Application of machine learning and emerging remote sensing techniques in hydrology: A state-of-the-art review and current research trends
•A review has been conducted on the application of ML and RS in hydrology domain.•Analyses were conducted on surface hydrology, hydro-climatic extremes and GWM & WQ.•GIS and ML algorithms prove valuable in the realm of hydrological investigations.•State-of-the-art approach is attributed to hydro...
        Saved in:
      
    
          | Published in | Journal of hydrology (Amsterdam) Vol. 632; p. 130907 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.03.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0022-1694 1879-2707  | 
| DOI | 10.1016/j.jhydrol.2024.130907 | 
Cover
| Abstract | •A review has been conducted on the application of ML and RS in hydrology domain.•Analyses were conducted on surface hydrology, hydro-climatic extremes and GWM & WQ.•GIS and ML algorithms prove valuable in the realm of hydrological investigations.•State-of-the-art approach is attributed to hydrology and water resources.
Water, one of the most valuable resources on Earth, is the subject of the study of hydrology, which is of utmost importance. Satellite remote sensing (RS) has emerged as a critical tool for comprehending Earth and atmospheric dynamics, including hydrology. With the assistance of satellite RS, the scientific community has achieved significant progress in recent years. Since machine learning (ML)and RS techniques were initially applied to the study of hydrology, there has been a tremendous increase in interest in studying potential areas for future advancements in hydrology. The growth can see in the publications of related papers. Considering these initiatives, the current review paper attempts to give a thorough analysis of the function of ML and RS techniques in four fields of hydrology. This review study considers hydrological topics of streamflow, rainfall-runoff, groundwater modelling and water quality, and hydroclimatic extremes. The use of learning strategies in the hydrological sciences is examined in all reviews and research papers. Several databases were utilised for this purpose, including Scopus-index, science direct, Web of Science, and Google Scholar. The overall results of this study show that employing RS techniques, ML and ensemble approaches is incomparably superior to using traditional methods in hydrological studies. | 
    
|---|---|
| AbstractList | Water, one of the most valuable resources on Earth, is the subject of the study of hydrology, which is of utmost importance. Satellite remote sensing (RS) has emerged as a critical tool for comprehending Earth and atmospheric dynamics, including hydrology. With the assistance of satellite RS, the scientific community has achieved significant progress in recent years. Since machine learning (ML)and RS techniques were initially applied to the study of hydrology, there has been a tremendous increase in interest in studying potential areas for future advancements in hydrology. The growth can see in the publications of related papers. Considering these initiatives, the current review paper attempts to give a thorough analysis of the function of ML and RS techniques in four fields of hydrology. This review study considers hydrological topics of streamflow, rainfall-runoff, groundwater modelling and water quality, and hydroclimatic extremes. The use of learning strategies in the hydrological sciences is examined in all reviews and research papers. Several databases were utilised for this purpose, including Scopus-index, science direct, Web of Science, and Google Scholar. The overall results of this study show that employing RS techniques, ML and ensemble approaches is incomparably superior to using traditional methods in hydrological studies. •A review has been conducted on the application of ML and RS in hydrology domain.•Analyses were conducted on surface hydrology, hydro-climatic extremes and GWM & WQ.•GIS and ML algorithms prove valuable in the realm of hydrological investigations.•State-of-the-art approach is attributed to hydrology and water resources. Water, one of the most valuable resources on Earth, is the subject of the study of hydrology, which is of utmost importance. Satellite remote sensing (RS) has emerged as a critical tool for comprehending Earth and atmospheric dynamics, including hydrology. With the assistance of satellite RS, the scientific community has achieved significant progress in recent years. Since machine learning (ML)and RS techniques were initially applied to the study of hydrology, there has been a tremendous increase in interest in studying potential areas for future advancements in hydrology. The growth can see in the publications of related papers. Considering these initiatives, the current review paper attempts to give a thorough analysis of the function of ML and RS techniques in four fields of hydrology. This review study considers hydrological topics of streamflow, rainfall-runoff, groundwater modelling and water quality, and hydroclimatic extremes. The use of learning strategies in the hydrological sciences is examined in all reviews and research papers. Several databases were utilised for this purpose, including Scopus-index, science direct, Web of Science, and Google Scholar. The overall results of this study show that employing RS techniques, ML and ensemble approaches is incomparably superior to using traditional methods in hydrological studies.  | 
    
| ArticleNumber | 130907 | 
    
| Author | Saha, Asish Chandra Pal, Subodh  | 
    
| Author_xml | – sequence: 1 givenname: Asish surname: Saha fullname: Saha, Asish – sequence: 2 givenname: Subodh surname: Chandra Pal fullname: Chandra Pal, Subodh email: geo.subodh@gmail.com  | 
    
| BookMark | eNqFUU2L2zAUFGUXmmT7Ewo67sWpvmxH7aGEsG0XAr1sz0KRn2MFW8pKSkv-Qn_1ynFOe8lDIEa8mfc0M0d3zjtA6DMlS0po9eWwPHTnJvh-yQgTS8qJJPUHNKOrWhasJvUdmhHCWEErKT6ieYwHkotzMUP_18djb41O1jvsWzxo01kHuAcdnHV7rF2DYYCwH0GAwSfAEVwcYQLTOft6goitw9MOfn_-itc4Jp2g8G2ROih0SJn618K_i5w5hQBufIp5iulwyrCJD-i-1X2ET9d7gf78eHrZ_Cq2v38-b9bbwnDBUiEaU7WCjbXLH6X1CioBdbkzdCeMFFITUpOyKkveMslWDBpJOGTGShAuS75Aj5PuMfhx96QGGw30vXbgT1FxWuYjhWC59dvUaoKPMUCrjE0Xr1LQtleUqDEBdVDXBNSYgJoSyOzyHfsY7KDD-Sbv-8SD7EJ2LahoLDgDjQ1gkmq8vaHwBmdEpto | 
    
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_175999 crossref_primary_10_1007_s00477_024_02905_x crossref_primary_10_1016_j_watcyc_2024_07_001 crossref_primary_10_1016_j_hazadv_2025_100678 crossref_primary_10_3390_agronomy14091975 crossref_primary_10_1016_j_scitotenv_2024_177180 crossref_primary_10_1016_j_eja_2024_127297 crossref_primary_10_1007_s12145_025_01820_1 crossref_primary_10_3390_rs17020200 crossref_primary_10_1016_j_agwat_2024_109056 crossref_primary_10_3389_fmars_2024_1473104 crossref_primary_10_1051_e3sconf_202560100078  | 
    
| Cites_doi | 10.1111/j.1752-1688.2002.tb00991.x 10.1016/j.scitotenv.2023.161394 10.38094/jastt1457 10.1016/j.jhydrol.2016.02.018 10.1007/s00170-006-0755-4 10.1007/BF02990649 10.2166/nh.2002.0012 10.1007/s10040-006-0140-2 10.1016/j.jhydrol.2022.128495 10.1016/j.agsy.2021.103141 10.1016/j.jhydrol.2020.125133 10.1038/s41598-021-96751-4 10.1016/j.jhydrol.2011.11.039 10.1016/j.asoc.2021.107081 10.21606/drs.2022.667 10.1007/s11069-020-04371-4 10.1016/j.gsf.2021.101249 10.1016/j.scitotenv.2020.139012 10.1007/s00477-021-02111-z 10.1029/2006GL026855 10.1016/j.asoc.2016.12.052 10.1109/ACCESS.2021.3074305 10.1007/s11269-006-9116-1 10.1111/ejss.12350 10.1111/j.1752-1688.2001.tb00980.x 10.1007/s10040-006-0126-0 10.1016/j.jhydrol.2021.126266 10.1109/ICNN.1995.488968 10.1016/j.jclepro.2021.127594 10.1088/1755-1315/1086/1/012036 10.3390/rs12223675 10.1161/JAHA.119.013924 10.1007/s12145-020-00477-2 10.5923/j.ajgis.20130201.01 10.3390/rs13204147 10.1109/4235.985692 10.1080/19475705.2017.1294113 10.1007/s11269-006-9016-4 10.3390/w11081654 10.1016/j.scitotenv.2018.07.054 10.1016/j.knosys.2020.105596 10.3390/w15132448 10.1002/hyp.5862 10.1029/2019WR025103 10.1016/j.rse.2019.111291 10.1016/j.jhydrol.2018.09.064 10.1002/wat2.1533 10.1029/2019WR026933 10.1016/j.jhydrol.2020.125376 10.3390/rs9090938 10.4249/scholarpedia.2776 10.5194/hess-25-4373-2021 10.1109/5.726791 10.2166/hydro.2021.179 10.1029/2018RG000598 10.1080/07038992.1994.10874582 10.1016/j.jhydrol.2019.123913 10.1016/j.jhydrol.2011.10.025 10.1016/j.ijepes.2015.03.024 10.1007/s11269-017-1719-1 10.1007/s12665-020-09190-1 10.1038/s41598-022-07693-4 10.1080/01431161.2017.1392635 10.3390/s20061723 10.1016/j.rse.2020.111664 10.1016/j.agwat.2020.106625 10.1016/S0893-6080(05)80023-1 10.1007/s11269-010-9633-9 10.1016/j.scitotenv.2019.03.045 10.1016/j.neunet.2006.01.001 10.1016/j.jhydrol.2011.10.039 10.1080/02626669609491518 10.5194/hess-15-39-2011 10.3390/rs13071359 10.1016/j.catena.2014.04.011 10.1038/s41586-019-0912-1 10.1016/j.scitotenv.2023.162998 10.1007/s11069-017-3024-y 10.1002/hyp.14596 10.2166/wst.2020.369 10.1002/2016WR019933 10.3390/atmos11010111 10.1016/j.envpol.2022.120203 10.2166/hydro.2009.041 10.2307/2346830 10.3390/rs8040342 10.1016/j.neucom.2016.09.010 10.3390/proceedings2110697 10.1016/j.chemosphere.2021.130265 10.1016/j.jhydrol.2020.124826 10.1016/j.catena.2019.104396 10.1007/s00477-020-01910-0 10.1007/s11269-005-3281-5 10.5194/hess-27-1791-2023 10.1016/j.jwpe.2023.103889 10.1111/j.1752-1688.2003.tb04386.x 10.1038/s41598-020-75291-3 10.1080/01431160600554983 10.1007/s11269-020-02659-5 10.1109/ICARCV.2014.7064414 10.1016/j.jhydrol.2015.04.032 10.1016/S0142-0615(01)00067-9 10.1029/95RG00403 10.1029/2020WR028205 10.1111/j.1752-1688.1974.tb00625.x 10.1016/j.scitotenv.2017.09.262 10.1016/j.ejrad.2019.02.038 10.1029/2007RG000243 10.1016/j.jhydrol.2014.03.057 10.1007/s13762-014-0613-0 10.1080/19475705.2017.1388853 10.1007/s11269-010-9639-3 10.1016/j.neucom.2018.04.006 10.5194/hess-20-2611-2016 10.1007/s100640050066 10.1016/j.jhydrol.2020.124780 10.1023/A:1014596120381 10.1029/2019GL085291 10.1007/s12517-021-06493-w 10.2166/hydro.2000.0004 10.1007/s12665-016-5919-4 10.1007/s11269-019-02301-z 10.1016/j.scitotenv.2020.137231 10.1016/j.jhydrol.2012.12.042 10.1007/s00521-020-05172-3 10.5194/hess-21-3879-2017 10.1029/2017WR022437 10.3390/ijerph20064977 10.3390/w15040620  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2024 Elsevier B.V. | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.jhydrol.2024.130907 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 1879-2707 | 
    
| ExternalDocumentID | 10_1016_j_jhydrol_2024_130907 S0022169424003019  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV ADVLN AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c342t-4dc6f422222b090178e64e75bc1b4c949a007056553f29282ed903e4228403953 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0022-1694 | 
    
| IngestDate | Thu Oct 02 11:13:28 EDT 2025 Wed Oct 01 02:36:34 EDT 2025 Thu Apr 24 23:00:45 EDT 2025 Sat Jul 13 15:30:40 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Hydrology Hydroclimatic extremes State-of-the-art approach Remote sensing Machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c342t-4dc6f422222b090178e64e75bc1b4c949a007056553f29282ed903e4228403953 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 3153159442 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_3153159442 crossref_citationtrail_10_1016_j_jhydrol_2024_130907 crossref_primary_10_1016_j_jhydrol_2024_130907 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2024_130907  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-03-01 | 
    
| PublicationDateYYYYMMDD | 2024-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Journal of hydrology (Amsterdam) | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Sun, Green, Swenson, Rodell (b0670) 2012; 422–423 Pal, Arabameri, Blaschke, Chowdhuri, Saha, Chakrabortty, Lee, Band (b0510) 2020; 12 Mahmoud (b0435) 2014; 120 Black, Tarnavsky, Maidment, Greatrex, Mookerjee, Quaife, Brown (b0065) 2016; 8 Yunus, Masago, Hijioka (b0770) 2020; 731 Alfwzan, Selim, Althobaiti, Hussin (b0030) 2023; 53 Jacobs, Myers, Whitfield (b0270) 2003; 39 Sahoo, Russo, Elliott, Foster (b0605) 2017; 53 Saraiva, S.V., Carvalho, F. de O., Santos, C.A.G., Barreto, L.C., Freire, P.K. de M.M., 2021. Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Applied Soft Computing 102, 107081. https://doi.org/10.1016/j.asoc.2021.107081. Brakenridge, G.R., Anderson, E., Nghiem, S.V., Caquard, S., Shabaneh, T.B., 2003. Flood warnings, flood disaster assessments, and flood hazard reduction: The roles of orbital remote sensing. Tien Bui, Ho, Pradhan, Pham, Nhu, Revhaug (b0675) 2016; 75 Georgescu, Moldovanu, Iticescu, Calmuc, Calmuc, Topa, Moraru (b0185) 2023; 879 Babovic (b0050) 2009; 11 Mehrabi, Pradhan, Moayedi, Alamri (b0450) 2020; 20 Zhou (b0785) 2021 El-Rawy, Batelaan, Alshehri, Almadani, Ahmed, Elbeltagi (b0165) 2023; 15 Hussain, Hussain, Khan, Naqvi, Jamil (b0265) 2020; 13 Kim, Han, Johnson, Lim, Cifelli (b0345) 2019; 577 Tyralis, Papacharalampous, Langousis (b0685) 2021; 33 Ghimire, Yaseen, Farooque, Deo, Zhang, Tao (b0190) 2021; 11 Razavi Termeh, Kornejady, Pourghasemi, Keesstra (b0560) 2018; 615 Danandeh Mehr, Kahya, Şahin, Nazemosadat (b0130) 2015; 12 LeCun, Bottou, Bengio, Haffner (b0395) 1998; 86 Peddle, Foody, Zhang, Franklin, LeDrew (b0520) 1994; 20 Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Van Diemen, R., 2019. IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Xu, Liang (b0750) 2021; 8 Dewan, Islam, Kumamoto, Nishigaki (b0145) 2007; 21 Li, Zhang, Zhang (b0420) 2021; 191 Li, Yan, Wang, Weng, Qin, Liu (b0415) 2019; 11 Jain, Saraf, Goswami, Ahmad (b0280) 2006; 20 Mishra, Coulibaly (b0470) 2009; 47 Khan, Baharudin, Lee, Khan (b0330) 2010; 1 Akurugu, Obuobie, Yidana, Stisen, Seidenfaden, Chegbeleh (b0020) 2022; 40 Costache (b0125) 2019; 33 Herath, Chadalawada, Babovic (b0235) 2021; 23 Adnan, Petroselli, Heddam, Santos, Kisi (b0010) 2021; 35 Kabenge, Elaru, Wang, Li (b0300) 2017; 89 Maulud, Abdulazeez (b0440) 2020; 1 Phootrakornchai, Jiriwibhakorn (b0525) 2015; 73 Hadri, Saidi, Boudhar (b0210) 2021; 14 Mokhtar, Jalali, He, Al-Ansari, Elbeltagi, Alsafadi, Abdo, Sammen, Gyasi-Agyei, Rodrigo-Comino (b0485) 2021; 9 Chawla, Karthikeyan, Mishra (b0105) 2020; 585 Ji, Li, Yang, Liu, He (b0290) 2018; 39 Kratzert, Klotz, Shalev, Klambauer, Hochreiter, Nearing (b0365) 2019; 2019 Adnan, Mostafa, Elbeltagi, Yaseen, Shahid, Kisi (b0015) 2022; 36 Babovic, Keijzer (b0060) 2002; 33 Han, Merwade, Heathman (b0215) 2012; 416 Zhao, Gentine, Reichstein, Zhang, Zhou, Wen, Lin, Li, Qiu (b0780) 2019; 46 Knoll, Breuer, Bach (b0355) 2019; 668 Tikhamarine, Souag-Gamane, Ahmed, Sammen, Kisi, Huang, El-Shafie (b0680) 2020; 589 Rahman, Chen, Islam, Mahmud, Pourghasemi, Alam, Rahim, Baig, Bhattacharjee, Dewan (b0540) 2021; 311 Wu, Ke, Chen, Liang, Zhao, Hong (b0735) 2020; 187 Cai, Liu, Shi, Zhou, Jiang, Babovic (b0085) 2022; 613 Nourani, Baghanam, Adamowski, Kisi (b0500) 2014; 514 Wwap (b0745) 2012 Saha, Pal, Chowdhuri, Roy, Chakrabortty, Shit (b0600) 2022 Young, Liu, Wu (b0755) 2017; 53 Sra, Nowozin, Wright (b0660) 2012 Engman (b0170) 1995; 33 Dang, Kumar (b0135) 2017; 8 Srivastava, Bhattacharya (b0665) 2006; 27 Mistry, S., Parekh, F., 2022. Flood Forecasting Using Artificial Neural Network. IOP Conf. Ser.: Earth Environ. Sci. 1086, 012036. https://doi.org/10.1088/1755-1315/1086/1/012036. Kafy, Bakshi, Saha, Faisal, Almulhim, Rahaman, Mohammad (b0310) 2023; 867 West, Quinn, Horswell (b0720) 2019; 232 Jasrotia, Dhiman, Aggarwal (b0285) 2002; 30 Kumanan, Jesuthanam, Ashok Kumar (b0375) 2008; 35 Murray-Rust, D., Nicenboim, I., Lockton, D., 2022. Metaphors for designers working with AI. Giardino, Bresciani, Villa, Martinelli (b0200) 2010; 24 Singha, Pasupuleti, Singha, Singh, Kumar (b0650) 2021; 276 Rasouli, Hsieh, Cannon (b0550) 2012; 414–415 Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, pp. 1942–1948. Babovic, Keijzer (b0055) 2000; 2 Saba, Biswas, Kuppili, Godia, Suri, Edla, Omerzu, Laird, Khanna, Mavrogeni (b0590) 2019; 114 Razavi, Hannah, Elshorbagy, Kumar, Marshall, Solomatine, Dezfuli, Sadegh, Famiglietti (b0555) 2022; 36 Zhang, Zhang, Song, Cheng, Paul, Gan, Shi, Luo, Zhao (b0775) 2020; 585 Yousefi, Pourghasemi, Emami, Rahmati, Tavangar, Pouyan, Tiefenbacher, Shamsoddini, Nekoeimehr (b0760) 2020; 10 Zounemat-Kermani, Batelaan, Fadaee, Hinkelmann (b0795) 2021; 598 Moradkhani, Hsu, Hong, Sorooshian (b0490) 2006; 33 Cai, Shi, Liu, Babovic (b0080) 2021; 37 Hoffmann, Sander (b0240) 2007; 15 Russell (b0585) 2016 Shortridge, Guikema, Zaitchik (b0635) 2016; 20 Liong, Gautam, Khu, Babovic, Keijzer, Muttil (b0430) 2002; 38 Orr, R.J., Murray, P.J., Eyles, C.J., Blackwell, M.S.A., Cardenas, L.M., Collins, A.L., Dungait, J. a. J., Goulding, K.W.T., Griffith, B.A., Gurr, S.J., Harris, P., Hawkins, J.M.B., Misselbrook, T.H., Rawlings, C., Shepherd, A., Sint, H., Takahashi, T., Tozer, K.N., Whitmore, A. p., Wu, L., Lee, M.R.F., 2016. The North Wyke Farm Platform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics. European Journal of Soil Science 67, 374–385. https://doi.org/10.1111/ejss.12350. Abido (b0005) 2002; 24 Haznedar, Kalinli (b0225) 2018; 302 Mijwel, M.M., 2018. Artificial neural networks advantages and disadvantages. Retrieved from LinkedIn https//www. linkedin. com/pulse/artificial-neuralnet Work. Parisouj, Mohebzadeh, Lee (b0515) 2020; 34 Alquraish, Khadr (b0035) 2021; 13 Breiman (b0075) 1996; 24 Meshgi, Schmitter, Chui, Babovic (b0460) 2015; 525 Sajedi-Hosseini, Malekian, Choubin, Rahmati, Cipullo, Coulon, Pradhan (b0610) 2018; 644 Chadalawada, Havlicek, Babovic (b0095) 2017; 31 Essam, Huang, Ng, Birima, Ahmed, El-Shafie (b0175) 2022; 12 Sevakula, Au-Yeung, Singh, Heist, Isselbacher, Armoundas (b0625) 2020; 9 Wang, Dong, Lall, Dong, Yang (b0705) 2019; 55 Hu, Mei, Zhang, Li, Li (b0250) 2021; 105 Khan, Shoaib, Hammad, Salahudin, Ahmad, Ahmad (b0335) 2021; 13 Sengupta, Basak, Saikia, Paul, Tsalavoutis, Atiah, Ravi, Peters (b0620) 2020; 194 Cheng, Fang, Kinouchi, Navon, Pain (b0110) 2020; 590 Wu, Cheng, Lo, Chen (b0730) 2010; 24 Yu, Jia, Xu (b0765) 2017; 219 Ko, Jeong, Lee, Kim (b0360) 2020; 11 Keijzer, Babovic (b0315) 2002; 3 Leblanc, Favreau, Tweed, Leduc, Razack, Mofor (b0390) 2007; 15 Uddin, Gurung, Giriraj, Shrestha (b0690) 2013; 2 Zhou, Teng, Situ, Liao, Feng, Chen, Zhang, Lu (b0790) 2023; 27 Polikar (b0530) 2009; 4 Khu, Liong, Babovic, Madsen, Muttil (b0340) 2001; 37 Aleotti, Chowdhury (b0025) 1999; 58 Klir, Yuan (b0350) 1995 Cf (b0090) 2015 Ritchie, Rango (b0570) 1996; 41 Wolpert (b0725) 1992; 5 Vélez-Nicolás, García-López, Barbero, Ruiz-Ortiz, Sánchez-Bellón (b0700) 2021; 13 Cherkassky, Krasnopolsky, Solomatine, Valdes (b0115) 2006; 19 Mojaddadi, Pradhan, Nampak, Ahmad, Ghazali, bin (b0480) 2017; 8 Singh (b0645) 2013; 481 Wu, Wang (b0740) 2023; 20 Huang, Qin, Zhang, Tang, Liu, Xia, Chiew, Post (b0260) 2020; 56 Jiang, Zheng, Babovic, Tian, Han (b0295) 2018; 567 Babovic (b0040) 1996 Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M., 2014. Medical image classification with convolutional neural network, in: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). IEEE, pp. 844–848. Wang, Wang, Niu, Peng (b0710) 2017; 9 Hong, Liu, Zhu (b0245) 2020; 718 Jain, Singh, Jain, Lohani (b0275) 2005; 19 Huang, Chen, Zhang, Wu (b0255) 2018; 56 El Bilali, Taleb, Brouziyne (b0160) 2021; 245 Saha, Pal, Chowdhuri, Roy, Chakrabortty (b0595) 2022; 314 McCabe, Rodell, Alsdorf, Miralles, Uijlenhoet, Wagner, Lucieer, Houborg, Verhoest, Franz (b0445) 2017; 21 Van Dijk, Renzullo (b0695) 2011; 15 Ganjisaffar, Caruana, Lopes (b0180) 2011 Ghobadi, Kang (b0195) 2023; 15 LeCun, Bengio, Hinton (b0400) 2015; 521 Clerc, Kennedy (b0120) 2002; 6 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (b0565) 2019; 566 Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25. Sit, Demiray, Xiang, Ewing, Sermet, Demir (b0655) 2020; 82 Dziugaite, G.K., Roy, D.M., 2017. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data. Lange, Sippel (b0385) 2020 Rango, Anderson (b0545) 1974; 10 Poursaeid, Mastouri, Shabanlou, Najarchi (b0535) 2020; 79 Guo, Shi, Huang, Fan, Huang (b0205) 2021; 12 Babovic (b0045) 2005; 19 DeVries, Huang, Armston, Huang, Jones, Lang (b0140) 2020; 240 Kenda, K., Čerin, M., Bogataj, M., Senožetnik, M., Klemen, K., Pergar, P., Laspidou, C., Mladenić, D., 2018. Groundwater Modeling with Machine Learning Techniques: Ljubljana polje Aquifer. Proceedings 2, 697. https://doi.org/10.3390/proceedings2110697. Hartigan, Wong (b0220) 1979; 28 Chadalawada, Herath, Babovic (b0100) 2020; 56 Ding, He (b0150) 2004 Kunnath-Poovakka, Ryu, Renzullo, George (b0380) 2016; 535 Herath, Chadalawada, Babovic (b0230) 2021; 25 Sheffield, Wood, Pan, Beck, Coccia, Serrat-Capdevila, Verbist (b0630) 2018; 54 Young (10.1016/j.jhydrol.2024.130907_b0755) 2017; 53 Giardino (10.1016/j.jhydrol.2024.130907_b0200) 2010; 24 10.1016/j.jhydrol.2024.130907_b0615 Zhao (10.1016/j.jhydrol.2024.130907_b0780) 2019; 46 Babovic (10.1016/j.jhydrol.2024.130907_b0040) 1996 Herath (10.1016/j.jhydrol.2024.130907_b0235) 2021; 23 Rasouli (10.1016/j.jhydrol.2024.130907_b0550) 2012; 414–415 Cherkassky (10.1016/j.jhydrol.2024.130907_b0115) 2006; 19 Han (10.1016/j.jhydrol.2024.130907_b0215) 2012; 416 Tien Bui (10.1016/j.jhydrol.2024.130907_b0675) 2016; 75 LeCun (10.1016/j.jhydrol.2024.130907_b0395) 1998; 86 Knoll (10.1016/j.jhydrol.2024.130907_b0355) 2019; 668 Hoffmann (10.1016/j.jhydrol.2024.130907_b0240) 2007; 15 Cf (10.1016/j.jhydrol.2024.130907_b0090) 2015 Babovic (10.1016/j.jhydrol.2024.130907_b0055) 2000; 2 Kunnath-Poovakka (10.1016/j.jhydrol.2024.130907_b0380) 2016; 535 10.1016/j.jhydrol.2024.130907_b0465 Ganjisaffar (10.1016/j.jhydrol.2024.130907_b0180) 2011 Zhou (10.1016/j.jhydrol.2024.130907_b0785) 2021 Kabenge (10.1016/j.jhydrol.2024.130907_b0300) 2017; 89 10.1016/j.jhydrol.2024.130907_b0505 Zhang (10.1016/j.jhydrol.2024.130907_b0775) 2020; 585 Klir (10.1016/j.jhydrol.2024.130907_b0350) 1995 Xu (10.1016/j.jhydrol.2024.130907_b0750) 2021; 8 Saha (10.1016/j.jhydrol.2024.130907_b0600) 2022 Li (10.1016/j.jhydrol.2024.130907_b0420) 2021; 191 Cheng (10.1016/j.jhydrol.2024.130907_b0110) 2020; 590 Liong (10.1016/j.jhydrol.2024.130907_b0430) 2002; 38 Adnan (10.1016/j.jhydrol.2024.130907_b0015) 2022; 36 Babovic (10.1016/j.jhydrol.2024.130907_b0060) 2002; 33 Parisouj (10.1016/j.jhydrol.2024.130907_b0515) 2020; 34 Sevakula (10.1016/j.jhydrol.2024.130907_b0625) 2020; 9 10.1016/j.jhydrol.2024.130907_b0070 Cai (10.1016/j.jhydrol.2024.130907_b0085) 2022; 613 10.1016/j.jhydrol.2024.130907_b0475 Khu (10.1016/j.jhydrol.2024.130907_b0340) 2001; 37 Babovic (10.1016/j.jhydrol.2024.130907_b0045) 2005; 19 Poursaeid (10.1016/j.jhydrol.2024.130907_b0535) 2020; 79 LeCun (10.1016/j.jhydrol.2024.130907_b0400) 2015; 521 El-Rawy (10.1016/j.jhydrol.2024.130907_b0165) 2023; 15 Yunus (10.1016/j.jhydrol.2024.130907_b0770) 2020; 731 Mishra (10.1016/j.jhydrol.2024.130907_b0470) 2009; 47 Rango (10.1016/j.jhydrol.2024.130907_b0545) 1974; 10 Sengupta (10.1016/j.jhydrol.2024.130907_b0620) 2020; 194 Chadalawada (10.1016/j.jhydrol.2024.130907_b0095) 2017; 31 Saba (10.1016/j.jhydrol.2024.130907_b0590) 2019; 114 McCabe (10.1016/j.jhydrol.2024.130907_b0445) 2017; 21 Huang (10.1016/j.jhydrol.2024.130907_b0255) 2018; 56 Sahoo (10.1016/j.jhydrol.2024.130907_b0605) 2017; 53 Uddin (10.1016/j.jhydrol.2024.130907_b0690) 2013; 2 Jasrotia (10.1016/j.jhydrol.2024.130907_b0285) 2002; 30 Costache (10.1016/j.jhydrol.2024.130907_b0125) 2019; 33 10.1016/j.jhydrol.2024.130907_b0640 Alfwzan (10.1016/j.jhydrol.2024.130907_b0030) 2023; 53 10.1016/j.jhydrol.2024.130907_b0405 Dewan (10.1016/j.jhydrol.2024.130907_b0145) 2007; 21 Guo (10.1016/j.jhydrol.2024.130907_b0205) 2021; 12 Engman (10.1016/j.jhydrol.2024.130907_b0170) 1995; 33 Zhou (10.1016/j.jhydrol.2024.130907_b0790) 2023; 27 Chadalawada (10.1016/j.jhydrol.2024.130907_b0100) 2020; 56 Herath (10.1016/j.jhydrol.2024.130907_b0230) 2021; 25 Khan (10.1016/j.jhydrol.2024.130907_b0335) 2021; 13 Ghimire (10.1016/j.jhydrol.2024.130907_b0190) 2021; 11 Russell (10.1016/j.jhydrol.2024.130907_b0585) 2016 Sit (10.1016/j.jhydrol.2024.130907_b0655) 2020; 82 Lange (10.1016/j.jhydrol.2024.130907_b0385) 2020 Van Dijk (10.1016/j.jhydrol.2024.130907_b0695) 2011; 15 Hartigan (10.1016/j.jhydrol.2024.130907_b0220) 1979; 28 Sra (10.1016/j.jhydrol.2024.130907_b0660) 2012 Jiang (10.1016/j.jhydrol.2024.130907_b0295) 2018; 567 Chawla (10.1016/j.jhydrol.2024.130907_b0105) 2020; 585 DeVries (10.1016/j.jhydrol.2024.130907_b0140) 2020; 240 10.1016/j.jhydrol.2024.130907_b0370 Kumanan (10.1016/j.jhydrol.2024.130907_b0375) 2008; 35 Srivastava (10.1016/j.jhydrol.2024.130907_b0665) 2006; 27 Razavi Termeh (10.1016/j.jhydrol.2024.130907_b0560) 2018; 615 Adnan (10.1016/j.jhydrol.2024.130907_b0010) 2021; 35 10.1016/j.jhydrol.2024.130907_b0495 Mojaddadi (10.1016/j.jhydrol.2024.130907_b0480) 2017; 8 Zounemat-Kermani (10.1016/j.jhydrol.2024.130907_b0795) 2021; 598 Hong (10.1016/j.jhydrol.2024.130907_b0245) 2020; 718 Nourani (10.1016/j.jhydrol.2024.130907_b0500) 2014; 514 Wu (10.1016/j.jhydrol.2024.130907_b0730) 2010; 24 Clerc (10.1016/j.jhydrol.2024.130907_b0120) 2002; 6 Vélez-Nicolás (10.1016/j.jhydrol.2024.130907_b0700) 2021; 13 Yousefi (10.1016/j.jhydrol.2024.130907_b0760) 2020; 10 Kratzert (10.1016/j.jhydrol.2024.130907_b0365) 2019; 2019 Pal (10.1016/j.jhydrol.2024.130907_b0510) 2020; 12 Wang (10.1016/j.jhydrol.2024.130907_b0705) 2019; 55 Wolpert (10.1016/j.jhydrol.2024.130907_b0725) 1992; 5 Ghobadi (10.1016/j.jhydrol.2024.130907_b0195) 2023; 15 Meshgi (10.1016/j.jhydrol.2024.130907_b0460) 2015; 525 Moradkhani (10.1016/j.jhydrol.2024.130907_b0490) 2006; 33 Kim (10.1016/j.jhydrol.2024.130907_b0345) 2019; 577 Singh (10.1016/j.jhydrol.2024.130907_b0645) 2013; 481 Shortridge (10.1016/j.jhydrol.2024.130907_b0635) 2016; 20 Huang (10.1016/j.jhydrol.2024.130907_b0260) 2020; 56 Reichstein (10.1016/j.jhydrol.2024.130907_b0565) 2019; 566 West (10.1016/j.jhydrol.2024.130907_b0720) 2019; 232 El Bilali (10.1016/j.jhydrol.2024.130907_b0160) 2021; 245 Sheffield (10.1016/j.jhydrol.2024.130907_b0630) 2018; 54 Ding (10.1016/j.jhydrol.2024.130907_b0150) 2004 Wu (10.1016/j.jhydrol.2024.130907_b0735) 2020; 187 Jain (10.1016/j.jhydrol.2024.130907_b0275) 2005; 19 Haznedar (10.1016/j.jhydrol.2024.130907_b0225) 2018; 302 Aleotti (10.1016/j.jhydrol.2024.130907_b0025) 1999; 58 Jain (10.1016/j.jhydrol.2024.130907_b0280) 2006; 20 Babovic (10.1016/j.jhydrol.2024.130907_b0050) 2009; 11 Ko (10.1016/j.jhydrol.2024.130907_b0360) 2020; 11 Abido (10.1016/j.jhydrol.2024.130907_b0005) 2002; 24 Phootrakornchai (10.1016/j.jhydrol.2024.130907_b0525) 2015; 73 10.1016/j.jhydrol.2024.130907_b0155 Peddle (10.1016/j.jhydrol.2024.130907_b0520) 1994; 20 Alquraish (10.1016/j.jhydrol.2024.130907_b0035) 2021; 13 Jacobs (10.1016/j.jhydrol.2024.130907_b0270) 2003; 39 Keijzer (10.1016/j.jhydrol.2024.130907_b0315) 2002; 3 Yu (10.1016/j.jhydrol.2024.130907_b0765) 2017; 219 Georgescu (10.1016/j.jhydrol.2024.130907_b0185) 2023; 879 Saha (10.1016/j.jhydrol.2024.130907_b0595) 2022; 314 Danandeh Mehr (10.1016/j.jhydrol.2024.130907_b0130) 2015; 12 Rahman (10.1016/j.jhydrol.2024.130907_b0540) 2021; 311 Tikhamarine (10.1016/j.jhydrol.2024.130907_b0680) 2020; 589 Breiman (10.1016/j.jhydrol.2024.130907_b0075) 1996; 24 Ji (10.1016/j.jhydrol.2024.130907_b0290) 2018; 39 Wang (10.1016/j.jhydrol.2024.130907_b0710) 2017; 9 Dang (10.1016/j.jhydrol.2024.130907_b0135) 2017; 8 Hu (10.1016/j.jhydrol.2024.130907_b0250) 2021; 105 Razavi (10.1016/j.jhydrol.2024.130907_b0555) 2022; 36 10.1016/j.jhydrol.2024.130907_b0320 Khan (10.1016/j.jhydrol.2024.130907_b0330) 2010; 1 Sajedi-Hosseini (10.1016/j.jhydrol.2024.130907_b0610) 2018; 644 Sun (10.1016/j.jhydrol.2024.130907_b0670) 2012; 422–423 Akurugu (10.1016/j.jhydrol.2024.130907_b0020) 2022; 40 10.1016/j.jhydrol.2024.130907_b0325 Cai (10.1016/j.jhydrol.2024.130907_b0080) 2021; 37 Hadri (10.1016/j.jhydrol.2024.130907_b0210) 2021; 14 Singha (10.1016/j.jhydrol.2024.130907_b0650) 2021; 276 Kafy (10.1016/j.jhydrol.2024.130907_b0310) 2023; 867 Leblanc (10.1016/j.jhydrol.2024.130907_b0390) 2007; 15 Mahmoud (10.1016/j.jhydrol.2024.130907_b0435) 2014; 120 Mehrabi (10.1016/j.jhydrol.2024.130907_b0450) 2020; 20 Li (10.1016/j.jhydrol.2024.130907_b0415) 2019; 11 Essam (10.1016/j.jhydrol.2024.130907_b0175) 2022; 12 Wu (10.1016/j.jhydrol.2024.130907_b0740) 2023; 20 Tyralis (10.1016/j.jhydrol.2024.130907_b0685) 2021; 33 Mokhtar (10.1016/j.jhydrol.2024.130907_b0485) 2021; 9 Ritchie (10.1016/j.jhydrol.2024.130907_b0570) 1996; 41 Polikar (10.1016/j.jhydrol.2024.130907_b0530) 2009; 4 Black (10.1016/j.jhydrol.2024.130907_b0065) 2016; 8 Wwap (10.1016/j.jhydrol.2024.130907_b0745) 2012 Hussain (10.1016/j.jhydrol.2024.130907_b0265) 2020; 13 Maulud (10.1016/j.jhydrol.2024.130907_b0440) 2020; 1  | 
    
| References_xml | – reference: Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25. – reference: Brakenridge, G.R., Anderson, E., Nghiem, S.V., Caquard, S., Shabaneh, T.B., 2003. Flood warnings, flood disaster assessments, and flood hazard reduction: The roles of orbital remote sensing. – start-page: 29 year: 2004 ident: b0150 article-title: K-means clustering via principal component analysis publication-title: In: Proceedings of the Twenty-First International Conference on Machine Learning – year: 2012 ident: b0660 article-title: Optimization for machine learning – volume: 11 start-page: 17497 year: 2021 ident: b0190 article-title: Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks publication-title: Sci. Rep. – volume: 56 start-page: 333 year: 2018 end-page: 360 ident: b0255 article-title: Detecting, extracting, and monitoring surface water from space using optical sensors: A review publication-title: Rev. Geophys. – volume: 30 start-page: 167 year: 2002 end-page: 180 ident: b0285 article-title: Rainfall-runoff and soil erosion modeling using Remote Sensing and GIS technique — a case study of tons watershed publication-title: J Indian Soc Remote Sens – volume: 3 start-page: 41 year: 2002 end-page: 79 ident: b0315 article-title: Declarative and preferential bias in GP-based scientific discovery publication-title: Genet. Program Evolvable Mach. – volume: 47 year: 2009 ident: b0470 article-title: Developments in hydrometric network design: A review publication-title: Rev. Geophys. – volume: 33 year: 2006 ident: b0490 article-title: Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting publication-title: Geophys. Res. Lett. – reference: Mijwel, M.M., 2018. Artificial neural networks advantages and disadvantages. Retrieved from LinkedIn https//www. linkedin. com/pulse/artificial-neuralnet Work. – reference: Mistry, S., Parekh, F., 2022. Flood Forecasting Using Artificial Neural Network. IOP Conf. Ser.: Earth Environ. Sci. 1086, 012036. https://doi.org/10.1088/1755-1315/1086/1/012036. – volume: 1 start-page: 140 year: 2020 end-page: 147 ident: b0440 article-title: A review on linear regression comprehensive in machine learning publication-title: Journal of Applied Science and Technology Trends – volume: 56 year: 2020 ident: b0100 article-title: Hydrologically Informed Machine Learning for Rainfall-Runoff Modeling: A Genetic Programming-Based Toolkit for Automatic Model Induction publication-title: Water Resour. Res. – volume: 414–415 start-page: 284 year: 2012 end-page: 293 ident: b0550 article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs publication-title: J. Hydrol. – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: b0220 article-title: A k-means clustering algorithm publication-title: Appl. Stat. – volume: 8 start-page: 1792 year: 2017 end-page: 1811 ident: b0135 article-title: Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: a case study of District 8, Ho Chi Minh city publication-title: Vietnam. Geomatics, Natural Hazards and Risk – volume: 33 start-page: 3053 year: 2021 end-page: 3068 ident: b0685 article-title: Super ensemble learning for daily streamflow forecasting: large-scale demonstration and comparison with multiple machine learning algorithms publication-title: Neural Comput & Applic – volume: 867 year: 2023 ident: b0310 article-title: Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms publication-title: Sci. Total Environ. – volume: 36 start-page: 999 year: 2022 end-page: 1033 ident: b0015 article-title: Development of new machine learning model for streamflow prediction: case studies in Pakistan publication-title: Stoch Environ Res Risk Assess – volume: 105 start-page: 1663 year: 2021 end-page: 1689 ident: b0250 article-title: Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China publication-title: Nat Hazards – volume: 590 year: 2020 ident: b0110 article-title: Long lead-time daily and monthly streamflow forecasting using machine learning methods publication-title: J. Hydrol. – volume: 13 start-page: 1359 year: 2021 ident: b0700 article-title: Applications of unmanned aerial systems (UASs) in hydrology: A review publication-title: Remote Sens. (Basel) – volume: 191 year: 2021 ident: b0420 article-title: Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data publication-title: Agr. Syst. – volume: 8 start-page: 1080 year: 2017 end-page: 1102 ident: b0480 article-title: Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS publication-title: Geomat. Nat. Haz. Risk – volume: 75 start-page: 1 year: 2016 end-page: 22 ident: b0675 article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks publication-title: Environ. Earth Sci. – volume: 24 start-page: 3773 year: 2010 end-page: 3797 ident: b0730 article-title: Application of SEBAL and Markov Models for Future Stream Flow Simulation Through Remote Sensing publication-title: Water Resour Manage – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0075 publication-title: Bagging Predictors. Machine Learning – volume: 15 start-page: 1 year: 2007 end-page: 3 ident: b0240 article-title: Remote sensing and GIS in hydrogeology publication-title: Hydrogeol J – volume: 13 start-page: 4147 year: 2021 ident: b0035 article-title: Remote-Sensing-Based Streamflow Forecasting Using Artificial Neural Network and Support Vector Machine Models publication-title: Remote Sens. (Basel) – volume: 15 start-page: 97 year: 2007 end-page: 100 ident: b0390 article-title: Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa publication-title: Hydrogeol J – volume: 20 start-page: 2611 year: 2016 end-page: 2628 ident: b0635 article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds publication-title: Hydrol. Earth Syst. Sci. – volume: 13 start-page: 915 year: 2020 end-page: 927 ident: b0265 article-title: A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin publication-title: Earth Sci Inform – volume: 34 start-page: 4113 year: 2020 end-page: 4131 ident: b0515 article-title: Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States publication-title: Water Resour Manage – volume: 20 start-page: 949 year: 2006 end-page: 959 ident: b0280 article-title: Flood inundation mapping using NOAA AVHRR data publication-title: Water Resour Manage – volume: 55 start-page: 7606 year: 2019 end-page: 7621 ident: b0705 article-title: Monthly streamflow simulation for the headwater catchment of the Yellow River basin with a hybrid statistical-dynamical model publication-title: Water Resour. Res. – volume: 8 start-page: 342 year: 2016 ident: b0065 article-title: The Use of Remotely Sensed Rainfall for Managing Drought Risk: A Case Study of Weather Index Insurance in Zambia publication-title: Remote Sens. (Basel) – volume: 21 start-page: 3879 year: 2017 end-page: 3914 ident: b0445 article-title: The future of Earth observation in hydrology publication-title: Hydrol. Earth Syst. Sci. – volume: 37 year: 2021 ident: b0080 article-title: Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States publication-title: J. Hydrol.: Reg. Stud. – volume: 11 start-page: 1654 year: 2019 ident: b0415 article-title: Flood Risk Assessment of Global Watersheds Based on Multiple Machine Learning Models publication-title: Water – volume: 12 start-page: 2191 year: 2015 end-page: 2200 ident: b0130 article-title: Successive-station monthly streamflow prediction using different artificial neural network algorithms publication-title: Int. J. Environ. Sci. Technol. – start-page: 85 year: 2011 end-page: 94 ident: b0180 article-title: Bagging gradient-boosted trees for high precision, low variance ranking models, in publication-title: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval – reference: Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M., 2014. Medical image classification with convolutional neural network, in: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). IEEE, pp. 844–848. – volume: 4 start-page: 2776 year: 2009 ident: b0530 publication-title: Ensemble Learning. Scholarpedia – volume: 39 start-page: 313 year: 2003 end-page: 324 ident: b0270 article-title: Improved Rainfall/Runoff Estimates Using Remo publication-title: JAWRA Journal of the American Water Resources Association – volume: 41 start-page: 429 year: 1996 end-page: 431 ident: b0570 article-title: Remote sensing applications to hydrology: introduction publication-title: Hydrol. Sci. J. – volume: 15 start-page: 2448 year: 2023 ident: b0165 article-title: An Integrated GIS and Machine-Learning Technique for Groundwater Quality Assessment and Prediction in Southern Saudi Arabia publication-title: Water – volume: 24 start-page: 3885 year: 2010 end-page: 3899 ident: b0200 article-title: Application of Remote Sensing in Water Resource Management: The Case Study of Lake Trasimeno, Italy publication-title: Water Resour Manage – volume: 187 year: 2020 ident: b0735 article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping publication-title: Catena – volume: 731 year: 2020 ident: b0770 article-title: COVID-19 and surface water quality: Improved lake water quality during the lockdown publication-title: Sci. Total Environ. – volume: 73 start-page: 170 year: 2015 end-page: 181 ident: b0525 article-title: Online critical clearing time estimation using an adaptive neuro-fuzzy inference system (ANFIS) publication-title: Int. J. Electr. Power Energy Syst. – volume: 58 start-page: 21 year: 1999 end-page: 44 ident: b0025 article-title: Landslide hazard assessment: summary review and new perspectives publication-title: Bull. Eng. Geol. Environ. – volume: 311 year: 2021 ident: b0540 article-title: Development of flood hazard map and emergency relief operation system using hydrodynamic modeling and machine learning algorithm publication-title: J. Clean. Prod. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0400 publication-title: Deep Learning. Nature – reference: Saraiva, S.V., Carvalho, F. de O., Santos, C.A.G., Barreto, L.C., Freire, P.K. de M.M., 2021. Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Applied Soft Computing 102, 107081. https://doi.org/10.1016/j.asoc.2021.107081. – volume: 879 year: 2023 ident: b0185 article-title: Assessing and forecasting water quality in the Danube River by using neural network approaches publication-title: Sci. Total Environ. – volume: 589 year: 2020 ident: b0680 article-title: Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization publication-title: J. Hydrol. – volume: 114 start-page: 14 year: 2019 end-page: 24 ident: b0590 article-title: The present and future of deep learning in radiology publication-title: Eur. J. Radiol. – volume: 35 start-page: 597 year: 2021 end-page: 616 ident: b0010 article-title: Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model publication-title: Stoch Environ Res Risk Assess – volume: 27 start-page: 1791 year: 2023 end-page: 1808 ident: b0790 article-title: A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions publication-title: Hydrol. Earth Syst. Sci. – start-page: 233 year: 2020 end-page: 257 ident: b0385 article-title: Machine Learning Applications in Hydrology publication-title: Forest-Water Interactions, Ecological Studies – volume: 53 start-page: 3878 year: 2017 end-page: 3895 ident: b0605 article-title: Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US publication-title: Water Resour. Res. – reference: Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Van Diemen, R., 2019. IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. – volume: 11 start-page: 181 year: 2009 end-page: 193 ident: b0050 article-title: Introducing knowledge into learning based on genetic programming publication-title: J. Hydroinf. – volume: 31 start-page: 3975 year: 2017 end-page: 3992 ident: b0095 article-title: A Genetic Programming Approach to System Identification of Rainfall-Runoff Models publication-title: Water Resour Manage – volume: 668 start-page: 1317 year: 2019 end-page: 1327 ident: b0355 article-title: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning publication-title: Sci. Total Environ. – volume: 23 start-page: 740 year: 2021 end-page: 763 ident: b0235 article-title: Genetic programming for hydrological applications: to model or to forecast that is the question publication-title: J. Hydroinf. – reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, pp. 1942–1948. – volume: 15 start-page: 39 year: 2011 end-page: 55 ident: b0695 article-title: Water resource monitoring systems and the role of satellite observations publication-title: Hydrol. Earth Syst. Sci. – year: 2022 ident: b0600 article-title: Vulnerability assessment of drought in India: insights from meteorological, hydrological, agricultural and socio-economic perspectives publication-title: Gondw. Res. – volume: 245 year: 2021 ident: b0160 article-title: Groundwater quality forecasting using machine learning algorithms for irrigation purposes publication-title: Agric Water Manag – volume: 12 start-page: 3675 year: 2020 ident: b0510 article-title: Ensemble of Machine-Learning Methods for Predicting Gully Erosion Susceptibility publication-title: Remote Sens. (Basel) – volume: 38 start-page: 705 year: 2002 end-page: 718 ident: b0430 article-title: GENETIC PROGRAMMING: A NEW PARADIGM IN RAINFALL RUNOFF MODELING publication-title: J Am Water Resources Assoc – volume: 416 start-page: 98 year: 2012 end-page: 117 ident: b0215 article-title: Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model publication-title: J. Hydrol. – volume: 585 year: 2020 ident: b0105 article-title: A review of remote sensing applications for water security: Quantity, quality, and extremes publication-title: J. Hydrol. – volume: 481 start-page: 220 year: 2013 end-page: 229 ident: b0645 article-title: Groundwater modelling for the assessment of water management alternatives publication-title: J. Hydrol. – volume: 613 year: 2022 ident: b0085 article-title: Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method publication-title: J. Hydrol. – year: 2021 ident: b0785 article-title: Machine learning – volume: 302 start-page: 66 year: 2018 end-page: 74 ident: b0225 article-title: Training ANFIS structure using simulated annealing algorithm for dynamic systems identification publication-title: Neurocomputing – year: 1995 ident: b0350 article-title: Fuzzy sets and fuzzy logic – year: 2015 ident: b0090 article-title: Transforming our world: the 2030 Agenda for Sustainable Development – volume: 240 year: 2020 ident: b0140 article-title: Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine publication-title: Remote Sens. Environ. – volume: 14 start-page: 118 year: 2021 ident: b0210 article-title: Multiscale drought monitoring and comparison using remote sensing in a Mediterranean arid region: a case study from west-central Morocco publication-title: Arab J Geosci – volume: 2019 start-page: 1 year: 2019 end-page: 32 ident: b0365 article-title: Benchmarking a catchment-aware long short-term memory network (LSTM) for large-scale hydrological modeling publication-title: Hydrol. Earth Syst. Sci. Discuss – year: 1996 ident: b0040 article-title: Emergence, evolution, intelligence; hydroinformatics: a study of distributed and decentralised computing using intelligent agents publication-title: Citeseer. – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: b0565 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature – volume: 567 start-page: 25 year: 2018 end-page: 40 ident: b0295 article-title: A computer vision-based approach to fusing spatiotemporal data for hydrological modeling publication-title: J. Hydrol. – volume: 8 start-page: e1533 year: 2021 ident: b0750 article-title: Machine learning for hydrologic sciences: An introductory overview publication-title: Wiley Interdiscip. Rev. Water – volume: 615 start-page: 438 year: 2018 end-page: 451 ident: b0560 article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms publication-title: Sci. Total Environ. – volume: 219 start-page: 88 year: 2017 end-page: 98 ident: b0765 article-title: Convolutional neural networks for hyperspectral image classification publication-title: Neurocomputing – volume: 9 start-page: 65503 year: 2021 end-page: 65523 ident: b0485 article-title: Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms publication-title: IEEE Access – volume: 422–423 start-page: 1 year: 2012 end-page: 9 ident: b0670 article-title: Toward calibration of regional groundwater models using GRACE data publication-title: J. Hydrol. – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: b0120 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 535 start-page: 509 year: 2016 end-page: 524 ident: b0380 article-title: The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction publication-title: J. Hydrol. – volume: 53 start-page: 205 year: 2017 end-page: 216 ident: b0755 article-title: A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events publication-title: Appl. Soft Comput. – volume: 644 start-page: 954 year: 2018 end-page: 962 ident: b0610 article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination publication-title: Sci. Total Environ. – volume: 36 start-page: e14596 year: 2022 ident: b0555 article-title: Coevolution of machine learning and process-based modelling to revolutionize Earth and environmental sciences: A perspective publication-title: Hydrol. Process. – volume: 33 start-page: 3239 year: 2019 end-page: 3256 ident: b0125 article-title: Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management publication-title: Water Resour Manage – reference: Murray-Rust, D., Nicenboim, I., Lockton, D., 2022. Metaphors for designers working with AI. – volume: 40 year: 2022 ident: b0020 article-title: Groundwater resources assessment in the Densu Basin: A review publication-title: J. Hydrol.: Reg. Stud. – volume: 53 year: 2023 ident: b0030 article-title: Application of Bi-LSTM method for groundwater quality assessment through water quality indices publication-title: J. Water Process Eng. – volume: 56 year: 2020 ident: b0260 article-title: Using Remote Sensing Data-Based Hydrological Model Calibrations for Predicting Runoff in Ungauged or Poorly Gauged Catchments publication-title: Water Resour. Res. – reference: Kenda, K., Čerin, M., Bogataj, M., Senožetnik, M., Klemen, K., Pergar, P., Laspidou, C., Mladenić, D., 2018. Groundwater Modeling with Machine Learning Techniques: Ljubljana polje Aquifer. Proceedings 2, 697. https://doi.org/10.3390/proceedings2110697. – volume: 1 start-page: 4 year: 2010 end-page: 20 ident: b0330 article-title: A review of machine learning algorithms for text-documents classification publication-title: Journal of Advances in Information Technology – volume: 46 start-page: 14496 year: 2019 end-page: 14507 ident: b0780 article-title: Physics-Constrained Machine Learning of Evapotranspiration publication-title: Geophys. Res. Lett. – volume: 37 start-page: 439 year: 2001 end-page: 451 ident: b0340 article-title: Genetic Programming and Its Application in Real-Time Runoff Forecasting1 publication-title: JAWRA Journal of the American Water Resources Association – volume: 79 start-page: 453 year: 2020 ident: b0535 article-title: Estimation of total dissolved solids, electrical conductivity, salinity and groundwater levels using novel learning machines publication-title: Environ Earth Sci – reference: Dziugaite, G.K., Roy, D.M., 2017. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data. – volume: 13 start-page: 3528 year: 2021 ident: b0335 article-title: Application of Machine Learning Techniques in Rainfall-Runoff Modelling of the Soan River Basin publication-title: Pakistan. Water – volume: 35 start-page: 778 year: 2008 end-page: 788 ident: b0375 article-title: Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness publication-title: Int. J. Adv. Manuf. Technol. – volume: 2 start-page: 1 year: 2013 end-page: 5 ident: b0690 article-title: Application of remote sensing and GIS for flood hazard management: a case study from Sindh Province, Pakistan publication-title: American Journal of Geographic Information System – volume: 33 start-page: 967 year: 1995 end-page: 975 ident: b0170 article-title: Recent advances in remote sensing in hydrology publication-title: Rev. Geophys. – volume: 194 year: 2020 ident: b0620 article-title: A review of deep learning with special emphasis on architectures, applications and recent trends publication-title: Knowl.-Based Syst. – volume: 12 year: 2021 ident: b0205 article-title: Landslide susceptibility zonation method based on C5. 0 decision tree and K-means cluster algorithms to improve the efficiency of risk management publication-title: Geosci. Front. – volume: 39 start-page: 786 year: 2018 end-page: 809 ident: b0290 article-title: Comprehensive drought index as an indicator for use in drought monitoring integrating multi-source remote sensing data: a case study covering the Sichuan-Chongqing region publication-title: Int. J. Remote Sens. – reference: Orr, R.J., Murray, P.J., Eyles, C.J., Blackwell, M.S.A., Cardenas, L.M., Collins, A.L., Dungait, J. a. J., Goulding, K.W.T., Griffith, B.A., Gurr, S.J., Harris, P., Hawkins, J.M.B., Misselbrook, T.H., Rawlings, C., Shepherd, A., Sint, H., Takahashi, T., Tozer, K.N., Whitmore, A. p., Wu, L., Lee, M.R.F., 2016. The North Wyke Farm Platform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics. European Journal of Soil Science 67, 374–385. https://doi.org/10.1111/ejss.12350. – volume: 5 start-page: 241 year: 1992 end-page: 259 ident: b0725 publication-title: Stacked Generalization. Neural Networks – year: 2016 ident: b0585 article-title: Artificial Intelligence: A Modern Approach, eBook – volume: 21 start-page: 1601 year: 2007 end-page: 1612 ident: b0145 article-title: Evaluating Flood Hazard for Land-Use Planning in Greater Dhaka of Bangladesh Using Remote Sensing and GIS Techniques publication-title: Water Resour Manage – volume: 82 start-page: 2635 year: 2020 end-page: 2670 ident: b0655 article-title: A comprehensive review of deep learning applications in hydrology and water resources publication-title: Water Sci. Technol. – year: 2012 ident: b0745 article-title: World Water Assessment Programme: The United Nations World Water Development Report 4 – volume: 314 year: 2022 ident: b0595 article-title: Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms publication-title: Environ. Pollut. – volume: 718 year: 2020 ident: b0245 article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble publication-title: Sci. Total Environ. – volume: 577 year: 2019 ident: b0345 article-title: Hybrid machine learning framework for hydrological assessment publication-title: J. Hydrol. – volume: 89 start-page: 1369 year: 2017 end-page: 1387 ident: b0300 article-title: Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based flood hazard index publication-title: Nat Hazards – volume: 33 start-page: 331 year: 2002 end-page: 346 ident: b0060 article-title: Rainfall Runoff Modelling Based on Genetic Programming publication-title: Hydrol. Res. – volume: 514 start-page: 358 year: 2014 end-page: 377 ident: b0500 article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review publication-title: J. Hydrol. – volume: 54 start-page: 9724 year: 2018 end-page: 9758 ident: b0630 article-title: Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions publication-title: Water Resour. Res. – volume: 525 start-page: 711 year: 2015 end-page: 723 ident: b0460 article-title: Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using genetic programming publication-title: J. Hydrol. – volume: 20 start-page: 1723 year: 2020 ident: b0450 article-title: Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques publication-title: Sensors – volume: 15 start-page: 620 year: 2023 ident: b0195 article-title: Application of Machine Learning in Water Resources Management: A Systematic Literature Review publication-title: Water – volume: 232 year: 2019 ident: b0720 article-title: Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities publication-title: Remote Sens. Environ. – volume: 19 start-page: 333 year: 2005 end-page: 347 ident: b0275 article-title: Delineation of Flood-Prone Areas Using Remote Sensing Techniques publication-title: Water Resour Manage – volume: 276 year: 2021 ident: b0650 article-title: Prediction of groundwater quality using efficient machine learning technique publication-title: Chemosphere – volume: 19 start-page: 113 year: 2006 end-page: 121 ident: b0115 article-title: Computational intelligence in earth sciences and environmental applications: Issues and challenges publication-title: Neural Netw. – volume: 20 start-page: 396 year: 1994 end-page: 407 ident: b0520 article-title: Multi-source image classification II: An empirical comparison of evidential reasoning and neural network approaches publication-title: Can. J. Remote. Sens. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b0395 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 10 start-page: 1060 year: 1974 end-page: 1081 ident: b0545 article-title: Flood Hazard Studies in the Mississippi River Basin Using Remote Sensing1 publication-title: JAWRA Journal of the American Water Resources Association – volume: 9 start-page: 938 year: 2017 ident: b0710 article-title: Integration of Information Theory, K-Means Cluster Analysis and the Logistic Regression Model for Landslide Susceptibility Mapping in the Three Gorges Area publication-title: China. Remote Sensing – volume: 19 start-page: 1511 year: 2005 end-page: 1515 ident: b0045 article-title: Data mining in hydrology publication-title: Hydrol. Process. – volume: 27 start-page: 4599 year: 2006 end-page: 4620 ident: b0665 article-title: Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain publication-title: Int. J. Remote Sens. – volume: 20 start-page: 4977 year: 2023 ident: b0740 article-title: Application of Bagging, Boosting and Stacking Ensemble and EasyEnsemble Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area of China publication-title: Int. J. Environ. Res. Public Health – volume: 24 start-page: 563 year: 2002 end-page: 571 ident: b0005 article-title: Optimal power flow using particle swarm optimization publication-title: Int. J. Electr. Power Energy Syst. – volume: 120 start-page: 111 year: 2014 end-page: 121 ident: b0435 article-title: Investigation of rainfall–runoff modeling for Egypt by using remote sensing and GIS integration publication-title: Catena – volume: 10 start-page: 18114 year: 2020 ident: b0760 article-title: Assessing the susceptibility of schools to flood events in Iran publication-title: Sci Rep – volume: 25 start-page: 4373 year: 2021 end-page: 4401 ident: b0230 article-title: Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling publication-title: Hydrol. Earth Syst. Sci. – volume: 585 year: 2020 ident: b0775 article-title: Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches publication-title: J. Hydrol. – volume: 12 start-page: 3883 year: 2022 ident: b0175 article-title: Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms publication-title: Sci Rep – volume: 2 start-page: 35 year: 2000 end-page: 60 ident: b0055 article-title: Genetic programming as a model induction engine publication-title: J. Hydroinf. – volume: 598 year: 2021 ident: b0795 article-title: Ensemble machine learning paradigms in hydrology: A review publication-title: J. Hydrol. – volume: 11 start-page: 111 year: 2020 ident: b0360 article-title: The Development of a Quantitative Precipitation Forecast Correction Technique Based on Machine Learning for Hydrological Applications publication-title: Atmos. – volume: 9 start-page: e013924 year: 2020 ident: b0625 article-title: State-of-the-Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System publication-title: JAHA – volume: 38 start-page: 705 year: 2002 ident: 10.1016/j.jhydrol.2024.130907_b0430 article-title: GENETIC PROGRAMMING: A NEW PARADIGM IN RAINFALL RUNOFF MODELING publication-title: J Am Water Resources Assoc doi: 10.1111/j.1752-1688.2002.tb00991.x – volume: 867 year: 2023 ident: 10.1016/j.jhydrol.2024.130907_b0310 article-title: Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.161394 – volume: 1 start-page: 140 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0440 article-title: A review on linear regression comprehensive in machine learning publication-title: Journal of Applied Science and Technology Trends doi: 10.38094/jastt1457 – volume: 535 start-page: 509 year: 2016 ident: 10.1016/j.jhydrol.2024.130907_b0380 article-title: The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.02.018 – start-page: 85 year: 2011 ident: 10.1016/j.jhydrol.2024.130907_b0180 article-title: Bagging gradient-boosted trees for high precision, low variance ranking models, in – volume: 35 start-page: 778 year: 2008 ident: 10.1016/j.jhydrol.2024.130907_b0375 article-title: Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-006-0755-4 – volume: 30 start-page: 167 year: 2002 ident: 10.1016/j.jhydrol.2024.130907_b0285 article-title: Rainfall-runoff and soil erosion modeling using Remote Sensing and GIS technique — a case study of tons watershed publication-title: J Indian Soc Remote Sens doi: 10.1007/BF02990649 – volume: 33 start-page: 331 year: 2002 ident: 10.1016/j.jhydrol.2024.130907_b0060 article-title: Rainfall Runoff Modelling Based on Genetic Programming publication-title: Hydrol. Res. doi: 10.2166/nh.2002.0012 – volume: 15 start-page: 1 year: 2007 ident: 10.1016/j.jhydrol.2024.130907_b0240 article-title: Remote sensing and GIS in hydrogeology publication-title: Hydrogeol J doi: 10.1007/s10040-006-0140-2 – volume: 613 year: 2022 ident: 10.1016/j.jhydrol.2024.130907_b0085 article-title: Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128495 – volume: 37 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0080 article-title: Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States publication-title: J. Hydrol.: Reg. Stud. – volume: 191 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0420 article-title: Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data publication-title: Agr. Syst. doi: 10.1016/j.agsy.2021.103141 – volume: 589 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0680 article-title: Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125133 – volume: 11 start-page: 17497 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0190 article-title: Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks publication-title: Sci. Rep. doi: 10.1038/s41598-021-96751-4 – start-page: 29 year: 2004 ident: 10.1016/j.jhydrol.2024.130907_b0150 article-title: K-means clustering via principal component analysis – volume: 416 start-page: 98 year: 2012 ident: 10.1016/j.jhydrol.2024.130907_b0215 article-title: Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.11.039 – ident: 10.1016/j.jhydrol.2024.130907_b0615 doi: 10.1016/j.asoc.2021.107081 – ident: 10.1016/j.jhydrol.2024.130907_b0495 doi: 10.21606/drs.2022.667 – volume: 105 start-page: 1663 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0250 article-title: Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China publication-title: Nat Hazards doi: 10.1007/s11069-020-04371-4 – volume: 12 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0205 article-title: Landslide susceptibility zonation method based on C5. 0 decision tree and K-means cluster algorithms to improve the efficiency of risk management publication-title: Geosci. Front. doi: 10.1016/j.gsf.2021.101249 – volume: 731 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0770 article-title: COVID-19 and surface water quality: Improved lake water quality during the lockdown publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139012 – year: 1996 ident: 10.1016/j.jhydrol.2024.130907_b0040 article-title: Emergence, evolution, intelligence; hydroinformatics: a study of distributed and decentralised computing using intelligent agents publication-title: Citeseer. – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.jhydrol.2024.130907_b0365 article-title: Benchmarking a catchment-aware long short-term memory network (LSTM) for large-scale hydrological modeling publication-title: Hydrol. Earth Syst. Sci. Discuss – volume: 36 start-page: 999 year: 2022 ident: 10.1016/j.jhydrol.2024.130907_b0015 article-title: Development of new machine learning model for streamflow prediction: case studies in Pakistan publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-021-02111-z – volume: 33 year: 2006 ident: 10.1016/j.jhydrol.2024.130907_b0490 article-title: Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL026855 – volume: 53 start-page: 205 year: 2017 ident: 10.1016/j.jhydrol.2024.130907_b0755 article-title: A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.052 – volume: 9 start-page: 65503 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0485 article-title: Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3074305 – volume: 21 start-page: 1601 year: 2007 ident: 10.1016/j.jhydrol.2024.130907_b0145 article-title: Evaluating Flood Hazard for Land-Use Planning in Greater Dhaka of Bangladesh Using Remote Sensing and GIS Techniques publication-title: Water Resour Manage doi: 10.1007/s11269-006-9116-1 – ident: 10.1016/j.jhydrol.2024.130907_b0505 doi: 10.1111/ejss.12350 – volume: 1 start-page: 4 year: 2010 ident: 10.1016/j.jhydrol.2024.130907_b0330 article-title: A review of machine learning algorithms for text-documents classification publication-title: Journal of Advances in Information Technology – volume: 37 start-page: 439 year: 2001 ident: 10.1016/j.jhydrol.2024.130907_b0340 article-title: Genetic Programming and Its Application in Real-Time Runoff Forecasting1 publication-title: JAWRA Journal of the American Water Resources Association doi: 10.1111/j.1752-1688.2001.tb00980.x – volume: 15 start-page: 97 year: 2007 ident: 10.1016/j.jhydrol.2024.130907_b0390 article-title: Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa publication-title: Hydrogeol J doi: 10.1007/s10040-006-0126-0 – volume: 598 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0795 article-title: Ensemble machine learning paradigms in hydrology: A review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126266 – year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0785 – ident: 10.1016/j.jhydrol.2024.130907_b0325 doi: 10.1109/ICNN.1995.488968 – volume: 311 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0540 article-title: Development of flood hazard map and emergency relief operation system using hydrodynamic modeling and machine learning algorithm publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127594 – ident: 10.1016/j.jhydrol.2024.130907_b0475 doi: 10.1088/1755-1315/1086/1/012036 – volume: 12 start-page: 3675 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0510 article-title: Ensemble of Machine-Learning Methods for Predicting Gully Erosion Susceptibility publication-title: Remote Sens. (Basel) doi: 10.3390/rs12223675 – volume: 9 start-page: e013924 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0625 article-title: State-of-the-Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System publication-title: JAHA doi: 10.1161/JAHA.119.013924 – year: 2012 ident: 10.1016/j.jhydrol.2024.130907_b0745 – volume: 13 start-page: 915 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0265 article-title: A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin publication-title: Earth Sci Inform doi: 10.1007/s12145-020-00477-2 – year: 2016 ident: 10.1016/j.jhydrol.2024.130907_b0585 – volume: 2 start-page: 1 year: 2013 ident: 10.1016/j.jhydrol.2024.130907_b0690 article-title: Application of remote sensing and GIS for flood hazard management: a case study from Sindh Province, Pakistan publication-title: American Journal of Geographic Information System doi: 10.5923/j.ajgis.20130201.01 – volume: 13 start-page: 4147 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0035 article-title: Remote-Sensing-Based Streamflow Forecasting Using Artificial Neural Network and Support Vector Machine Models publication-title: Remote Sens. (Basel) doi: 10.3390/rs13204147 – volume: 6 start-page: 58 year: 2002 ident: 10.1016/j.jhydrol.2024.130907_b0120 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 13 start-page: 3528 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0335 article-title: Application of Machine Learning Techniques in Rainfall-Runoff Modelling of the Soan River Basin publication-title: Pakistan. Water – year: 2015 ident: 10.1016/j.jhydrol.2024.130907_b0090 – volume: 8 start-page: 1080 year: 2017 ident: 10.1016/j.jhydrol.2024.130907_b0480 article-title: Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS publication-title: Geomat. Nat. Haz. Risk doi: 10.1080/19475705.2017.1294113 – volume: 20 start-page: 949 year: 2006 ident: 10.1016/j.jhydrol.2024.130907_b0280 article-title: Flood inundation mapping using NOAA AVHRR data publication-title: Water Resour Manage doi: 10.1007/s11269-006-9016-4 – volume: 11 start-page: 1654 year: 2019 ident: 10.1016/j.jhydrol.2024.130907_b0415 article-title: Flood Risk Assessment of Global Watersheds Based on Multiple Machine Learning Models publication-title: Water doi: 10.3390/w11081654 – volume: 644 start-page: 954 year: 2018 ident: 10.1016/j.jhydrol.2024.130907_b0610 article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.054 – year: 1995 ident: 10.1016/j.jhydrol.2024.130907_b0350 – volume: 194 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0620 article-title: A review of deep learning with special emphasis on architectures, applications and recent trends publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105596 – volume: 15 start-page: 2448 year: 2023 ident: 10.1016/j.jhydrol.2024.130907_b0165 article-title: An Integrated GIS and Machine-Learning Technique for Groundwater Quality Assessment and Prediction in Southern Saudi Arabia publication-title: Water doi: 10.3390/w15132448 – volume: 19 start-page: 1511 year: 2005 ident: 10.1016/j.jhydrol.2024.130907_b0045 article-title: Data mining in hydrology publication-title: Hydrol. Process. doi: 10.1002/hyp.5862 – start-page: 233 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0385 article-title: Machine Learning Applications in Hydrology – volume: 55 start-page: 7606 year: 2019 ident: 10.1016/j.jhydrol.2024.130907_b0705 article-title: Monthly streamflow simulation for the headwater catchment of the Yellow River basin with a hybrid statistical-dynamical model publication-title: Water Resour. Res. doi: 10.1029/2019WR025103 – volume: 232 year: 2019 ident: 10.1016/j.jhydrol.2024.130907_b0720 article-title: Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111291 – volume: 567 start-page: 25 year: 2018 ident: 10.1016/j.jhydrol.2024.130907_b0295 article-title: A computer vision-based approach to fusing spatiotemporal data for hydrological modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.09.064 – volume: 8 start-page: e1533 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0750 article-title: Machine learning for hydrologic sciences: An introductory overview publication-title: Wiley Interdiscip. Rev. Water doi: 10.1002/wat2.1533 – volume: 56 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0100 article-title: Hydrologically Informed Machine Learning for Rainfall-Runoff Modeling: A Genetic Programming-Based Toolkit for Automatic Model Induction publication-title: Water Resour. Res. doi: 10.1029/2019WR026933 – volume: 590 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0110 article-title: Long lead-time daily and monthly streamflow forecasting using machine learning methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125376 – volume: 9 start-page: 938 year: 2017 ident: 10.1016/j.jhydrol.2024.130907_b0710 article-title: Integration of Information Theory, K-Means Cluster Analysis and the Logistic Regression Model for Landslide Susceptibility Mapping in the Three Gorges Area publication-title: China. Remote Sensing doi: 10.3390/rs9090938 – volume: 4 start-page: 2776 year: 2009 ident: 10.1016/j.jhydrol.2024.130907_b0530 publication-title: Ensemble Learning. Scholarpedia doi: 10.4249/scholarpedia.2776 – volume: 25 start-page: 4373 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0230 article-title: Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-4373-2021 – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.jhydrol.2024.130907_b0395 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 23 start-page: 740 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0235 article-title: Genetic programming for hydrological applications: to model or to forecast that is the question publication-title: J. Hydroinf. doi: 10.2166/hydro.2021.179 – volume: 56 start-page: 333 year: 2018 ident: 10.1016/j.jhydrol.2024.130907_b0255 article-title: Detecting, extracting, and monitoring surface water from space using optical sensors: A review publication-title: Rev. Geophys. doi: 10.1029/2018RG000598 – volume: 20 start-page: 396 year: 1994 ident: 10.1016/j.jhydrol.2024.130907_b0520 article-title: Multi-source image classification II: An empirical comparison of evidential reasoning and neural network approaches publication-title: Can. J. Remote. Sens. doi: 10.1080/07038992.1994.10874582 – volume: 577 year: 2019 ident: 10.1016/j.jhydrol.2024.130907_b0345 article-title: Hybrid machine learning framework for hydrological assessment publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.123913 – volume: 422–423 start-page: 1 year: 2012 ident: 10.1016/j.jhydrol.2024.130907_b0670 article-title: Toward calibration of regional groundwater models using GRACE data publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.10.025 – volume: 73 start-page: 170 year: 2015 ident: 10.1016/j.jhydrol.2024.130907_b0525 article-title: Online critical clearing time estimation using an adaptive neuro-fuzzy inference system (ANFIS) publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.03.024 – volume: 31 start-page: 3975 year: 2017 ident: 10.1016/j.jhydrol.2024.130907_b0095 article-title: A Genetic Programming Approach to System Identification of Rainfall-Runoff Models publication-title: Water Resour Manage doi: 10.1007/s11269-017-1719-1 – volume: 79 start-page: 453 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0535 article-title: Estimation of total dissolved solids, electrical conductivity, salinity and groundwater levels using novel learning machines publication-title: Environ Earth Sci doi: 10.1007/s12665-020-09190-1 – volume: 12 start-page: 3883 year: 2022 ident: 10.1016/j.jhydrol.2024.130907_b0175 article-title: Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms publication-title: Sci Rep doi: 10.1038/s41598-022-07693-4 – volume: 39 start-page: 786 year: 2018 ident: 10.1016/j.jhydrol.2024.130907_b0290 article-title: Comprehensive drought index as an indicator for use in drought monitoring integrating multi-source remote sensing data: a case study covering the Sichuan-Chongqing region publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1392635 – volume: 20 start-page: 1723 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0450 article-title: Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques publication-title: Sensors doi: 10.3390/s20061723 – volume: 240 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0140 article-title: Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111664 – volume: 245 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0160 article-title: Groundwater quality forecasting using machine learning algorithms for irrigation purposes publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106625 – volume: 5 start-page: 241 year: 1992 ident: 10.1016/j.jhydrol.2024.130907_b0725 publication-title: Stacked Generalization. Neural Networks doi: 10.1016/S0893-6080(05)80023-1 – volume: 24 start-page: 3773 year: 2010 ident: 10.1016/j.jhydrol.2024.130907_b0730 article-title: Application of SEBAL and Markov Models for Future Stream Flow Simulation Through Remote Sensing publication-title: Water Resour Manage doi: 10.1007/s11269-010-9633-9 – ident: 10.1016/j.jhydrol.2024.130907_b0465 – volume: 668 start-page: 1317 year: 2019 ident: 10.1016/j.jhydrol.2024.130907_b0355 article-title: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.045 – volume: 19 start-page: 113 year: 2006 ident: 10.1016/j.jhydrol.2024.130907_b0115 article-title: Computational intelligence in earth sciences and environmental applications: Issues and challenges publication-title: Neural Netw. doi: 10.1016/j.neunet.2006.01.001 – volume: 414–415 start-page: 284 year: 2012 ident: 10.1016/j.jhydrol.2024.130907_b0550 article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.10.039 – volume: 41 start-page: 429 year: 1996 ident: 10.1016/j.jhydrol.2024.130907_b0570 article-title: Remote sensing applications to hydrology: introduction publication-title: Hydrol. Sci. J. doi: 10.1080/02626669609491518 – volume: 15 start-page: 39 year: 2011 ident: 10.1016/j.jhydrol.2024.130907_b0695 article-title: Water resource monitoring systems and the role of satellite observations publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-39-2011 – volume: 13 start-page: 1359 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0700 article-title: Applications of unmanned aerial systems (UASs) in hydrology: A review publication-title: Remote Sens. (Basel) doi: 10.3390/rs13071359 – volume: 120 start-page: 111 year: 2014 ident: 10.1016/j.jhydrol.2024.130907_b0435 article-title: Investigation of rainfall–runoff modeling for Egypt by using remote sensing and GIS integration publication-title: Catena doi: 10.1016/j.catena.2014.04.011 – volume: 566 start-page: 195 year: 2019 ident: 10.1016/j.jhydrol.2024.130907_b0565 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 879 year: 2023 ident: 10.1016/j.jhydrol.2024.130907_b0185 article-title: Assessing and forecasting water quality in the Danube River by using neural network approaches publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.162998 – volume: 89 start-page: 1369 year: 2017 ident: 10.1016/j.jhydrol.2024.130907_b0300 article-title: Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based flood hazard index publication-title: Nat Hazards doi: 10.1007/s11069-017-3024-y – volume: 36 start-page: e14596 year: 2022 ident: 10.1016/j.jhydrol.2024.130907_b0555 article-title: Coevolution of machine learning and process-based modelling to revolutionize Earth and environmental sciences: A perspective publication-title: Hydrol. Process. doi: 10.1002/hyp.14596 – volume: 82 start-page: 2635 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0655 article-title: A comprehensive review of deep learning applications in hydrology and water resources publication-title: Water Sci. Technol. doi: 10.2166/wst.2020.369 – volume: 53 start-page: 3878 year: 2017 ident: 10.1016/j.jhydrol.2024.130907_b0605 article-title: Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US publication-title: Water Resour. Res. doi: 10.1002/2016WR019933 – volume: 11 start-page: 111 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0360 article-title: The Development of a Quantitative Precipitation Forecast Correction Technique Based on Machine Learning for Hydrological Applications publication-title: Atmos. doi: 10.3390/atmos11010111 – volume: 314 year: 2022 ident: 10.1016/j.jhydrol.2024.130907_b0595 article-title: Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.120203 – volume: 40 year: 2022 ident: 10.1016/j.jhydrol.2024.130907_b0020 article-title: Groundwater resources assessment in the Densu Basin: A review publication-title: J. Hydrol.: Reg. Stud. – volume: 11 start-page: 181 year: 2009 ident: 10.1016/j.jhydrol.2024.130907_b0050 article-title: Introducing knowledge into learning based on genetic programming publication-title: J. Hydroinf. doi: 10.2166/hydro.2009.041 – volume: 28 start-page: 100 year: 1979 ident: 10.1016/j.jhydrol.2024.130907_b0220 article-title: A k-means clustering algorithm publication-title: Appl. Stat. doi: 10.2307/2346830 – volume: 8 start-page: 342 year: 2016 ident: 10.1016/j.jhydrol.2024.130907_b0065 article-title: The Use of Remotely Sensed Rainfall for Managing Drought Risk: A Case Study of Weather Index Insurance in Zambia publication-title: Remote Sens. (Basel) doi: 10.3390/rs8040342 – volume: 219 start-page: 88 year: 2017 ident: 10.1016/j.jhydrol.2024.130907_b0765 article-title: Convolutional neural networks for hyperspectral image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.010 – year: 2022 ident: 10.1016/j.jhydrol.2024.130907_b0600 article-title: Vulnerability assessment of drought in India: insights from meteorological, hydrological, agricultural and socio-economic perspectives publication-title: Gondw. Res. – ident: 10.1016/j.jhydrol.2024.130907_b0320 doi: 10.3390/proceedings2110697 – volume: 276 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0650 article-title: Prediction of groundwater quality using efficient machine learning technique publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130265 – volume: 585 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0105 article-title: A review of remote sensing applications for water security: Quantity, quality, and extremes publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124826 – volume: 187 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0735 article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2019.104396 – volume: 35 start-page: 597 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0010 article-title: Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-020-01910-0 – volume: 19 start-page: 333 year: 2005 ident: 10.1016/j.jhydrol.2024.130907_b0275 article-title: Delineation of Flood-Prone Areas Using Remote Sensing Techniques publication-title: Water Resour Manage doi: 10.1007/s11269-005-3281-5 – volume: 27 start-page: 1791 year: 2023 ident: 10.1016/j.jhydrol.2024.130907_b0790 article-title: A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-27-1791-2023 – volume: 53 year: 2023 ident: 10.1016/j.jhydrol.2024.130907_b0030 article-title: Application of Bi-LSTM method for groundwater quality assessment through water quality indices publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2023.103889 – volume: 39 start-page: 313 year: 2003 ident: 10.1016/j.jhydrol.2024.130907_b0270 article-title: Improved Rainfall/Runoff Estimates Using RemoTELy Sensed Soil Moisture1 publication-title: JAWRA Journal of the American Water Resources Association doi: 10.1111/j.1752-1688.2003.tb04386.x – volume: 10 start-page: 18114 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0760 article-title: Assessing the susceptibility of schools to flood events in Iran publication-title: Sci Rep doi: 10.1038/s41598-020-75291-3 – ident: 10.1016/j.jhydrol.2024.130907_b0640 – volume: 27 start-page: 4599 year: 2006 ident: 10.1016/j.jhydrol.2024.130907_b0665 article-title: Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600554983 – volume: 34 start-page: 4113 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0515 article-title: Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States publication-title: Water Resour Manage doi: 10.1007/s11269-020-02659-5 – ident: 10.1016/j.jhydrol.2024.130907_b0405 doi: 10.1109/ICARCV.2014.7064414 – volume: 525 start-page: 711 year: 2015 ident: 10.1016/j.jhydrol.2024.130907_b0460 article-title: Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using genetic programming publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.04.032 – volume: 24 start-page: 563 year: 2002 ident: 10.1016/j.jhydrol.2024.130907_b0005 article-title: Optimal power flow using particle swarm optimization publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/S0142-0615(01)00067-9 – ident: 10.1016/j.jhydrol.2024.130907_b0370 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.jhydrol.2024.130907_b0075 publication-title: Bagging Predictors. Machine Learning – volume: 33 start-page: 967 year: 1995 ident: 10.1016/j.jhydrol.2024.130907_b0170 article-title: Recent advances in remote sensing in hydrology publication-title: Rev. Geophys. doi: 10.1029/95RG00403 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.jhydrol.2024.130907_b0400 publication-title: Deep Learning. Nature – volume: 56 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0260 article-title: Using Remote Sensing Data-Based Hydrological Model Calibrations for Predicting Runoff in Ungauged or Poorly Gauged Catchments publication-title: Water Resour. Res. doi: 10.1029/2020WR028205 – volume: 10 start-page: 1060 year: 1974 ident: 10.1016/j.jhydrol.2024.130907_b0545 article-title: Flood Hazard Studies in the Mississippi River Basin Using Remote Sensing1 publication-title: JAWRA Journal of the American Water Resources Association doi: 10.1111/j.1752-1688.1974.tb00625.x – year: 2012 ident: 10.1016/j.jhydrol.2024.130907_b0660 – volume: 615 start-page: 438 year: 2018 ident: 10.1016/j.jhydrol.2024.130907_b0560 article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.262 – volume: 114 start-page: 14 year: 2019 ident: 10.1016/j.jhydrol.2024.130907_b0590 article-title: The present and future of deep learning in radiology publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2019.02.038 – volume: 47 year: 2009 ident: 10.1016/j.jhydrol.2024.130907_b0470 article-title: Developments in hydrometric network design: A review publication-title: Rev. Geophys. doi: 10.1029/2007RG000243 – volume: 514 start-page: 358 year: 2014 ident: 10.1016/j.jhydrol.2024.130907_b0500 article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.057 – volume: 12 start-page: 2191 year: 2015 ident: 10.1016/j.jhydrol.2024.130907_b0130 article-title: Successive-station monthly streamflow prediction using different artificial neural network algorithms publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-014-0613-0 – volume: 8 start-page: 1792 year: 2017 ident: 10.1016/j.jhydrol.2024.130907_b0135 article-title: Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: a case study of District 8, Ho Chi Minh city publication-title: Vietnam. Geomatics, Natural Hazards and Risk doi: 10.1080/19475705.2017.1388853 – volume: 24 start-page: 3885 year: 2010 ident: 10.1016/j.jhydrol.2024.130907_b0200 article-title: Application of Remote Sensing in Water Resource Management: The Case Study of Lake Trasimeno, Italy publication-title: Water Resour Manage doi: 10.1007/s11269-010-9639-3 – volume: 302 start-page: 66 year: 2018 ident: 10.1016/j.jhydrol.2024.130907_b0225 article-title: Training ANFIS structure using simulated annealing algorithm for dynamic systems identification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.006 – volume: 20 start-page: 2611 year: 2016 ident: 10.1016/j.jhydrol.2024.130907_b0635 article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-2611-2016 – volume: 58 start-page: 21 year: 1999 ident: 10.1016/j.jhydrol.2024.130907_b0025 article-title: Landslide hazard assessment: summary review and new perspectives publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s100640050066 – ident: 10.1016/j.jhydrol.2024.130907_b0155 – volume: 585 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0775 article-title: Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124780 – volume: 3 start-page: 41 year: 2002 ident: 10.1016/j.jhydrol.2024.130907_b0315 article-title: Declarative and preferential bias in GP-based scientific discovery publication-title: Genet. Program Evolvable Mach. doi: 10.1023/A:1014596120381 – volume: 46 start-page: 14496 year: 2019 ident: 10.1016/j.jhydrol.2024.130907_b0780 article-title: Physics-Constrained Machine Learning of Evapotranspiration publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL085291 – volume: 14 start-page: 118 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0210 article-title: Multiscale drought monitoring and comparison using remote sensing in a Mediterranean arid region: a case study from west-central Morocco publication-title: Arab J Geosci doi: 10.1007/s12517-021-06493-w – volume: 2 start-page: 35 year: 2000 ident: 10.1016/j.jhydrol.2024.130907_b0055 article-title: Genetic programming as a model induction engine publication-title: J. Hydroinf. doi: 10.2166/hydro.2000.0004 – volume: 75 start-page: 1 year: 2016 ident: 10.1016/j.jhydrol.2024.130907_b0675 article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5919-4 – volume: 33 start-page: 3239 year: 2019 ident: 10.1016/j.jhydrol.2024.130907_b0125 article-title: Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management publication-title: Water Resour Manage doi: 10.1007/s11269-019-02301-z – volume: 718 year: 2020 ident: 10.1016/j.jhydrol.2024.130907_b0245 article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137231 – volume: 481 start-page: 220 year: 2013 ident: 10.1016/j.jhydrol.2024.130907_b0645 article-title: Groundwater modelling for the assessment of water management alternatives publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.12.042 – volume: 33 start-page: 3053 year: 2021 ident: 10.1016/j.jhydrol.2024.130907_b0685 article-title: Super ensemble learning for daily streamflow forecasting: large-scale demonstration and comparison with multiple machine learning algorithms publication-title: Neural Comput & Applic doi: 10.1007/s00521-020-05172-3 – volume: 21 start-page: 3879 year: 2017 ident: 10.1016/j.jhydrol.2024.130907_b0445 article-title: The future of Earth observation in hydrology publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-3879-2017 – volume: 54 start-page: 9724 year: 2018 ident: 10.1016/j.jhydrol.2024.130907_b0630 article-title: Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions publication-title: Water Resour. Res. doi: 10.1029/2017WR022437 – volume: 20 start-page: 4977 year: 2023 ident: 10.1016/j.jhydrol.2024.130907_b0740 article-title: Application of Bagging, Boosting and Stacking Ensemble and EasyEnsemble Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area of China publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph20064977 – ident: 10.1016/j.jhydrol.2024.130907_b0070 – volume: 15 start-page: 620 year: 2023 ident: 10.1016/j.jhydrol.2024.130907_b0195 article-title: Application of Machine Learning in Water Resources Management: A Systematic Literature Review publication-title: Water doi: 10.3390/w15040620  | 
    
| SSID | ssj0000334 | 
    
| Score | 2.5440004 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | •A review has been conducted on the application of ML and RS in hydrology domain.•Analyses were conducted on surface hydrology, hydro-climatic extremes and GWM... Water, one of the most valuable resources on Earth, is the subject of the study of hydrology, which is of utmost importance. Satellite remote sensing (RS) has...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 130907 | 
    
| SubjectTerms | groundwater Hydroclimatic extremes Hydrology Machine learning Remote sensing runoff satellites State-of-the-art approach stream flow water quality  | 
    
| Title | Application of machine learning and emerging remote sensing techniques in hydrology: A state-of-the-art review and current research trends | 
    
| URI | https://dx.doi.org/10.1016/j.jhydrol.2024.130907 https://www.proquest.com/docview/3153159442  | 
    
| Volume | 632 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswELUQLLibK15XvGUktm5Te5LU7CoEKiBYgcTOahybtuImVVsW3fABfDUziUMFQkJCysZRbEWeyXgcnzmHsdM8VY44boWL8khAEoHQPvUCXVkmscU9UcV4c3uX9B_g-jF-XGHnTS0MwSpD7K9jehWtw512mM32ZDSiGl8pO4kGQkGim1IRH0BKKgat1yXMI1IKGsZwenpZxdMet8bDRT4t6QRCAukia1KV_X59-hKpq-XncoP9DXkj79WvtslWXLHF1oOE-XCxzd56y6NoXnr-v0JJOh5kIZ74oMg5VQOTKhGfOjSR4zOCr2Pzg8l1xkcFr1-3fFqc8R6vKo5E6QVmigSj43WxSzWcrcmdeGAMGvJ5hbDdYQ-XF_fnfRGEFoRVIOcCcpt4-hckZYZz0Em7LgGXxpntZGA16AGxAmHqFysvNW7SXK4j5Yg9DCKlY_WPrRZl4XYZj73NlAXlMBUA3fXdCIdMY-8GKZo-gT0GzfQaG1jISQzj2TRws7EJVjFkFVNbZY-1PrpNahqOnzp0G9uZT_5kcKn4qetJY2uD3xodoAwKV77MDPotXhpA7v9--AP2h1o1ju2Qrc6nL-4IE5t5dlx57jFb613d9O_eAQvc-CI | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY6OHSXCdimsfHDSLu6Te2XpOZWIVDZCieQerMax6atWILacuhlf8D-at5LHCoQEtKkXPLDVuTv5fk5_t73GPuZp8qRxq1wUR4JSCIQ2qdeoCnLJLa4JqoUb66uk-Et_BrH4xY7a3JhiFYZfH_t0ytvHa50w2h2H2YzyvGVspdoIBYkmqn-wLYhlimtwDp_NzyPSCloJMPp8U0aT3femU_X-aKkLQgJVBhZU1nZtyeoV666mn8udtinEDjyQf1uu6zlij3WDjXMp-vP7N9gsxfNS8__VDRJx0NdiDs-KXJO6cBUlogvHGLk-JL463j6LOW65LOC169b3q1P-YBXKUei9AJDReLR8TrbperO1upOPEgGTfmqoth-YbcX5zdnQxEqLQirQK4E5Dbx9DNIygzHoJf2XQIujTPby8Bq0BOSBcLYL1ZealyluVxHypF8GERKx-or2yrKwn1jPPY2UxaUw1gAdN_3I-wyjb2bpIh9AvsMmuE1NsiQUzWMe9PwzeYmoGIIFVOjss86z80eah2O9xr0G-zMC4MyOFe81_Skwdrgx0Y7KJPClY9Lg4aLhwaQ3_-_-2PWHt5cjczo8vr3D_aR7tSktgO2tVo8ukOMclbZUWXFT8Ta-bc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+and+emerging+remote+sensing+techniques+in+hydrology%3A+A+state-of-the-art+review+and+current+research+trends&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Saha%2C+Asish&rft.au=Chandra+Pal%2C+Subodh&rft.date=2024-03-01&rft.issn=0022-1694&rft_id=info:doi/10.1016%2Fj.jhydrol.2024.130907&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |