Groundwater contaminant source identification based on an ensemble learning search framework associated with an auto xgboost surrogate

Groundwater contaminant source identification (GCSI) is commonly accompanied by search process which tweaks the unknown contaminant source information to match the simulation model outputs with the measurements. When solving identification task, search accuracy and time cost have always been challen...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental modelling & software : with environment data news Vol. 159; p. 105588
Main Authors Pan, Zidong, Lu, Wenxi, Wang, Han, Bai, Yukun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN1364-8152
1873-6726
DOI10.1016/j.envsoft.2022.105588

Cover

Abstract Groundwater contaminant source identification (GCSI) is commonly accompanied by search process which tweaks the unknown contaminant source information to match the simulation model outputs with the measurements. When solving identification task, search accuracy and time cost have always been challenges that must be tackled. In the present study, a novel ensemble learning search framework associated with auto extreme gradient boosting tree (xgboost) was proposed to solve GCSI. In particular, auto xgboost was employed to reduce the calculation burden caused by repeatedly running simulation model. To promote search efficiency, boosting strategy (BOS) was employed to sequentially concatenate iterative ensemble smoother, differential evolution particle filter (DEPF), and swarm evolution algorithm. The identification results indicated that: 1. Auto xgboost could substitute a numerical simulation model with desired accuracy and expeditious running speed. 2. BOS could achieve better search accuracy, but with the sacrifice of infinitesimal calculated time cost, when compared with bagging strategy. •Novel and easy-to-perform auto xgboost was proposed as surrogate of high-calculation-cost simulation model.•Differential evolution was introduced to improve PF search capacity.•Boosting strategy was used to integrate IES, DEPF, and SEA to promote the accuracy of source identification.
AbstractList Groundwater contaminant source identification (GCSI) is commonly accompanied by search process which tweaks the unknown contaminant source information to match the simulation model outputs with the measurements. When solving identification task, search accuracy and time cost have always been challenges that must be tackled. In the present study, a novel ensemble learning search framework associated with auto extreme gradient boosting tree (xgboost) was proposed to solve GCSI. In particular, auto xgboost was employed to reduce the calculation burden caused by repeatedly running simulation model. To promote search efficiency, boosting strategy (BOS) was employed to sequentially concatenate iterative ensemble smoother, differential evolution particle filter (DEPF), and swarm evolution algorithm. The identification results indicated that: 1. Auto xgboost could substitute a numerical simulation model with desired accuracy and expeditious running speed. 2. BOS could achieve better search accuracy, but with the sacrifice of infinitesimal calculated time cost, when compared with bagging strategy. •Novel and easy-to-perform auto xgboost was proposed as surrogate of high-calculation-cost simulation model.•Differential evolution was introduced to improve PF search capacity.•Boosting strategy was used to integrate IES, DEPF, and SEA to promote the accuracy of source identification.
Groundwater contaminant source identification (GCSI) is commonly accompanied by search process which tweaks the unknown contaminant source information to match the simulation model outputs with the measurements. When solving identification task, search accuracy and time cost have always been challenges that must be tackled. In the present study, a novel ensemble learning search framework associated with auto extreme gradient boosting tree (xgboost) was proposed to solve GCSI. In particular, auto xgboost was employed to reduce the calculation burden caused by repeatedly running simulation model. To promote search efficiency, boosting strategy (BOS) was employed to sequentially concatenate iterative ensemble smoother, differential evolution particle filter (DEPF), and swarm evolution algorithm. The identification results indicated that: 1. Auto xgboost could substitute a numerical simulation model with desired accuracy and expeditious running speed. 2. BOS could achieve better search accuracy, but with the sacrifice of infinitesimal calculated time cost, when compared with bagging strategy.
ArticleNumber 105588
Author Bai, Yukun
Lu, Wenxi
Pan, Zidong
Wang, Han
Author_xml – sequence: 1
  givenname: Zidong
  surname: Pan
  fullname: Pan, Zidong
  organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
– sequence: 2
  givenname: Wenxi
  surname: Lu
  fullname: Lu, Wenxi
  email: luwx999@163.com
  organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
– sequence: 3
  givenname: Han
  surname: Wang
  fullname: Wang, Han
  organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
– sequence: 4
  givenname: Yukun
  surname: Bai
  fullname: Bai, Yukun
  organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
BookMark eNqFkMtOHDEQRS1EJF75BCQvs-nBj364lUUUoQSQkLIJa8ttVw8eum3icjPhB_huPAwrNqzqqlznWjon5DDEAIScc7bijLcXmxWEJ4xjXgkmRNk1jVIH5JirTlZtJ9rDkmVbV4o34oicIG4YYyXXx-TlKsUluK3JkKiNIZvZBxMyxbgkC9Q7CNmP3prsY6CDQXC0BBMoBIR5mIBOYFLwYU2xBHtPx2Rm2Mb0QA1itL50O7r1-X5HmSVH-n89xIjlkyWluC7vZ-TLaCaEr-_zlNz9_vX38rq6_XN1c_nztrKyFrmqHWOKSevswHrgUjDohXCm7xkzvWlFoxznsrPdoGytVD2oRvJOMA6NhFrIU_Jt3_uY4r8FMOvZo4VpMgHiglryRire11KV02Z_alNETDDqx-Rnk541Z3rnXW_0u3e986733gv3_QNnfX6zl5Px06f0jz0NxcKTh6TReggWnE9gs3bRf9LwCt_sp00
CitedBy_id crossref_primary_10_3390_w16050638
crossref_primary_10_1016_j_envsoft_2024_106050
crossref_primary_10_1016_j_jconhyd_2024_104447
crossref_primary_10_54691_sjt_v5i3_4491
crossref_primary_10_1016_j_jconhyd_2024_104437
crossref_primary_10_1016_j_jhydrol_2023_129965
crossref_primary_10_1080_1062936X_2025_2478123
crossref_primary_10_1016_j_envsoft_2025_106332
crossref_primary_10_1016_j_engappai_2024_109545
crossref_primary_10_1016_j_jhydrol_2025_132753
crossref_primary_10_3390_f14081688
crossref_primary_10_1007_s10653_024_01908_5
crossref_primary_10_1007_s11356_023_27574_1
crossref_primary_10_1080_15275922_2023_2297429
crossref_primary_10_1038_s41598_023_35801_5
Cites_doi 10.1016/j.jconhyd.2010.06.004
10.1016/j.jhydrol.2021.127405
10.1007/s00500-019-04141-w
10.1007/s00477-020-01891-0
10.1016/j.jhydrol.2018.01.038
10.1002/hyp.13127
10.1007/s10040-017-1690-1
10.1016/j.jhydrol.2020.125343
10.1007/s10040-022-02454-z
10.1016/j.jhydrol.2019.124160
10.1016/j.envpol.2020.115663
10.1007/s10040-014-1172-7
10.1016/j.eswa.2010.04.019
10.1109/TKDE.2004.29
10.1002/2016WR018598
10.1007/s11704-019-8208-z
10.1016/j.advwatres.2008.11.006
10.1016/j.envsoft.2018.06.009
10.1007/s10040-015-1260-3
10.1016/j.jhydrol.2016.04.008
10.1016/j.advwatres.2014.01.007
10.1007/s10596-018-9731-y
10.1029/2018WR024408
10.1109/ACCESS.2018.2818678
10.1016/j.ymssp.2015.11.008
10.1002/wrcr.20467
10.1186/s40537-019-0197-0
10.1016/j.advwatres.2020.103540
10.1016/j.cageo.2021.104837
10.1016/j.jhydrol.2021.126370
10.1016/j.jconhyd.2018.11.005
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.envsoft.2022.105588
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Computer Science
Environmental Sciences
EISSN 1873-6726
ExternalDocumentID 10_1016_j_envsoft_2022_105588
S1364815222002882
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSV
SSZ
T5K
UHS
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-4d00803cdcb09e1320e922da9900a9a6258d1137c7b8c4884b85317201e53e423
IEDL.DBID .~1
ISSN 1364-8152
IngestDate Sun Sep 28 10:32:25 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Wed Oct 29 21:09:26 EDT 2025
Fri Feb 23 02:39:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Auto xgboost
Ensemble learning search
Iterative ensemble smoother
Particle filter
Swarm evolution algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-4d00803cdcb09e1320e922da9900a9a6258d1137c7b8c4884b85317201e53e423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153819438
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153819438
crossref_primary_10_1016_j_envsoft_2022_105588
crossref_citationtrail_10_1016_j_envsoft_2022_105588
elsevier_sciencedirect_doi_10_1016_j_envsoft_2022_105588
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Environmental modelling & software : with environment data news
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Lu, Ye, Gunzburger, Webster (bib52) 2013; 49
Alom (bib1) 2019; 8
Jouin, Gouriveau, Hissel, Pera, Zerhouni (bib21) 2016; 72–73
Katoch, Chauhan, Kumar (bib22) 2021; 80
Webb, Zheng (bib45) 2004; 16
Probst, Wright, Boulesteix (bib32) 2019; 9
Hou, Lu (bib17) 2018; 26
Sachdeva, Kumar (bib34) 2021; 35
Mo, Zabaras, Shi, Wu (bib28) 2019; 55
Bashi-Azghadi, Kerachian, Bazargan-Lari, Solouki (bib5) 2010; 37
Shorten, Khoshgoftaar (bib38) 2019; 6
Evensen (bib11) 2018; 22
Xu, Zhang, Gomez-Hernandez, Xie, Yang, Chen, Lu (bib47) 2022; 606
Stanley, Clune, Lehman, Miikkulainen (bib41) 2019; 1
Yang, Jiang, Liu, Jiang, Zhou, Zhang (bib49) 2020; 8
Dong, Yu, Cao, Shi, Ma (bib10) 2020; 14
Ramgraber, Albert, Schirmer (bib33) 2019; 55
Panzeri, Riva, Guadagnini, Neuman (bib31) 2014; 66
Chen, Guestrin, Assoc Comp (bib8) 2016
Li, Stetler, Cao, Davis (bib26) 2018; 567
Yan, Dong, An, Lu (bib48) 2019; 579
Zhao, Qu, Xing, Lu (bib56) 2020; 138
Guo, Lu, Yang, Miao (bib13) 2019; 220
Ayvaz (bib2) 2010; 117
Schoeniger, Nowak, Franssen (bib37) 2012; 48
Guryanov (bib15) 2019
Zhang, Li, Zeng, Wu (bib53) 2016; 52
Guo, Wang, Xiao, Xu (bib14) 2020; 24
Shrestha, Mahmood (bib39) 2019; 7
Zheng, Yuan, Chen (bib58) 2017; 10
Ayvaz (bib3) 2016; 538
Ter Braak (bib43) 2006; 16
Sagi, Rokach (bib35) 2018; 8
Zhou, Gomez-Hernandez, Li (bib59) 2014; 63
Sun, Morris, Mohanty (bib42) 2009; 32
Bhagat, Tiyasha, Awadh, Tran Minh, Jawad, Yaseen (bib6) 2021; 268
Zhao, Jiang, Xu (bib55) 2010
Saitoh (bib36) 2016
Hou, Lao, Wang, Lu (bib18) 2021; 155
Janssen (bib19) 2013; 109
Yildiz (bib51) 2013; 26
Torlay, Perrone-Bertolotti, Thomas, Baciu (bib44) 2017; 4
White (bib46) 2018; 109
Li, Puzel, Davis (bib25) 2018; 32
Pan, Lu, Bai (bib30) 2022
Li, Lu, Fan (bib27) 2021; 38
Lee, Yoo, Kim, Lee, Hong (bib24) 2019; 49
Zhang, Qian, Mao, Huang, Huang, Si (bib54) 2018; 6
Han, Zuo, Ni, Xue, Xu, Wang, Zhang (bib16) 2020; 589
Zheng, Wang (bib57) 1999; 169
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib40) 2014; 15
Jiang, Zhang, Liu, Xia, Li, Zheng (bib20) 2022; 14
Chiu (bib9) 2014; 22
Yeh (bib50) 2015; 23
Langevin, Shoemaker, Guo (bib23) 2000
Field, Tavrisov, Brown, Harris, Kreidl (bib12) 2016; 30
Barzegar, Razzagh, Quilty, Adamowski, Pour, Booij (bib4) 2021; 598
Xu (10.1016/j.envsoft.2022.105588_bib47) 2022; 606
Guo (10.1016/j.envsoft.2022.105588_bib13) 2019; 220
Katoch (10.1016/j.envsoft.2022.105588_bib22) 2021; 80
Yildiz (10.1016/j.envsoft.2022.105588_bib51) 2013; 26
Schoeniger (10.1016/j.envsoft.2022.105588_bib37) 2012; 48
Webb (10.1016/j.envsoft.2022.105588_bib45) 2004; 16
Hou (10.1016/j.envsoft.2022.105588_bib17) 2018; 26
Mo (10.1016/j.envsoft.2022.105588_bib28) 2019; 55
Jouin (10.1016/j.envsoft.2022.105588_bib21) 2016; 72–73
Bhagat (10.1016/j.envsoft.2022.105588_bib6) 2021; 268
Ter Braak (10.1016/j.envsoft.2022.105588_bib43) 2006; 16
Zhao (10.1016/j.envsoft.2022.105588_bib56) 2020; 138
Sachdeva (10.1016/j.envsoft.2022.105588_bib34) 2021; 35
Ayvaz (10.1016/j.envsoft.2022.105588_bib2) 2010; 117
Torlay (10.1016/j.envsoft.2022.105588_bib44) 2017; 4
Guryanov (10.1016/j.envsoft.2022.105588_bib15) 2019
Yan (10.1016/j.envsoft.2022.105588_bib48) 2019; 579
Ayvaz (10.1016/j.envsoft.2022.105588_bib3) 2016; 538
Yang (10.1016/j.envsoft.2022.105588_bib49) 2020; 8
Barzegar (10.1016/j.envsoft.2022.105588_bib4) 2021; 598
Yeh (10.1016/j.envsoft.2022.105588_bib50) 2015; 23
Li (10.1016/j.envsoft.2022.105588_bib26) 2018; 567
Alom (10.1016/j.envsoft.2022.105588_bib1) 2019; 8
Zhang (10.1016/j.envsoft.2022.105588_bib54) 2018; 6
Shrestha (10.1016/j.envsoft.2022.105588_bib39) 2019; 7
Jiang (10.1016/j.envsoft.2022.105588_bib20) 2022; 14
Ramgraber (10.1016/j.envsoft.2022.105588_bib33) 2019; 55
Stanley (10.1016/j.envsoft.2022.105588_bib41) 2019; 1
Guo (10.1016/j.envsoft.2022.105588_bib14) 2020; 24
White (10.1016/j.envsoft.2022.105588_bib46) 2018; 109
Han (10.1016/j.envsoft.2022.105588_bib16) 2020; 589
Li (10.1016/j.envsoft.2022.105588_bib25) 2018; 32
Srivastava (10.1016/j.envsoft.2022.105588_bib40) 2014; 15
Field (10.1016/j.envsoft.2022.105588_bib12) 2016; 30
Panzeri (10.1016/j.envsoft.2022.105588_bib31) 2014; 66
Zhao (10.1016/j.envsoft.2022.105588_bib55) 2010
Hou (10.1016/j.envsoft.2022.105588_bib18) 2021; 155
Zheng (10.1016/j.envsoft.2022.105588_bib58) 2017; 10
Bashi-Azghadi (10.1016/j.envsoft.2022.105588_bib5) 2010; 37
Lee (10.1016/j.envsoft.2022.105588_bib24) 2019; 49
Li (10.1016/j.envsoft.2022.105588_bib27) 2021; 38
Sun (10.1016/j.envsoft.2022.105588_bib42) 2009; 32
Langevin (10.1016/j.envsoft.2022.105588_bib23) 2000
Chen (10.1016/j.envsoft.2022.105588_bib8) 2016
Janssen (10.1016/j.envsoft.2022.105588_bib19) 2013; 109
Sagi (10.1016/j.envsoft.2022.105588_bib35) 2018; 8
Zhang (10.1016/j.envsoft.2022.105588_bib52) 2013; 49
Probst (10.1016/j.envsoft.2022.105588_bib32) 2019; 9
Chiu (10.1016/j.envsoft.2022.105588_bib9) 2014; 22
Evensen (10.1016/j.envsoft.2022.105588_bib11) 2018; 22
Zhou (10.1016/j.envsoft.2022.105588_bib59) 2014; 63
Pan (10.1016/j.envsoft.2022.105588_bib30) 2022
Zhang (10.1016/j.envsoft.2022.105588_bib53) 2016; 52
Zheng (10.1016/j.envsoft.2022.105588_bib57) 1999; 169
Shorten (10.1016/j.envsoft.2022.105588_bib38) 2019; 6
Dong (10.1016/j.envsoft.2022.105588_bib10) 2020; 14
Saitoh (10.1016/j.envsoft.2022.105588_bib36) 2016
References_xml – volume: 220
  start-page: 18
  year: 2019
  end-page: 25
  ident: bib13
  article-title: The application of 0-1 mixed integer nonlinear programming optimization model based on a surrogate model to identify the groundwater pollution source
  publication-title: J. Contam. Hydrol.
– volume: 8
  year: 2019
  ident: bib1
  publication-title: A State-of-the-Art Survey on Deep Learning Theory and Architectures Electronics
– volume: 72–73
  start-page: 2
  year: 2016
  end-page: 31
  ident: bib21
  article-title: Particle filter-based prognostics: review, discussion and perspectives
  publication-title: Mech. Syst. Signal Process.
– volume: 16
  start-page: 239
  year: 2006
  end-page: 249
  ident: bib43
  publication-title: A Markov Chain Monte Carlo Version of the Genetic Algorithm Differential Evolution: Easy Bayesian Computing for Real Parameter Spaces Statistics and Computing
– volume: 38
  start-page: 777
  year: 2021
  end-page: 788
  ident: bib27
  article-title: Groundwater pollution sources identification based on hybrid homotopy-genetic
  publication-title: Algorithm Simulat. Optimiz. Environ. Eng. Sci.
– volume: 66
  start-page: 8
  year: 2014
  end-page: 18
  ident: bib31
  article-title: Comparison of Ensemble Kalman Filter groundwater-data assimilation methods based on stochastic moment equations and Monte Carlo simulation
  publication-title: Adv. Water Resour.
– volume: 1
  start-page: 24
  year: 2019
  end-page: 35
  ident: bib41
  publication-title: Designing Neural Networks through Neuroevolution Nature Machine Intelligence
– volume: 109
  start-page: 191
  year: 2018
  end-page: 201
  ident: bib46
  article-title: A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions
  publication-title: Environ. Model. Software
– volume: 9
  year: 2019
  ident: bib32
  publication-title: Hyperparameters and Tuning Strategies for Random Forest Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
– volume: 606
  year: 2022
  ident: bib47
  article-title: Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation
  publication-title: J. Hydrol.
– year: 2022
  ident: bib30
  article-title: Groundwater contamination source estimation based on a refined particle filter associated with a deep residual neural network surrogate
  publication-title: Hydrogeol. J.
– volume: 155
  year: 2021
  ident: bib18
  article-title: Hybrid homotopy-PSO global searching approach with multi-kernel extreme learning machine for efficient source identification of DNAPL-polluted aquifer
  publication-title: Comput. Geosci.
– volume: 567
  start-page: 759
  year: 2018
  end-page: 766
  ident: bib26
  article-title: An iterative normal-score ensemble smoother for dealing with non-Gaussianity in data assimilation
  publication-title: J. Hydrol.
– volume: 138
  year: 2020
  ident: bib56
  article-title: Identifying groundwater contaminant sources based on a KELM surrogate model together with four heuristic optimization algorithms
  publication-title: Adv. Water Resour.
– volume: 37
  start-page: 7154
  year: 2010
  end-page: 7161
  ident: bib5
  article-title: Characterizing an unknown pollution source in groundwater resources systems using
  publication-title: PSVM and PNN Expert Syst. Appl.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib8
  article-title: XGBoost: a scalable tree boosting system
  publication-title: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 579
  year: 2019
  ident: bib48
  article-title: A Bayesian-based integrated approach for identifying groundwater contamination sources
  publication-title: J. Hydrol.
– volume: 169
  start-page: 1196
  year: 1999
  end-page: 1197
  ident: bib57
  article-title: MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user's guide Ajr
  publication-title: Am. J. Roentgenol.
– volume: 49
  start-page: 6871
  year: 2013
  end-page: 6892
  ident: bib52
  article-title: An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling
  publication-title: Water Resour. Res.
– volume: 598
  year: 2021
  ident: bib4
  article-title: Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models
  publication-title: J. Hydrol.
– start-page: 267
  year: 2016
  end-page: 274
  ident: bib36
  article-title: Ensemble models of learning vector quantization based on bootstrap resampling
  publication-title: 25th International Conference on Artificial Neural Networks (ICANN)
– volume: 109
  start-page: 123
  year: 2013
  end-page: 132
  ident: bib19
  publication-title: Monte-Carlo Based Uncertainty Analysis: Sampling Efficiency and Sampling Convergence Reliability Engineering & System Safety
– start-page: 1
  year: 2010
  end-page: 12
  ident: bib55
  article-title: Incremental learning by heterogeneous bagging ensemble
  publication-title: 6th International Conference on Advanced Data Mining and Applications (ADMA), Chongqing, PEOPLES R CHINA, 2010
– volume: 268
  year: 2021
  ident: bib6
  article-title: Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models
  publication-title: Environ. Pollut.
– volume: 22
  start-page: 1731
  year: 2014
  end-page: 1748
  ident: bib9
  article-title: Application of differential evolutionary optimization methodology for parameter structure identification in groundwater modeling
  publication-title: Hydrogeol. J.
– volume: 8
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib49
  article-title: Groundwater contaminant source identification based on iterative local update ensemble smoother
  publication-title: J. Groundwater Sci. Eng.
– volume: 7
  start-page: 53040
  year: 2019
  end-page: 53065
  ident: bib39
  publication-title: Review of Deep Learning Algorithms Architectures Ieee Access
– volume: 52
  start-page: 5971
  year: 2016
  end-page: 5984
  ident: bib53
  article-title: An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems Water
  publication-title: Resour. Res.
– volume: 16
  start-page: 980
  year: 2004
  end-page: 991
  ident: bib45
  article-title: Multistrategy ensemble learning: reducing error by combining ensemble learning techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 10
  year: 2017
  ident: bib58
  article-title: Short-term load forecasting using EMD-LSTM neural networks with a xgboost
  publication-title: Algorithm for Feature Importance Evaluation Energies
– volume: 8
  year: 2018
  ident: bib35
  publication-title: Ensemble Learning: A Survey Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
– start-page: 39
  year: 2019
  end-page: 50
  ident: bib15
  article-title: Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees
  publication-title: 8th International Conference on Analysis of Images, Social Networks, and Texts (AIST), Kazan Fed Univ, Kazan, RUSSIA
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib40
  article-title: Dropout: a simple way to prevent neural networks from
  publication-title: Overfitting J. Machine Learn. Res.
– volume: 80
  start-page: 8091
  year: 2021
  end-page: 8126
  ident: bib22
  publication-title: A Review on Genetic Algorithm: Past, Present, and Future Multimedia Tools and Applications
– volume: 117
  start-page: 46
  year: 2010
  end-page: 59
  ident: bib2
  article-title: A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems
  publication-title: J. Contam. Hydrol.
– year: 2000
  ident: bib23
  article-title: MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model--Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT) Center for Integrated Data Analytics Wisconsin Science Center
– volume: 35
  start-page: 287
  year: 2021
  end-page: 306
  ident: bib34
  article-title: Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in Dholpur (Rajasthan)
  publication-title: India Stochastic Environ. Res. Risk Assess.
– volume: 49
  start-page: 491
  year: 2019
  end-page: 501
  ident: bib24
  article-title: Autonomic machine learning platform
  publication-title: Int. J. Inf. Manag.
– volume: 30
  start-page: 3175
  year: 2016
  end-page: 3189
  ident: bib12
  publication-title: Particle Filters to Estimate Properties of Confined Aquifers Water Resources Management
– volume: 6
  start-page: 21020
  year: 2018
  end-page: 21031
  ident: bib54
  article-title: A data-driven design for fault detection of wind turbines using random forests and XGboost
  publication-title: IEEE Access
– volume: 55
  start-page: 3856
  year: 2019
  end-page: 3881
  ident: bib28
  publication-title: Deep Autoregressive Neural Networks for High-Dimensional Inverse Problems in Groundwater Contaminant Source Identification Water Resources Research
– volume: 4
  start-page: 159
  year: 2017
  end-page: 169
  ident: bib44
  publication-title: Machine Learning-XGBoost Analysis of Language Networks to Classify Patients with Epilepsy Brain Informatics
– volume: 14
  year: 2022
  ident: bib20
  publication-title: Simultaneous Estimation of a Contaminant Source and Hydraulic Conductivity Field by Combining an Iterative Ensemble Smoother and Sequential Gaussian Simulation Water
– volume: 6
  year: 2019
  ident: bib38
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
– volume: 32
  start-page: 2020
  year: 2018
  end-page: 2029
  ident: bib25
  article-title: Data assimilation in groundwater modelling: ensemble Kalman filter versus ensemble smoothers
  publication-title: Hydrol. Process.
– volume: 63
  start-page: 22
  year: 2014
  end-page: 37
  ident: bib59
  publication-title: Inverse Methods in Hydrogeology: Evolution and Recent Trends Advances in Water Resources
– volume: 23
  start-page: 1051
  year: 2015
  end-page: 1065
  ident: bib50
  article-title: Review: optimization methods for groundwater modeling and management
  publication-title: Hydrogeol. J.
– volume: 55
  start-page: 9724
  year: 2019
  end-page: 9747
  ident: bib33
  article-title: Data assimilation and online parameter optimization in groundwater modeling using nested particle
  publication-title: Filters Water Resources Research
– volume: 589
  year: 2020
  ident: bib16
  article-title: Application of a genetic algorithm to groundwater pollution source identification
  publication-title: J. Hydrol.
– volume: 22
  start-page: 885
  year: 2018
  end-page: 908
  ident: bib11
  article-title: Analysis of iterative ensemble smoothers for solving inverse problems
  publication-title: Comput. Geosci.
– volume: 14
  start-page: 241
  year: 2020
  end-page: 258
  ident: bib10
  article-title: A survey on ensemble learning
  publication-title: Front. Comput. Sci.
– volume: 26
  start-page: 327
  year: 2013
  end-page: 333
  ident: bib51
  publication-title: Comparison of Evolutionary-Based Optimization Algorithms for Structural Design Optimization Engineering Applications of Artificial Intelligence
– volume: 26
  start-page: 923
  year: 2018
  end-page: 932
  ident: bib17
  article-title: Comparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sites
  publication-title: Hydrogeol. J.
– volume: 538
  start-page: 161
  year: 2016
  end-page: 176
  ident: bib3
  article-title: A hybrid simulation-optimization approach for solving the areal groundwater pollution source identification problems
  publication-title: J. Hydrol.
– volume: 24
  start-page: 3727
  year: 2020
  end-page: 3735
  ident: bib14
  article-title: An ensemble learning framework for convolutional neural network based on multiple classifiers
  publication-title: Soft Comput.
– volume: 48
  year: 2012
  ident: bib37
  article-title: Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography Water
  publication-title: Resour. Res.
– volume: 32
  start-page: 280
  year: 2009
  end-page: 292
  ident: bib42
  article-title: Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data
  publication-title: Adv. Water Resour.
– volume: 8
  year: 2019
  ident: 10.1016/j.envsoft.2022.105588_bib1
  publication-title: A State-of-the-Art Survey on Deep Learning Theory and Architectures Electronics
– volume: 117
  start-page: 46
  year: 2010
  ident: 10.1016/j.envsoft.2022.105588_bib2
  article-title: A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2010.06.004
– volume: 606
  year: 2022
  ident: 10.1016/j.envsoft.2022.105588_bib47
  article-title: Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127405
– volume: 169
  start-page: 1196
  year: 1999
  ident: 10.1016/j.envsoft.2022.105588_bib57
  article-title: MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user's guide Ajr
  publication-title: Am. J. Roentgenol.
– volume: 109
  start-page: 123
  year: 2013
  ident: 10.1016/j.envsoft.2022.105588_bib19
– start-page: 1
  year: 2010
  ident: 10.1016/j.envsoft.2022.105588_bib55
  article-title: Incremental learning by heterogeneous bagging ensemble
– volume: 24
  start-page: 3727
  year: 2020
  ident: 10.1016/j.envsoft.2022.105588_bib14
  article-title: An ensemble learning framework for convolutional neural network based on multiple classifiers
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04141-w
– volume: 9
  year: 2019
  ident: 10.1016/j.envsoft.2022.105588_bib32
– volume: 35
  start-page: 287
  year: 2021
  ident: 10.1016/j.envsoft.2022.105588_bib34
  article-title: Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in Dholpur (Rajasthan)
  publication-title: India Stochastic Environ. Res. Risk Assess.
  doi: 10.1007/s00477-020-01891-0
– volume: 567
  start-page: 759
  year: 2018
  ident: 10.1016/j.envsoft.2022.105588_bib26
  article-title: An iterative normal-score ensemble smoother for dealing with non-Gaussianity in data assimilation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.01.038
– volume: 32
  start-page: 2020
  year: 2018
  ident: 10.1016/j.envsoft.2022.105588_bib25
  article-title: Data assimilation in groundwater modelling: ensemble Kalman filter versus ensemble smoothers
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13127
– volume: 26
  start-page: 923
  year: 2018
  ident: 10.1016/j.envsoft.2022.105588_bib17
  article-title: Comparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sites
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-017-1690-1
– volume: 589
  year: 2020
  ident: 10.1016/j.envsoft.2022.105588_bib16
  article-title: Application of a genetic algorithm to groundwater pollution source identification
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125343
– year: 2022
  ident: 10.1016/j.envsoft.2022.105588_bib30
  article-title: Groundwater contamination source estimation based on a refined particle filter associated with a deep residual neural network surrogate
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-022-02454-z
– volume: 579
  year: 2019
  ident: 10.1016/j.envsoft.2022.105588_bib48
  article-title: A Bayesian-based integrated approach for identifying groundwater contamination sources
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124160
– volume: 268
  year: 2021
  ident: 10.1016/j.envsoft.2022.105588_bib6
  article-title: Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115663
– year: 2000
  ident: 10.1016/j.envsoft.2022.105588_bib23
– volume: 49
  start-page: 491
  year: 2019
  ident: 10.1016/j.envsoft.2022.105588_bib24
  article-title: Autonomic machine learning platform
  publication-title: Int. J. Inf. Manag.
– volume: 38
  start-page: 777
  year: 2021
  ident: 10.1016/j.envsoft.2022.105588_bib27
  article-title: Groundwater pollution sources identification based on hybrid homotopy-genetic
  publication-title: Algorithm Simulat. Optimiz. Environ. Eng. Sci.
– volume: 22
  start-page: 1731
  year: 2014
  ident: 10.1016/j.envsoft.2022.105588_bib9
  article-title: Application of differential evolutionary optimization methodology for parameter structure identification in groundwater modeling
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-014-1172-7
– volume: 80
  start-page: 8091
  year: 2021
  ident: 10.1016/j.envsoft.2022.105588_bib22
– start-page: 785
  year: 2016
  ident: 10.1016/j.envsoft.2022.105588_bib8
  article-title: XGBoost: a scalable tree boosting system
– volume: 37
  start-page: 7154
  year: 2010
  ident: 10.1016/j.envsoft.2022.105588_bib5
  article-title: Characterizing an unknown pollution source in groundwater resources systems using
  publication-title: PSVM and PNN Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.04.019
– volume: 16
  start-page: 980
  year: 2004
  ident: 10.1016/j.envsoft.2022.105588_bib45
  article-title: Multistrategy ensemble learning: reducing error by combining ensemble learning techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2004.29
– volume: 52
  start-page: 5971
  year: 2016
  ident: 10.1016/j.envsoft.2022.105588_bib53
  article-title: An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems Water
  publication-title: Resour. Res.
  doi: 10.1002/2016WR018598
– volume: 7
  start-page: 53040
  year: 2019
  ident: 10.1016/j.envsoft.2022.105588_bib39
  publication-title: Review of Deep Learning Algorithms Architectures Ieee Access
– volume: 14
  start-page: 241
  year: 2020
  ident: 10.1016/j.envsoft.2022.105588_bib10
  article-title: A survey on ensemble learning
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-019-8208-z
– volume: 32
  start-page: 280
  year: 2009
  ident: 10.1016/j.envsoft.2022.105588_bib42
  article-title: Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2008.11.006
– volume: 30
  start-page: 3175
  year: 2016
  ident: 10.1016/j.envsoft.2022.105588_bib12
– volume: 109
  start-page: 191
  year: 2018
  ident: 10.1016/j.envsoft.2022.105588_bib46
  article-title: A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2018.06.009
– volume: 23
  start-page: 1051
  year: 2015
  ident: 10.1016/j.envsoft.2022.105588_bib50
  article-title: Review: optimization methods for groundwater modeling and management
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-015-1260-3
– volume: 538
  start-page: 161
  year: 2016
  ident: 10.1016/j.envsoft.2022.105588_bib3
  article-title: A hybrid simulation-optimization approach for solving the areal groundwater pollution source identification problems
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.04.008
– volume: 66
  start-page: 8
  year: 2014
  ident: 10.1016/j.envsoft.2022.105588_bib31
  article-title: Comparison of Ensemble Kalman Filter groundwater-data assimilation methods based on stochastic moment equations and Monte Carlo simulation
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2014.01.007
– volume: 22
  start-page: 885
  year: 2018
  ident: 10.1016/j.envsoft.2022.105588_bib11
  article-title: Analysis of iterative ensemble smoothers for solving inverse problems
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-018-9731-y
– start-page: 39
  year: 2019
  ident: 10.1016/j.envsoft.2022.105588_bib15
  article-title: Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees
– volume: 55
  start-page: 9724
  year: 2019
  ident: 10.1016/j.envsoft.2022.105588_bib33
  article-title: Data assimilation and online parameter optimization in groundwater modeling using nested particle
  publication-title: Filters Water Resources Research
  doi: 10.1029/2018WR024408
– volume: 6
  start-page: 21020
  year: 2018
  ident: 10.1016/j.envsoft.2022.105588_bib54
  article-title: A data-driven design for fault detection of wind turbines using random forests and XGboost
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2818678
– volume: 14
  year: 2022
  ident: 10.1016/j.envsoft.2022.105588_bib20
– volume: 72–73
  start-page: 2
  year: 2016
  ident: 10.1016/j.envsoft.2022.105588_bib21
  article-title: Particle filter-based prognostics: review, discussion and perspectives
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.11.008
– volume: 26
  start-page: 327
  year: 2013
  ident: 10.1016/j.envsoft.2022.105588_bib51
– volume: 1
  start-page: 24
  year: 2019
  ident: 10.1016/j.envsoft.2022.105588_bib41
– volume: 49
  start-page: 6871
  year: 2013
  ident: 10.1016/j.envsoft.2022.105588_bib52
  article-title: An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20467
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.envsoft.2022.105588_bib49
  article-title: Groundwater contaminant source identification based on iterative local update ensemble smoother
  publication-title: J. Groundwater Sci. Eng.
– start-page: 267
  year: 2016
  ident: 10.1016/j.envsoft.2022.105588_bib36
  article-title: Ensemble models of learning vector quantization based on bootstrap resampling
– volume: 6
  year: 2019
  ident: 10.1016/j.envsoft.2022.105588_bib38
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 138
  year: 2020
  ident: 10.1016/j.envsoft.2022.105588_bib56
  article-title: Identifying groundwater contaminant sources based on a KELM surrogate model together with four heuristic optimization algorithms
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103540
– volume: 48
  year: 2012
  ident: 10.1016/j.envsoft.2022.105588_bib37
  article-title: Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography Water
  publication-title: Resour. Res.
– volume: 4
  start-page: 159
  year: 2017
  ident: 10.1016/j.envsoft.2022.105588_bib44
– volume: 63
  start-page: 22
  year: 2014
  ident: 10.1016/j.envsoft.2022.105588_bib59
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.envsoft.2022.105588_bib40
  article-title: Dropout: a simple way to prevent neural networks from
  publication-title: Overfitting J. Machine Learn. Res.
– volume: 8
  year: 2018
  ident: 10.1016/j.envsoft.2022.105588_bib35
– volume: 155
  year: 2021
  ident: 10.1016/j.envsoft.2022.105588_bib18
  article-title: Hybrid homotopy-PSO global searching approach with multi-kernel extreme learning machine for efficient source identification of DNAPL-polluted aquifer
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2021.104837
– volume: 55
  start-page: 3856
  year: 2019
  ident: 10.1016/j.envsoft.2022.105588_bib28
– volume: 16
  start-page: 239
  year: 2006
  ident: 10.1016/j.envsoft.2022.105588_bib43
– volume: 598
  year: 2021
  ident: 10.1016/j.envsoft.2022.105588_bib4
  article-title: Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126370
– volume: 220
  start-page: 18
  year: 2019
  ident: 10.1016/j.envsoft.2022.105588_bib13
  article-title: The application of 0-1 mixed integer nonlinear programming optimization model based on a surrogate model to identify the groundwater pollution source
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2018.11.005
– volume: 10
  year: 2017
  ident: 10.1016/j.envsoft.2022.105588_bib58
  article-title: Short-term load forecasting using EMD-LSTM neural networks with a xgboost
  publication-title: Algorithm for Feature Importance Evaluation Energies
SSID ssj0001524
Score 2.4706185
Snippet Groundwater contaminant source identification (GCSI) is commonly accompanied by search process which tweaks the unknown contaminant source information to match...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105588
SubjectTerms Auto xgboost
computer software
Differential evolution
Ensemble learning search
groundwater contamination
Iterative ensemble smoother
Particle filter
simulation models
Swarm evolution algorithm
swarms
trees
Title Groundwater contaminant source identification based on an ensemble learning search framework associated with an auto xgboost surrogate
URI https://dx.doi.org/10.1016/j.envsoft.2022.105588
https://www.proquest.com/docview/3153819438
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: .~1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2025
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: ACRLP
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: AIKHN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: AKRWK
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5KS2F76NZspdm6oMJencSWHNuPoaSkK83LFuibkCW5JKROyI-tfdnj_u7dWXLTlUJgb8Ho5JCT7r673N0H8JVm3HFR8EAj2sAAJcwCpVUcJLooNHpMkSXUnHwz6g3H4tttfLsHF3UvDJVVetvvbHplrf2Tjv81O4vJpPM95D2aNIIOjgKHlOywEAmxGLR_b8s8cIEjtu2JgFZvu3g607Ytf67Q2mGYGEXEeBtXBCyv-qcXlrpyP5fv4cjjRtZ3X-0Y9mzZgHc1JwPzV7QBh4NqDPVjA94-GzXYgJPBtqMN9_HrVx_gD2WfSvNL0TZUuK5ccQxzaX02Mb6eqFIhI69nGH5QJcMI2N7nM8s89cQdc_eGFXXFF1Ne-yhDGV-SUpv1nD3cIbpf4Us2y-WcMnkfYXw5-HExDDw5Q6C5iNaBMAQ2uTY672aWGrFtFkVGoXfrqkxhWJWaMOSJTvJUo5UQOQIDREvd0MbcIog7gf1yXtpTYAnCQIXAMdOJEaEyeYQwsMiKSPfiQnfTJohaJVL7yeVEoDGTdYnaVHpNStKkdJpsQvtJbOFGd-wSSGt9y3_OoET3skv0vD4fEu8n_emiSjvfrCQnlxJmgqef_n_7z_CGaO5d6ucM9tfLjf2CYGidt6rT3oKD_tX1cPQXpUIMCw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hEAIO7FJAPJbFSFzTNrHTJEeEisryuAASN8uxHVQEKeqDx4Ujv5uZ2NmyCAlpb1XkcaqOPd8303kA7FOPOy4KHmhkG-ighFmgtIqDRBeFRsQUWULFyWfnnd6V-HMdX8_AYV0LQ2mV3vY7m15Za_-k5X_N1kO_37oIeYc6jSDAkeOQoh2eE3GUkAfWfJ3meeAKN9m2IwJaPi3jad02bfk4QnOHfmIU0cjbuJrA8iVAfTLVFf4c_YRlTxzZgftuKzBjywb8qIcyMH9HGzDfrfpQvzRg6UOvwQasd6clbbiPXz9ahTcKP5XmSdE2lLmuXHYMc3F91jc-oajSISPYMww_qJKhC2zv8zvL_OyJG-YuDivqlC-mvPpRhkK-JKUm4wF7vkF6P8KXTIbDAYXy1uDqqHt52Av8dIZAcxGNA2GIbXJtdN7OLFVi2yyKjEJ4a6tMoV-VmjDkiU7yVKOZEDkyA6RL7dDG3CKLW4fZclDaDWAJ8kCFzDHTiRGhMnmEPLDIikh34kK3000QtUqk9q3LaYLGnaxz1G6l16QkTUqnyU1o_hV7cL07vhNIa33Lfw6hRHz5TnSvPh8SLyj966JKO5iMJCdMCTPB063_334XFnqXZ6fy9Pj8ZBsWaea9iwP9gtnxcGJ3kBmN89_VyX8HufsNoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groundwater+contaminant+source+identification+based+on+an+ensemble+learning+search+framework+associated+with+an+auto+xgboost+surrogate&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Pan%2C+Zidong&rft.au=Lu%2C+Wenxi&rft.au=Wang%2C+Han&rft.au=Bai%2C+Yukun&rft.date=2023-01-01&rft.issn=1364-8152&rft.volume=159+p.105588-&rft_id=info:doi/10.1016%2Fj.envsoft.2022.105588&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon