Groundwater contaminant source identification based on an ensemble learning search framework associated with an auto xgboost surrogate
Groundwater contaminant source identification (GCSI) is commonly accompanied by search process which tweaks the unknown contaminant source information to match the simulation model outputs with the measurements. When solving identification task, search accuracy and time cost have always been challen...
        Saved in:
      
    
          | Published in | Environmental modelling & software : with environment data news Vol. 159; p. 105588 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.01.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1364-8152 1873-6726  | 
| DOI | 10.1016/j.envsoft.2022.105588 | 
Cover
| Abstract | Groundwater contaminant source identification (GCSI) is commonly accompanied by search process which tweaks the unknown contaminant source information to match the simulation model outputs with the measurements. When solving identification task, search accuracy and time cost have always been challenges that must be tackled. In the present study, a novel ensemble learning search framework associated with auto extreme gradient boosting tree (xgboost) was proposed to solve GCSI. In particular, auto xgboost was employed to reduce the calculation burden caused by repeatedly running simulation model. To promote search efficiency, boosting strategy (BOS) was employed to sequentially concatenate iterative ensemble smoother, differential evolution particle filter (DEPF), and swarm evolution algorithm. The identification results indicated that: 1. Auto xgboost could substitute a numerical simulation model with desired accuracy and expeditious running speed. 2. BOS could achieve better search accuracy, but with the sacrifice of infinitesimal calculated time cost, when compared with bagging strategy.
•Novel and easy-to-perform auto xgboost was proposed as surrogate of high-calculation-cost simulation model.•Differential evolution was introduced to improve PF search capacity.•Boosting strategy was used to integrate IES, DEPF, and SEA to promote the accuracy of source identification. | 
    
|---|---|
| AbstractList | Groundwater contaminant source identification (GCSI) is commonly accompanied by search process which tweaks the unknown contaminant source information to match the simulation model outputs with the measurements. When solving identification task, search accuracy and time cost have always been challenges that must be tackled. In the present study, a novel ensemble learning search framework associated with auto extreme gradient boosting tree (xgboost) was proposed to solve GCSI. In particular, auto xgboost was employed to reduce the calculation burden caused by repeatedly running simulation model. To promote search efficiency, boosting strategy (BOS) was employed to sequentially concatenate iterative ensemble smoother, differential evolution particle filter (DEPF), and swarm evolution algorithm. The identification results indicated that: 1. Auto xgboost could substitute a numerical simulation model with desired accuracy and expeditious running speed. 2. BOS could achieve better search accuracy, but with the sacrifice of infinitesimal calculated time cost, when compared with bagging strategy.
•Novel and easy-to-perform auto xgboost was proposed as surrogate of high-calculation-cost simulation model.•Differential evolution was introduced to improve PF search capacity.•Boosting strategy was used to integrate IES, DEPF, and SEA to promote the accuracy of source identification. Groundwater contaminant source identification (GCSI) is commonly accompanied by search process which tweaks the unknown contaminant source information to match the simulation model outputs with the measurements. When solving identification task, search accuracy and time cost have always been challenges that must be tackled. In the present study, a novel ensemble learning search framework associated with auto extreme gradient boosting tree (xgboost) was proposed to solve GCSI. In particular, auto xgboost was employed to reduce the calculation burden caused by repeatedly running simulation model. To promote search efficiency, boosting strategy (BOS) was employed to sequentially concatenate iterative ensemble smoother, differential evolution particle filter (DEPF), and swarm evolution algorithm. The identification results indicated that: 1. Auto xgboost could substitute a numerical simulation model with desired accuracy and expeditious running speed. 2. BOS could achieve better search accuracy, but with the sacrifice of infinitesimal calculated time cost, when compared with bagging strategy.  | 
    
| ArticleNumber | 105588 | 
    
| Author | Bai, Yukun Lu, Wenxi Pan, Zidong Wang, Han  | 
    
| Author_xml | – sequence: 1 givenname: Zidong surname: Pan fullname: Pan, Zidong organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China – sequence: 2 givenname: Wenxi surname: Lu fullname: Lu, Wenxi email: luwx999@163.com organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China – sequence: 3 givenname: Han surname: Wang fullname: Wang, Han organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China – sequence: 4 givenname: Yukun surname: Bai fullname: Bai, Yukun organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China  | 
    
| BookMark | eNqFkMtOHDEQRS1EJF75BCQvs-nBj364lUUUoQSQkLIJa8ttVw8eum3icjPhB_huPAwrNqzqqlznWjon5DDEAIScc7bijLcXmxWEJ4xjXgkmRNk1jVIH5JirTlZtJ9rDkmVbV4o34oicIG4YYyXXx-TlKsUluK3JkKiNIZvZBxMyxbgkC9Q7CNmP3prsY6CDQXC0BBMoBIR5mIBOYFLwYU2xBHtPx2Rm2Mb0QA1itL50O7r1-X5HmSVH-n89xIjlkyWluC7vZ-TLaCaEr-_zlNz9_vX38rq6_XN1c_nztrKyFrmqHWOKSevswHrgUjDohXCm7xkzvWlFoxznsrPdoGytVD2oRvJOMA6NhFrIU_Jt3_uY4r8FMOvZo4VpMgHiglryRire11KV02Z_alNETDDqx-Rnk541Z3rnXW_0u3e986733gv3_QNnfX6zl5Px06f0jz0NxcKTh6TReggWnE9gs3bRf9LwCt_sp00 | 
    
| CitedBy_id | crossref_primary_10_3390_w16050638 crossref_primary_10_1016_j_envsoft_2024_106050 crossref_primary_10_1016_j_jconhyd_2024_104447 crossref_primary_10_54691_sjt_v5i3_4491 crossref_primary_10_1016_j_jconhyd_2024_104437 crossref_primary_10_1016_j_jhydrol_2023_129965 crossref_primary_10_1080_1062936X_2025_2478123 crossref_primary_10_1016_j_envsoft_2025_106332 crossref_primary_10_1016_j_engappai_2024_109545 crossref_primary_10_1016_j_jhydrol_2025_132753 crossref_primary_10_3390_f14081688 crossref_primary_10_1007_s10653_024_01908_5 crossref_primary_10_1007_s11356_023_27574_1 crossref_primary_10_1080_15275922_2023_2297429 crossref_primary_10_1038_s41598_023_35801_5  | 
    
| Cites_doi | 10.1016/j.jconhyd.2010.06.004 10.1016/j.jhydrol.2021.127405 10.1007/s00500-019-04141-w 10.1007/s00477-020-01891-0 10.1016/j.jhydrol.2018.01.038 10.1002/hyp.13127 10.1007/s10040-017-1690-1 10.1016/j.jhydrol.2020.125343 10.1007/s10040-022-02454-z 10.1016/j.jhydrol.2019.124160 10.1016/j.envpol.2020.115663 10.1007/s10040-014-1172-7 10.1016/j.eswa.2010.04.019 10.1109/TKDE.2004.29 10.1002/2016WR018598 10.1007/s11704-019-8208-z 10.1016/j.advwatres.2008.11.006 10.1016/j.envsoft.2018.06.009 10.1007/s10040-015-1260-3 10.1016/j.jhydrol.2016.04.008 10.1016/j.advwatres.2014.01.007 10.1007/s10596-018-9731-y 10.1029/2018WR024408 10.1109/ACCESS.2018.2818678 10.1016/j.ymssp.2015.11.008 10.1002/wrcr.20467 10.1186/s40537-019-0197-0 10.1016/j.advwatres.2020.103540 10.1016/j.cageo.2021.104837 10.1016/j.jhydrol.2021.126370 10.1016/j.jconhyd.2018.11.005  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2022 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.envsoft.2022.105588 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Ecology Computer Science Environmental Sciences  | 
    
| EISSN | 1873-6726 | 
    
| ExternalDocumentID | 10_1016_j_envsoft_2022_105588 S1364815222002882  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSJ SSV SSZ T5K UHS ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c342t-4d00803cdcb09e1320e922da9900a9a6258d1137c7b8c4884b85317201e53e423 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1364-8152 | 
    
| IngestDate | Sun Sep 28 10:32:25 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Wed Oct 29 21:09:26 EDT 2025 Fri Feb 23 02:39:32 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Differential evolution Auto xgboost Ensemble learning search Iterative ensemble smoother Particle filter Swarm evolution algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c342t-4d00803cdcb09e1320e922da9900a9a6258d1137c7b8c4884b85317201e53e423 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 3153819438 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_3153819438 crossref_primary_10_1016_j_envsoft_2022_105588 crossref_citationtrail_10_1016_j_envsoft_2022_105588 elsevier_sciencedirect_doi_10_1016_j_envsoft_2022_105588  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2023 2023-01-00 20230101  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Environmental modelling & software : with environment data news | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Zhang, Lu, Ye, Gunzburger, Webster (bib52) 2013; 49 Alom (bib1) 2019; 8 Jouin, Gouriveau, Hissel, Pera, Zerhouni (bib21) 2016; 72–73 Katoch, Chauhan, Kumar (bib22) 2021; 80 Webb, Zheng (bib45) 2004; 16 Probst, Wright, Boulesteix (bib32) 2019; 9 Hou, Lu (bib17) 2018; 26 Sachdeva, Kumar (bib34) 2021; 35 Mo, Zabaras, Shi, Wu (bib28) 2019; 55 Bashi-Azghadi, Kerachian, Bazargan-Lari, Solouki (bib5) 2010; 37 Shorten, Khoshgoftaar (bib38) 2019; 6 Evensen (bib11) 2018; 22 Xu, Zhang, Gomez-Hernandez, Xie, Yang, Chen, Lu (bib47) 2022; 606 Stanley, Clune, Lehman, Miikkulainen (bib41) 2019; 1 Yang, Jiang, Liu, Jiang, Zhou, Zhang (bib49) 2020; 8 Dong, Yu, Cao, Shi, Ma (bib10) 2020; 14 Ramgraber, Albert, Schirmer (bib33) 2019; 55 Panzeri, Riva, Guadagnini, Neuman (bib31) 2014; 66 Chen, Guestrin, Assoc Comp (bib8) 2016 Li, Stetler, Cao, Davis (bib26) 2018; 567 Yan, Dong, An, Lu (bib48) 2019; 579 Zhao, Qu, Xing, Lu (bib56) 2020; 138 Guo, Lu, Yang, Miao (bib13) 2019; 220 Ayvaz (bib2) 2010; 117 Schoeniger, Nowak, Franssen (bib37) 2012; 48 Guryanov (bib15) 2019 Zhang, Li, Zeng, Wu (bib53) 2016; 52 Guo, Wang, Xiao, Xu (bib14) 2020; 24 Shrestha, Mahmood (bib39) 2019; 7 Zheng, Yuan, Chen (bib58) 2017; 10 Ayvaz (bib3) 2016; 538 Ter Braak (bib43) 2006; 16 Sagi, Rokach (bib35) 2018; 8 Zhou, Gomez-Hernandez, Li (bib59) 2014; 63 Sun, Morris, Mohanty (bib42) 2009; 32 Bhagat, Tiyasha, Awadh, Tran Minh, Jawad, Yaseen (bib6) 2021; 268 Zhao, Jiang, Xu (bib55) 2010 Saitoh (bib36) 2016 Hou, Lao, Wang, Lu (bib18) 2021; 155 Janssen (bib19) 2013; 109 Yildiz (bib51) 2013; 26 Torlay, Perrone-Bertolotti, Thomas, Baciu (bib44) 2017; 4 White (bib46) 2018; 109 Li, Puzel, Davis (bib25) 2018; 32 Pan, Lu, Bai (bib30) 2022 Li, Lu, Fan (bib27) 2021; 38 Lee, Yoo, Kim, Lee, Hong (bib24) 2019; 49 Zhang, Qian, Mao, Huang, Huang, Si (bib54) 2018; 6 Han, Zuo, Ni, Xue, Xu, Wang, Zhang (bib16) 2020; 589 Zheng, Wang (bib57) 1999; 169 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib40) 2014; 15 Jiang, Zhang, Liu, Xia, Li, Zheng (bib20) 2022; 14 Chiu (bib9) 2014; 22 Yeh (bib50) 2015; 23 Langevin, Shoemaker, Guo (bib23) 2000 Field, Tavrisov, Brown, Harris, Kreidl (bib12) 2016; 30 Barzegar, Razzagh, Quilty, Adamowski, Pour, Booij (bib4) 2021; 598 Xu (10.1016/j.envsoft.2022.105588_bib47) 2022; 606 Guo (10.1016/j.envsoft.2022.105588_bib13) 2019; 220 Katoch (10.1016/j.envsoft.2022.105588_bib22) 2021; 80 Yildiz (10.1016/j.envsoft.2022.105588_bib51) 2013; 26 Schoeniger (10.1016/j.envsoft.2022.105588_bib37) 2012; 48 Webb (10.1016/j.envsoft.2022.105588_bib45) 2004; 16 Hou (10.1016/j.envsoft.2022.105588_bib17) 2018; 26 Mo (10.1016/j.envsoft.2022.105588_bib28) 2019; 55 Jouin (10.1016/j.envsoft.2022.105588_bib21) 2016; 72–73 Bhagat (10.1016/j.envsoft.2022.105588_bib6) 2021; 268 Ter Braak (10.1016/j.envsoft.2022.105588_bib43) 2006; 16 Zhao (10.1016/j.envsoft.2022.105588_bib56) 2020; 138 Sachdeva (10.1016/j.envsoft.2022.105588_bib34) 2021; 35 Ayvaz (10.1016/j.envsoft.2022.105588_bib2) 2010; 117 Torlay (10.1016/j.envsoft.2022.105588_bib44) 2017; 4 Guryanov (10.1016/j.envsoft.2022.105588_bib15) 2019 Yan (10.1016/j.envsoft.2022.105588_bib48) 2019; 579 Ayvaz (10.1016/j.envsoft.2022.105588_bib3) 2016; 538 Yang (10.1016/j.envsoft.2022.105588_bib49) 2020; 8 Barzegar (10.1016/j.envsoft.2022.105588_bib4) 2021; 598 Yeh (10.1016/j.envsoft.2022.105588_bib50) 2015; 23 Li (10.1016/j.envsoft.2022.105588_bib26) 2018; 567 Alom (10.1016/j.envsoft.2022.105588_bib1) 2019; 8 Zhang (10.1016/j.envsoft.2022.105588_bib54) 2018; 6 Shrestha (10.1016/j.envsoft.2022.105588_bib39) 2019; 7 Jiang (10.1016/j.envsoft.2022.105588_bib20) 2022; 14 Ramgraber (10.1016/j.envsoft.2022.105588_bib33) 2019; 55 Stanley (10.1016/j.envsoft.2022.105588_bib41) 2019; 1 Guo (10.1016/j.envsoft.2022.105588_bib14) 2020; 24 White (10.1016/j.envsoft.2022.105588_bib46) 2018; 109 Han (10.1016/j.envsoft.2022.105588_bib16) 2020; 589 Li (10.1016/j.envsoft.2022.105588_bib25) 2018; 32 Srivastava (10.1016/j.envsoft.2022.105588_bib40) 2014; 15 Field (10.1016/j.envsoft.2022.105588_bib12) 2016; 30 Panzeri (10.1016/j.envsoft.2022.105588_bib31) 2014; 66 Zhao (10.1016/j.envsoft.2022.105588_bib55) 2010 Hou (10.1016/j.envsoft.2022.105588_bib18) 2021; 155 Zheng (10.1016/j.envsoft.2022.105588_bib58) 2017; 10 Bashi-Azghadi (10.1016/j.envsoft.2022.105588_bib5) 2010; 37 Lee (10.1016/j.envsoft.2022.105588_bib24) 2019; 49 Li (10.1016/j.envsoft.2022.105588_bib27) 2021; 38 Sun (10.1016/j.envsoft.2022.105588_bib42) 2009; 32 Langevin (10.1016/j.envsoft.2022.105588_bib23) 2000 Chen (10.1016/j.envsoft.2022.105588_bib8) 2016 Janssen (10.1016/j.envsoft.2022.105588_bib19) 2013; 109 Sagi (10.1016/j.envsoft.2022.105588_bib35) 2018; 8 Zhang (10.1016/j.envsoft.2022.105588_bib52) 2013; 49 Probst (10.1016/j.envsoft.2022.105588_bib32) 2019; 9 Chiu (10.1016/j.envsoft.2022.105588_bib9) 2014; 22 Evensen (10.1016/j.envsoft.2022.105588_bib11) 2018; 22 Zhou (10.1016/j.envsoft.2022.105588_bib59) 2014; 63 Pan (10.1016/j.envsoft.2022.105588_bib30) 2022 Zhang (10.1016/j.envsoft.2022.105588_bib53) 2016; 52 Zheng (10.1016/j.envsoft.2022.105588_bib57) 1999; 169 Shorten (10.1016/j.envsoft.2022.105588_bib38) 2019; 6 Dong (10.1016/j.envsoft.2022.105588_bib10) 2020; 14 Saitoh (10.1016/j.envsoft.2022.105588_bib36) 2016  | 
    
| References_xml | – volume: 220 start-page: 18 year: 2019 end-page: 25 ident: bib13 article-title: The application of 0-1 mixed integer nonlinear programming optimization model based on a surrogate model to identify the groundwater pollution source publication-title: J. Contam. Hydrol. – volume: 8 year: 2019 ident: bib1 publication-title: A State-of-the-Art Survey on Deep Learning Theory and Architectures Electronics – volume: 72–73 start-page: 2 year: 2016 end-page: 31 ident: bib21 article-title: Particle filter-based prognostics: review, discussion and perspectives publication-title: Mech. Syst. Signal Process. – volume: 16 start-page: 239 year: 2006 end-page: 249 ident: bib43 publication-title: A Markov Chain Monte Carlo Version of the Genetic Algorithm Differential Evolution: Easy Bayesian Computing for Real Parameter Spaces Statistics and Computing – volume: 38 start-page: 777 year: 2021 end-page: 788 ident: bib27 article-title: Groundwater pollution sources identification based on hybrid homotopy-genetic publication-title: Algorithm Simulat. Optimiz. Environ. Eng. Sci. – volume: 66 start-page: 8 year: 2014 end-page: 18 ident: bib31 article-title: Comparison of Ensemble Kalman Filter groundwater-data assimilation methods based on stochastic moment equations and Monte Carlo simulation publication-title: Adv. Water Resour. – volume: 1 start-page: 24 year: 2019 end-page: 35 ident: bib41 publication-title: Designing Neural Networks through Neuroevolution Nature Machine Intelligence – volume: 109 start-page: 191 year: 2018 end-page: 201 ident: bib46 article-title: A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions publication-title: Environ. Model. Software – volume: 9 year: 2019 ident: bib32 publication-title: Hyperparameters and Tuning Strategies for Random Forest Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery – volume: 606 year: 2022 ident: bib47 article-title: Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation publication-title: J. Hydrol. – year: 2022 ident: bib30 article-title: Groundwater contamination source estimation based on a refined particle filter associated with a deep residual neural network surrogate publication-title: Hydrogeol. J. – volume: 155 year: 2021 ident: bib18 article-title: Hybrid homotopy-PSO global searching approach with multi-kernel extreme learning machine for efficient source identification of DNAPL-polluted aquifer publication-title: Comput. Geosci. – volume: 567 start-page: 759 year: 2018 end-page: 766 ident: bib26 article-title: An iterative normal-score ensemble smoother for dealing with non-Gaussianity in data assimilation publication-title: J. Hydrol. – volume: 138 year: 2020 ident: bib56 article-title: Identifying groundwater contaminant sources based on a KELM surrogate model together with four heuristic optimization algorithms publication-title: Adv. Water Resour. – volume: 37 start-page: 7154 year: 2010 end-page: 7161 ident: bib5 article-title: Characterizing an unknown pollution source in groundwater resources systems using publication-title: PSVM and PNN Expert Syst. Appl. – start-page: 785 year: 2016 end-page: 794 ident: bib8 article-title: XGBoost: a scalable tree boosting system publication-title: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 579 year: 2019 ident: bib48 article-title: A Bayesian-based integrated approach for identifying groundwater contamination sources publication-title: J. Hydrol. – volume: 169 start-page: 1196 year: 1999 end-page: 1197 ident: bib57 article-title: MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user's guide Ajr publication-title: Am. J. Roentgenol. – volume: 49 start-page: 6871 year: 2013 end-page: 6892 ident: bib52 article-title: An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling publication-title: Water Resour. Res. – volume: 598 year: 2021 ident: bib4 article-title: Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models publication-title: J. Hydrol. – start-page: 267 year: 2016 end-page: 274 ident: bib36 article-title: Ensemble models of learning vector quantization based on bootstrap resampling publication-title: 25th International Conference on Artificial Neural Networks (ICANN) – volume: 109 start-page: 123 year: 2013 end-page: 132 ident: bib19 publication-title: Monte-Carlo Based Uncertainty Analysis: Sampling Efficiency and Sampling Convergence Reliability Engineering & System Safety – start-page: 1 year: 2010 end-page: 12 ident: bib55 article-title: Incremental learning by heterogeneous bagging ensemble publication-title: 6th International Conference on Advanced Data Mining and Applications (ADMA), Chongqing, PEOPLES R CHINA, 2010 – volume: 268 year: 2021 ident: bib6 article-title: Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models publication-title: Environ. Pollut. – volume: 22 start-page: 1731 year: 2014 end-page: 1748 ident: bib9 article-title: Application of differential evolutionary optimization methodology for parameter structure identification in groundwater modeling publication-title: Hydrogeol. J. – volume: 8 start-page: 1 year: 2020 end-page: 9 ident: bib49 article-title: Groundwater contaminant source identification based on iterative local update ensemble smoother publication-title: J. Groundwater Sci. Eng. – volume: 7 start-page: 53040 year: 2019 end-page: 53065 ident: bib39 publication-title: Review of Deep Learning Algorithms Architectures Ieee Access – volume: 52 start-page: 5971 year: 2016 end-page: 5984 ident: bib53 article-title: An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems Water publication-title: Resour. Res. – volume: 16 start-page: 980 year: 2004 end-page: 991 ident: bib45 article-title: Multistrategy ensemble learning: reducing error by combining ensemble learning techniques publication-title: IEEE Trans. Knowl. Data Eng. – volume: 10 year: 2017 ident: bib58 article-title: Short-term load forecasting using EMD-LSTM neural networks with a xgboost publication-title: Algorithm for Feature Importance Evaluation Energies – volume: 8 year: 2018 ident: bib35 publication-title: Ensemble Learning: A Survey Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery – start-page: 39 year: 2019 end-page: 50 ident: bib15 article-title: Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees publication-title: 8th International Conference on Analysis of Images, Social Networks, and Texts (AIST), Kazan Fed Univ, Kazan, RUSSIA – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib40 article-title: Dropout: a simple way to prevent neural networks from publication-title: Overfitting J. Machine Learn. Res. – volume: 80 start-page: 8091 year: 2021 end-page: 8126 ident: bib22 publication-title: A Review on Genetic Algorithm: Past, Present, and Future Multimedia Tools and Applications – volume: 117 start-page: 46 year: 2010 end-page: 59 ident: bib2 article-title: A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems publication-title: J. Contam. Hydrol. – year: 2000 ident: bib23 article-title: MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model--Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT) Center for Integrated Data Analytics Wisconsin Science Center – volume: 35 start-page: 287 year: 2021 end-page: 306 ident: bib34 article-title: Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in Dholpur (Rajasthan) publication-title: India Stochastic Environ. Res. Risk Assess. – volume: 49 start-page: 491 year: 2019 end-page: 501 ident: bib24 article-title: Autonomic machine learning platform publication-title: Int. J. Inf. Manag. – volume: 30 start-page: 3175 year: 2016 end-page: 3189 ident: bib12 publication-title: Particle Filters to Estimate Properties of Confined Aquifers Water Resources Management – volume: 6 start-page: 21020 year: 2018 end-page: 21031 ident: bib54 article-title: A data-driven design for fault detection of wind turbines using random forests and XGboost publication-title: IEEE Access – volume: 55 start-page: 3856 year: 2019 end-page: 3881 ident: bib28 publication-title: Deep Autoregressive Neural Networks for High-Dimensional Inverse Problems in Groundwater Contaminant Source Identification Water Resources Research – volume: 4 start-page: 159 year: 2017 end-page: 169 ident: bib44 publication-title: Machine Learning-XGBoost Analysis of Language Networks to Classify Patients with Epilepsy Brain Informatics – volume: 14 year: 2022 ident: bib20 publication-title: Simultaneous Estimation of a Contaminant Source and Hydraulic Conductivity Field by Combining an Iterative Ensemble Smoother and Sequential Gaussian Simulation Water – volume: 6 year: 2019 ident: bib38 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data – volume: 32 start-page: 2020 year: 2018 end-page: 2029 ident: bib25 article-title: Data assimilation in groundwater modelling: ensemble Kalman filter versus ensemble smoothers publication-title: Hydrol. Process. – volume: 63 start-page: 22 year: 2014 end-page: 37 ident: bib59 publication-title: Inverse Methods in Hydrogeology: Evolution and Recent Trends Advances in Water Resources – volume: 23 start-page: 1051 year: 2015 end-page: 1065 ident: bib50 article-title: Review: optimization methods for groundwater modeling and management publication-title: Hydrogeol. J. – volume: 55 start-page: 9724 year: 2019 end-page: 9747 ident: bib33 article-title: Data assimilation and online parameter optimization in groundwater modeling using nested particle publication-title: Filters Water Resources Research – volume: 589 year: 2020 ident: bib16 article-title: Application of a genetic algorithm to groundwater pollution source identification publication-title: J. Hydrol. – volume: 22 start-page: 885 year: 2018 end-page: 908 ident: bib11 article-title: Analysis of iterative ensemble smoothers for solving inverse problems publication-title: Comput. Geosci. – volume: 14 start-page: 241 year: 2020 end-page: 258 ident: bib10 article-title: A survey on ensemble learning publication-title: Front. Comput. Sci. – volume: 26 start-page: 327 year: 2013 end-page: 333 ident: bib51 publication-title: Comparison of Evolutionary-Based Optimization Algorithms for Structural Design Optimization Engineering Applications of Artificial Intelligence – volume: 26 start-page: 923 year: 2018 end-page: 932 ident: bib17 article-title: Comparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sites publication-title: Hydrogeol. J. – volume: 538 start-page: 161 year: 2016 end-page: 176 ident: bib3 article-title: A hybrid simulation-optimization approach for solving the areal groundwater pollution source identification problems publication-title: J. Hydrol. – volume: 24 start-page: 3727 year: 2020 end-page: 3735 ident: bib14 article-title: An ensemble learning framework for convolutional neural network based on multiple classifiers publication-title: Soft Comput. – volume: 48 year: 2012 ident: bib37 article-title: Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography Water publication-title: Resour. Res. – volume: 32 start-page: 280 year: 2009 end-page: 292 ident: bib42 article-title: Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data publication-title: Adv. Water Resour. – volume: 8 year: 2019 ident: 10.1016/j.envsoft.2022.105588_bib1 publication-title: A State-of-the-Art Survey on Deep Learning Theory and Architectures Electronics – volume: 117 start-page: 46 year: 2010 ident: 10.1016/j.envsoft.2022.105588_bib2 article-title: A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2010.06.004 – volume: 606 year: 2022 ident: 10.1016/j.envsoft.2022.105588_bib47 article-title: Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.127405 – volume: 169 start-page: 1196 year: 1999 ident: 10.1016/j.envsoft.2022.105588_bib57 article-title: MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user's guide Ajr publication-title: Am. J. Roentgenol. – volume: 109 start-page: 123 year: 2013 ident: 10.1016/j.envsoft.2022.105588_bib19 – start-page: 1 year: 2010 ident: 10.1016/j.envsoft.2022.105588_bib55 article-title: Incremental learning by heterogeneous bagging ensemble – volume: 24 start-page: 3727 year: 2020 ident: 10.1016/j.envsoft.2022.105588_bib14 article-title: An ensemble learning framework for convolutional neural network based on multiple classifiers publication-title: Soft Comput. doi: 10.1007/s00500-019-04141-w – volume: 9 year: 2019 ident: 10.1016/j.envsoft.2022.105588_bib32 – volume: 35 start-page: 287 year: 2021 ident: 10.1016/j.envsoft.2022.105588_bib34 article-title: Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in Dholpur (Rajasthan) publication-title: India Stochastic Environ. Res. Risk Assess. doi: 10.1007/s00477-020-01891-0 – volume: 567 start-page: 759 year: 2018 ident: 10.1016/j.envsoft.2022.105588_bib26 article-title: An iterative normal-score ensemble smoother for dealing with non-Gaussianity in data assimilation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.01.038 – volume: 32 start-page: 2020 year: 2018 ident: 10.1016/j.envsoft.2022.105588_bib25 article-title: Data assimilation in groundwater modelling: ensemble Kalman filter versus ensemble smoothers publication-title: Hydrol. Process. doi: 10.1002/hyp.13127 – volume: 26 start-page: 923 year: 2018 ident: 10.1016/j.envsoft.2022.105588_bib17 article-title: Comparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sites publication-title: Hydrogeol. J. doi: 10.1007/s10040-017-1690-1 – volume: 589 year: 2020 ident: 10.1016/j.envsoft.2022.105588_bib16 article-title: Application of a genetic algorithm to groundwater pollution source identification publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125343 – year: 2022 ident: 10.1016/j.envsoft.2022.105588_bib30 article-title: Groundwater contamination source estimation based on a refined particle filter associated with a deep residual neural network surrogate publication-title: Hydrogeol. J. doi: 10.1007/s10040-022-02454-z – volume: 579 year: 2019 ident: 10.1016/j.envsoft.2022.105588_bib48 article-title: A Bayesian-based integrated approach for identifying groundwater contamination sources publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124160 – volume: 268 year: 2021 ident: 10.1016/j.envsoft.2022.105588_bib6 article-title: Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115663 – year: 2000 ident: 10.1016/j.envsoft.2022.105588_bib23 – volume: 49 start-page: 491 year: 2019 ident: 10.1016/j.envsoft.2022.105588_bib24 article-title: Autonomic machine learning platform publication-title: Int. J. Inf. Manag. – volume: 38 start-page: 777 year: 2021 ident: 10.1016/j.envsoft.2022.105588_bib27 article-title: Groundwater pollution sources identification based on hybrid homotopy-genetic publication-title: Algorithm Simulat. Optimiz. Environ. Eng. Sci. – volume: 22 start-page: 1731 year: 2014 ident: 10.1016/j.envsoft.2022.105588_bib9 article-title: Application of differential evolutionary optimization methodology for parameter structure identification in groundwater modeling publication-title: Hydrogeol. J. doi: 10.1007/s10040-014-1172-7 – volume: 80 start-page: 8091 year: 2021 ident: 10.1016/j.envsoft.2022.105588_bib22 – start-page: 785 year: 2016 ident: 10.1016/j.envsoft.2022.105588_bib8 article-title: XGBoost: a scalable tree boosting system – volume: 37 start-page: 7154 year: 2010 ident: 10.1016/j.envsoft.2022.105588_bib5 article-title: Characterizing an unknown pollution source in groundwater resources systems using publication-title: PSVM and PNN Expert Syst. Appl. doi: 10.1016/j.eswa.2010.04.019 – volume: 16 start-page: 980 year: 2004 ident: 10.1016/j.envsoft.2022.105588_bib45 article-title: Multistrategy ensemble learning: reducing error by combining ensemble learning techniques publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2004.29 – volume: 52 start-page: 5971 year: 2016 ident: 10.1016/j.envsoft.2022.105588_bib53 article-title: An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems Water publication-title: Resour. Res. doi: 10.1002/2016WR018598 – volume: 7 start-page: 53040 year: 2019 ident: 10.1016/j.envsoft.2022.105588_bib39 publication-title: Review of Deep Learning Algorithms Architectures Ieee Access – volume: 14 start-page: 241 year: 2020 ident: 10.1016/j.envsoft.2022.105588_bib10 article-title: A survey on ensemble learning publication-title: Front. Comput. Sci. doi: 10.1007/s11704-019-8208-z – volume: 32 start-page: 280 year: 2009 ident: 10.1016/j.envsoft.2022.105588_bib42 article-title: Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2008.11.006 – volume: 30 start-page: 3175 year: 2016 ident: 10.1016/j.envsoft.2022.105588_bib12 – volume: 109 start-page: 191 year: 2018 ident: 10.1016/j.envsoft.2022.105588_bib46 article-title: A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2018.06.009 – volume: 23 start-page: 1051 year: 2015 ident: 10.1016/j.envsoft.2022.105588_bib50 article-title: Review: optimization methods for groundwater modeling and management publication-title: Hydrogeol. J. doi: 10.1007/s10040-015-1260-3 – volume: 538 start-page: 161 year: 2016 ident: 10.1016/j.envsoft.2022.105588_bib3 article-title: A hybrid simulation-optimization approach for solving the areal groundwater pollution source identification problems publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.04.008 – volume: 66 start-page: 8 year: 2014 ident: 10.1016/j.envsoft.2022.105588_bib31 article-title: Comparison of Ensemble Kalman Filter groundwater-data assimilation methods based on stochastic moment equations and Monte Carlo simulation publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2014.01.007 – volume: 22 start-page: 885 year: 2018 ident: 10.1016/j.envsoft.2022.105588_bib11 article-title: Analysis of iterative ensemble smoothers for solving inverse problems publication-title: Comput. Geosci. doi: 10.1007/s10596-018-9731-y – start-page: 39 year: 2019 ident: 10.1016/j.envsoft.2022.105588_bib15 article-title: Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees – volume: 55 start-page: 9724 year: 2019 ident: 10.1016/j.envsoft.2022.105588_bib33 article-title: Data assimilation and online parameter optimization in groundwater modeling using nested particle publication-title: Filters Water Resources Research doi: 10.1029/2018WR024408 – volume: 6 start-page: 21020 year: 2018 ident: 10.1016/j.envsoft.2022.105588_bib54 article-title: A data-driven design for fault detection of wind turbines using random forests and XGboost publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2818678 – volume: 14 year: 2022 ident: 10.1016/j.envsoft.2022.105588_bib20 – volume: 72–73 start-page: 2 year: 2016 ident: 10.1016/j.envsoft.2022.105588_bib21 article-title: Particle filter-based prognostics: review, discussion and perspectives publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.11.008 – volume: 26 start-page: 327 year: 2013 ident: 10.1016/j.envsoft.2022.105588_bib51 – volume: 1 start-page: 24 year: 2019 ident: 10.1016/j.envsoft.2022.105588_bib41 – volume: 49 start-page: 6871 year: 2013 ident: 10.1016/j.envsoft.2022.105588_bib52 article-title: An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling publication-title: Water Resour. Res. doi: 10.1002/wrcr.20467 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.envsoft.2022.105588_bib49 article-title: Groundwater contaminant source identification based on iterative local update ensemble smoother publication-title: J. Groundwater Sci. Eng. – start-page: 267 year: 2016 ident: 10.1016/j.envsoft.2022.105588_bib36 article-title: Ensemble models of learning vector quantization based on bootstrap resampling – volume: 6 year: 2019 ident: 10.1016/j.envsoft.2022.105588_bib38 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 138 year: 2020 ident: 10.1016/j.envsoft.2022.105588_bib56 article-title: Identifying groundwater contaminant sources based on a KELM surrogate model together with four heuristic optimization algorithms publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103540 – volume: 48 year: 2012 ident: 10.1016/j.envsoft.2022.105588_bib37 article-title: Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography Water publication-title: Resour. Res. – volume: 4 start-page: 159 year: 2017 ident: 10.1016/j.envsoft.2022.105588_bib44 – volume: 63 start-page: 22 year: 2014 ident: 10.1016/j.envsoft.2022.105588_bib59 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.envsoft.2022.105588_bib40 article-title: Dropout: a simple way to prevent neural networks from publication-title: Overfitting J. Machine Learn. Res. – volume: 8 year: 2018 ident: 10.1016/j.envsoft.2022.105588_bib35 – volume: 155 year: 2021 ident: 10.1016/j.envsoft.2022.105588_bib18 article-title: Hybrid homotopy-PSO global searching approach with multi-kernel extreme learning machine for efficient source identification of DNAPL-polluted aquifer publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2021.104837 – volume: 55 start-page: 3856 year: 2019 ident: 10.1016/j.envsoft.2022.105588_bib28 – volume: 16 start-page: 239 year: 2006 ident: 10.1016/j.envsoft.2022.105588_bib43 – volume: 598 year: 2021 ident: 10.1016/j.envsoft.2022.105588_bib4 article-title: Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126370 – volume: 220 start-page: 18 year: 2019 ident: 10.1016/j.envsoft.2022.105588_bib13 article-title: The application of 0-1 mixed integer nonlinear programming optimization model based on a surrogate model to identify the groundwater pollution source publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2018.11.005 – volume: 10 year: 2017 ident: 10.1016/j.envsoft.2022.105588_bib58 article-title: Short-term load forecasting using EMD-LSTM neural networks with a xgboost publication-title: Algorithm for Feature Importance Evaluation Energies  | 
    
| SSID | ssj0001524 | 
    
| Score | 2.4706185 | 
    
| Snippet | Groundwater contaminant source identification (GCSI) is commonly accompanied by search process which tweaks the unknown contaminant source information to match... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 105588 | 
    
| SubjectTerms | Auto xgboost computer software Differential evolution Ensemble learning search groundwater contamination Iterative ensemble smoother Particle filter simulation models Swarm evolution algorithm swarms trees  | 
    
| Title | Groundwater contaminant source identification based on an ensemble learning search framework associated with an auto xgboost surrogate | 
    
| URI | https://dx.doi.org/10.1016/j.envsoft.2022.105588 https://www.proquest.com/docview/3153819438  | 
    
| Volume | 159 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: .~1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2025 customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: ACRLP dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: AIKHN dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: AKRWK dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5KS2F76NZspdm6oMJencSWHNuPoaSkK83LFuibkCW5JKROyI-tfdnj_u7dWXLTlUJgb8Ho5JCT7r673N0H8JVm3HFR8EAj2sAAJcwCpVUcJLooNHpMkSXUnHwz6g3H4tttfLsHF3UvDJVVetvvbHplrf2Tjv81O4vJpPM95D2aNIIOjgKHlOywEAmxGLR_b8s8cIEjtu2JgFZvu3g607Ytf67Q2mGYGEXEeBtXBCyv-qcXlrpyP5fv4cjjRtZ3X-0Y9mzZgHc1JwPzV7QBh4NqDPVjA94-GzXYgJPBtqMN9_HrVx_gD2WfSvNL0TZUuK5ccQxzaX02Mb6eqFIhI69nGH5QJcMI2N7nM8s89cQdc_eGFXXFF1Ne-yhDGV-SUpv1nD3cIbpf4Us2y-WcMnkfYXw5-HExDDw5Q6C5iNaBMAQ2uTY672aWGrFtFkVGoXfrqkxhWJWaMOSJTvJUo5UQOQIDREvd0MbcIog7gf1yXtpTYAnCQIXAMdOJEaEyeYQwsMiKSPfiQnfTJohaJVL7yeVEoDGTdYnaVHpNStKkdJpsQvtJbOFGd-wSSGt9y3_OoET3skv0vD4fEu8n_emiSjvfrCQnlxJmgqef_n_7z_CGaO5d6ucM9tfLjf2CYGidt6rT3oKD_tX1cPQXpUIMCw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hEAIO7FJAPJbFSFzTNrHTJEeEisryuAASN8uxHVQEKeqDx4Ujv5uZ2NmyCAlpb1XkcaqOPd8303kA7FOPOy4KHmhkG-ighFmgtIqDRBeFRsQUWULFyWfnnd6V-HMdX8_AYV0LQ2mV3vY7m15Za_-k5X_N1kO_37oIeYc6jSDAkeOQoh2eE3GUkAfWfJ3meeAKN9m2IwJaPi3jad02bfk4QnOHfmIU0cjbuJrA8iVAfTLVFf4c_YRlTxzZgftuKzBjywb8qIcyMH9HGzDfrfpQvzRg6UOvwQasd6clbbiPXz9ahTcKP5XmSdE2lLmuXHYMc3F91jc-oajSISPYMww_qJKhC2zv8zvL_OyJG-YuDivqlC-mvPpRhkK-JKUm4wF7vkF6P8KXTIbDAYXy1uDqqHt52Av8dIZAcxGNA2GIbXJtdN7OLFVi2yyKjEJ4a6tMoV-VmjDkiU7yVKOZEDkyA6RL7dDG3CKLW4fZclDaDWAJ8kCFzDHTiRGhMnmEPLDIikh34kK3000QtUqk9q3LaYLGnaxz1G6l16QkTUqnyU1o_hV7cL07vhNIa33Lfw6hRHz5TnSvPh8SLyj966JKO5iMJCdMCTPB063_334XFnqXZ6fy9Pj8ZBsWaea9iwP9gtnxcGJ3kBmN89_VyX8HufsNoA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groundwater+contaminant+source+identification+based+on+an+ensemble+learning+search+framework+associated+with+an+auto+xgboost+surrogate&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Pan%2C+Zidong&rft.au=Lu%2C+Wenxi&rft.au=Wang%2C+Han&rft.au=Bai%2C+Yukun&rft.date=2023-01-01&rft.issn=1364-8152&rft.volume=159+p.105588-&rft_id=info:doi/10.1016%2Fj.envsoft.2022.105588&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon |