessment in the Densu Basin: A review
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 53
  year: 2023
  ident: b0030
  article-title: Application of Bi-LSTM method for groundwater quality assessment through water quality indices
  publication-title: J. Water Process Eng.
– volume: 56
  year: 2020
  ident: b0260
  article-title: Using Remote Sensing Data-Based Hydrological Model Calibrations for Predicting Runoff in Ungauged or Poorly Gauged Catchments
  publication-title: Water Resour. Res.
– reference: Kenda, K., Čerin, M., Bogataj, M., Senožetnik, M., Klemen, K., Pergar, P., Laspidou, C., Mladenić, D., 2018. Groundwater Modeling with Machine Learning Techniques: Ljubljana polje Aquifer. Proceedings 2, 697. https://doi.org/10.3390/proceedings2110697.
– volume: 1
  start-page: 4
  year: 2010
  end-page: 20
  ident: b0330
  article-title: A review of machine learning algorithms for text-documents classification
  publication-title: Journal of Advances in Information Technology
– volume: 46
  start-page: 14496
  year: 2019
  end-page: 14507
  ident: b0780
  article-title: Physics-Constrained Machine Learning of Evapotranspiration
  publication-title: Geophys. Res. Lett.
– volume: 37
  start-page: 439
  year: 2001
  end-page: 451
  ident: b0340
  article-title: Genetic Programming and Its Application in Real-Time Runoff Forecasting1
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 79
  start-page: 453
  year: 2020
  ident: b0535
  article-title: Estimation of total dissolved solids, electrical conductivity, salinity and groundwater levels using novel learning machines
  publication-title: Environ Earth Sci
– reference: Dziugaite, G.K., Roy, D.M., 2017. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data.
– volume: 13
  start-page: 3528
  year: 2021
  ident: b0335
  article-title: Application of Machine Learning Techniques in Rainfall-Runoff Modelling of the Soan River Basin
  publication-title: Pakistan. Water
– volume: 35
  start-page: 778
  year: 2008
  end-page: 788
  ident: b0375
  article-title: Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 2
  start-page: 1
  year: 2013
  end-page: 5
  ident: b0690
  article-title: Application of remote sensing and GIS for flood hazard management: a case study from Sindh Province, Pakistan
  publication-title: American Journal of Geographic Information System
– volume: 33
  start-page: 967
  year: 1995
  end-page: 975
  ident: b0170
  article-title: Recent advances in remote sensing in hydrology
  publication-title: Rev. Geophys.
– volume: 194
  year: 2020
  ident: b0620
  article-title: A review of deep learning with special emphasis on architectures, applications and recent trends
  publication-title: Knowl.-Based Syst.
– volume: 12
  year: 2021
  ident: b0205
  article-title: Landslide susceptibility zonation method based on C5. 0 decision tree and K-means cluster algorithms to improve the efficiency of risk management
  publication-title: Geosci. Front.
– volume: 39
  start-page: 786
  year: 2018
  end-page: 809
  ident: b0290
  article-title: Comprehensive drought index as an indicator for use in drought monitoring integrating multi-source remote sensing data: a case study covering the Sichuan-Chongqing region
  publication-title: Int. J. Remote Sens.
– reference: Orr, R.J., Murray, P.J., Eyles, C.J., Blackwell, M.S.A., Cardenas, L.M., Collins, A.L., Dungait, J. a. J., Goulding, K.W.T., Griffith, B.A., Gurr, S.J., Harris, P., Hawkins, J.M.B., Misselbrook, T.H., Rawlings, C., Shepherd, A., Sint, H., Takahashi, T., Tozer, K.N., Whitmore, A. p., Wu, L., Lee, M.R.F., 2016. The North Wyke Farm Platform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics. European Journal of Soil Science 67, 374–385. https://doi.org/10.1111/ejss.12350.
– volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  ident: b0725
  publication-title: Stacked Generalization. Neural Networks
– year: 2016
  ident: b0585
  article-title: Artificial Intelligence: A Modern Approach, eBook
– volume: 21
  start-page: 1601
  year: 2007
  end-page: 1612
  ident: b0145
  article-title: Evaluating Flood Hazard for Land-Use Planning in Greater Dhaka of Bangladesh Using Remote Sensing and GIS Techniques
  publication-title: Water Resour Manage
– volume: 82
  start-page: 2635
  year: 2020
  end-page: 2670
  ident: b0655
  article-title: A comprehensive review of deep learning applications in hydrology and water resources
  publication-title: Water Sci. Technol.
– year: 2012
  ident: b0745
  article-title: World Water Assessment Programme: The United Nations World Water Development Report 4
– volume: 314
  year: 2022
  ident: b0595
  article-title: Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms
  publication-title: Environ. Pollut.
– volume: 718
  year: 2020
  ident: b0245
  article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble
  publication-title: Sci. Total Environ.
– volume: 577
  year: 2019
  ident: b0345
  article-title: Hybrid machine learning framework for hydrological assessment
  publication-title: J. Hydrol.
– volume: 89
  start-page: 1369
  year: 2017
  end-page: 1387
  ident: b0300
  article-title: Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based flood hazard index
  publication-title: Nat Hazards
– volume: 33
  start-page: 331
  year: 2002
  end-page: 346
  ident: b0060
  article-title: Rainfall Runoff Modelling Based on Genetic Programming
  publication-title: Hydrol. Res.
– volume: 514
  start-page: 358
  year: 2014
  end-page: 377
  ident: b0500
  article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review
  publication-title: J. Hydrol.
– volume: 54
  start-page: 9724
  year: 2018
  end-page: 9758
  ident: b0630
  article-title: Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions
  publication-title: Water Resour. Res.
– volume: 525
  start-page: 711
  year: 2015
  end-page: 723
  ident: b0460
  article-title: Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using genetic programming
  publication-title: J. Hydrol.
– volume: 20
  start-page: 1723
  year: 2020
  ident: b0450
  article-title: Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques
  publication-title: Sensors
– volume: 15
  start-page: 620
  year: 2023
  ident: b0195
  article-title: Application of Machine Learning in Water Resources Management: A Systematic Literature Review
  publication-title: Water
– volume: 232
  year: 2019
  ident: b0720
  article-title: Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities
  publication-title: Remote Sens. Environ.
– volume: 19
  start-page: 333
  year: 2005
  end-page: 347
  ident: b0275
  article-title: Delineation of Flood-Prone Areas Using Remote Sensing Techniques
  publication-title: Water Resour Manage
– volume: 276
  year: 2021
  ident: b0650
  article-title: Prediction of groundwater quality using efficient machine learning technique
  publication-title: Chemosphere
– volume: 19
  start-page: 113
  year: 2006
  end-page: 121
  ident: b0115
  article-title: Computational intelligence in earth sciences and environmental applications: Issues and challenges
  publication-title: Neural Netw.
– volume: 20
  start-page: 396
  year: 1994
  end-page: 407
  ident: b0520
  article-title: Multi-source image classification II: An empirical comparison of evidential reasoning and neural network approaches
  publication-title: Can. J. Remote. Sens.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b0395
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 10
  start-page: 1060
  year: 1974
  end-page: 1081
  ident: b0545
  article-title: Flood Hazard Studies in the Mississippi River Basin Using Remote Sensing1
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 9
  start-page: 938
  year: 2017
  ident: b0710
  article-title: Integration of Information Theory, K-Means Cluster Analysis and the Logistic Regression Model for Landslide Susceptibility Mapping in the Three Gorges Area
  publication-title: China. Remote Sensing
– volume: 19
  start-page: 1511
  year: 2005
  end-page: 1515
  ident: b0045
  article-title: Data mining in hydrology
  publication-title: Hydrol. Process.
– volume: 27
  start-page: 4599
  year: 2006
  end-page: 4620
  ident: b0665
  article-title: Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain
  publication-title: Int. J. Remote Sens.
– volume: 20
  start-page: 4977
  year: 2023
  ident: b0740
  article-title: Application of Bagging, Boosting and Stacking Ensemble and EasyEnsemble Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area of China
  publication-title: Int. J. Environ. Res. Public Health
– volume: 24
  start-page: 563
  year: 2002
  end-page: 571
  ident: b0005
  article-title: Optimal power flow using particle swarm optimization
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 120
  start-page: 111
  year: 2014
  end-page: 121
  ident: b0435
  article-title: Investigation of rainfall–runoff modeling for Egypt by using remote sensing and GIS integration
  publication-title: Catena
– volume: 10
  start-page: 18114
  year: 2020
  ident: b0760
  article-title: Assessing the susceptibility of schools to flood events in Iran
  publication-title: Sci Rep
– volume: 25
  start-page: 4373
  year: 2021
  end-page: 4401
  ident: b0230
  article-title: Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 585
  year: 2020
  ident: b0775
  article-title: Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches
  publication-title: J. Hydrol.
– volume: 12
  start-page: 3883
  year: 2022
  ident: b0175
  article-title: Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms
  publication-title: Sci Rep
– volume: 2
  start-page: 35
  year: 2000
  end-page: 60
  ident: b0055
  article-title: Genetic programming as a model induction engine
  publication-title: J. Hydroinf.
– volume: 598
  year: 2021
  ident: b0795
  article-title: Ensemble machine learning paradigms in hydrology: A review
  publication-title: J. Hydrol.
– volume: 11
  start-page: 111
  year: 2020
  ident: b0360
  article-title: The Development of a Quantitative Precipitation Forecast Correction Technique Based on Machine Learning for Hydrological Applications
  publication-title: Atmos.
– volume: 9
  start-page: e013924
  year: 2020
  ident: b0625
  article-title: State-of-the-Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System
  publication-title: JAHA
– volume: 38
  start-page: 705
  year: 2002
  ident: 10.1016/j.jhydrol.2024.130907_b0430
  article-title: GENETIC PROGRAMMING: A NEW PARADIGM IN RAINFALL RUNOFF MODELING
  publication-title: J Am Water Resources Assoc
  doi: 10.1111/j.1752-1688.2002.tb00991.x
– volume: 867
  year: 2023
  ident: 10.1016/j.jhydrol.2024.130907_b0310
  article-title: Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.161394
– volume: 1
  start-page: 140
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0440
  article-title: A review on linear regression comprehensive in machine learning
  publication-title: Journal of Applied Science and Technology Trends
  doi: 10.38094/jastt1457
– volume: 535
  start-page: 509
  year: 2016
  ident: 10.1016/j.jhydrol.2024.130907_b0380
  article-title: The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.02.018
– start-page: 85
  year: 2011
  ident: 10.1016/j.jhydrol.2024.130907_b0180
  article-title: Bagging gradient-boosted trees for high precision, low variance ranking models, in
– volume: 35
  start-page: 778
  year: 2008
  ident: 10.1016/j.jhydrol.2024.130907_b0375
  article-title: Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-006-0755-4
– volume: 30
  start-page: 167
  year: 2002
  ident: 10.1016/j.jhydrol.2024.130907_b0285
  article-title: Rainfall-runoff and soil erosion modeling using Remote Sensing and GIS technique — a case study of tons watershed
  publication-title: J Indian Soc Remote Sens
  doi: 10.1007/BF02990649
– volume: 33
  start-page: 331
  year: 2002
  ident: 10.1016/j.jhydrol.2024.130907_b0060
  article-title: Rainfall Runoff Modelling Based on Genetic Programming
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2002.0012
– volume: 15
  start-page: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2024.130907_b0240
  article-title: Remote sensing and GIS in hydrogeology
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-006-0140-2
– volume: 613
  year: 2022
  ident: 10.1016/j.jhydrol.2024.130907_b0085
  article-title: Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128495
– volume: 37
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0080
  article-title: Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 191
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0420
  article-title: Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data
  publication-title: Agr. Syst.
  doi: 10.1016/j.agsy.2021.103141
– volume: 589
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0680
  article-title: Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125133
– volume: 11
  start-page: 17497
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0190
  article-title: Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-96751-4
– start-page: 29
  year: 2004
  ident: 10.1016/j.jhydrol.2024.130907_b0150
  article-title: K-means clustering via principal component analysis
– volume: 416
  start-page: 98
  year: 2012
  ident: 10.1016/j.jhydrol.2024.130907_b0215
  article-title: Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.11.039
– ident: 10.1016/j.jhydrol.2024.130907_b0615
  doi: 10.1016/j.asoc.2021.107081
– ident: 10.1016/j.jhydrol.2024.130907_b0495
  doi: 10.21606/drs.2022.667
– volume: 105
  start-page: 1663
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0250
  article-title: Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China
  publication-title: Nat Hazards
  doi: 10.1007/s11069-020-04371-4
– volume: 12
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0205
  article-title: Landslide susceptibility zonation method based on C5. 0 decision tree and K-means cluster algorithms to improve the efficiency of risk management
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2021.101249
– volume: 731
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0770
  article-title: COVID-19 and surface water quality: Improved lake water quality during the lockdown
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139012
– year: 1996
  ident: 10.1016/j.jhydrol.2024.130907_b0040
  article-title: Emergence, evolution, intelligence; hydroinformatics: a study of distributed and decentralised computing using intelligent agents
  publication-title: Citeseer.
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2024.130907_b0365
  article-title: Benchmarking a catchment-aware long short-term memory network (LSTM) for large-scale hydrological modeling
  publication-title: Hydrol. Earth Syst. Sci. Discuss
– volume: 36
  start-page: 999
  year: 2022
  ident: 10.1016/j.jhydrol.2024.130907_b0015
  article-title: Development of new machine learning model for streamflow prediction: case studies in Pakistan
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-021-02111-z
– volume: 33
  year: 2006
  ident: 10.1016/j.jhydrol.2024.130907_b0490
  article-title: Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL026855
– volume: 53
  start-page: 205
  year: 2017
  ident: 10.1016/j.jhydrol.2024.130907_b0755
  article-title: A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.052
– volume: 9
  start-page: 65503
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0485
  article-title: Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3074305
– volume: 21
  start-page: 1601
  year: 2007
  ident: 10.1016/j.jhydrol.2024.130907_b0145
  article-title: Evaluating Flood Hazard for Land-Use Planning in Greater Dhaka of Bangladesh Using Remote Sensing and GIS Techniques
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-006-9116-1
– ident: 10.1016/j.jhydrol.2024.130907_b0505
  doi: 10.1111/ejss.12350
– volume: 1
  start-page: 4
  year: 2010
  ident: 10.1016/j.jhydrol.2024.130907_b0330
  article-title: A review of machine learning algorithms for text-documents classification
  publication-title: Journal of Advances in Information Technology
– volume: 37
  start-page: 439
  year: 2001
  ident: 10.1016/j.jhydrol.2024.130907_b0340
  article-title: Genetic Programming and Its Application in Real-Time Runoff Forecasting1
  publication-title: JAWRA Journal of the American Water Resources Association
  doi: 10.1111/j.1752-1688.2001.tb00980.x
– volume: 15
  start-page: 97
  year: 2007
  ident: 10.1016/j.jhydrol.2024.130907_b0390
  article-title: Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-006-0126-0
– volume: 598
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0795
  article-title: Ensemble machine learning paradigms in hydrology: A review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126266
– year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0785
– ident: 10.1016/j.jhydrol.2024.130907_b0325
  doi: 10.1109/ICNN.1995.488968
– volume: 311
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0540
  article-title: Development of flood hazard map and emergency relief operation system using hydrodynamic modeling and machine learning algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127594
– ident: 10.1016/j.jhydrol.2024.130907_b0475
  doi: 10.1088/1755-1315/1086/1/012036
– volume: 12
  start-page: 3675
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0510
  article-title: Ensemble of Machine-Learning Methods for Predicting Gully Erosion Susceptibility
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs12223675
– volume: 9
  start-page: e013924
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0625
  article-title: State-of-the-Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System
  publication-title: JAHA
  doi: 10.1161/JAHA.119.013924
– year: 2012
  ident: 10.1016/j.jhydrol.2024.130907_b0745
– volume: 13
  start-page: 915
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0265
  article-title: A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin
  publication-title: Earth Sci Inform
  doi: 10.1007/s12145-020-00477-2
– year: 2016
  ident: 10.1016/j.jhydrol.2024.130907_b0585
– volume: 2
  start-page: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2024.130907_b0690
  article-title: Application of remote sensing and GIS for flood hazard management: a case study from Sindh Province, Pakistan
  publication-title: American Journal of Geographic Information System
  doi: 10.5923/j.ajgis.20130201.01
– volume: 13
  start-page: 4147
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0035
  article-title: Remote-Sensing-Based Streamflow Forecasting Using Artificial Neural Network and Support Vector Machine Models
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13204147
– volume: 6
  start-page: 58
  year: 2002
  ident: 10.1016/j.jhydrol.2024.130907_b0120
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 13
  start-page: 3528
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0335
  article-title: Application of Machine Learning Techniques in Rainfall-Runoff Modelling of the Soan River Basin
  publication-title: Pakistan. Water
– year: 2015
  ident: 10.1016/j.jhydrol.2024.130907_b0090
– volume: 8
  start-page: 1080
  year: 2017
  ident: 10.1016/j.jhydrol.2024.130907_b0480
  article-title: Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS
  publication-title: Geomat. Nat. Haz. Risk
  doi: 10.1080/19475705.2017.1294113
– volume: 20
  start-page: 949
  year: 2006
  ident: 10.1016/j.jhydrol.2024.130907_b0280
  article-title: Flood inundation mapping using NOAA AVHRR data
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-006-9016-4
– volume: 11
  start-page: 1654
  year: 2019
  ident: 10.1016/j.jhydrol.2024.130907_b0415
  article-title: Flood Risk Assessment of Global Watersheds Based on Multiple Machine Learning Models
  publication-title: Water
  doi: 10.3390/w11081654
– volume: 644
  start-page: 954
  year: 2018
  ident: 10.1016/j.jhydrol.2024.130907_b0610
  article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.054
– year: 1995
  ident: 10.1016/j.jhydrol.2024.130907_b0350
– volume: 194
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0620
  article-title: A review of deep learning with special emphasis on architectures, applications and recent trends
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105596
– volume: 15
  start-page: 2448
  year: 2023
  ident: 10.1016/j.jhydrol.2024.130907_b0165
  article-title: An Integrated GIS and Machine-Learning Technique for Groundwater Quality Assessment and Prediction in Southern Saudi Arabia
  publication-title: Water
  doi: 10.3390/w15132448
– volume: 19
  start-page: 1511
  year: 2005
  ident: 10.1016/j.jhydrol.2024.130907_b0045
  article-title: Data mining in hydrology
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.5862
– start-page: 233
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0385
  article-title: Machine Learning Applications in Hydrology
– volume: 55
  start-page: 7606
  year: 2019
  ident: 10.1016/j.jhydrol.2024.130907_b0705
  article-title: Monthly streamflow simulation for the headwater catchment of the Yellow River basin with a hybrid statistical-dynamical model
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR025103
– volume: 232
  year: 2019
  ident: 10.1016/j.jhydrol.2024.130907_b0720
  article-title: Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111291
– volume: 567
  start-page: 25
  year: 2018
  ident: 10.1016/j.jhydrol.2024.130907_b0295
  article-title: A computer vision-based approach to fusing spatiotemporal data for hydrological modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.09.064
– volume: 8
  start-page: e1533
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0750
  article-title: Machine learning for hydrologic sciences: An introductory overview
  publication-title: Wiley Interdiscip. Rev. Water
  doi: 10.1002/wat2.1533
– volume: 56
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0100
  article-title: Hydrologically Informed Machine Learning for Rainfall-Runoff Modeling: A Genetic Programming-Based Toolkit for Automatic Model Induction
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026933
– volume: 590
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0110
  article-title: Long lead-time daily and monthly streamflow forecasting using machine learning methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125376
– volume: 9
  start-page: 938
  year: 2017
  ident: 10.1016/j.jhydrol.2024.130907_b0710
  article-title: Integration of Information Theory, K-Means Cluster Analysis and the Logistic Regression Model for Landslide Susceptibility Mapping in the Three Gorges Area
  publication-title: China. Remote Sensing
  doi: 10.3390/rs9090938
– volume: 4
  start-page: 2776
  year: 2009
  ident: 10.1016/j.jhydrol.2024.130907_b0530
  publication-title: Ensemble Learning. Scholarpedia
  doi: 10.4249/scholarpedia.2776
– volume: 25
  start-page: 4373
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0230
  article-title: Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-4373-2021
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.jhydrol.2024.130907_b0395
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 23
  start-page: 740
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0235
  article-title: Genetic programming for hydrological applications: to model or to forecast that is the question
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2021.179
– volume: 56
  start-page: 333
  year: 2018
  ident: 10.1016/j.jhydrol.2024.130907_b0255
  article-title: Detecting, extracting, and monitoring surface water from space using optical sensors: A review
  publication-title: Rev. Geophys.
  doi: 10.1029/2018RG000598
– volume: 20
  start-page: 396
  year: 1994
  ident: 10.1016/j.jhydrol.2024.130907_b0520
  article-title: Multi-source image classification II: An empirical comparison of evidential reasoning and neural network approaches
  publication-title: Can. J. Remote. Sens.
  doi: 10.1080/07038992.1994.10874582
– volume: 577
  year: 2019
  ident: 10.1016/j.jhydrol.2024.130907_b0345
  article-title: Hybrid machine learning framework for hydrological assessment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123913
– volume: 422–423
  start-page: 1
  year: 2012
  ident: 10.1016/j.jhydrol.2024.130907_b0670
  article-title: Toward calibration of regional groundwater models using GRACE data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.10.025
– volume: 73
  start-page: 170
  year: 2015
  ident: 10.1016/j.jhydrol.2024.130907_b0525
  article-title: Online critical clearing time estimation using an adaptive neuro-fuzzy inference system (ANFIS)
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.03.024
– volume: 31
  start-page: 3975
  year: 2017
  ident: 10.1016/j.jhydrol.2024.130907_b0095
  article-title: A Genetic Programming Approach to System Identification of Rainfall-Runoff Models
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-017-1719-1
– volume: 79
  start-page: 453
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0535
  article-title: Estimation of total dissolved solids, electrical conductivity, salinity and groundwater levels using novel learning machines
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-020-09190-1
– volume: 12
  start-page: 3883
  year: 2022
  ident: 10.1016/j.jhydrol.2024.130907_b0175
  article-title: Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-07693-4
– volume: 39
  start-page: 786
  year: 2018
  ident: 10.1016/j.jhydrol.2024.130907_b0290
  article-title: Comprehensive drought index as an indicator for use in drought monitoring integrating multi-source remote sensing data: a case study covering the Sichuan-Chongqing region
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1392635
– volume: 20
  start-page: 1723
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0450
  article-title: Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques
  publication-title: Sensors
  doi: 10.3390/s20061723
– volume: 240
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0140
  article-title: Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111664
– volume: 245
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0160
  article-title: Groundwater quality forecasting using machine learning algorithms for irrigation purposes
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106625
– volume: 5
  start-page: 241
  year: 1992
  ident: 10.1016/j.jhydrol.2024.130907_b0725
  publication-title: Stacked Generalization. Neural Networks
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 24
  start-page: 3773
  year: 2010
  ident: 10.1016/j.jhydrol.2024.130907_b0730
  article-title: Application of SEBAL and Markov Models for Future Stream Flow Simulation Through Remote Sensing
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-010-9633-9
– ident: 10.1016/j.jhydrol.2024.130907_b0465
– volume: 668
  start-page: 1317
  year: 2019
  ident: 10.1016/j.jhydrol.2024.130907_b0355
  article-title: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.045
– volume: 19
  start-page: 113
  year: 2006
  ident: 10.1016/j.jhydrol.2024.130907_b0115
  article-title: Computational intelligence in earth sciences and environmental applications: Issues and challenges
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2006.01.001
– volume: 414–415
  start-page: 284
  year: 2012
  ident: 10.1016/j.jhydrol.2024.130907_b0550
  article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.10.039
– volume: 41
  start-page: 429
  year: 1996
  ident: 10.1016/j.jhydrol.2024.130907_b0570
  article-title: Remote sensing applications to hydrology: introduction
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626669609491518
– volume: 15
  start-page: 39
  year: 2011
  ident: 10.1016/j.jhydrol.2024.130907_b0695
  article-title: Water resource monitoring systems and the role of satellite observations
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-39-2011
– volume: 13
  start-page: 1359
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0700
  article-title: Applications of unmanned aerial systems (UASs) in hydrology: A review
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13071359
– volume: 120
  start-page: 111
  year: 2014
  ident: 10.1016/j.jhydrol.2024.130907_b0435
  article-title: Investigation of rainfall–runoff modeling for Egypt by using remote sensing and GIS integration
  publication-title: Catena
  doi: 10.1016/j.catena.2014.04.011
– volume: 566
  start-page: 195
  year: 2019
  ident: 10.1016/j.jhydrol.2024.130907_b0565
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 879
  year: 2023
  ident: 10.1016/j.jhydrol.2024.130907_b0185
  article-title: Assessing and forecasting water quality in the Danube River by using neural network approaches
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.162998
– volume: 89
  start-page: 1369
  year: 2017
  ident: 10.1016/j.jhydrol.2024.130907_b0300
  article-title: Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based flood hazard index
  publication-title: Nat Hazards
  doi: 10.1007/s11069-017-3024-y
– volume: 36
  start-page: e14596
  year: 2022
  ident: 10.1016/j.jhydrol.2024.130907_b0555
  article-title: Coevolution of machine learning and process-based modelling to revolutionize Earth and environmental sciences: A perspective
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.14596
– volume: 82
  start-page: 2635
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0655
  article-title: A comprehensive review of deep learning applications in hydrology and water resources
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2020.369
– volume: 53
  start-page: 3878
  year: 2017
  ident: 10.1016/j.jhydrol.2024.130907_b0605
  article-title: Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019933
– volume: 11
  start-page: 111
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0360
  article-title: The Development of a Quantitative Precipitation Forecast Correction Technique Based on Machine Learning for Hydrological Applications
  publication-title: Atmos.
  doi: 10.3390/atmos11010111
– volume: 314
  year: 2022
  ident: 10.1016/j.jhydrol.2024.130907_b0595
  article-title: Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.120203
– volume: 40
  year: 2022
  ident: 10.1016/j.jhydrol.2024.130907_b0020
  article-title: Groundwater resources assessment in the Densu Basin: A review
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 11
  start-page: 181
  year: 2009
  ident: 10.1016/j.jhydrol.2024.130907_b0050
  article-title: Introducing knowledge into learning based on genetic programming
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2009.041
– volume: 28
  start-page: 100
  year: 1979
  ident: 10.1016/j.jhydrol.2024.130907_b0220
  article-title: A k-means clustering algorithm
  publication-title: Appl. Stat.
  doi: 10.2307/2346830
– volume: 8
  start-page: 342
  year: 2016
  ident: 10.1016/j.jhydrol.2024.130907_b0065
  article-title: The Use of Remotely Sensed Rainfall for Managing Drought Risk: A Case Study of Weather Index Insurance in Zambia
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs8040342
– volume: 219
  start-page: 88
  year: 2017
  ident: 10.1016/j.jhydrol.2024.130907_b0765
  article-title: Convolutional neural networks for hyperspectral image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.010
– year: 2022
  ident: 10.1016/j.jhydrol.2024.130907_b0600
  article-title: Vulnerability assessment of drought in India: insights from meteorological, hydrological, agricultural and socio-economic perspectives
  publication-title: Gondw. Res.
– ident: 10.1016/j.jhydrol.2024.130907_b0320
  doi: 10.3390/proceedings2110697
– volume: 276
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0650
  article-title: Prediction of groundwater quality using efficient machine learning technique
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130265
– volume: 585
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0105
  article-title: A review of remote sensing applications for water security: Quantity, quality, and extremes
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124826
– volume: 187
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0735
  article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104396
– volume: 35
  start-page: 597
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0010
  article-title: Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-020-01910-0
– volume: 19
  start-page: 333
  year: 2005
  ident: 10.1016/j.jhydrol.2024.130907_b0275
  article-title: Delineation of Flood-Prone Areas Using Remote Sensing Techniques
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-005-3281-5
– volume: 27
  start-page: 1791
  year: 2023
  ident: 10.1016/j.jhydrol.2024.130907_b0790
  article-title: A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-27-1791-2023
– volume: 53
  year: 2023
  ident: 10.1016/j.jhydrol.2024.130907_b0030
  article-title: Application of Bi-LSTM method for groundwater quality assessment through water quality indices
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2023.103889
– volume: 39
  start-page: 313
  year: 2003
  ident: 10.1016/j.jhydrol.2024.130907_b0270
  article-title: Improved Rainfall/Runoff Estimates Using RemoTELy Sensed Soil Moisture1
  publication-title: JAWRA Journal of the American Water Resources Association
  doi: 10.1111/j.1752-1688.2003.tb04386.x
– volume: 10
  start-page: 18114
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0760
  article-title: Assessing the susceptibility of schools to flood events in Iran
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-75291-3
– ident: 10.1016/j.jhydrol.2024.130907_b0640
– volume: 27
  start-page: 4599
  year: 2006
  ident: 10.1016/j.jhydrol.2024.130907_b0665
  article-title: Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600554983
– volume: 34
  start-page: 4113
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0515
  article-title: Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-020-02659-5
– ident: 10.1016/j.jhydrol.2024.130907_b0405
  doi: 10.1109/ICARCV.2014.7064414
– volume: 525
  start-page: 711
  year: 2015
  ident: 10.1016/j.jhydrol.2024.130907_b0460
  article-title: Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using genetic programming
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.04.032
– volume: 24
  start-page: 563
  year: 2002
  ident: 10.1016/j.jhydrol.2024.130907_b0005
  article-title: Optimal power flow using particle swarm optimization
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/S0142-0615(01)00067-9
– ident: 10.1016/j.jhydrol.2024.130907_b0370
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.jhydrol.2024.130907_b0075
  publication-title: Bagging Predictors. Machine Learning
– volume: 33
  start-page: 967
  year: 1995
  ident: 10.1016/j.jhydrol.2024.130907_b0170
  article-title: Recent advances in remote sensing in hydrology
  publication-title: Rev. Geophys.
  doi: 10.1029/95RG00403
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.jhydrol.2024.130907_b0400
  publication-title: Deep Learning. Nature
– volume: 56
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0260
  article-title: Using Remote Sensing Data-Based Hydrological Model Calibrations for Predicting Runoff in Ungauged or Poorly Gauged Catchments
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR028205
– volume: 10
  start-page: 1060
  year: 1974
  ident: 10.1016/j.jhydrol.2024.130907_b0545
  article-title: Flood Hazard Studies in the Mississippi River Basin Using Remote Sensing1
  publication-title: JAWRA Journal of the American Water Resources Association
  doi: 10.1111/j.1752-1688.1974.tb00625.x
– year: 2012
  ident: 10.1016/j.jhydrol.2024.130907_b0660
– volume: 615
  start-page: 438
  year: 2018
  ident: 10.1016/j.jhydrol.2024.130907_b0560
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.262
– volume: 114
  start-page: 14
  year: 2019
  ident: 10.1016/j.jhydrol.2024.130907_b0590
  article-title: The present and future of deep learning in radiology
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2019.02.038
– volume: 47
  year: 2009
  ident: 10.1016/j.jhydrol.2024.130907_b0470
  article-title: Developments in hydrometric network design: A review
  publication-title: Rev. Geophys.
  doi: 10.1029/2007RG000243
– volume: 514
  start-page: 358
  year: 2014
  ident: 10.1016/j.jhydrol.2024.130907_b0500
  article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 12
  start-page: 2191
  year: 2015
  ident: 10.1016/j.jhydrol.2024.130907_b0130
  article-title: Successive-station monthly streamflow prediction using different artificial neural network algorithms
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-014-0613-0
– volume: 8
  start-page: 1792
  year: 2017
  ident: 10.1016/j.jhydrol.2024.130907_b0135
  article-title: Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: a case study of District 8, Ho Chi Minh city
  publication-title: Vietnam. Geomatics, Natural Hazards and Risk
  doi: 10.1080/19475705.2017.1388853
– volume: 24
  start-page: 3885
  year: 2010
  ident: 10.1016/j.jhydrol.2024.130907_b0200
  article-title: Application of Remote Sensing in Water Resource Management: The Case Study of Lake Trasimeno, Italy
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-010-9639-3
– volume: 302
  start-page: 66
  year: 2018
  ident: 10.1016/j.jhydrol.2024.130907_b0225
  article-title: Training ANFIS structure using simulated annealing algorithm for dynamic systems identification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.006
– volume: 20
  start-page: 2611
  year: 2016
  ident: 10.1016/j.jhydrol.2024.130907_b0635
  article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-2611-2016
– volume: 58
  start-page: 21
  year: 1999
  ident: 10.1016/j.jhydrol.2024.130907_b0025
  article-title: Landslide hazard assessment: summary review and new perspectives
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s100640050066
– ident: 10.1016/j.jhydrol.2024.130907_b0155
– volume: 585
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0775
  article-title: Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124780
– volume: 3
  start-page: 41
  year: 2002
  ident: 10.1016/j.jhydrol.2024.130907_b0315
  article-title: Declarative and preferential bias in GP-based scientific discovery
  publication-title: Genet. Program Evolvable Mach.
  doi: 10.1023/A:1014596120381
– volume: 46
  start-page: 14496
  year: 2019
  ident: 10.1016/j.jhydrol.2024.130907_b0780
  article-title: Physics-Constrained Machine Learning of Evapotranspiration
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL085291
– volume: 14
  start-page: 118
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0210
  article-title: Multiscale drought monitoring and comparison using remote sensing in a Mediterranean arid region: a case study from west-central Morocco
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-021-06493-w
– volume: 2
  start-page: 35
  year: 2000
  ident: 10.1016/j.jhydrol.2024.130907_b0055
  article-title: Genetic programming as a model induction engine
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2000.0004
– volume: 75
  start-page: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2024.130907_b0675
  article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5919-4
– volume: 33
  start-page: 3239
  year: 2019
  ident: 10.1016/j.jhydrol.2024.130907_b0125
  article-title: Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-019-02301-z
– volume: 718
  year: 2020
  ident: 10.1016/j.jhydrol.2024.130907_b0245
  article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137231
– volume: 481
  start-page: 220
  year: 2013
  ident: 10.1016/j.jhydrol.2024.130907_b0645
  article-title: Groundwater modelling for the assessment of water management alternatives
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.12.042
– volume: 33
  start-page: 3053
  year: 2021
  ident: 10.1016/j.jhydrol.2024.130907_b0685
  article-title: Super ensemble learning for daily streamflow forecasting: large-scale demonstration and comparison with multiple machine learning algorithms
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-020-05172-3
– volume: 21
  start-page: 3879
  year: 2017
  ident: 10.1016/j.jhydrol.2024.130907_b0445
  article-title: The future of Earth observation in hydrology
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-3879-2017
– volume: 54
  start-page: 9724
  year: 2018
  ident: 10.1016/j.jhydrol.2024.130907_b0630
  article-title: Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions
  publication-title: Water Resour. Res.
  doi: 10.1029/2017WR022437
– volume: 20
  start-page: 4977
  year: 2023
  ident: 10.1016/j.jhydrol.2024.130907_b0740
  article-title: Application of Bagging, Boosting and Stacking Ensemble and EasyEnsemble Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area of China
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph20064977
– ident: 10.1016/j.jhydrol.2024.130907_b0070
– volume: 15
  start-page: 620
  year: 2023
  ident: 10.1016/j.jhydrol.2024.130907_b0195
  article-title: Application of Machine Learning in Water Resources Management: A Systematic Literature Review
  publication-title: Water
  doi: 10.3390/w15040620
SSID ssj0000334
Score 2.5440004
SecondaryResourceType review_article
Snippet •A review has been conducted on the application of ML and RS in hydrology domain.•Analyses were conducted on surface hydrology, hydro-climatic extremes and GWM...
Water, one of the most valuable resources on Earth, is the subject of the study of hydrology, which is of utmost importance. Satellite remote sensing (RS) has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130907
SubjectTerms groundwater
Hydroclimatic extremes
Hydrology
Machine learning
Remote sensing
runoff
satellites
State-of-the-art approach
stream flow
water quality
Title Application of machine learning and emerging remote sensing techniques in hydrology: A state-of-the-art review and current research trends
URI https://dx.doi.org/10.1016/j.jhydrol.2024.130907
https://www.proquest.com/docview/3153159442
Volume 632
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswELUQLLibK15XvGUktm5Te5LU7CoEKiBYgcTOahybtuImVVsW3fABfDUziUMFQkJCysZRbEWeyXgcnzmHsdM8VY44boWL8khAEoHQPvUCXVkmscU9UcV4c3uX9B_g-jF-XGHnTS0MwSpD7K9jehWtw512mM32ZDSiGl8pO4kGQkGim1IRH0BKKgat1yXMI1IKGsZwenpZxdMet8bDRT4t6QRCAukia1KV_X59-hKpq-XncoP9DXkj79WvtslWXLHF1oOE-XCxzd56y6NoXnr-v0JJOh5kIZ74oMg5VQOTKhGfOjSR4zOCr2Pzg8l1xkcFr1-3fFqc8R6vKo5E6QVmigSj43WxSzWcrcmdeGAMGvJ5hbDdYQ-XF_fnfRGEFoRVIOcCcpt4-hckZYZz0Em7LgGXxpntZGA16AGxAmHqFysvNW7SXK4j5Yg9DCKlY_WPrRZl4XYZj73NlAXlMBUA3fXdCIdMY-8GKZo-gT0GzfQaG1jISQzj2TRws7EJVjFkFVNbZY-1PrpNahqOnzp0G9uZT_5kcKn4qetJY2uD3xodoAwKV77MDPotXhpA7v9--AP2h1o1ju2Qrc6nL-4IE5t5dlx57jFb613d9O_eAQvc-CI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY6OHSXCdimsfHDSLu6Te2XpOZWIVDZCieQerMax6atWILacuhlf8D-at5LHCoQEtKkXPLDVuTv5fk5_t73GPuZp8qRxq1wUR4JSCIQ2qdeoCnLJLa4JqoUb66uk-Et_BrH4xY7a3JhiFYZfH_t0ytvHa50w2h2H2YzyvGVspdoIBYkmqn-wLYhlimtwDp_NzyPSCloJMPp8U0aT3femU_X-aKkLQgJVBhZU1nZtyeoV666mn8udtinEDjyQf1uu6zlij3WDjXMp-vP7N9gsxfNS8__VDRJx0NdiDs-KXJO6cBUlogvHGLk-JL463j6LOW65LOC169b3q1P-YBXKUei9AJDReLR8TrbperO1upOPEgGTfmqoth-YbcX5zdnQxEqLQirQK4E5Dbx9DNIygzHoJf2XQIujTPby8Bq0BOSBcLYL1ZealyluVxHypF8GERKx-or2yrKwn1jPPY2UxaUw1gAdN_3I-wyjb2bpIh9AvsMmuE1NsiQUzWMe9PwzeYmoGIIFVOjss86z80eah2O9xr0G-zMC4MyOFe81_Skwdrgx0Y7KJPClY9Lg4aLhwaQ3_-_-2PWHt5cjczo8vr3D_aR7tSktgO2tVo8ukOMclbZUWXFT8Ta-bc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+and+emerging+remote+sensing+techniques+in+hydrology%3A+A+state-of-the-art+review+and+current+research+trends&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Saha%2C+Asish&rft.au=Chandra+Pal%2C+Subodh&rft.date=2024-03-01&rft.issn=0022-1694&rft_id=info:doi/10.1016%2Fj.jhydrol.2024.130907&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon