Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene
The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly...
Saved in:
Published in | Nucleic acids research Vol. 45; no. 8; pp. gkx028 - 4430 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
05.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0305-1048 1362-4962 1362-4962 |
DOI | 10.1093/nar/gkx028 |
Cover
Abstract | The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi-Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi-Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi-Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1, downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription. |
---|---|
AbstractList | The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi-Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi-Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi-Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1, downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription. The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell–cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1–Cyc8 co-repressor and Swi–Snf co-activator complexes. Tup1–Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi–Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi–Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi–Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1 , downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription. The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi-Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi-Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi-Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1, downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription.The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi-Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi-Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi-Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1, downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription. |
Author | Church, Michael Pennings, Sari Smith, Kim C. Fleming, Alastair B. Alhussain, Mohamed M. |
AuthorAffiliation | 1 School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland 2 Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK |
AuthorAffiliation_xml | – name: 1 School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland – name: 2 Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK |
Author_xml | – sequence: 1 givenname: Michael surname: Church fullname: Church, Michael – sequence: 2 givenname: Kim C. surname: Smith fullname: Smith, Kim C. – sequence: 3 givenname: Mohamed M. surname: Alhussain fullname: Alhussain, Mohamed M. – sequence: 4 givenname: Sari surname: Pennings fullname: Pennings, Sari – sequence: 5 givenname: Alastair B. surname: Fleming fullname: Fleming, Alastair B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28115623$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1PGzEYhC1EBQF66Q-ofKSVtvh7dy-VIsRHpUgcWs6WY7-buN3Yi-0gUP88LoGqrXry4X1mRp45QvshBkDoHSWfKOn5WTDpbPXjgbBuD80oV6wRvWL7aEY4kQ0lojtERzl_J4QKKsUBOmQdpVIxPkM_v5rMsQkOz51hp1c2yA-NgwmCg1Dw2udSw_B1ZSyUx9EUHwP2GSe42_oEDg8x4ZJMyDb56fkKYwyrHWgKLmvADpoEU4Kcq-BycUPxCgKcoDeDGTO8fXmP0e3lxbfz62Zxc_XlfL5oLBesNILYgShp6MChZZ1s-x64VY4QK6URVlBml9KpjvHBta1iqme2G5awZJQ7IPwYfd75TtvlBpytH0tm1FPyG5MedTRe_30Jfq1X8V5LQVXbttXg9MUgxbst5KI3PlsYRxMgbrOmnaKqtktYRd__mfU75LXxCpAdYFPMOcGgrS_PZdVoP2pK9K9RdR1V70atko__SF5d_wM_AVp5pUI |
CitedBy_id | crossref_primary_10_1099_mgen_0_001216 crossref_primary_10_1007_s00294_020_01114_7 crossref_primary_10_1128_mbio_01386_23 crossref_primary_10_1128_AAC_01924_17 crossref_primary_10_1128_aem_01885_23 crossref_primary_10_1038_s41598_019_47170_z crossref_primary_10_3389_fgene_2021_630506 crossref_primary_10_1007_s00122_025_04833_y crossref_primary_10_3389_fmicb_2021_783633 crossref_primary_10_1007_s00294_018_0838_4 |
Cites_doi | 10.1074/jbc.274.9.5895 10.1016/0092-8674(82)90384-1 10.1074/jbc.M104220200 10.1146/annurev-genet-102108-134156 10.1093/emboj/18.18.5108 10.1007/BF00290718 10.1074/mcp.M114.038224 10.1016/j.molcel.2008.07.020 10.1016/S1097-2765(02)00545-2 10.3390/genes3020320 10.1093/emboj/16.3.555 10.1093/genetics/107.1.19 10.1111/j.1365-2958.1992.tb00832.x 10.1016/j.bbagrm.2014.02.013 10.1074/jbc.M309753200 10.1016/j.tig.2013.06.006 10.1016/j.molcel.2014.07.004 10.1016/S0960-9822(01)00090-2 10.1128/JB.180.24.6503-6510.1998 10.1111/j.1742-4658.2005.05108.x 10.1128/mBio.00427-15 10.4161/trns.19840 10.1093/emboj/20.18.5219 10.1101/gad.243584.114 10.1093/emboj/16.20.6263 10.1002/yea.320111102 10.1101/gad.179275.111 10.1016/j.molcel.2008.04.025 10.1016/S0092-8674(02)01005-X 10.1101/gad.1144003 10.1016/j.molcel.2009.04.010 10.1371/journal.pone.0019060 10.1038/nrg2781 10.1101/gad.11.13.1640 10.1128/MCB.10.12.6500 10.1073/pnas.1202070109 10.1038/sj.emboj.7600035 10.1073/pnas.0701666104 10.1016/j.molcel.2007.01.035 10.1002/yea.320110506 10.1093/nar/gkr255 10.1073/pnas.92.8.3132 10.1038/nsmb.1454 10.1016/j.molcel.2006.11.020 10.1101/gad.931401 10.1016/S0968-0004(00)01592-9 10.1074/jbc.M513340200 10.1002/yea.320100208 10.1016/0092-8674(92)90146-4 10.1128/MCB.00400-09 10.1128/EC.00165-06 10.1101/gr.141952.112 10.1186/gb-2007-8-6-r119 10.1271/bbb.100860 10.1016/S0092-8674(01)00279-3 10.1534/genetics.111.132266 10.1101/gad.14.10.1196 10.1128/EC.2.6.1288-1303.2003 10.1002/yea.1142 10.1016/j.cell.2008.09.037 10.1126/science.278.5338.680 10.1093/nar/gkr557 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C 10.1016/j.molcel.2006.09.012 10.1111/j.1365-2672.2010.04897.x 10.1016/j.fob.2014.11.001 10.1101/gad.829100 10.1002/yea.1643 10.1093/genetics/137.1.49 10.1074/jbc.M110849200 10.1074/jbc.M310849200 10.1042/BJ20060907 10.1016/j.bbagrm.2014.07.022 10.1016/j.gde.2004.02.009 10.1128/MCB.19.1.537 10.1101/gad.1679508 10.1093/nar/gkm573 10.1371/journal.pgen.1003479 10.1139/O06-073 10.1128/AEM.72.2.1515-1522.2006 10.1074/jbc.M602851200 10.1111/j.1365-2958.2006.05072.x 10.1074/jbc.M407159200 10.1371/journal.pone.0054896 10.1101/gad.250225.114 10.1128/MCB.01033-09 |
ContentType | Journal Article |
Copyright | The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017 |
Copyright_xml | – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkx028 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 4430 |
ExternalDocumentID | PMC5416777 28115623 10_1093_nar_gkx028 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council – fundername: Wellcome Trust |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAPPN ADIXU AFULF BTTYL CGR CUY CVF ECM EIF M49 M~E NPM ROX 7X8 5PM |
ID | FETCH-LOGICAL-c342t-40cf065a1f3e7285799e3c6d00c55a4c412cb5d6823fd7762692c8fbeb213de03 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:16:38 EDT 2025 Fri Jul 11 05:58:52 EDT 2025 Wed Feb 19 02:33:29 EST 2025 Tue Jul 01 02:07:06 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c342t-40cf065a1f3e7285799e3c6d00c55a4c412cb5d6823fd7762692c8fbeb213de03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkx028 |
PMID | 28115623 |
PQID | 1861600102 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5416777 proquest_miscellaneous_1861600102 pubmed_primary_28115623 crossref_citationtrail_10_1093_nar_gkx028 crossref_primary_10_1093_nar_gkx028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-05 |
PublicationDateYYYYMMDD | 2017-05-05 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2017012317351395000_gkx028v1.72 2017012317351395000_gkx028v1.71 2017012317351395000_gkx028v1.74 2017012317351395000_gkx028v1.73 2017012317351395000_gkx028v1.32 2017012317351395000_gkx028v1.76 2017012317351395000_gkx028v1.31 2017012317351395000_gkx028v1.75 2017012317351395000_gkx028v1.34 2017012317351395000_gkx028v1.78 2017012317351395000_gkx028v1.33 2017012317351395000_gkx028v1.77 2017012317351395000_gkx028v1.36 2017012317351395000_gkx028v1.35 2017012317351395000_gkx028v1.79 2017012317351395000_gkx028v1.38 2017012317351395000_gkx028v1.37 2017012317351395000_gkx028v1.39 Fleming (2017012317351395000_gkx028v1.30) 2014; 1839 2017012317351395000_gkx028v1.70 2017012317351395000_gkx028v1.83 2017012317351395000_gkx028v1.82 2017012317351395000_gkx028v1.41 2017012317351395000_gkx028v1.85 2017012317351395000_gkx028v1.40 Vallier (2017012317351395000_gkx028v1.61) 1994; 137 2017012317351395000_gkx028v1.84 2017012317351395000_gkx028v1.43 2017012317351395000_gkx028v1.87 2017012317351395000_gkx028v1.42 2017012317351395000_gkx028v1.86 2017012317351395000_gkx028v1.45 2017012317351395000_gkx028v1.44 2017012317351395000_gkx028v1.88 2017012317351395000_gkx028v1.47 2017012317351395000_gkx028v1.46 2017012317351395000_gkx028v1.49 2017012317351395000_gkx028v1.48 2017012317351395000_gkx028v1.3 2017012317351395000_gkx028v1.4 2017012317351395000_gkx028v1.5 2017012317351395000_gkx028v1.81 2017012317351395000_gkx028v1.80 2017012317351395000_gkx028v1.50 2017012317351395000_gkx028v1.52 2017012317351395000_gkx028v1.51 2017012317351395000_gkx028v1.6 2017012317351395000_gkx028v1.10 2017012317351395000_gkx028v1.54 2017012317351395000_gkx028v1.7 2017012317351395000_gkx028v1.53 2017012317351395000_gkx028v1.8 2017012317351395000_gkx028v1.12 2017012317351395000_gkx028v1.56 2017012317351395000_gkx028v1.9 2017012317351395000_gkx028v1.11 2017012317351395000_gkx028v1.55 2017012317351395000_gkx028v1.14 2017012317351395000_gkx028v1.58 2017012317351395000_gkx028v1.13 2017012317351395000_gkx028v1.57 2017012317351395000_gkx028v1.16 2017012317351395000_gkx028v1.15 2017012317351395000_gkx028v1.59 2017012317351395000_gkx028v1.18 2017012317351395000_gkx028v1.17 2017012317351395000_gkx028v1.19 Stratford (2017012317351395000_gkx028v1.2) 1992; 33 Kobayashi (2017012317351395000_gkx028v1.1) 1998; 180 Josling (2017012317351395000_gkx028v1.66) 2012; 3 2017012317351395000_gkx028v1.63 2017012317351395000_gkx028v1.62 2017012317351395000_gkx028v1.21 2017012317351395000_gkx028v1.65 2017012317351395000_gkx028v1.20 2017012317351395000_gkx028v1.64 2017012317351395000_gkx028v1.23 2017012317351395000_gkx028v1.67 2017012317351395000_gkx028v1.22 2017012317351395000_gkx028v1.25 2017012317351395000_gkx028v1.69 2017012317351395000_gkx028v1.24 2017012317351395000_gkx028v1.68 2017012317351395000_gkx028v1.27 2017012317351395000_gkx028v1.26 2017012317351395000_gkx028v1.29 2017012317351395000_gkx028v1.28 Carlson (2017012317351395000_gkx028v1.60) 1984; 107 |
References_xml | – ident: 2017012317351395000_gkx028v1.49 doi: 10.1074/jbc.274.9.5895 – ident: 2017012317351395000_gkx028v1.51 doi: 10.1016/0092-8674(82)90384-1 – ident: 2017012317351395000_gkx028v1.20 doi: 10.1074/jbc.M104220200 – ident: 2017012317351395000_gkx028v1.10 doi: 10.1146/annurev-genet-102108-134156 – ident: 2017012317351395000_gkx028v1.47 doi: 10.1093/emboj/18.18.5108 – ident: 2017012317351395000_gkx028v1.44 doi: 10.1007/BF00290718 – volume: 33 start-page: 2 year: 1992 ident: 2017012317351395000_gkx028v1.2 article-title: Yeast flocculation: a new perspective publication-title: Adv. Microb. Physiol. – ident: 2017012317351395000_gkx028v1.75 doi: 10.1074/mcp.M114.038224 – ident: 2017012317351395000_gkx028v1.37 doi: 10.1016/j.molcel.2008.07.020 – ident: 2017012317351395000_gkx028v1.85 doi: 10.1016/S1097-2765(02)00545-2 – volume: 3 start-page: 320 year: 2012 ident: 2017012317351395000_gkx028v1.66 article-title: The role of bromodomain proteins in regulating gene expression publication-title: Genes (Basel) doi: 10.3390/genes3020320 – ident: 2017012317351395000_gkx028v1.41 doi: 10.1093/emboj/16.3.555 – volume: 107 start-page: 19 year: 1984 ident: 2017012317351395000_gkx028v1.60 article-title: A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast publication-title: Genetics doi: 10.1093/genetics/107.1.19 – ident: 2017012317351395000_gkx028v1.52 doi: 10.1111/j.1365-2958.1992.tb00832.x – ident: 2017012317351395000_gkx028v1.78 doi: 10.1016/j.bbagrm.2014.02.013 – ident: 2017012317351395000_gkx028v1.18 doi: 10.1074/jbc.M309753200 – ident: 2017012317351395000_gkx028v1.86 doi: 10.1016/j.tig.2013.06.006 – ident: 2017012317351395000_gkx028v1.32 doi: 10.1016/j.molcel.2014.07.004 – ident: 2017012317351395000_gkx028v1.79 doi: 10.1016/S0960-9822(01)00090-2 – volume: 180 start-page: 6503 year: 1998 ident: 2017012317351395000_gkx028v1.1 article-title: Region of FLO1 proteins responsible for sugar recognition publication-title: J. Bacteriol. doi: 10.1128/JB.180.24.6503-6510.1998 – ident: 2017012317351395000_gkx028v1.72 doi: 10.1111/j.1742-4658.2005.05108.x – ident: 2017012317351395000_gkx028v1.6 doi: 10.1128/mBio.00427-15 – ident: 2017012317351395000_gkx028v1.87 doi: 10.4161/trns.19840 – ident: 2017012317351395000_gkx028v1.26 doi: 10.1093/emboj/20.18.5219 – ident: 2017012317351395000_gkx028v1.80 doi: 10.1101/gad.243584.114 – ident: 2017012317351395000_gkx028v1.19 doi: 10.1093/emboj/16.20.6263 – ident: 2017012317351395000_gkx028v1.4 doi: 10.1002/yea.320111102 – ident: 2017012317351395000_gkx028v1.24 doi: 10.1101/gad.179275.111 – ident: 2017012317351395000_gkx028v1.38 doi: 10.1016/j.molcel.2008.04.025 – ident: 2017012317351395000_gkx028v1.57 doi: 10.1016/S0092-8674(02)01005-X – ident: 2017012317351395000_gkx028v1.73 doi: 10.1101/gad.1144003 – ident: 2017012317351395000_gkx028v1.64 doi: 10.1016/j.molcel.2009.04.010 – ident: 2017012317351395000_gkx028v1.14 doi: 10.1371/journal.pone.0019060 – ident: 2017012317351395000_gkx028v1.58 doi: 10.1038/nrg2781 – ident: 2017012317351395000_gkx028v1.42 doi: 10.1101/gad.11.13.1640 – ident: 2017012317351395000_gkx028v1.62 doi: 10.1128/MCB.10.12.6500 – ident: 2017012317351395000_gkx028v1.33 doi: 10.1073/pnas.1202070109 – ident: 2017012317351395000_gkx028v1.81 doi: 10.1038/sj.emboj.7600035 – ident: 2017012317351395000_gkx028v1.59 doi: 10.1073/pnas.0701666104 – ident: 2017012317351395000_gkx028v1.74 doi: 10.1016/j.molcel.2007.01.035 – ident: 2017012317351395000_gkx028v1.9 doi: 10.1002/yea.320110506 – ident: 2017012317351395000_gkx028v1.70 doi: 10.1093/nar/gkr255 – ident: 2017012317351395000_gkx028v1.16 doi: 10.1073/pnas.92.8.3132 – ident: 2017012317351395000_gkx028v1.34 doi: 10.1038/nsmb.1454 – ident: 2017012317351395000_gkx028v1.69 doi: 10.1016/j.molcel.2006.11.020 – ident: 2017012317351395000_gkx028v1.45 doi: 10.1101/gad.931401 – ident: 2017012317351395000_gkx028v1.28 doi: 10.1016/S0968-0004(00)01592-9 – ident: 2017012317351395000_gkx028v1.83 doi: 10.1101/gad.243584.114 – ident: 2017012317351395000_gkx028v1.65 doi: 10.1074/jbc.M513340200 – ident: 2017012317351395000_gkx028v1.3 doi: 10.1002/yea.320100208 – ident: 2017012317351395000_gkx028v1.12 doi: 10.1016/0092-8674(92)90146-4 – ident: 2017012317351395000_gkx028v1.63 doi: 10.1128/MCB.00400-09 – ident: 2017012317351395000_gkx028v1.55 doi: 10.1128/EC.00165-06 – ident: 2017012317351395000_gkx028v1.17 doi: 10.1101/gr.141952.112 – ident: 2017012317351395000_gkx028v1.77 doi: 10.1186/gb-2007-8-6-r119 – ident: 2017012317351395000_gkx028v1.53 doi: 10.1271/bbb.100860 – ident: 2017012317351395000_gkx028v1.56 doi: 10.1016/S0092-8674(01)00279-3 – ident: 2017012317351395000_gkx028v1.31 doi: 10.1534/genetics.111.132266 – ident: 2017012317351395000_gkx028v1.43 doi: 10.1101/gad.14.10.1196 – ident: 2017012317351395000_gkx028v1.21 doi: 10.1128/EC.2.6.1288-1303.2003 – ident: 2017012317351395000_gkx028v1.35 doi: 10.1002/yea.1142 – ident: 2017012317351395000_gkx028v1.5 doi: 10.1016/j.cell.2008.09.037 – ident: 2017012317351395000_gkx028v1.11 doi: 10.1126/science.278.5338.680 – ident: 2017012317351395000_gkx028v1.22 doi: 10.1093/nar/gkr557 – ident: 2017012317351395000_gkx028v1.36 doi: 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C – ident: 2017012317351395000_gkx028v1.54 doi: 10.1016/j.molcel.2006.09.012 – ident: 2017012317351395000_gkx028v1.7 doi: 10.1111/j.1365-2672.2010.04897.x – ident: 2017012317351395000_gkx028v1.76 doi: 10.1016/j.fob.2014.11.001 – ident: 2017012317351395000_gkx028v1.23 doi: 10.1101/gad.829100 – ident: 2017012317351395000_gkx028v1.39 doi: 10.1002/yea.1643 – volume: 137 start-page: 49 year: 1994 ident: 2017012317351395000_gkx028v1.61 article-title: Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/137.1.49 – ident: 2017012317351395000_gkx028v1.40 doi: 10.1074/jbc.M110849200 – ident: 2017012317351395000_gkx028v1.84 doi: 10.1074/jbc.M310849200 – ident: 2017012317351395000_gkx028v1.82 doi: 10.1042/BJ20060907 – volume: 1839 start-page: 1242 year: 2014 ident: 2017012317351395000_gkx028v1.30 article-title: The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2014.07.022 – ident: 2017012317351395000_gkx028v1.48 doi: 10.1016/j.gde.2004.02.009 – ident: 2017012317351395000_gkx028v1.15 doi: 10.1128/MCB.19.1.537 – ident: 2017012317351395000_gkx028v1.46 doi: 10.1101/gad.1679508 – ident: 2017012317351395000_gkx028v1.25 doi: 10.1093/nar/gkm573 – ident: 2017012317351395000_gkx028v1.13 doi: 10.1371/journal.pgen.1003479 – ident: 2017012317351395000_gkx028v1.27 doi: 10.1139/O06-073 – ident: 2017012317351395000_gkx028v1.88 doi: 10.1128/AEM.72.2.1515-1522.2006 – ident: 2017012317351395000_gkx028v1.67 doi: 10.1074/jbc.M602851200 – ident: 2017012317351395000_gkx028v1.8 doi: 10.1111/j.1365-2958.2006.05072.x – ident: 2017012317351395000_gkx028v1.29 doi: 10.1074/jbc.M407159200 – ident: 2017012317351395000_gkx028v1.50 doi: 10.1371/journal.pone.0054896 – ident: 2017012317351395000_gkx028v1.68 doi: 10.1101/gad.250225.114 – ident: 2017012317351395000_gkx028v1.71 doi: 10.1128/MCB.01033-09 |
SSID | ssj0014154 |
Score | 2.4100666 |
Snippet | The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic... The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell–cell adhesion. FLO1 transcription is regulated via the antagonistic... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | gkx028 |
SubjectTerms | Acetylation Cell Wall - genetics Cell Wall - metabolism Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism Gene Expression Regulation, Fungal Gene regulation, Chromatin and Epigenetics Histone Acetyltransferases - genetics Histone Acetyltransferases - metabolism Histones - genetics Histones - metabolism Mannose-Binding Lectins - genetics Mannose-Binding Lectins - metabolism Nuclear Proteins - genetics Nuclear Proteins - metabolism Nucleosomes - chemistry Nucleosomes - metabolism Promoter Regions, Genetic Protein Binding Repressor Proteins - genetics Repressor Proteins - metabolism RNA Polymerase II - genetics RNA Polymerase II - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Transcription Elongation, Genetic Transcription Factors - genetics Transcription Factors - metabolism |
Title | Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28115623 https://www.proquest.com/docview/1861600102 https://pubmed.ncbi.nlm.nih.gov/PMC5416777 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoALgpZHeFSLQIgKufVz1z5GFVEEtEUilXqz1ut1E5E4VexIFO78bmZ2_SxBAi5WZI_Xkefz7szszDeEvLalFzHOpRXxjFtg__uWYGlgRUwl0mdhJnwsTj45ZZNz_8NFcDEY_OxkLW3K5FB-31pX8j9ahXOgV6yS_QfNNoPCCfgN-oUjaBiOf6XjL6LwdPR_lAoX_X2ZB-DaW3Vn29LQCYMdOQE5qcprk_mGXczXCnOAwdzUeYa4YjXzh1qs8ksjaEod36XKWpuUWbhh_OnMwc7LvSSiU-RFRu5XOU9x8E6QrNdzqpum3w3sfJwv24DtaDHbFIUw9AYnq5mAJbsN235Wus1SUQW0593ABSyGmCZodrCVmWx1xVbUn40NuWSFurAztYLd5m2d8w0fVo756OPLr99sU2zeUf_VUuvfDcH6Zaa6-QbHdn3pFrntcu5gauj07KLZjQIjx6-pbSPvCB51ZB6EVNLVrX275jdn5WbObceImd4n9yrvg44MlB6Qgcp3yd4oF-VqeU3fUJ0PrDdadsmd47oX4B75gUijgDSKSHuLODtoUUYrlNEJyLQoo_OC1iijgDLaQxltUUZFSQFltIsyiiijiLKH5Hz8fno8saq2HZb0fLe0fFtmYNgKJ_MUd8OAR5HyJEttWwYBfPq-48okSFnoelnKYTFmkSvDLFGJ63ipsr1HZCeHP_2E0AC838xRoQQpuC3EMnIwmDOZBq5wlBiSg_qlx7LitMfWKovY5FZ4MegqNroakleN7JVhctkq9bLWXQzvGHfPRK5WmyJ2QuYwTcE4JI-NLptxahAMCe9puRFAEvf-lXw-02TuAXhEnPOnfxzzGbnbfj3PyU653qgXYAiXyb4OIO1rrP4CJU-5XQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sas3+and+Ada2%28Gcn5%29-dependent+histone+H3+acetylation+is+required+for+transcription+elongation+at+the+de-repressed+FLO1+gene&rft.jtitle=Nucleic+acids+research&rft.au=Church%2C+Michael&rft.au=Smith%2C+Kim+C&rft.au=Alhussain%2C+Mohamed+M&rft.au=Pennings%2C+Sari&rft.date=2017-05-05&rft.eissn=1362-4962&rft.volume=45&rft.issue=8&rft.spage=4413&rft_id=info:doi/10.1093%2Fnar%2Fgkx028&rft_id=info%3Apmid%2F28115623&rft.externalDocID=28115623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |