Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall
This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven cavity with a wavy wall filled with a water–CuO nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with t...
Saved in:
| Published in | International communications in heat and mass transfer Vol. 57; pp. 36 - 47 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.10.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0735-1933 1879-0178 |
| DOI | 10.1016/j.icheatmasstransfer.2014.07.013 |
Cover
| Abstract | This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven cavity with a wavy wall filled with a water–CuO nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with the top surface being the heated lid wall and moving at a constant speed. The governing equations for this investigation are given in terms of the stream function–vorticity formulation and are non-dimensionalized and then solved numerically subject to appropriate boundary conditions by a second-order accurate finite-volume method. Various comparisons with previously published work are performed and the results are found to be in good agreement. A parametric study of the governing parameters such as the Richardson number, bottom wall geometry ratio (B/H) and the nanoparticles volume fraction is conducted and a representative set of graphical results is presented and discussed to illustrate the effects of these parameters on the flow and heat transfer characteristics. It is found that the presence of nanoparticles causes significant heat transfer augmentation for all values of Richardson numbers and bottom wall geometry ratios. |
|---|---|
| AbstractList | This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven cavity with a wavy wall filled with a water–CuO nanofluid. The left and right walls of the enclosure are kept insulated while the bottom and top walls are maintained at constant temperatures with the top surface being the heated lid wall and moving at a constant speed. The governing equations for this investigation are given in terms of the stream function–vorticity formulation and are non-dimensionalized and then solved numerically subject to appropriate boundary conditions by a second-order accurate finite-volume method. Various comparisons with previously published work are performed and the results are found to be in good agreement. A parametric study of the governing parameters such as the Richardson number, bottom wall geometry ratio (B/H) and the nanoparticles volume fraction is conducted and a representative set of graphical results is presented and discussed to illustrate the effects of these parameters on the flow and heat transfer characteristics. It is found that the presence of nanoparticles causes significant heat transfer augmentation for all values of Richardson numbers and bottom wall geometry ratios. |
| Author | Abu-Nada, Eiyad Chamkha, Ali J. |
| Author_xml | – sequence: 1 givenname: Eiyad surname: Abu-Nada fullname: Abu-Nada, Eiyad email: eiyad.abu-nada@kustar.ac.ae organization: Department of Mechanical Engineering, Khalifa University of Science, Technology and Research (KUSTAR), P. O. Box 127788, Abu Dhabi, United Arab Emirates – sequence: 2 givenname: Ali J. surname: Chamkha fullname: Chamkha, Ali J. organization: Manufacturing Engineering Department, The Public Authority for Applied Education and Training, Shuweikh 70654, Kuwait |
| BookMark | eNqVkMtOwzAQRS1UJNrCP3jJJsGOkzjdgSrKQ0VsYG35qU6V2sgOKf17XMEKNrCaO7rS0cyZoYkP3iJ0SUlJCW2vtiXojZXDTqY0ROmTs7GsCK1LwktC2Qma0o4vCkJ5N0FTwllT0AVjZ2iW0pYQQjvaTdH6CT6swTr40eoBgseuD3scHJbYSx9c_w4Gg89rD6YwEUbrsZYjDAe8h2GTi70cc5Z9f45OneyTvfiec_S6un1Z3hfr57uH5c260KyuhqJijeykorVTzDhVa8m4bRrFqOKtabmjLVEt51rximnScanqRi4q0xpXd7Rhc7T64uoYUorWCQ2DPF6fTUAvKBFHR2IrfjsSR0eCcJEdZdD1D9BbhJ2Mh_8gHr8QNj88Qm6TBuu1NRCzUWEC_B32CZ3Rlao |
| CitedBy_id | crossref_primary_10_2139_ssrn_3945508 crossref_primary_10_1016_j_aej_2015_12_021 crossref_primary_10_1115_1_4045753 crossref_primary_10_1016_j_aej_2015_12_014 crossref_primary_10_1016_j_aej_2022_02_028 crossref_primary_10_3390_en16052338 crossref_primary_10_1007_s10973_019_08168_x crossref_primary_10_1080_17455030_2022_2071503 crossref_primary_10_1016_j_icheatmasstransfer_2018_05_003 crossref_primary_10_1115_1_4031221 crossref_primary_10_1016_j_icheatmasstransfer_2022_106066 crossref_primary_10_1016_j_rinp_2023_107232 crossref_primary_10_1016_j_rinp_2024_107410 crossref_primary_10_1016_j_applthermaleng_2016_03_015 crossref_primary_10_1016_j_ijmecsci_2018_10_069 crossref_primary_10_1108_HFF_10_2018_0551 crossref_primary_10_1016_j_aej_2024_05_098 crossref_primary_10_1007_s00231_015_1714_0 crossref_primary_10_1016_j_physa_2019_04_067 crossref_primary_10_3390_math11061323 crossref_primary_10_1002_mma_7036 crossref_primary_10_1016_j_amc_2020_125754 crossref_primary_10_1016_j_jmmm_2016_04_061 crossref_primary_10_1115_1_4045070 crossref_primary_10_1016_j_icheatmasstransfer_2017_05_011 crossref_primary_10_1016_j_ijthermalsci_2023_108213 crossref_primary_10_1108_HFF_10_2020_0668 crossref_primary_10_1016_j_enganabound_2023_01_028 crossref_primary_10_1038_s41598_024_60483_y crossref_primary_10_1007_s10973_020_09832_3 crossref_primary_10_1007_s42452_021_04243_x crossref_primary_10_1016_j_est_2023_106736 crossref_primary_10_1016_j_heliyon_2021_e06907 crossref_primary_10_1016_j_powtec_2019_10_076 crossref_primary_10_3390_en16010244 crossref_primary_10_1016_j_apt_2020_05_009 crossref_primary_10_1016_j_icheatmasstransfer_2017_02_009 crossref_primary_10_1063_1_5079789 crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_073 crossref_primary_10_1038_s41598_022_18401_7 crossref_primary_10_1016_j_asej_2016_03_015 crossref_primary_10_1016_j_ijft_2024_100702 crossref_primary_10_1016_j_powtec_2016_10_029 crossref_primary_10_1016_j_tsep_2021_101175 crossref_primary_10_1016_j_ijthermalsci_2015_02_014 crossref_primary_10_1142_S2737416523400057 crossref_primary_10_2298_TSCI220216109H crossref_primary_10_1063_5_0214033 crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_109 crossref_primary_10_1016_j_powtec_2018_11_006 crossref_primary_10_32604_fhmt_2024_050814 crossref_primary_10_1007_s10973_018_7519_x crossref_primary_10_1016_j_cep_2020_108010 crossref_primary_10_1016_j_icheatmasstransfer_2021_105579 crossref_primary_10_1007_s10973_018_7914_3 crossref_primary_10_1142_S0129183119501055 crossref_primary_10_1016_j_cherd_2016_05_019 crossref_primary_10_1007_s10973_019_08227_3 crossref_primary_10_1007_s10483_018_2397_9 crossref_primary_10_1007_s10973_020_10251_7 crossref_primary_10_1016_j_ijmecsci_2021_106346 crossref_primary_10_1016_j_apt_2018_11_017 crossref_primary_10_1007_s10973_019_08345_y crossref_primary_10_1108_HFF_02_2021_0124 crossref_primary_10_1007_s10973_019_08575_0 crossref_primary_10_1140_epjs_s11734_025_01524_z crossref_primary_10_3390_inventions3020027 crossref_primary_10_1007_s12206_017_0342_7 crossref_primary_10_1115_1_4062613 crossref_primary_10_1016_j_tsep_2020_100660 crossref_primary_10_1016_j_powtec_2020_09_054 crossref_primary_10_3390_fractalfract6100584 crossref_primary_10_1007_s00521_016_2688_7 crossref_primary_10_1016_j_applthermaleng_2019_114298 crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_083 crossref_primary_10_1080_10407782_2023_2236785 crossref_primary_10_1007_s10973_020_10003_7 crossref_primary_10_3390_fractalfract5030107 crossref_primary_10_1140_epjp_s13360_021_01320_3 crossref_primary_10_1080_10407790_2024_2343329 crossref_primary_10_1108_HFF_06_2018_0332 crossref_primary_10_2139_ssrn_4854863 crossref_primary_10_3390_e20090664 crossref_primary_10_1108_HFF_06_2019_0461 crossref_primary_10_1108_HFF_10_2018_0599 crossref_primary_10_1108_HFF_10_2018_0594 crossref_primary_10_1016_j_icheatmasstransfer_2019_104449 crossref_primary_10_1016_j_applthermaleng_2017_10_033 crossref_primary_10_1038_s41598_020_75095_5 crossref_primary_10_1016_j_ijmecsci_2017_08_029 crossref_primary_10_1016_j_amc_2021_126232 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_093 crossref_primary_10_1002_mma_6386 crossref_primary_10_1615_JPorMedia_2022043561 crossref_primary_10_1016_j_heliyon_2021_e07361 crossref_primary_10_1016_j_ijmecsci_2018_12_017 crossref_primary_10_1139_cjp_2017_0282 crossref_primary_10_1007_s40819_024_01782_w crossref_primary_10_3390_e19050200 crossref_primary_10_1108_HFF_07_2020_0399 crossref_primary_10_3390_nano12142390 crossref_primary_10_1063_5_0216132 crossref_primary_10_3390_e22060606 crossref_primary_10_1016_j_ijft_2023_100383 crossref_primary_10_1016_j_ijmecsci_2019_105192 crossref_primary_10_1016_j_ijft_2023_100421 crossref_primary_10_1088_1402_4896_ac0f94 crossref_primary_10_1002_htj_21387 crossref_primary_10_1088_1757_899X_518_3_032044 crossref_primary_10_1016_j_cep_2018_03_011 crossref_primary_10_1007_s10973_019_08012_2 crossref_primary_10_1016_j_ijft_2024_100629 crossref_primary_10_1016_j_ijmecsci_2021_106778 crossref_primary_10_1016_j_aej_2022_02_005 crossref_primary_10_1108_HFF_07_2018_0368 crossref_primary_10_1016_j_jmmm_2022_169549 crossref_primary_10_1016_j_icheatmasstransfer_2020_104563 crossref_primary_10_1016_j_pnucene_2022_104513 crossref_primary_10_3390_nano12091392 crossref_primary_10_1108_HFF_07_2020_0442 crossref_primary_10_1108_HFF_10_2018_0575 crossref_primary_10_1155_2023_7117186 crossref_primary_10_1016_j_ijft_2024_101023 crossref_primary_10_1016_j_physe_2017_04_006 crossref_primary_10_1016_j_jestch_2022_101095 crossref_primary_10_1016_j_cjph_2024_02_038 crossref_primary_10_1016_j_jtice_2017_01_006 crossref_primary_10_1007_s10973_020_09348_w crossref_primary_10_1016_j_icheatmasstransfer_2020_104719 crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_018 crossref_primary_10_1002_htj_21397 crossref_primary_10_3390_nano13212860 crossref_primary_10_1108_HFF_03_2021_0190 crossref_primary_10_1108_HFF_01_2018_0009 crossref_primary_10_1016_j_icheatmasstransfer_2018_07_008 crossref_primary_10_1007_s40430_022_03623_7 crossref_primary_10_1016_j_jtice_2016_02_014 crossref_primary_10_1016_j_enganabound_2023_01_009 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_078 crossref_primary_10_1140_epjp_i2018_11878_2 crossref_primary_10_1007_s40430_022_03499_7 crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_090 |
| Cites_doi | 10.1016/S0017-9310(01)00175-2 10.1108/HFF-11-2011-0239 10.1016/j.euromechflu.2009.05.006 10.1615/JEnhHeatTransf.v15.i4.10 10.1016/j.cnsns.2009.06.015 10.1016/j.ijthermalsci.2011.04.003 10.1016/0142-727X(96)00054-9 10.1016/j.euromechflu.2012.03.005 10.1063/1.2093936 10.1016/j.ijheatmasstransfer.2007.01.037 10.1016/S0017-9310(05)80069-9 10.1016/j.ijheatfluidflow.2009.02.003 10.1016/j.ijthermalsci.2009.09.002 10.1016/j.ijheatfluidflow.2008.04.009 10.1016/S0017-9310(98)00227-0 10.1016/j.ijheatmasstransfer.2006.09.034 10.1016/j.ijheatfluidflow.2007.02.004 10.1016/j.ijthermalsci.2009.12.017 10.1016/0017-9310(95)00080-S 10.1016/S0017-9310(03)00016-4 10.1063/1.1756684 10.1115/1.2909616 10.1115/1.3243136 10.1115/1.4000440 10.1080/10407782.2011.552363 10.1016/j.ijthermalsci.2012.01.016 10.1016/j.ijheatmasstransfer.2007.12.019 10.1063/1.1341218 10.1016/S0017-9310(03)00156-X 10.1115/1.1571080 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.icheatmasstransfer.2014.07.013 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-0178 |
| EndPage | 47 |
| ExternalDocumentID | 10_1016_j_icheatmasstransfer_2014_07_013 S0735193314001705 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c342t-235a8ab14fb3dfb4ca37e55b31b76d67f160b677cb723c087ab45a92d6df48153 |
| IEDL.DBID | .~1 |
| ISSN | 0735-1933 |
| IngestDate | Thu Apr 24 23:00:26 EDT 2025 Thu Oct 16 04:25:22 EDT 2025 Fri Feb 23 02:27:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wavy wall Mixed convection Heat transfer augmentation Lid-driven cavity Nanofluids |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c342t-235a8ab14fb3dfb4ca37e55b31b76d67f160b677cb723c087ab45a92d6df48153 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_icheatmasstransfer_2014_07_013 crossref_primary_10_1016_j_icheatmasstransfer_2014_07_013 elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2014_07_013 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-01 |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | International communications in heat and mass transfer |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Patankar (bb0160) 1980 Nguyen, Desgranges, Roy, Galanis, Mare, Boucher, Angue Minsta (bb0155) 2007; 28 Versteeg, Malalasekera (bb0165) 1995 Chamkha, Abu-Nada (bb0120) 2012; 36 Nasrin, Chamkha, Alim (bb0125) 2014; 24 Eastman, Choi, Li, Yu, Thompson (bb0040) 2001; 78 Abu-Nada, Ziyad, Saleh, Ali (bb0105) 2008; 130 Das, Putra, Thiesen, Roetzel (bb0045) 2003; 125 Abu-Nada (bb0095) 2009; 30 Ho, Chen, Li (bb0080) 2008; 51 Abu-Nada, Masoud, Oztop, Campo (bb0150) 2010; 49 Tiwari, Das (bb0110) 2007; 50 Santra, Sen, Chakraborty (bb0075) 2008; 15 Jang, Choi (bb0070) 2004; 84 Haddad, Abu-Nada, Oztop, Mataoui (bb0135) 2012; 57 Prasad, Koseff (bb0020) 1996; 17 Morzinski, Popiel (bb0010) 1988; 12 Keblinski, Phillpot, Choi, Eastman (bb0050) 2002; 45 Wang, Zhou, Peng (bb0055) 2003; 46 Khanafer, Chamkha (bb0030) 1999; 42 Khanafer, Vafai, Lightstone (bb0060) 2003; 46 Aminossadati, Ghasemi (bb0100) 2009; 28 Muthtamilselvan, Kandaswamy, Lee (bb0115) 2010; 15 Iwatsu, Hyun, Kuwahara (bb0025) 1993; 36 Hwang, Lee, Jang (bb0065) 2007; 50 Chon, Kihm, Lee, Choi (bb0145) 2005; 87 Ghasemi, Aminossadati (bb0170) 2010; 49 Abu-Nada, Oztop (bb0130) 2011; 59 Iwatsu, Hyun (bb0015) 1995; 38 Abu-Nada (bb0140) 2011; 50 Choi (bb0035) 1995 Abu-Nada (bb0090) 2010; 132 Koseff, Prasad (bb0005) 1984; 106 Oztop, Abu-Nada (bb0085) 2008; 29 Iwatsu (10.1016/j.icheatmasstransfer.2014.07.013_bb0025) 1993; 36 Khanafer (10.1016/j.icheatmasstransfer.2014.07.013_bb0060) 2003; 46 Iwatsu (10.1016/j.icheatmasstransfer.2014.07.013_bb0015) 1995; 38 Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0105) 2008; 130 Das (10.1016/j.icheatmasstransfer.2014.07.013_bb0045) 2003; 125 Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0150) 2010; 49 Ho (10.1016/j.icheatmasstransfer.2014.07.013_bb0080) 2008; 51 Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0130) 2011; 59 Tiwari (10.1016/j.icheatmasstransfer.2014.07.013_bb0110) 2007; 50 Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0095) 2009; 30 Chon (10.1016/j.icheatmasstransfer.2014.07.013_bb0145) 2005; 87 Aminossadati (10.1016/j.icheatmasstransfer.2014.07.013_bb0100) 2009; 28 Versteeg (10.1016/j.icheatmasstransfer.2014.07.013_bb0165) 1995 Wang (10.1016/j.icheatmasstransfer.2014.07.013_bb0055) 2003; 46 Nasrin (10.1016/j.icheatmasstransfer.2014.07.013_bb0125) 2014; 24 Morzinski (10.1016/j.icheatmasstransfer.2014.07.013_bb0010) 1988; 12 Choi (10.1016/j.icheatmasstransfer.2014.07.013_bb0035) 1995 Patankar (10.1016/j.icheatmasstransfer.2014.07.013_bb0160) 1980 Jang (10.1016/j.icheatmasstransfer.2014.07.013_bb0070) 2004; 84 Keblinski (10.1016/j.icheatmasstransfer.2014.07.013_bb0050) 2002; 45 Ghasemi (10.1016/j.icheatmasstransfer.2014.07.013_bb0170) 2010; 49 Eastman (10.1016/j.icheatmasstransfer.2014.07.013_bb0040) 2001; 78 Hwang (10.1016/j.icheatmasstransfer.2014.07.013_bb0065) 2007; 50 Koseff (10.1016/j.icheatmasstransfer.2014.07.013_bb0005) 1984; 106 Khanafer (10.1016/j.icheatmasstransfer.2014.07.013_bb0030) 1999; 42 Haddad (10.1016/j.icheatmasstransfer.2014.07.013_bb0135) 2012; 57 Muthtamilselvan (10.1016/j.icheatmasstransfer.2014.07.013_bb0115) 2010; 15 Chamkha (10.1016/j.icheatmasstransfer.2014.07.013_bb0120) 2012; 36 Nguyen (10.1016/j.icheatmasstransfer.2014.07.013_bb0155) 2007; 28 Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0090) 2010; 132 Prasad (10.1016/j.icheatmasstransfer.2014.07.013_bb0020) 1996; 17 Santra (10.1016/j.icheatmasstransfer.2014.07.013_bb0075) 2008; 15 Oztop (10.1016/j.icheatmasstransfer.2014.07.013_bb0085) 2008; 29 Abu-Nada (10.1016/j.icheatmasstransfer.2014.07.013_bb0140) 2011; 50 |
| References_xml | – volume: 28 start-page: 630 year: 2009 end-page: 640 ident: bb0100 article-title: Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure publication-title: Eur. J. Mech. B/Fluids – volume: 42 start-page: 2465 year: 1999 end-page: 2481 ident: bb0030 article-title: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium publication-title: Int. J. Heat Mass Transf. – volume: 50 start-page: 1720 year: 2011 end-page: 1730 ident: bb0140 article-title: Rayleigh-Bénard Convection in nanofluids: effects of temperature dependent properties publication-title: Int. J. Therm. Sci. – volume: 125 start-page: 567 year: 2003 end-page: 574 ident: bb0045 article-title: Temperature dependence of thermal conductivity enhancement for nanofluids publication-title: ASME J. Heat Transfer – volume: 36 start-page: 1601 year: 1993 end-page: 1608 ident: bb0025 article-title: Mixed convection in a driven cavity with a stable vertical temperature gradient publication-title: Int. J. Heat Mass Transf. – volume: 106 start-page: 390 year: 1984 end-page: 398 ident: bb0005 article-title: The lid-driven cavity flow: a synthesis of quantitative and qualitative observations publication-title: ASME J. Fluids Eng. – start-page: 99 year: 1995 end-page: 105 ident: bb0035 article-title: Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows publication-title: FED – vol. 231/MD – vol. 66 – volume: 84 start-page: 4316 year: 2004 end-page: 4318 ident: bb0070 article-title: The role of Brownian motion in the enhanced thermal conductivity of nanofluids publication-title: Appl. Phys. Lett. – volume: 15 start-page: 273 year: 2008 end-page: 287 ident: bb0075 article-title: Study of heat transfer characteristics of copper–water nanofluid in a differentially heated square cavity with different viscosity models publication-title: J. Enhanced Heat Transf. – volume: 24 start-page: 36 year: 2014 end-page: 57 ident: bb0125 article-title: Modelling of mixed convective heat transfer utilizing nanofluid in a double lid driven chamber with internal heat generation publication-title: Int. J. Numer. Method Heat Fluid Flow – volume: 57 start-page: 152 year: 2012 end-page: 162 ident: bb0135 article-title: Natural Convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? publication-title: Int. J. Therm. Sci. – volume: 59 start-page: 403 year: 2011 end-page: 419 ident: bb0130 article-title: Numerical analysis of Al publication-title: Numer. Heat Transfer — Part A – year: 1995 ident: bb0165 article-title: An Introduction to Computational Fluid Dynamic: The Finite Volume Method – volume: 12 start-page: 265 year: 1988 end-page: 273 ident: bb0010 article-title: Laminar heat transfer in a two-dimensional cavity covered by a moving wall publication-title: Numer. Heat Transfer – volume: 45 start-page: 855 year: 2002 end-page: 863 ident: bb0050 article-title: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) publication-title: Int. J. Heat Mass Transf. – volume: 46 start-page: 2665 year: 2003 end-page: 2672 ident: bb0055 article-title: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles publication-title: Int. J. Heat Mass Transf. – volume: 50 start-page: 4003 year: 2007 end-page: 4010 ident: bb0065 article-title: Buoyancy-driven heat transfer of water-based Al publication-title: Int. J. Heat Mass Transf. – volume: 36 start-page: 82 year: 2012 end-page: 96 ident: bb0120 article-title: Mixed convection flow in single-and double-lid driven square cavities filled with water–Al publication-title: Eur. J. Mech. B-Fluid. – volume: 78 start-page: 718 year: 2001 end-page: 720 ident: bb0040 article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nano-fluids containing copper nano-particles publication-title: Appl. Phys. Lett. – volume: 49 start-page: 931 year: 2010 end-page: 940 ident: bb0170 article-title: Brownian motion of nanoparticles in a triangular enclosure with natural convection publication-title: Int. J. Therm. Sci. – volume: 15 start-page: 1501 year: 2010 end-page: 1510 ident: bb0115 article-title: Heat transfer enhancement of copper–water nanofluids in a lid-driven enclosure publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 50 start-page: 2002 year: 2007 end-page: 2018 ident: bb0110 article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 51 start-page: 4506 year: 2008 end-page: 4516 ident: bb0080 article-title: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity publication-title: Int. J. Heat Mass Transf. – volume: 30 start-page: 679 year: 2009 end-page: 690 ident: bb0095 article-title: Effects of variable viscosity and thermal conductivity of Al publication-title: Int. J. Heat Fluid Flow – volume: 29 start-page: 1326 year: 2008 end-page: 1336 ident: bb0085 article-title: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids publication-title: Int. J. Heat Fluid Flow – volume: 38 start-page: 3319 year: 1995 end-page: 3328 ident: bb0015 article-title: Three-dimensional driven cavity flows with a vertical temperature gradient publication-title: Int. J. Heat Mass Transf. – volume: 130 start-page: 084505 year: 2008 ident: bb0105 article-title: Enhancement of heat transfer in combined convection around a horizontal cylinder publication-title: ASME J. Heat Transf. – volume: 46 start-page: 3639 year: 2003 end-page: 3653 ident: bb0060 article-title: Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 132 start-page: 052401 year: 2010 ident: bb0090 article-title: Effects of variable viscosity and thermal conductivity of CuO–Water nanofluid on heat transfer enhancement in natural convection: Mathematical Model and Simulation publication-title: ASME J. Heat Transf. – volume: 87 start-page: 153107 year: 2005 ident: bb0145 article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al publication-title: Appl. Phys. Lett. – volume: 17 start-page: 460 year: 1996 end-page: 467 ident: bb0020 article-title: Combined forced and natural convection heat transfer in a deep lid-driven cavity flow publication-title: Int. J. Heat Fluid Flow – volume: 49 start-page: 479 year: 2010 end-page: 491 ident: bb0150 article-title: Effect of nanofluid variable properties on natural convection in enclosures publication-title: Int. J. Therm. Sci. – volume: 28 start-page: 1492 year: 2007 end-page: 1506 ident: bb0155 article-title: Temperature and particle-size dependent viscosity data for water-based nanofluids — hysteresis phenomenon publication-title: Int. J. Heat Fluid Flow – year: 1980 ident: bb0160 article-title: Numerical Heat Transfer and Fluid Flow – volume: 45 start-page: 855 issue: 4 year: 2002 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0050 article-title: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(01)00175-2 – volume: 24 start-page: 36 year: 2014 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0125 article-title: Modelling of mixed convective heat transfer utilizing nanofluid in a double lid driven chamber with internal heat generation publication-title: Int. J. Numer. Method Heat Fluid Flow doi: 10.1108/HFF-11-2011-0239 – start-page: 99 year: 1995 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0035 article-title: Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows – volume: 28 start-page: 630 year: 2009 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0100 article-title: Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure publication-title: Eur. J. Mech. B/Fluids doi: 10.1016/j.euromechflu.2009.05.006 – volume: 15 start-page: 273 issue: 4 year: 2008 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0075 article-title: Study of heat transfer characteristics of copper–water nanofluid in a differentially heated square cavity with different viscosity models publication-title: J. Enhanced Heat Transf. doi: 10.1615/JEnhHeatTransf.v15.i4.10 – volume: 15 start-page: 1501 year: 2010 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0115 article-title: Heat transfer enhancement of copper–water nanofluids in a lid-driven enclosure publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2009.06.015 – volume: 50 start-page: 1720 year: 2011 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0140 article-title: Rayleigh-Bénard Convection in nanofluids: effects of temperature dependent properties publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.04.003 – volume: 17 start-page: 460 year: 1996 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0020 article-title: Combined forced and natural convection heat transfer in a deep lid-driven cavity flow publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(96)00054-9 – volume: 36 start-page: 82 year: 2012 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0120 article-title: Mixed convection flow in single-and double-lid driven square cavities filled with water–Al2O3 nanofluid: effect of viscosity models publication-title: Eur. J. Mech. B-Fluid. doi: 10.1016/j.euromechflu.2012.03.005 – volume: 87 start-page: 153107 year: 2005 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0145 article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement publication-title: Appl. Phys. Lett. doi: 10.1063/1.2093936 – volume: 50 start-page: 4003 year: 2007 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0065 article-title: Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.01.037 – year: 1980 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0160 – volume: 36 start-page: 1601 year: 1993 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0025 article-title: Mixed convection in a driven cavity with a stable vertical temperature gradient publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(05)80069-9 – volume: 30 start-page: 679 year: 2009 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0095 article-title: Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2009.02.003 – volume: 49 start-page: 479 year: 2010 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0150 article-title: Effect of nanofluid variable properties on natural convection in enclosures publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.09.002 – year: 1995 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0165 – volume: 29 start-page: 1326 year: 2008 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0085 article-title: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2008.04.009 – volume: 42 start-page: 2465 year: 1999 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0030 article-title: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(98)00227-0 – volume: 12 start-page: 265 year: 1988 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0010 article-title: Laminar heat transfer in a two-dimensional cavity covered by a moving wall publication-title: Numer. Heat Transfer – volume: 50 start-page: 2002 year: 2007 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0110 article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.09.034 – volume: 28 start-page: 1492 year: 2007 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0155 article-title: Temperature and particle-size dependent viscosity data for water-based nanofluids — hysteresis phenomenon publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2007.02.004 – volume: 49 start-page: 931 year: 2010 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0170 article-title: Brownian motion of nanoparticles in a triangular enclosure with natural convection publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.12.017 – volume: 38 start-page: 3319 year: 1995 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0015 article-title: Three-dimensional driven cavity flows with a vertical temperature gradient publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(95)00080-S – volume: 46 start-page: 2665 year: 2003 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0055 article-title: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00016-4 – volume: 84 start-page: 4316 year: 2004 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0070 article-title: The role of Brownian motion in the enhanced thermal conductivity of nanofluids publication-title: Appl. Phys. Lett. doi: 10.1063/1.1756684 – volume: 130 start-page: 084505 year: 2008 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0105 article-title: Enhancement of heat transfer in combined convection around a horizontal cylinder publication-title: ASME J. Heat Transf. doi: 10.1115/1.2909616 – volume: 106 start-page: 390 year: 1984 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0005 article-title: The lid-driven cavity flow: a synthesis of quantitative and qualitative observations publication-title: ASME J. Fluids Eng. doi: 10.1115/1.3243136 – volume: 132 start-page: 052401 year: 2010 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0090 article-title: Effects of variable viscosity and thermal conductivity of CuO–Water nanofluid on heat transfer enhancement in natural convection: Mathematical Model and Simulation publication-title: ASME J. Heat Transf. doi: 10.1115/1.4000440 – volume: 59 start-page: 403 issue: 5 year: 2011 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0130 article-title: Numerical analysis of Al2O3/water nanofluids natural convection in a wavy walled cavity publication-title: Numer. Heat Transfer — Part A doi: 10.1080/10407782.2011.552363 – volume: 57 start-page: 152 year: 2012 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0135 article-title: Natural Convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2012.01.016 – volume: 51 start-page: 4506 issue: 17–18 year: 2008 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0080 article-title: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.12.019 – volume: 78 start-page: 718 year: 2001 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0040 article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nano-fluids containing copper nano-particles publication-title: Appl. Phys. Lett. doi: 10.1063/1.1341218 – volume: 46 start-page: 3639 year: 2003 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0060 article-title: Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00156-X – volume: 125 start-page: 567 year: 2003 ident: 10.1016/j.icheatmasstransfer.2014.07.013_bb0045 article-title: Temperature dependence of thermal conductivity enhancement for nanofluids publication-title: ASME J. Heat Transfer doi: 10.1115/1.1571080 |
| SSID | ssj0001818 |
| Score | 2.4809165 |
| Snippet | This work is focused on the numerical modeling of steady laminar mixed convection flow in a lid-driven cavity with a wavy wall filled with a water–CuO... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 36 |
| SubjectTerms | Heat transfer augmentation Lid-driven cavity Mixed convection Nanofluids Wavy wall |
| Title | Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall |
| URI | https://dx.doi.org/10.1016/j.icheatmasstransfer.2014.07.013 |
| Volume | 57 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0178 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001818 issn: 0735-1933 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0178 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001818 issn: 0735-1933 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0178 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001818 issn: 0735-1933 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0178 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001818 issn: 0735-1933 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0178 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001818 issn: 0735-1933 databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB6WFUUPoqvimxw8eKnbNmnTnmRZlPW1FxW8lTyhUttlra4nf7tJtusDPSh4a9oklJlhZhK--QbgQEUqTBnXnoylOaDISHkJEdRTfqpTn2MmiK0dvhrGg1tyfhfdtaA_q4WxsMrG9099uvPWzZtuI83uKM-718Y4bfqBzRHBkcLYCnZCbReDo9cPmIeJYM4bm8menb0Ahx8YL4u2ZPWDSVNrlyYqyxAaEEfnGeCfQ9Wn8HO6AstN3oh6019bhZYqO7D0iU2wA_MOzSke1-DyKn9REjlEuatbQLqoJqjSiKGSlZUunnKJ8tIMi1x6cmxdHhLM9pFA9mbWfJiwZ_PMimIdbk9PbvoDr2mb4AlMwtoLccQSxgOiOZaaE8EwVVHEccBpLGOqg9jnMaWC0xALP6GMk4ilodGWttQteAPaZVWqTUAikWZ1mGipLC-XYjjlCTZaFb4UMpJbcDyTUCYaTnHb2qLIZuCx--y7jDMr48ynmZHxFqTvO4ym_Bp_WNufKSX7YjOZCQe_3mX7X3bZgUU7msL8dqFdj5_UnklXar7v7HEf5npnF4PhGyjz8CI |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4BFY8eKp4qfYAPHLiETWI7Tk5VtSrawu5eAImb5acUFLKrJVs48duxvVkWBIdW6i2J7VE0Hs3D-vwNwJGhJi2EtJHOtCtQNDVRThSLTFzYIpZYKOLvDg-GWe-KnF3T6yXozu_CeFhl6_tnPj146_ZLp9VmZ1yWnQtnnD79wK5ECKQwy_CB0JT5CuzkcYHzcCEsuGM3O_LT1-B4AfLycEvR3Lo8tQl5ovEUoQkJfJ4Jfj9WvYg_p5vwqU0c0c_Zv23Bkqm34eMLOsFtWA1wTnW3A_1B-WA0CpDycHEB2Wp0j0YWCVSLemSraalRWbvXqtSRnnifh5TwjSSQP5p1A_fij3sWVbULV6e_Lru9qO2bEClM0iZKMRW5kAmxEmsriRKYGUolTiTLdMZsksUyY0xJlmIV50xIQkWRuu2ynrsF78FKParNZ0Aq1251mlttPDGXEbiQOXbbqmKtNNX78GOuIa5aUnHf26Lic_TYDX-rY-51zGPGnY73oXiWMJ4RbPzD2u58U_gro-EuHvy1lC__RcohrPcuB33e_z08_wobfmSG-fsGK81kar673KWRB8E2nwC6aPG3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+convection+flow+of+a+nanofluid+in+a+lid-driven+cavity+with+a+wavy+wall&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Abu-Nada%2C+Eiyad&rft.au=Chamkha%2C+Ali+J.&rft.date=2014-10-01&rft.issn=0735-1933&rft.volume=57&rft.spage=36&rft.epage=47&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2014.07.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_icheatmasstransfer_2014_07_013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon |