Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene

The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 45; no. 8; pp. gkx028 - 4430
Main Authors Church, Michael, Smith, Kim C., Alhussain, Mohamed M., Pennings, Sari, Fleming, Alastair B.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 05.05.2017
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4962
DOI10.1093/nar/gkx028

Cover

Abstract The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi-Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi-Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi-Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1, downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription.
AbstractList The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi-Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi-Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi-Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1, downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription.
The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell–cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1–Cyc8 co-repressor and Swi–Snf co-activator complexes. Tup1–Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi–Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi–Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi–Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1 , downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription.
The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi-Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi-Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi-Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1, downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription.The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi-Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi-Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi-Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1, downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription.
Author Church, Michael
Pennings, Sari
Smith, Kim C.
Fleming, Alastair B.
Alhussain, Mohamed M.
AuthorAffiliation 1 School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland
2 Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
AuthorAffiliation_xml – name: 1 School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland
– name: 2 Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
Author_xml – sequence: 1
  givenname: Michael
  surname: Church
  fullname: Church, Michael
– sequence: 2
  givenname: Kim C.
  surname: Smith
  fullname: Smith, Kim C.
– sequence: 3
  givenname: Mohamed M.
  surname: Alhussain
  fullname: Alhussain, Mohamed M.
– sequence: 4
  givenname: Sari
  surname: Pennings
  fullname: Pennings, Sari
– sequence: 5
  givenname: Alastair B.
  surname: Fleming
  fullname: Fleming, Alastair B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28115623$$D View this record in MEDLINE/PubMed
BookMark eNptkU1PGzEYhC1EBQF66Q-ofKSVtvh7dy-VIsRHpUgcWs6WY7-buN3Yi-0gUP88LoGqrXry4X1mRp45QvshBkDoHSWfKOn5WTDpbPXjgbBuD80oV6wRvWL7aEY4kQ0lojtERzl_J4QKKsUBOmQdpVIxPkM_v5rMsQkOz51hp1c2yA-NgwmCg1Dw2udSw_B1ZSyUx9EUHwP2GSe42_oEDg8x4ZJMyDb56fkKYwyrHWgKLmvADpoEU4Kcq-BycUPxCgKcoDeDGTO8fXmP0e3lxbfz62Zxc_XlfL5oLBesNILYgShp6MChZZ1s-x64VY4QK6URVlBml9KpjvHBta1iqme2G5awZJQ7IPwYfd75TtvlBpytH0tm1FPyG5MedTRe_30Jfq1X8V5LQVXbttXg9MUgxbst5KI3PlsYRxMgbrOmnaKqtktYRd__mfU75LXxCpAdYFPMOcGgrS_PZdVoP2pK9K9RdR1V70atko__SF5d_wM_AVp5pUI
CitedBy_id crossref_primary_10_1099_mgen_0_001216
crossref_primary_10_1007_s00294_020_01114_7
crossref_primary_10_1128_mbio_01386_23
crossref_primary_10_1128_AAC_01924_17
crossref_primary_10_1128_aem_01885_23
crossref_primary_10_1038_s41598_019_47170_z
crossref_primary_10_3389_fgene_2021_630506
crossref_primary_10_1007_s00122_025_04833_y
crossref_primary_10_3389_fmicb_2021_783633
crossref_primary_10_1007_s00294_018_0838_4
Cites_doi 10.1074/jbc.274.9.5895
10.1016/0092-8674(82)90384-1
10.1074/jbc.M104220200
10.1146/annurev-genet-102108-134156
10.1093/emboj/18.18.5108
10.1007/BF00290718
10.1074/mcp.M114.038224
10.1016/j.molcel.2008.07.020
10.1016/S1097-2765(02)00545-2
10.3390/genes3020320
10.1093/emboj/16.3.555
10.1093/genetics/107.1.19
10.1111/j.1365-2958.1992.tb00832.x
10.1016/j.bbagrm.2014.02.013
10.1074/jbc.M309753200
10.1016/j.tig.2013.06.006
10.1016/j.molcel.2014.07.004
10.1016/S0960-9822(01)00090-2
10.1128/JB.180.24.6503-6510.1998
10.1111/j.1742-4658.2005.05108.x
10.1128/mBio.00427-15
10.4161/trns.19840
10.1093/emboj/20.18.5219
10.1101/gad.243584.114
10.1093/emboj/16.20.6263
10.1002/yea.320111102
10.1101/gad.179275.111
10.1016/j.molcel.2008.04.025
10.1016/S0092-8674(02)01005-X
10.1101/gad.1144003
10.1016/j.molcel.2009.04.010
10.1371/journal.pone.0019060
10.1038/nrg2781
10.1101/gad.11.13.1640
10.1128/MCB.10.12.6500
10.1073/pnas.1202070109
10.1038/sj.emboj.7600035
10.1073/pnas.0701666104
10.1016/j.molcel.2007.01.035
10.1002/yea.320110506
10.1093/nar/gkr255
10.1073/pnas.92.8.3132
10.1038/nsmb.1454
10.1016/j.molcel.2006.11.020
10.1101/gad.931401
10.1016/S0968-0004(00)01592-9
10.1074/jbc.M513340200
10.1002/yea.320100208
10.1016/0092-8674(92)90146-4
10.1128/MCB.00400-09
10.1128/EC.00165-06
10.1101/gr.141952.112
10.1186/gb-2007-8-6-r119
10.1271/bbb.100860
10.1016/S0092-8674(01)00279-3
10.1534/genetics.111.132266
10.1101/gad.14.10.1196
10.1128/EC.2.6.1288-1303.2003
10.1002/yea.1142
10.1016/j.cell.2008.09.037
10.1126/science.278.5338.680
10.1093/nar/gkr557
10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C
10.1016/j.molcel.2006.09.012
10.1111/j.1365-2672.2010.04897.x
10.1016/j.fob.2014.11.001
10.1101/gad.829100
10.1002/yea.1643
10.1093/genetics/137.1.49
10.1074/jbc.M110849200
10.1074/jbc.M310849200
10.1042/BJ20060907
10.1016/j.bbagrm.2014.07.022
10.1016/j.gde.2004.02.009
10.1128/MCB.19.1.537
10.1101/gad.1679508
10.1093/nar/gkm573
10.1371/journal.pgen.1003479
10.1139/O06-073
10.1128/AEM.72.2.1515-1522.2006
10.1074/jbc.M602851200
10.1111/j.1365-2958.2006.05072.x
10.1074/jbc.M407159200
10.1371/journal.pone.0054896
10.1101/gad.250225.114
10.1128/MCB.01033-09
ContentType Journal Article
Copyright The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017
Copyright_xml – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkx028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 4430
ExternalDocumentID PMC5416777
28115623
10_1093_nar_gkx028
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
– fundername: Wellcome Trust
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAPPN
ADIXU
AFULF
BTTYL
CGR
CUY
CVF
ECM
EIF
M49
M~E
NPM
ROX
7X8
5PM
ID FETCH-LOGICAL-c342t-40cf065a1f3e7285799e3c6d00c55a4c412cb5d6823fd7762692c8fbeb213de03
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:16:38 EDT 2025
Fri Jul 11 05:58:52 EDT 2025
Wed Feb 19 02:33:29 EST 2025
Tue Jul 01 02:07:06 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://creativecommons.org/licenses/by/4.0
The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-40cf065a1f3e7285799e3c6d00c55a4c412cb5d6823fd7762692c8fbeb213de03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1093/nar/gkx028
PMID 28115623
PQID 1861600102
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5416777
proquest_miscellaneous_1861600102
pubmed_primary_28115623
crossref_citationtrail_10_1093_nar_gkx028
crossref_primary_10_1093_nar_gkx028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-05
PublicationDateYYYYMMDD 2017-05-05
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-05
  day: 05
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2017012317351395000_gkx028v1.72
2017012317351395000_gkx028v1.71
2017012317351395000_gkx028v1.74
2017012317351395000_gkx028v1.73
2017012317351395000_gkx028v1.32
2017012317351395000_gkx028v1.76
2017012317351395000_gkx028v1.31
2017012317351395000_gkx028v1.75
2017012317351395000_gkx028v1.34
2017012317351395000_gkx028v1.78
2017012317351395000_gkx028v1.33
2017012317351395000_gkx028v1.77
2017012317351395000_gkx028v1.36
2017012317351395000_gkx028v1.35
2017012317351395000_gkx028v1.79
2017012317351395000_gkx028v1.38
2017012317351395000_gkx028v1.37
2017012317351395000_gkx028v1.39
Fleming (2017012317351395000_gkx028v1.30) 2014; 1839
2017012317351395000_gkx028v1.70
2017012317351395000_gkx028v1.83
2017012317351395000_gkx028v1.82
2017012317351395000_gkx028v1.41
2017012317351395000_gkx028v1.85
2017012317351395000_gkx028v1.40
Vallier (2017012317351395000_gkx028v1.61) 1994; 137
2017012317351395000_gkx028v1.84
2017012317351395000_gkx028v1.43
2017012317351395000_gkx028v1.87
2017012317351395000_gkx028v1.42
2017012317351395000_gkx028v1.86
2017012317351395000_gkx028v1.45
2017012317351395000_gkx028v1.44
2017012317351395000_gkx028v1.88
2017012317351395000_gkx028v1.47
2017012317351395000_gkx028v1.46
2017012317351395000_gkx028v1.49
2017012317351395000_gkx028v1.48
2017012317351395000_gkx028v1.3
2017012317351395000_gkx028v1.4
2017012317351395000_gkx028v1.5
2017012317351395000_gkx028v1.81
2017012317351395000_gkx028v1.80
2017012317351395000_gkx028v1.50
2017012317351395000_gkx028v1.52
2017012317351395000_gkx028v1.51
2017012317351395000_gkx028v1.6
2017012317351395000_gkx028v1.10
2017012317351395000_gkx028v1.54
2017012317351395000_gkx028v1.7
2017012317351395000_gkx028v1.53
2017012317351395000_gkx028v1.8
2017012317351395000_gkx028v1.12
2017012317351395000_gkx028v1.56
2017012317351395000_gkx028v1.9
2017012317351395000_gkx028v1.11
2017012317351395000_gkx028v1.55
2017012317351395000_gkx028v1.14
2017012317351395000_gkx028v1.58
2017012317351395000_gkx028v1.13
2017012317351395000_gkx028v1.57
2017012317351395000_gkx028v1.16
2017012317351395000_gkx028v1.15
2017012317351395000_gkx028v1.59
2017012317351395000_gkx028v1.18
2017012317351395000_gkx028v1.17
2017012317351395000_gkx028v1.19
Stratford (2017012317351395000_gkx028v1.2) 1992; 33
Kobayashi (2017012317351395000_gkx028v1.1) 1998; 180
Josling (2017012317351395000_gkx028v1.66) 2012; 3
2017012317351395000_gkx028v1.63
2017012317351395000_gkx028v1.62
2017012317351395000_gkx028v1.21
2017012317351395000_gkx028v1.65
2017012317351395000_gkx028v1.20
2017012317351395000_gkx028v1.64
2017012317351395000_gkx028v1.23
2017012317351395000_gkx028v1.67
2017012317351395000_gkx028v1.22
2017012317351395000_gkx028v1.25
2017012317351395000_gkx028v1.69
2017012317351395000_gkx028v1.24
2017012317351395000_gkx028v1.68
2017012317351395000_gkx028v1.27
2017012317351395000_gkx028v1.26
2017012317351395000_gkx028v1.29
2017012317351395000_gkx028v1.28
Carlson (2017012317351395000_gkx028v1.60) 1984; 107
References_xml – ident: 2017012317351395000_gkx028v1.49
  doi: 10.1074/jbc.274.9.5895
– ident: 2017012317351395000_gkx028v1.51
  doi: 10.1016/0092-8674(82)90384-1
– ident: 2017012317351395000_gkx028v1.20
  doi: 10.1074/jbc.M104220200
– ident: 2017012317351395000_gkx028v1.10
  doi: 10.1146/annurev-genet-102108-134156
– ident: 2017012317351395000_gkx028v1.47
  doi: 10.1093/emboj/18.18.5108
– ident: 2017012317351395000_gkx028v1.44
  doi: 10.1007/BF00290718
– volume: 33
  start-page: 2
  year: 1992
  ident: 2017012317351395000_gkx028v1.2
  article-title: Yeast flocculation: a new perspective
  publication-title: Adv. Microb. Physiol.
– ident: 2017012317351395000_gkx028v1.75
  doi: 10.1074/mcp.M114.038224
– ident: 2017012317351395000_gkx028v1.37
  doi: 10.1016/j.molcel.2008.07.020
– ident: 2017012317351395000_gkx028v1.85
  doi: 10.1016/S1097-2765(02)00545-2
– volume: 3
  start-page: 320
  year: 2012
  ident: 2017012317351395000_gkx028v1.66
  article-title: The role of bromodomain proteins in regulating gene expression
  publication-title: Genes (Basel)
  doi: 10.3390/genes3020320
– ident: 2017012317351395000_gkx028v1.41
  doi: 10.1093/emboj/16.3.555
– volume: 107
  start-page: 19
  year: 1984
  ident: 2017012317351395000_gkx028v1.60
  article-title: A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast
  publication-title: Genetics
  doi: 10.1093/genetics/107.1.19
– ident: 2017012317351395000_gkx028v1.52
  doi: 10.1111/j.1365-2958.1992.tb00832.x
– ident: 2017012317351395000_gkx028v1.78
  doi: 10.1016/j.bbagrm.2014.02.013
– ident: 2017012317351395000_gkx028v1.18
  doi: 10.1074/jbc.M309753200
– ident: 2017012317351395000_gkx028v1.86
  doi: 10.1016/j.tig.2013.06.006
– ident: 2017012317351395000_gkx028v1.32
  doi: 10.1016/j.molcel.2014.07.004
– ident: 2017012317351395000_gkx028v1.79
  doi: 10.1016/S0960-9822(01)00090-2
– volume: 180
  start-page: 6503
  year: 1998
  ident: 2017012317351395000_gkx028v1.1
  article-title: Region of FLO1 proteins responsible for sugar recognition
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.180.24.6503-6510.1998
– ident: 2017012317351395000_gkx028v1.72
  doi: 10.1111/j.1742-4658.2005.05108.x
– ident: 2017012317351395000_gkx028v1.6
  doi: 10.1128/mBio.00427-15
– ident: 2017012317351395000_gkx028v1.87
  doi: 10.4161/trns.19840
– ident: 2017012317351395000_gkx028v1.26
  doi: 10.1093/emboj/20.18.5219
– ident: 2017012317351395000_gkx028v1.80
  doi: 10.1101/gad.243584.114
– ident: 2017012317351395000_gkx028v1.19
  doi: 10.1093/emboj/16.20.6263
– ident: 2017012317351395000_gkx028v1.4
  doi: 10.1002/yea.320111102
– ident: 2017012317351395000_gkx028v1.24
  doi: 10.1101/gad.179275.111
– ident: 2017012317351395000_gkx028v1.38
  doi: 10.1016/j.molcel.2008.04.025
– ident: 2017012317351395000_gkx028v1.57
  doi: 10.1016/S0092-8674(02)01005-X
– ident: 2017012317351395000_gkx028v1.73
  doi: 10.1101/gad.1144003
– ident: 2017012317351395000_gkx028v1.64
  doi: 10.1016/j.molcel.2009.04.010
– ident: 2017012317351395000_gkx028v1.14
  doi: 10.1371/journal.pone.0019060
– ident: 2017012317351395000_gkx028v1.58
  doi: 10.1038/nrg2781
– ident: 2017012317351395000_gkx028v1.42
  doi: 10.1101/gad.11.13.1640
– ident: 2017012317351395000_gkx028v1.62
  doi: 10.1128/MCB.10.12.6500
– ident: 2017012317351395000_gkx028v1.33
  doi: 10.1073/pnas.1202070109
– ident: 2017012317351395000_gkx028v1.81
  doi: 10.1038/sj.emboj.7600035
– ident: 2017012317351395000_gkx028v1.59
  doi: 10.1073/pnas.0701666104
– ident: 2017012317351395000_gkx028v1.74
  doi: 10.1016/j.molcel.2007.01.035
– ident: 2017012317351395000_gkx028v1.9
  doi: 10.1002/yea.320110506
– ident: 2017012317351395000_gkx028v1.70
  doi: 10.1093/nar/gkr255
– ident: 2017012317351395000_gkx028v1.16
  doi: 10.1073/pnas.92.8.3132
– ident: 2017012317351395000_gkx028v1.34
  doi: 10.1038/nsmb.1454
– ident: 2017012317351395000_gkx028v1.69
  doi: 10.1016/j.molcel.2006.11.020
– ident: 2017012317351395000_gkx028v1.45
  doi: 10.1101/gad.931401
– ident: 2017012317351395000_gkx028v1.28
  doi: 10.1016/S0968-0004(00)01592-9
– ident: 2017012317351395000_gkx028v1.83
  doi: 10.1101/gad.243584.114
– ident: 2017012317351395000_gkx028v1.65
  doi: 10.1074/jbc.M513340200
– ident: 2017012317351395000_gkx028v1.3
  doi: 10.1002/yea.320100208
– ident: 2017012317351395000_gkx028v1.12
  doi: 10.1016/0092-8674(92)90146-4
– ident: 2017012317351395000_gkx028v1.63
  doi: 10.1128/MCB.00400-09
– ident: 2017012317351395000_gkx028v1.55
  doi: 10.1128/EC.00165-06
– ident: 2017012317351395000_gkx028v1.17
  doi: 10.1101/gr.141952.112
– ident: 2017012317351395000_gkx028v1.77
  doi: 10.1186/gb-2007-8-6-r119
– ident: 2017012317351395000_gkx028v1.53
  doi: 10.1271/bbb.100860
– ident: 2017012317351395000_gkx028v1.56
  doi: 10.1016/S0092-8674(01)00279-3
– ident: 2017012317351395000_gkx028v1.31
  doi: 10.1534/genetics.111.132266
– ident: 2017012317351395000_gkx028v1.43
  doi: 10.1101/gad.14.10.1196
– ident: 2017012317351395000_gkx028v1.21
  doi: 10.1128/EC.2.6.1288-1303.2003
– ident: 2017012317351395000_gkx028v1.35
  doi: 10.1002/yea.1142
– ident: 2017012317351395000_gkx028v1.5
  doi: 10.1016/j.cell.2008.09.037
– ident: 2017012317351395000_gkx028v1.11
  doi: 10.1126/science.278.5338.680
– ident: 2017012317351395000_gkx028v1.22
  doi: 10.1093/nar/gkr557
– ident: 2017012317351395000_gkx028v1.36
  doi: 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C
– ident: 2017012317351395000_gkx028v1.54
  doi: 10.1016/j.molcel.2006.09.012
– ident: 2017012317351395000_gkx028v1.7
  doi: 10.1111/j.1365-2672.2010.04897.x
– ident: 2017012317351395000_gkx028v1.76
  doi: 10.1016/j.fob.2014.11.001
– ident: 2017012317351395000_gkx028v1.23
  doi: 10.1101/gad.829100
– ident: 2017012317351395000_gkx028v1.39
  doi: 10.1002/yea.1643
– volume: 137
  start-page: 49
  year: 1994
  ident: 2017012317351395000_gkx028v1.61
  article-title: Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/137.1.49
– ident: 2017012317351395000_gkx028v1.40
  doi: 10.1074/jbc.M110849200
– ident: 2017012317351395000_gkx028v1.84
  doi: 10.1074/jbc.M310849200
– ident: 2017012317351395000_gkx028v1.82
  doi: 10.1042/BJ20060907
– volume: 1839
  start-page: 1242
  year: 2014
  ident: 2017012317351395000_gkx028v1.30
  article-title: The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2014.07.022
– ident: 2017012317351395000_gkx028v1.48
  doi: 10.1016/j.gde.2004.02.009
– ident: 2017012317351395000_gkx028v1.15
  doi: 10.1128/MCB.19.1.537
– ident: 2017012317351395000_gkx028v1.46
  doi: 10.1101/gad.1679508
– ident: 2017012317351395000_gkx028v1.25
  doi: 10.1093/nar/gkm573
– ident: 2017012317351395000_gkx028v1.13
  doi: 10.1371/journal.pgen.1003479
– ident: 2017012317351395000_gkx028v1.27
  doi: 10.1139/O06-073
– ident: 2017012317351395000_gkx028v1.88
  doi: 10.1128/AEM.72.2.1515-1522.2006
– ident: 2017012317351395000_gkx028v1.67
  doi: 10.1074/jbc.M602851200
– ident: 2017012317351395000_gkx028v1.8
  doi: 10.1111/j.1365-2958.2006.05072.x
– ident: 2017012317351395000_gkx028v1.29
  doi: 10.1074/jbc.M407159200
– ident: 2017012317351395000_gkx028v1.50
  doi: 10.1371/journal.pone.0054896
– ident: 2017012317351395000_gkx028v1.68
  doi: 10.1101/gad.250225.114
– ident: 2017012317351395000_gkx028v1.71
  doi: 10.1128/MCB.01033-09
SSID ssj0014154
Score 2.4100666
Snippet The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic...
The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell–cell adhesion. FLO1 transcription is regulated via the antagonistic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage gkx028
SubjectTerms Acetylation
Cell Wall - genetics
Cell Wall - metabolism
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
Gene Expression Regulation, Fungal
Gene regulation, Chromatin and Epigenetics
Histone Acetyltransferases - genetics
Histone Acetyltransferases - metabolism
Histones - genetics
Histones - metabolism
Mannose-Binding Lectins - genetics
Mannose-Binding Lectins - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nucleosomes - chemistry
Nucleosomes - metabolism
Promoter Regions, Genetic
Protein Binding
Repressor Proteins - genetics
Repressor Proteins - metabolism
RNA Polymerase II - genetics
RNA Polymerase II - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Transcription Elongation, Genetic
Transcription Factors - genetics
Transcription Factors - metabolism
Title Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene
URI https://www.ncbi.nlm.nih.gov/pubmed/28115623
https://www.proquest.com/docview/1861600102
https://pubmed.ncbi.nlm.nih.gov/PMC5416777
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoALgpZHeFSLQIgKufVz1z5GFVEEtEUilXqz1ut1E5E4VexIFO78bmZ2_SxBAi5WZI_Xkefz7szszDeEvLalFzHOpRXxjFtg__uWYGlgRUwl0mdhJnwsTj45ZZNz_8NFcDEY_OxkLW3K5FB-31pX8j9ahXOgV6yS_QfNNoPCCfgN-oUjaBiOf6XjL6LwdPR_lAoX_X2ZB-DaW3Vn29LQCYMdOQE5qcprk_mGXczXCnOAwdzUeYa4YjXzh1qs8ksjaEod36XKWpuUWbhh_OnMwc7LvSSiU-RFRu5XOU9x8E6QrNdzqpum3w3sfJwv24DtaDHbFIUw9AYnq5mAJbsN235Wus1SUQW0593ABSyGmCZodrCVmWx1xVbUn40NuWSFurAztYLd5m2d8w0fVo756OPLr99sU2zeUf_VUuvfDcH6Zaa6-QbHdn3pFrntcu5gauj07KLZjQIjx6-pbSPvCB51ZB6EVNLVrX275jdn5WbObceImd4n9yrvg44MlB6Qgcp3yd4oF-VqeU3fUJ0PrDdadsmd47oX4B75gUijgDSKSHuLODtoUUYrlNEJyLQoo_OC1iijgDLaQxltUUZFSQFltIsyiiijiLKH5Hz8fno8saq2HZb0fLe0fFtmYNgKJ_MUd8OAR5HyJEttWwYBfPq-48okSFnoelnKYTFmkSvDLFGJ63ipsr1HZCeHP_2E0AC838xRoQQpuC3EMnIwmDOZBq5wlBiSg_qlx7LitMfWKovY5FZ4MegqNroakleN7JVhctkq9bLWXQzvGHfPRK5WmyJ2QuYwTcE4JI-NLptxahAMCe9puRFAEvf-lXw-02TuAXhEnPOnfxzzGbnbfj3PyU653qgXYAiXyb4OIO1rrP4CJU-5XQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sas3+and+Ada2%28Gcn5%29-dependent+histone+H3+acetylation+is+required+for+transcription+elongation+at+the+de-repressed+FLO1+gene&rft.jtitle=Nucleic+acids+research&rft.au=Church%2C+Michael&rft.au=Smith%2C+Kim+C&rft.au=Alhussain%2C+Mohamed+M&rft.au=Pennings%2C+Sari&rft.date=2017-05-05&rft.eissn=1362-4962&rft.volume=45&rft.issue=8&rft.spage=4413&rft_id=info:doi/10.1093%2Fnar%2Fgkx028&rft_id=info%3Apmid%2F28115623&rft.externalDocID=28115623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon