Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall

This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven cavity with a wavy wall filled with a water–CuO nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with t...

Full description

Saved in:
Bibliographic Details
Published inInternational communications in heat and mass transfer Vol. 57; pp. 36 - 47
Main Authors Abu-Nada, Eiyad, Chamkha, Ali J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2014
Subjects
Online AccessGet full text
ISSN0735-1933
1879-0178
DOI10.1016/j.icheatmasstransfer.2014.07.013

Cover

Abstract This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven cavity with a wavy wall filled with a water–CuO nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with the top surface being the heated lid wall and moving at a constant speed. The governing equations for this investigation are given in terms of the stream function–vorticity formulation and are non-dimensionalized and then solved numerically subject to appropriate boundary conditions by a second-order accurate finite-volume method. Various comparisons with previously published work are performed and the results are found to be in good agreement. A parametric study of the governing parameters such as the Richardson number, bottom wall geometry ratio (B/H) and the nanoparticles volume fraction is conducted and a representative set of graphical results is presented and discussed to illustrate the effects of these parameters on the flow and heat transfer characteristics. It is found that the presence of nanoparticles causes significant heat transfer augmentation for all values of Richardson numbers and bottom wall geometry ratios.
AbstractList This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven cavity with a wavy wall filled with a water–CuO nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with the top surface being the heated lid wall and moving at a constant speed. The governing equations for this investigation are given in terms of the stream function–vorticity formulation and are non-dimensionalized and then solved numerically subject to appropriate boundary conditions by a second-order accurate finite-volume method. Various comparisons with previously published work are performed and the results are found to be in good agreement. A parametric study of the governing parameters such as the Richardson number, bottom wall geometry ratio (B/H) and the nanoparticles volume fraction is conducted and a representative set of graphical results is presented and discussed to illustrate the effects of these parameters on the flow and heat transfer characteristics. It is found that the presence of nanoparticles causes significant heat transfer augmentation for all values of Richardson numbers and bottom wall geometry ratios.
Author Abu-Nada, Eiyad
Chamkha, Ali J.
Author_xml – sequence: 1
  givenname: Eiyad
  surname: Abu-Nada
  fullname: Abu-Nada, Eiyad
  email: eiyad.abu-nada@kustar.ac.ae
  organization: Department of Mechanical Engineering, Khalifa University of Science, Technology and Research (KUSTAR), P. O. Box 127788, Abu Dhabi, United Arab Emirates
– sequence: 2
  givenname: Ali J.
  surname: Chamkha
  fullname: Chamkha, Ali J.
  organization: Manufacturing Engineering Department, The Public Authority for Applied Education and Training, Shuweikh 70654, Kuwait
BookMark eNqVkMtOwzAQRS1UJNrCP3jJJsGOkzjdgSrKQ0VsYG35qU6V2sgOKf17XMEKNrCaO7rS0cyZoYkP3iJ0SUlJCW2vtiXojZXDTqY0ROmTs7GsCK1LwktC2Qma0o4vCkJ5N0FTwllT0AVjZ2iW0pYQQjvaTdH6CT6swTr40eoBgseuD3scHJbYSx9c_w4Gg89rD6YwEUbrsZYjDAe8h2GTi70cc5Z9f45OneyTvfiec_S6un1Z3hfr57uH5c260KyuhqJijeykorVTzDhVa8m4bRrFqOKtabmjLVEt51rximnScanqRi4q0xpXd7Rhc7T64uoYUorWCQ2DPF6fTUAvKBFHR2IrfjsSR0eCcJEdZdD1D9BbhJ2Mh_8gHr8QNj88Qm6TBuu1NRCzUWEC_B32CZ3Rlao
CitedBy_id crossref_primary_10_2139_ssrn_3945508
crossref_primary_10_1016_j_aej_2015_12_021
crossref_primary_10_1115_1_4045753
crossref_primary_10_1016_j_aej_2015_12_014
crossref_primary_10_1016_j_aej_2022_02_028
crossref_primary_10_3390_en16052338
crossref_primary_10_1007_s10973_019_08168_x
crossref_primary_10_1080_17455030_2022_2071503
crossref_primary_10_1016_j_icheatmasstransfer_2018_05_003
crossref_primary_10_1115_1_4031221
crossref_primary_10_1016_j_icheatmasstransfer_2022_106066
crossref_primary_10_1016_j_rinp_2023_107232
crossref_primary_10_1016_j_rinp_2024_107410
crossref_primary_10_1016_j_applthermaleng_2016_03_015
crossref_primary_10_1016_j_ijmecsci_2018_10_069
crossref_primary_10_1108_HFF_10_2018_0551
crossref_primary_10_1016_j_aej_2024_05_098
crossref_primary_10_1007_s00231_015_1714_0
crossref_primary_10_1016_j_physa_2019_04_067
crossref_primary_10_3390_math11061323
crossref_primary_10_1002_mma_7036
crossref_primary_10_1016_j_amc_2020_125754
crossref_primary_10_1016_j_jmmm_2016_04_061
crossref_primary_10_1115_1_4045070
crossref_primary_10_1016_j_icheatmasstransfer_2017_05_011
crossref_primary_10_1016_j_ijthermalsci_2023_108213
crossref_primary_10_1108_HFF_10_2020_0668
crossref_primary_10_1016_j_enganabound_2023_01_028
crossref_primary_10_1038_s41598_024_60483_y
crossref_primary_10_1007_s10973_020_09832_3
crossref_primary_10_1007_s42452_021_04243_x
crossref_primary_10_1016_j_est_2023_106736
crossref_primary_10_1016_j_heliyon_2021_e06907
crossref_primary_10_1016_j_powtec_2019_10_076
crossref_primary_10_3390_en16010244
crossref_primary_10_1016_j_apt_2020_05_009
crossref_primary_10_1016_j_icheatmasstransfer_2017_02_009
crossref_primary_10_1063_1_5079789
crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_073
crossref_primary_10_1038_s41598_022_18401_7
crossref_primary_10_1016_j_asej_2016_03_015
crossref_primary_10_1016_j_ijft_2024_100702
crossref_primary_10_1016_j_powtec_2016_10_029
crossref_primary_10_1016_j_tsep_2021_101175
crossref_primary_10_1016_j_ijthermalsci_2015_02_014
crossref_primary_10_1142_S2737416523400057
crossref_primary_10_2298_TSCI220216109H
crossref_primary_10_1063_5_0214033
crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_109
crossref_primary_10_1016_j_powtec_2018_11_006
crossref_primary_10_32604_fhmt_2024_050814
crossref_primary_10_1007_s10973_018_7519_x
crossref_primary_10_1016_j_cep_2020_108010
crossref_primary_10_1016_j_icheatmasstransfer_2021_105579
crossref_primary_10_1007_s10973_018_7914_3
crossref_primary_10_1142_S0129183119501055
crossref_primary_10_1016_j_cherd_2016_05_019
crossref_primary_10_1007_s10973_019_08227_3
crossref_primary_10_1007_s10483_018_2397_9
crossref_primary_10_1007_s10973_020_10251_7
crossref_primary_10_1016_j_ijmecsci_2021_106346
crossref_primary_10_1016_j_apt_2018_11_017
crossref_primary_10_1007_s10973_019_08345_y
crossref_primary_10_1108_HFF_02_2021_0124
crossref_primary_10_1007_s10973_019_08575_0
crossref_primary_10_1140_epjs_s11734_025_01524_z
crossref_primary_10_3390_inventions3020027
crossref_primary_10_1007_s12206_017_0342_7
crossref_primary_10_1115_1_4062613
crossref_primary_10_1016_j_tsep_2020_100660
crossref_primary_10_1016_j_powtec_2020_09_054
crossref_primary_10_3390_fractalfract6100584
crossref_primary_10_1007_s00521_016_2688_7
crossref_primary_10_1016_j_applthermaleng_2019_114298
crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_083
crossref_primary_10_1080_10407782_2023_2236785
crossref_primary_10_1007_s10973_020_10003_7
crossref_primary_10_3390_fractalfract5030107
crossref_primary_10_1140_epjp_s13360_021_01320_3
crossref_primary_10_1080_10407790_2024_2343329
crossref_primary_10_1108_HFF_06_2018_0332
crossref_primary_10_2139_ssrn_4854863
crossref_primary_10_3390_e20090664
crossref_primary_10_1108_HFF_06_2019_0461
crossref_primary_10_1108_HFF_10_2018_0599
crossref_primary_10_1108_HFF_10_2018_0594
crossref_primary_10_1016_j_icheatmasstransfer_2019_104449
crossref_primary_10_1016_j_applthermaleng_2017_10_033
crossref_primary_10_1038_s41598_020_75095_5
crossref_primary_10_1016_j_ijmecsci_2017_08_029
crossref_primary_10_1016_j_amc_2021_126232
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_093
crossref_primary_10_1002_mma_6386
crossref_primary_10_1615_JPorMedia_2022043561
crossref_primary_10_1016_j_heliyon_2021_e07361
crossref_primary_10_1016_j_ijmecsci_2018_12_017
crossref_primary_10_1139_cjp_2017_0282
crossref_primary_10_1007_s40819_024_01782_w
crossref_primary_10_3390_e19050200
crossref_primary_10_1108_HFF_07_2020_0399
crossref_primary_10_3390_nano12142390
crossref_primary_10_1063_5_0216132
crossref_primary_10_3390_e22060606
crossref_primary_10_1016_j_ijft_2023_100383
crossref_primary_10_1016_j_ijmecsci_2019_105192
crossref_primary_10_1016_j_ijft_2023_100421
crossref_primary_10_1088_1402_4896_ac0f94
crossref_primary_10_1002_htj_21387
crossref_primary_10_1088_1757_899X_518_3_032044
crossref_primary_10_1016_j_cep_2018_03_011
crossref_primary_10_1007_s10973_019_08012_2
crossref_primary_10_1016_j_ijft_2024_100629
crossref_primary_10_1016_j_ijmecsci_2021_106778
crossref_primary_10_1016_j_aej_2022_02_005
crossref_primary_10_1108_HFF_07_2018_0368
crossref_primary_10_1016_j_jmmm_2022_169549
crossref_primary_10_1016_j_icheatmasstransfer_2020_104563
crossref_primary_10_1016_j_pnucene_2022_104513
crossref_primary_10_3390_nano12091392
crossref_primary_10_1108_HFF_07_2020_0442
crossref_primary_10_1108_HFF_10_2018_0575
crossref_primary_10_1155_2023_7117186
crossref_primary_10_1016_j_ijft_2024_101023
crossref_primary_10_1016_j_physe_2017_04_006
crossref_primary_10_1016_j_jestch_2022_101095
crossref_primary_10_1016_j_cjph_2024_02_038
crossref_primary_10_1016_j_jtice_2017_01_006
crossref_primary_10_1007_s10973_020_09348_w
crossref_primary_10_1016_j_icheatmasstransfer_2020_104719
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_018
crossref_primary_10_1002_htj_21397
crossref_primary_10_3390_nano13212860
crossref_primary_10_1108_HFF_03_2021_0190
crossref_primary_10_1108_HFF_01_2018_0009
crossref_primary_10_1016_j_icheatmasstransfer_2018_07_008
crossref_primary_10_1007_s40430_022_03623_7
crossref_primary_10_1016_j_jtice_2016_02_014
crossref_primary_10_1016_j_enganabound_2023_01_009
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_078
crossref_primary_10_1140_epjp_i2018_11878_2
crossref_primary_10_1007_s40430_022_03499_7
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_090
Cites_doi 10.1016/S0017-9310(01)00175-2
10.1108/HFF-11-2011-0239
10.1016/j.euromechflu.2009.05.006
10.1615/JEnhHeatTransf.v15.i4.10
10.1016/j.cnsns.2009.06.015
10.1016/j.ijthermalsci.2011.04.003
10.1016/0142-727X(96)00054-9
10.1016/j.euromechflu.2012.03.005
10.1063/1.2093936
10.1016/j.ijheatmasstransfer.2007.01.037
10.1016/S0017-9310(05)80069-9
10.1016/j.ijheatfluidflow.2009.02.003
10.1016/j.ijthermalsci.2009.09.002
10.1016/j.ijheatfluidflow.2008.04.009
10.1016/S0017-9310(98)00227-0
10.1016/j.ijheatmasstransfer.2006.09.034
10.1016/j.ijheatfluidflow.2007.02.004
10.1016/j.ijthermalsci.2009.12.017
10.1016/0017-9310(95)00080-S
10.1016/S0017-9310(03)00016-4
10.1063/1.1756684
10.1115/1.2909616
10.1115/1.3243136
10.1115/1.4000440
10.1080/10407782.2011.552363
10.1016/j.ijthermalsci.2012.01.016
10.1016/j.ijheatmasstransfer.2007.12.019
10.1063/1.1341218
10.1016/S0017-9310(03)00156-X
10.1115/1.1571080
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.icheatmasstransfer.2014.07.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0178
EndPage 47
ExternalDocumentID 10_1016_j_icheatmasstransfer_2014_07_013
S0735193314001705
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c342t-235a8ab14fb3dfb4ca37e55b31b76d67f160b677cb723c087ab45a92d6df48153
IEDL.DBID .~1
ISSN 0735-1933
IngestDate Thu Apr 24 23:00:26 EDT 2025
Thu Oct 16 04:25:22 EDT 2025
Fri Feb 23 02:27:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wavy wall
Mixed convection
Heat transfer augmentation
Lid-driven cavity
Nanofluids
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-235a8ab14fb3dfb4ca37e55b31b76d67f160b677cb723c087ab45a92d6df48153
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_icheatmasstransfer_2014_07_013
crossref_primary_10_1016_j_icheatmasstransfer_2014_07_013
elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2014_07_013
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationTitle International communications in heat and mass transfer
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Patankar (bb0160) 1980
Nguyen, Desgranges, Roy, Galanis, Mare, Boucher, Angue Minsta (bb0155) 2007; 28
Versteeg, Malalasekera (bb0165) 1995
Chamkha, Abu-Nada (bb0120) 2012; 36
Nasrin, Chamkha, Alim (bb0125) 2014; 24
Eastman, Choi, Li, Yu, Thompson (bb0040) 2001; 78
Abu-Nada, Ziyad, Saleh, Ali (bb0105) 2008; 130
Das, Putra, Thiesen, Roetzel (bb0045) 2003; 125
Abu-Nada (bb0095) 2009; 30
Ho, Chen, Li (bb0080) 2008; 51
Abu-Nada, Masoud, Oztop, Campo (bb0150) 2010; 49
Tiwari, Das (bb0110) 2007; 50
Santra, Sen, Chakraborty (bb0075) 2008; 15
Jang, Choi (bb0070) 2004; 84
Haddad, Abu-Nada, Oztop, Mataoui (bb0135) 2012; 57
Prasad, Koseff (bb0020) 1996; 17
Morzinski, Popiel (bb0010) 1988; 12
Keblinski, Phillpot, Choi, Eastman (bb0050) 2002; 45
Wang, Zhou, Peng (bb0055) 2003; 46
Khanafer, Chamkha (bb0030) 1999; 42
Khanafer, Vafai, Lightstone (bb0060) 2003; 46
Aminossadati, Ghasemi (bb0100) 2009; 28
Muthtamilselvan, Kandaswamy, Lee (bb0115) 2010; 15
Iwatsu, Hyun, Kuwahara (bb0025) 1993; 36
Hwang, Lee, Jang (bb0065) 2007; 50
Chon, Kihm, Lee, Choi (bb0145) 2005; 87
Ghasemi, Aminossadati (bb0170) 2010; 49
Abu-Nada, Oztop (bb0130) 2011; 59
Iwatsu, Hyun (bb0015) 1995; 38
Abu-Nada (bb0140) 2011; 50
Choi (bb0035) 1995
Abu-Nada (bb0090) 2010; 132
Koseff, Prasad (bb0005) 1984; 106
Oztop, Abu-Nada (bb0085) 2008; 29
Iwatsu (10.1016/j.icheatmasstransfer.2014.07.013_bb0025) 1993; 36
Khanafer (10.1016/j.icheatmasstransfer.2014.07.013_bb0060) 2003; 46
Iwatsu (10.1016/j.icheatmasstransfer.2014.07.013_bb0015) 1995; 38
Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0105) 2008; 130
Das (10.1016/j.icheatmasstransfer.2014.07.013_bb0045) 2003; 125
Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0150) 2010; 49
Ho (10.1016/j.icheatmasstransfer.2014.07.013_bb0080) 2008; 51
Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0130) 2011; 59
Tiwari (10.1016/j.icheatmasstransfer.2014.07.013_bb0110) 2007; 50
Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0095) 2009; 30
Chon (10.1016/j.icheatmasstransfer.2014.07.013_bb0145) 2005; 87
Aminossadati (10.1016/j.icheatmasstransfer.2014.07.013_bb0100) 2009; 28
Versteeg (10.1016/j.icheatmasstransfer.2014.07.013_bb0165) 1995
Wang (10.1016/j.icheatmasstransfer.2014.07.013_bb0055) 2003; 46
Nasrin (10.1016/j.icheatmasstransfer.2014.07.013_bb0125) 2014; 24
Morzinski (10.1016/j.icheatmasstransfer.2014.07.013_bb0010) 1988; 12
Choi (10.1016/j.icheatmasstransfer.2014.07.013_bb0035) 1995
Patankar (10.1016/j.icheatmasstransfer.2014.07.013_bb0160) 1980
Jang (10.1016/j.icheatmasstransfer.2014.07.013_bb0070) 2004; 84
Keblinski (10.1016/j.icheatmasstransfer.2014.07.013_bb0050) 2002; 45
Ghasemi (10.1016/j.icheatmasstransfer.2014.07.013_bb0170) 2010; 49
Eastman (10.1016/j.icheatmasstransfer.2014.07.013_bb0040) 2001; 78
Hwang (10.1016/j.icheatmasstransfer.2014.07.013_bb0065) 2007; 50
Koseff (10.1016/j.icheatmasstransfer.2014.07.013_bb0005) 1984; 106
Khanafer (10.1016/j.icheatmasstransfer.2014.07.013_bb0030) 1999; 42
Haddad (10.1016/j.icheatmasstransfer.2014.07.013_bb0135) 2012; 57
Muthtamilselvan (10.1016/j.icheatmasstransfer.2014.07.013_bb0115) 2010; 15
Chamkha (10.1016/j.icheatmasstransfer.2014.07.013_bb0120) 2012; 36
Nguyen (10.1016/j.icheatmasstransfer.2014.07.013_bb0155) 2007; 28
Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0090) 2010; 132
Prasad (10.1016/j.icheatmasstransfer.2014.07.013_bb0020) 1996; 17
Santra (10.1016/j.icheatmasstransfer.2014.07.013_bb0075) 2008; 15
Oztop (10.1016/j.icheatmasstransfer.2014.07.013_bb0085) 2008; 29
Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0140) 2011; 50
References_xml – volume: 28
  start-page: 630
  year: 2009
  end-page: 640
  ident: bb0100
  article-title: Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure
  publication-title: Eur. J. Mech. B/Fluids
– volume: 42
  start-page: 2465
  year: 1999
  end-page: 2481
  ident: bb0030
  article-title: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium
  publication-title: Int. J. Heat Mass Transf.
– volume: 50
  start-page: 1720
  year: 2011
  end-page: 1730
  ident: bb0140
  article-title: Rayleigh-Bénard Convection in nanofluids: effects of temperature dependent properties
  publication-title: Int. J. Therm. Sci.
– volume: 125
  start-page: 567
  year: 2003
  end-page: 574
  ident: bb0045
  article-title: Temperature dependence of thermal conductivity enhancement for nanofluids
  publication-title: ASME J. Heat Transfer
– volume: 36
  start-page: 1601
  year: 1993
  end-page: 1608
  ident: bb0025
  article-title: Mixed convection in a driven cavity with a stable vertical temperature gradient
  publication-title: Int. J. Heat Mass Transf.
– volume: 106
  start-page: 390
  year: 1984
  end-page: 398
  ident: bb0005
  article-title: The lid-driven cavity flow: a synthesis of quantitative and qualitative observations
  publication-title: ASME J. Fluids Eng.
– start-page: 99
  year: 1995
  end-page: 105
  ident: bb0035
  article-title: Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows
  publication-title: FED – vol. 231/MD – vol. 66
– volume: 84
  start-page: 4316
  year: 2004
  end-page: 4318
  ident: bb0070
  article-title: The role of Brownian motion in the enhanced thermal conductivity of nanofluids
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 273
  year: 2008
  end-page: 287
  ident: bb0075
  article-title: Study of heat transfer characteristics of copper–water nanofluid in a differentially heated square cavity with different viscosity models
  publication-title: J. Enhanced Heat Transf.
– volume: 24
  start-page: 36
  year: 2014
  end-page: 57
  ident: bb0125
  article-title: Modelling of mixed convective heat transfer utilizing nanofluid in a double lid driven chamber with internal heat generation
  publication-title: Int. J. Numer. Method Heat Fluid Flow
– volume: 57
  start-page: 152
  year: 2012
  end-page: 162
  ident: bb0135
  article-title: Natural Convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?
  publication-title: Int. J. Therm. Sci.
– volume: 59
  start-page: 403
  year: 2011
  end-page: 419
  ident: bb0130
  article-title: Numerical analysis of Al
  publication-title: Numer. Heat Transfer — Part A
– year: 1995
  ident: bb0165
  article-title: An Introduction to Computational Fluid Dynamic: The Finite Volume Method
– volume: 12
  start-page: 265
  year: 1988
  end-page: 273
  ident: bb0010
  article-title: Laminar heat transfer in a two-dimensional cavity covered by a moving wall
  publication-title: Numer. Heat Transfer
– volume: 45
  start-page: 855
  year: 2002
  end-page: 863
  ident: bb0050
  article-title: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)
  publication-title: Int. J. Heat Mass Transf.
– volume: 46
  start-page: 2665
  year: 2003
  end-page: 2672
  ident: bb0055
  article-title: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles
  publication-title: Int. J. Heat Mass Transf.
– volume: 50
  start-page: 4003
  year: 2007
  end-page: 4010
  ident: bb0065
  article-title: Buoyancy-driven heat transfer of water-based Al
  publication-title: Int. J. Heat Mass Transf.
– volume: 36
  start-page: 82
  year: 2012
  end-page: 96
  ident: bb0120
  article-title: Mixed convection flow in single-and double-lid driven square cavities filled with water–Al
  publication-title: Eur. J. Mech. B-Fluid.
– volume: 78
  start-page: 718
  year: 2001
  end-page: 720
  ident: bb0040
  article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nano-fluids containing copper nano-particles
  publication-title: Appl. Phys. Lett.
– volume: 49
  start-page: 931
  year: 2010
  end-page: 940
  ident: bb0170
  article-title: Brownian motion of nanoparticles in a triangular enclosure with natural convection
  publication-title: Int. J. Therm. Sci.
– volume: 15
  start-page: 1501
  year: 2010
  end-page: 1510
  ident: bb0115
  article-title: Heat transfer enhancement of copper–water nanofluids in a lid-driven enclosure
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 50
  start-page: 2002
  year: 2007
  end-page: 2018
  ident: bb0110
  article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 51
  start-page: 4506
  year: 2008
  end-page: 4516
  ident: bb0080
  article-title: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity
  publication-title: Int. J. Heat Mass Transf.
– volume: 30
  start-page: 679
  year: 2009
  end-page: 690
  ident: bb0095
  article-title: Effects of variable viscosity and thermal conductivity of Al
  publication-title: Int. J. Heat Fluid Flow
– volume: 29
  start-page: 1326
  year: 2008
  end-page: 1336
  ident: bb0085
  article-title: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids
  publication-title: Int. J. Heat Fluid Flow
– volume: 38
  start-page: 3319
  year: 1995
  end-page: 3328
  ident: bb0015
  article-title: Three-dimensional driven cavity flows with a vertical temperature gradient
  publication-title: Int. J. Heat Mass Transf.
– volume: 130
  start-page: 084505
  year: 2008
  ident: bb0105
  article-title: Enhancement of heat transfer in combined convection around a horizontal cylinder
  publication-title: ASME J. Heat Transf.
– volume: 46
  start-page: 3639
  year: 2003
  end-page: 3653
  ident: bb0060
  article-title: Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 132
  start-page: 052401
  year: 2010
  ident: bb0090
  article-title: Effects of variable viscosity and thermal conductivity of CuO–Water nanofluid on heat transfer enhancement in natural convection: Mathematical Model and Simulation
  publication-title: ASME J. Heat Transf.
– volume: 87
  start-page: 153107
  year: 2005
  ident: bb0145
  article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 460
  year: 1996
  end-page: 467
  ident: bb0020
  article-title: Combined forced and natural convection heat transfer in a deep lid-driven cavity flow
  publication-title: Int. J. Heat Fluid Flow
– volume: 49
  start-page: 479
  year: 2010
  end-page: 491
  ident: bb0150
  article-title: Effect of nanofluid variable properties on natural convection in enclosures
  publication-title: Int. J. Therm. Sci.
– volume: 28
  start-page: 1492
  year: 2007
  end-page: 1506
  ident: bb0155
  article-title: Temperature and particle-size dependent viscosity data for water-based nanofluids — hysteresis phenomenon
  publication-title: Int. J. Heat Fluid Flow
– year: 1980
  ident: bb0160
  article-title: Numerical Heat Transfer and Fluid Flow
– volume: 45
  start-page: 855
  issue: 4
  year: 2002
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0050
  article-title: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(01)00175-2
– volume: 24
  start-page: 36
  year: 2014
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0125
  article-title: Modelling of mixed convective heat transfer utilizing nanofluid in a double lid driven chamber with internal heat generation
  publication-title: Int. J. Numer. Method Heat Fluid Flow
  doi: 10.1108/HFF-11-2011-0239
– start-page: 99
  year: 1995
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0035
  article-title: Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows
– volume: 28
  start-page: 630
  year: 2009
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0100
  article-title: Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure
  publication-title: Eur. J. Mech. B/Fluids
  doi: 10.1016/j.euromechflu.2009.05.006
– volume: 15
  start-page: 273
  issue: 4
  year: 2008
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0075
  article-title: Study of heat transfer characteristics of copper–water nanofluid in a differentially heated square cavity with different viscosity models
  publication-title: J. Enhanced Heat Transf.
  doi: 10.1615/JEnhHeatTransf.v15.i4.10
– volume: 15
  start-page: 1501
  year: 2010
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0115
  article-title: Heat transfer enhancement of copper–water nanofluids in a lid-driven enclosure
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2009.06.015
– volume: 50
  start-page: 1720
  year: 2011
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0140
  article-title: Rayleigh-Bénard Convection in nanofluids: effects of temperature dependent properties
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.04.003
– volume: 17
  start-page: 460
  year: 1996
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0020
  article-title: Combined forced and natural convection heat transfer in a deep lid-driven cavity flow
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(96)00054-9
– volume: 36
  start-page: 82
  year: 2012
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0120
  article-title: Mixed convection flow in single-and double-lid driven square cavities filled with water–Al2O3 nanofluid: effect of viscosity models
  publication-title: Eur. J. Mech. B-Fluid.
  doi: 10.1016/j.euromechflu.2012.03.005
– volume: 87
  start-page: 153107
  year: 2005
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0145
  article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2093936
– volume: 50
  start-page: 4003
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0065
  article-title: Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.01.037
– year: 1980
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0160
– volume: 36
  start-page: 1601
  year: 1993
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0025
  article-title: Mixed convection in a driven cavity with a stable vertical temperature gradient
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(05)80069-9
– volume: 30
  start-page: 679
  year: 2009
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0095
  article-title: Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2009.02.003
– volume: 49
  start-page: 479
  year: 2010
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0150
  article-title: Effect of nanofluid variable properties on natural convection in enclosures
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.09.002
– year: 1995
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0165
– volume: 29
  start-page: 1326
  year: 2008
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0085
  article-title: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2008.04.009
– volume: 42
  start-page: 2465
  year: 1999
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0030
  article-title: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(98)00227-0
– volume: 12
  start-page: 265
  year: 1988
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0010
  article-title: Laminar heat transfer in a two-dimensional cavity covered by a moving wall
  publication-title: Numer. Heat Transfer
– volume: 50
  start-page: 2002
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0110
  article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.09.034
– volume: 28
  start-page: 1492
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0155
  article-title: Temperature and particle-size dependent viscosity data for water-based nanofluids — hysteresis phenomenon
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2007.02.004
– volume: 49
  start-page: 931
  year: 2010
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0170
  article-title: Brownian motion of nanoparticles in a triangular enclosure with natural convection
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.12.017
– volume: 38
  start-page: 3319
  year: 1995
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0015
  article-title: Three-dimensional driven cavity flows with a vertical temperature gradient
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(95)00080-S
– volume: 46
  start-page: 2665
  year: 2003
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0055
  article-title: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00016-4
– volume: 84
  start-page: 4316
  year: 2004
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0070
  article-title: The role of Brownian motion in the enhanced thermal conductivity of nanofluids
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1756684
– volume: 130
  start-page: 084505
  year: 2008
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0105
  article-title: Enhancement of heat transfer in combined convection around a horizontal cylinder
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.2909616
– volume: 106
  start-page: 390
  year: 1984
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0005
  article-title: The lid-driven cavity flow: a synthesis of quantitative and qualitative observations
  publication-title: ASME J. Fluids Eng.
  doi: 10.1115/1.3243136
– volume: 132
  start-page: 052401
  year: 2010
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0090
  article-title: Effects of variable viscosity and thermal conductivity of CuO–Water nanofluid on heat transfer enhancement in natural convection: Mathematical Model and Simulation
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.4000440
– volume: 59
  start-page: 403
  issue: 5
  year: 2011
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0130
  article-title: Numerical analysis of Al2O3/water nanofluids natural convection in a wavy walled cavity
  publication-title: Numer. Heat Transfer — Part A
  doi: 10.1080/10407782.2011.552363
– volume: 57
  start-page: 152
  year: 2012
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0135
  article-title: Natural Convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2012.01.016
– volume: 51
  start-page: 4506
  issue: 17–18
  year: 2008
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0080
  article-title: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.12.019
– volume: 78
  start-page: 718
  year: 2001
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0040
  article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nano-fluids containing copper nano-particles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1341218
– volume: 46
  start-page: 3639
  year: 2003
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0060
  article-title: Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00156-X
– volume: 125
  start-page: 567
  year: 2003
  ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0045
  article-title: Temperature dependence of thermal conductivity enhancement for nanofluids
  publication-title: ASME J. Heat Transfer
  doi: 10.1115/1.1571080
SSID ssj0001818
Score 2.4809165
Snippet This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven cavity with a wavy wall filled with a water–CuO...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 36
SubjectTerms Heat transfer augmentation
Lid-driven cavity
Mixed convection
Nanofluids
Wavy wall
Title Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall
URI https://dx.doi.org/10.1016/j.icheatmasstransfer.2014.07.013
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB6WFUUPoqvimxw8eKnbNmnTnmRZlPW1FxW8lTyhUttlra4nf7tJtusDPSh4a9oklJlhZhK--QbgQEUqTBnXnoylOaDISHkJEdRTfqpTn2MmiK0dvhrGg1tyfhfdtaA_q4WxsMrG9099uvPWzZtuI83uKM-718Y4bfqBzRHBkcLYCnZCbReDo9cPmIeJYM4bm8menb0Ahx8YL4u2ZPWDSVNrlyYqyxAaEEfnGeCfQ9Wn8HO6AstN3oh6019bhZYqO7D0iU2wA_MOzSke1-DyKn9REjlEuatbQLqoJqjSiKGSlZUunnKJ8tIMi1x6cmxdHhLM9pFA9mbWfJiwZ_PMimIdbk9PbvoDr2mb4AlMwtoLccQSxgOiOZaaE8EwVVHEccBpLGOqg9jnMaWC0xALP6GMk4ilodGWttQteAPaZVWqTUAikWZ1mGipLC-XYjjlCTZaFb4UMpJbcDyTUCYaTnHb2qLIZuCx--y7jDMr48ynmZHxFqTvO4ym_Bp_WNufKSX7YjOZCQe_3mX7X3bZgUU7msL8dqFdj5_UnklXar7v7HEf5npnF4PhGyjz8CI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4BFY8eKp4qfYAPHLiETWI7Tk5VtSrawu5eAImb5acUFLKrJVs48duxvVkWBIdW6i2J7VE0Hs3D-vwNwJGhJi2EtJHOtCtQNDVRThSLTFzYIpZYKOLvDg-GWe-KnF3T6yXozu_CeFhl6_tnPj146_ZLp9VmZ1yWnQtnnD79wK5ECKQwy_CB0JT5CuzkcYHzcCEsuGM3O_LT1-B4AfLycEvR3Lo8tQl5ovEUoQkJfJ4Jfj9WvYg_p5vwqU0c0c_Zv23Bkqm34eMLOsFtWA1wTnW3A_1B-WA0CpDycHEB2Wp0j0YWCVSLemSraalRWbvXqtSRnnifh5TwjSSQP5p1A_fij3sWVbULV6e_Lru9qO2bEClM0iZKMRW5kAmxEmsriRKYGUolTiTLdMZsksUyY0xJlmIV50xIQkWRuu2ynrsF78FKParNZ0Aq1251mlttPDGXEbiQOXbbqmKtNNX78GOuIa5aUnHf26Lic_TYDX-rY-51zGPGnY73oXiWMJ4RbPzD2u58U_gro-EuHvy1lC__RcohrPcuB33e_z08_wobfmSG-fsGK81kar673KWRB8E2nwC6aPG3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+convection+flow+of+a+nanofluid+in+a+lid-driven+cavity+with+a+wavy+wall&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Abu-Nada%2C+Eiyad&rft.au=Chamkha%2C+Ali+J.&rft.date=2014-10-01&rft.issn=0735-1933&rft.volume=57&rft.spage=36&rft.epage=47&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2014.07.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icheatmasstransfer_2014_07_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon