Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model

Abstract Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 50; no. 14; p. e80
Main Authors Zubair, Asif, Chapple, Richard H, Natarajan, Sivaraman, Wright, William C, Pan, Min, Lee, Hyeong-Min, Tillman, Heather, Easton, John, Geeleher, Paul
Format Journal Article
LanguageEnglish
Published England Oxford University Press 12.08.2022
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4962
DOI10.1093/nar/gkac320

Cover

Abstract Abstract Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification.
AbstractList Abstract Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification.
Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification.
Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification.Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification.
Author Tillman, Heather
Natarajan, Sivaraman
Wright, William C
Geeleher, Paul
Zubair, Asif
Pan, Min
Chapple, Richard H
Lee, Hyeong-Min
Easton, John
Author_xml – sequence: 1
  givenname: Asif
  surname: Zubair
  fullname: Zubair, Asif
– sequence: 2
  givenname: Richard H
  surname: Chapple
  fullname: Chapple, Richard H
– sequence: 3
  givenname: Sivaraman
  surname: Natarajan
  fullname: Natarajan, Sivaraman
– sequence: 4
  givenname: William C
  surname: Wright
  fullname: Wright, William C
– sequence: 5
  givenname: Min
  surname: Pan
  fullname: Pan, Min
– sequence: 6
  givenname: Hyeong-Min
  surname: Lee
  fullname: Lee, Hyeong-Min
– sequence: 7
  givenname: Heather
  surname: Tillman
  fullname: Tillman, Heather
– sequence: 8
  givenname: John
  orcidid: 0000-0003-4503-6608
  surname: Easton
  fullname: Easton, John
– sequence: 9
  givenname: Paul
  orcidid: 0000-0002-5128-0087
  surname: Geeleher
  fullname: Geeleher, Paul
  email: paul.geeleher@stjude.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35536287$$D View this record in MEDLINE/PubMed
BookMark eNp9kU-L1DAYh4OsuLOrJ--SkwhL3aRpO81FWIf1Dyx40XN4kyb11TapSTswX8jPaeqMiwp6SiDP78mb_C7ImQ_eEvKUs5ecSXHtIV73X8GIkj0gGy6asqhkU56RDROsLjir2nNykdIXxnjF6-oRORd1nbF2uyHfd3YY6HyYLMXO-hkdGpgxeIqepilvIR9H8MlEnOYwokm0gxmoAU91To1TDHvbUX2gg93bCD36npqsLVZtgd6FOGbR3tIJMGZ0xpSWNQq9TXRJawDoazjYhNmahRo0DphmNHQMnR0ek4cOhmSfnNZL8unN7cfdu-Luw9v3u5u7woiqnPNbQWtWVcZyIWpd6S1rdGOE5KWsupJp14BhTLZa8FKblktXa-lKl0POuVZckldH77To0XYm_0iEQU0xzxoPKgCqP088flZ92CsptlyKJgtenAQxfFtsmtWIaf0M8DYsSZVNw2UtWrmiz36_6_6SX-Vk4OoImBhSitbdI5yptXqVq1en6jPN_6INzj-rzIPi8I_M82MmLNN_5T8AVb7GQw
CitedBy_id crossref_primary_10_1016_j_semcancer_2023_02_007
crossref_primary_10_1038_s41588_023_01646_x
crossref_primary_10_1126_sciadv_add9818
crossref_primary_10_1093_bioinformatics_btac825
crossref_primary_10_1007_s12539_024_00603_4
crossref_primary_10_3389_fimmu_2024_1499301
Cites_doi 10.1038/s43018-020-0087-6
10.1158/1078-0432.CCR-13-3271
10.1093/nar/gkab043
10.1186/s13059-019-1874-1
10.1016/j.celrep.2018.03.086
10.1038/nmeth.4636
10.1186/s13059-021-02362-7
10.1038/nmeth.3337
10.1038/s41587-021-01139-4
10.1186/s13059-017-1256-5
10.1101/2021.12.26.474183
10.1038/s43018-020-0085-8
10.1158/0008-5472.CAN-21-0691
10.1007/978-1-4939-7493-1_12
10.1016/j.celrep.2019.08.077
10.1101/2020.05.31.125658
10.1186/s13059-017-1305-0
10.1038/s41587-020-0739-1
10.1101/2020.08.29.272831
10.1093/bioinformatics/btz363
10.1038/s41467-018-06052-0
10.1038/s42003-020-01247-y
10.1016/j.cell.2020.10.026
10.1258/ebm.2011.011007
10.1038/s41592-019-0701-7
10.1038/s41588-021-00873-4
10.1038/s41592-019-0529-1
10.1126/science.aaw1219
10.1038/s41587-019-0392-8
10.1038/s41592-019-0548-y
10.1101/362624
10.1198/jbes.2009.07145
10.1038/s41467-017-02289-3
10.1093/bioinformatics/btt090
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkac320
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage e80
ExternalDocumentID PMC9371936
35536287
10_1093_nar_gkac320
10.1093/nar/gkac320
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R00 HG009679
– fundername: NCI NIH HHS
  grantid: R01 CA260060
– fundername: NIGMS NIH HHS
  grantid: R35 GM138293
– fundername: ;
  grantid: R00HG009679
– fundername: ;
– fundername: ;
  grantid: R35GM138293
– fundername: ;
  grantid: R01CA260060
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPTD
ABQLI
ABQTQ
ABSMQ
ABXVV
ABZEO
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
AJDVS
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
M49
MBTAY
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c342t-10abb044ce1335b4b706b6c391294d20bf6ac0098b312bc819f5b9f2fb04fff83
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:04:53 EDT 2025
Fri Jul 11 08:04:06 EDT 2025
Thu Apr 03 07:04:20 EDT 2025
Thu Apr 24 22:58:10 EDT 2025
Tue Jul 01 02:59:14 EDT 2025
Wed Apr 02 06:56:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-10abb044ce1335b4b706b6c391294d20bf6ac0098b312bc819f5b9f2fb04fff83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5128-0087
0000-0003-4503-6608
OpenAccessLink https://dx.doi.org/10.1093/nar/gkac320
PMID 35536287
PQID 2661953896
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371936
proquest_miscellaneous_2661953896
pubmed_primary_35536287
crossref_primary_10_1093_nar_gkac320
crossref_citationtrail_10_1093_nar_gkac320
oup_primary_10_1093_nar_gkac320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-12
PublicationDateYYYYMMDD 2022-08-12
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-12
  day: 12
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Jochems (2022081200003503700_B36) 2011; 236
Elosua-Bayes (2022081200003503700_B14) 2021; 49
Cable (2022081200003503700_B19) 2021
Fu (2022081200003503700_B35) 2020; 1
Rodriques (2022081200003503700_B3) 2019; 363
Liu (2022081200003503700_B4) 2020; 183
Sun (2022081200003503700_B9) 2020; 17
Sarkar (2022081200003503700_B20) 2021; 53
Arnol (2022081200003503700_B13) 2019; 29
Pham (2022081200003503700_B10) 2020
Gong (2022081200003503700_B31) 2013; 29
Taube (2022081200003503700_B37) 2014; 20
Juárez (2022081200003503700_B21) 2010; 28
Sturm (2022081200003503700_B25) 2019; 35
Tanevski (2022081200003503700_B12) 2020
Chen (2022081200003503700_B5) 2021
Zappia (2022081200003503700_B23) 2017; 18
Andersson (2022081200003503700_B17) 2020; 3
Wagner (2022081200003503700_B28) 2018
Dong (2022081200003503700_B32) 2021; 22
Zhang (2022081200003503700_B24) 2019; 16
Kather (2022081200003503700_B34) 2020; 1
Schelker (2022081200003503700_B26) 2017; 8
Svensson (2022081200003503700_B8) 2018; 15
Li (2022081200003503700_B18) 2017; 18
Kleshchevnikov (2022081200003503700_B33) 2022
Vickovic (2022081200003503700_B1) 2019; 16
Van de Velde (2022081200003503700_B6) 2021; 81
Cable (2022081200003503700_B15) 2021
Karaayvaz (2022081200003503700_B38) 2018; 9
Stickels (2022081200003503700_B2) 2021; 39
Biancalani (2022081200003503700_B16) 2020
Hafemeister (2022081200003503700_B29) 2019; 20
Maaskola (2022081200003503700_B11) 2018
Moncada (2022081200003503700_B7) 2020; 38
Chen (2022081200003503700_B30) 2018
Newman (2022081200003503700_B27) 2015; 12
Saltz (2022081200003503700_B22) 2018; 23
References_xml – volume: 1
  start-page: 789
  year: 2020
  ident: 2022081200003503700_B34
  article-title: Pan-cancer image-based detection of clinically actionable genetic alterations
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0087-6
– volume: 20
  start-page: 5064
  year: 2014
  ident: 2022081200003503700_B37
  article-title: Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti–PD-1 therapy
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-3271
– year: 2020
  ident: 2022081200003503700_B12
  article-title: Explainable multi-view framework for dissecting inter-cellular signaling from highly multiplexed spatial data
– volume: 49
  start-page: e50
  year: 2021
  ident: 2022081200003503700_B14
  article-title: SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab043
– volume: 20
  start-page: 296
  year: 2019
  ident: 2022081200003503700_B29
  article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1874-1
– year: 2021
  ident: 2022081200003503700_B5
  article-title: Large field of view-spatially resolved transcriptomics at nanoscale resolution
– volume: 23
  start-page: 181
  year: 2018
  ident: 2022081200003503700_B22
  article-title: Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.03.086
– volume: 15
  start-page: 343
  year: 2018
  ident: 2022081200003503700_B8
  article-title: SpatialDE: identification of spatially variable genes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4636
– volume: 22
  start-page: 145
  year: 2021
  ident: 2022081200003503700_B32
  article-title: SpatialDWLS: accurate deconvolution of spatial transcriptomic data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02362-7
– volume: 12
  start-page: 453
  year: 2015
  ident: 2022081200003503700_B27
  article-title: Robust enumeration of cell subsets from tissue expression profiles
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3337
– year: 2022
  ident: 2022081200003503700_B33
  article-title: Cell2location maps fine-grained cell types in spatial transcriptomics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01139-4
– volume: 18
  start-page: 127
  year: 2017
  ident: 2022081200003503700_B18
  article-title: Revisit linear regression-based deconvolution methods for tumor gene expression data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1256-5
– year: 2021
  ident: 2022081200003503700_B19
  article-title: Cell type-specific differential expression for spatial transcriptomics
  doi: 10.1101/2021.12.26.474183
– volume: 1
  start-page: 800
  year: 2020
  ident: 2022081200003503700_B35
  article-title: Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0085-8
– volume: 81
  start-page: 5047
  year: 2021
  ident: 2022081200003503700_B6
  article-title: Neuroblastoma formation requires unconventional CD4 t cells and myeloid amino acid metabolism
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-21-0691
– start-page: 243
  volume-title: Cancer systems biology
  year: 2018
  ident: 2022081200003503700_B30
  doi: 10.1007/978-1-4939-7493-1_12
– volume: 29
  start-page: 202
  year: 2019
  ident: 2022081200003503700_B13
  article-title: Modeling cell–cell interactions from spatial molecular data with spatial variance component analysis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.077
– year: 2020
  ident: 2022081200003503700_B10
  article-title: stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell–cell interactions and spatial trajectories within undissociated tissues
  doi: 10.1101/2020.05.31.125658
– volume: 18
  start-page: 174
  year: 2017
  ident: 2022081200003503700_B23
  article-title: Splatter: simulation of single-cell RNA sequencing data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1305-0
– volume: 39
  start-page: 313
  year: 2021
  ident: 2022081200003503700_B2
  article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0739-1
– year: 2020
  ident: 2022081200003503700_B16
  article-title: Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the mouse brain with tangram
  doi: 10.1101/2020.08.29.272831
– volume: 35
  start-page: i436
  year: 2019
  ident: 2022081200003503700_B25
  article-title: Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz363
– volume: 9
  start-page: 3588
  year: 2018
  ident: 2022081200003503700_B38
  article-title: Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06052-0
– volume: 3
  start-page: 565
  year: 2020
  ident: 2022081200003503700_B17
  article-title: Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01247-y
– volume: 183
  start-page: 1665
  year: 2020
  ident: 2022081200003503700_B4
  article-title: High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.026
– volume: 236
  start-page: 567
  year: 2011
  ident: 2022081200003503700_B36
  article-title: Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity
  publication-title: Exp. Biol. Med.
  doi: 10.1258/ebm.2011.011007
– volume: 17
  start-page: 193
  year: 2020
  ident: 2022081200003503700_B9
  article-title: Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0701-7
– volume: 53
  start-page: 770
  year: 2021
  ident: 2022081200003503700_B20
  article-title: Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00873-4
– volume: 16
  start-page: 1007
  year: 2019
  ident: 2022081200003503700_B24
  article-title: Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0529-1
– volume: 363
  start-page: 1463
  year: 2019
  ident: 2022081200003503700_B3
  article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 38
  start-page: 333
  year: 2020
  ident: 2022081200003503700_B7
  article-title: Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0392-8
– volume: 16
  start-page: 987
  year: 2019
  ident: 2022081200003503700_B1
  article-title: High-definition spatial transcriptomics for in situ tissue profiling
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0548-y
– year: 2018
  ident: 2022081200003503700_B28
  article-title: K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data
– year: 2018
  ident: 2022081200003503700_B11
  article-title: Charting tissue expression anatomy by spatial transcriptome decomposition
  doi: 10.1101/362624
– volume: 28
  start-page: 52
  year: 2010
  ident: 2022081200003503700_B21
  article-title: Model-based clustering of non-Gaussian panel data based on skew-t distributions
  publication-title: J. Bus. Econom. Statist.
  doi: 10.1198/jbes.2009.07145
– volume: 8
  start-page: 2032
  year: 2017
  ident: 2022081200003503700_B26
  article-title: Estimation of immune cell content in tumour tissue using single-cell RNA-seq data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02289-3
– start-page: 517
  year: 2021
  ident: 2022081200003503700_B15
  article-title: Robust decomposition of cell type mixtures in spatial transcriptomics
  publication-title: Nat. Biotechnol.
– volume: 29
  start-page: 1083
  year: 2013
  ident: 2022081200003503700_B31
  article-title: DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt090
SSID ssj0014154
Score 2.4522533
Snippet Abstract Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues...
Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections,...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e80
SubjectTerms Animals
Bayes Theorem
Fluorescent Antibody Technique
Methods Online
Mice
Models, Statistical
Transcriptome
Title Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model
URI https://www.ncbi.nlm.nih.gov/pubmed/35536287
https://www.proquest.com/docview/2661953896
https://pubmed.ncbi.nlm.nih.gov/PMC9371936
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT_MwDI4QF7ggvl4Yn0ZCHF6pojRp1xxhAiEOcAFptypOUpjeURAth_0hfid22k0MoZfznGiKXT-OYz8W4liizQgGzyJCMxORw8OIoiId5cr50nh0EkOV7212_aBuhumwK5Ctf3jC1_K0Mm-nj_-MlQlfzQl-2Zzv74azxwLCoJYlKpBqqrxrw_u2dg545prZvsSU30sjv2DN1apY6YJEOG-1uiYWfLUuNs4ruiA_T-AEQtlmyIevi6XBdGTbhvgY-PEYOKsKI9eVAYWTh1EFNddO064No1PwFdyQXAPXiAIdMCCtCikG7wAnMPZk5WGGEXB2P-Jto45nlX0kvBpylw6aoDpaSp6pBq6jfwQDF2biuT8TeGJNYPFlQmgIg3c2xcPV5f3gOuoGMURWqqShQzWIsVLW0402RYX9OMPMSk3BgnJJjGVmLDOTojxL0FKQUaaoy6SkRWVZ5vKPWKxeKr8tQCfGpy73eaqcyjUiWuPivK9jpMuQ9D3xd6qlwnYs5TwsY1y0r-WyIJUWnUp74ngm_NqSc_wsdkjq_r_E0dQUClIZn6qp_Mt7XXD8ogkUdNYTW61pzDaiUI3gP-_3RH_OaGYCTN09_0s1egoU3sxCqGW28-s_2xXLCTdcMAlvsicWm7d3v09hUIMHIX1wED6FTzfODdY
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+type+identification+in+spatial+transcriptomics+data+can+be+improved+by+leveraging+cell-type-informative+paired+tissue+images+using+a+Bayesian+probabilistic+model&rft.jtitle=Nucleic+acids+research&rft.au=Zubair%2C+Asif&rft.au=Chapple%2C+Richard+H&rft.au=Natarajan%2C+Sivaraman&rft.au=Wright%2C+William+C&rft.date=2022-08-12&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=50&rft.issue=14&rft.spage=e80&rft.epage=e80&rft_id=info:doi/10.1093%2Fnar%2Fgkac320&rft_id=info%3Apmid%2F35536287&rft.externalDocID=PMC9371936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon