Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model
Abstract Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their...
Saved in:
Published in | Nucleic acids research Vol. 50; no. 14; p. e80 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
12.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0305-1048 1362-4962 1362-4962 |
DOI | 10.1093/nar/gkac320 |
Cover
Abstract | Abstract
Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification. |
---|---|
AbstractList | Abstract
Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification. Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification. Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification.Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections, revealing cell types and their dysfunction in unprecedented detail. However, spatial transcriptomics technologies are limited in their ability to separate transcriptionally similar cell types and can suffer further difficulties identifying cell types in slide regions where transcript capture is low. Here, we describe a conceptually novel methodology that can computationally integrate spatial transcriptomics data with cell-type-informative paired tissue images, obtained from, for example, the reverse side of the same tissue section, to improve inferences of tissue cell type composition in spatial transcriptomics data. The underlying statistical approach is generalizable to any spatial transcriptomics protocol where informative paired tissue images can be obtained. We demonstrate a use case leveraging cell-type-specific immunofluorescence markers obtained on mouse brain tissue sections and a use case for leveraging the output of AI annotated H&E tissue images, which we used to markedly improve the identification of clinically relevant immune cell infiltration in breast cancer tissue. Thus, combining spatial transcriptomics data with paired tissue images has the potential to improve the identification of cell types and hence to improve the applications of spatial transcriptomics that rely on accurate cell type identification. |
Author | Tillman, Heather Natarajan, Sivaraman Wright, William C Geeleher, Paul Zubair, Asif Pan, Min Chapple, Richard H Lee, Hyeong-Min Easton, John |
Author_xml | – sequence: 1 givenname: Asif surname: Zubair fullname: Zubair, Asif – sequence: 2 givenname: Richard H surname: Chapple fullname: Chapple, Richard H – sequence: 3 givenname: Sivaraman surname: Natarajan fullname: Natarajan, Sivaraman – sequence: 4 givenname: William C surname: Wright fullname: Wright, William C – sequence: 5 givenname: Min surname: Pan fullname: Pan, Min – sequence: 6 givenname: Hyeong-Min surname: Lee fullname: Lee, Hyeong-Min – sequence: 7 givenname: Heather surname: Tillman fullname: Tillman, Heather – sequence: 8 givenname: John orcidid: 0000-0003-4503-6608 surname: Easton fullname: Easton, John – sequence: 9 givenname: Paul orcidid: 0000-0002-5128-0087 surname: Geeleher fullname: Geeleher, Paul email: paul.geeleher@stjude.org |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35536287$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU-L1DAYh4OsuLOrJ--SkwhL3aRpO81FWIf1Dyx40XN4kyb11TapSTswX8jPaeqMiwp6SiDP78mb_C7ImQ_eEvKUs5ecSXHtIV73X8GIkj0gGy6asqhkU56RDROsLjir2nNykdIXxnjF6-oRORd1nbF2uyHfd3YY6HyYLMXO-hkdGpgxeIqepilvIR9H8MlEnOYwokm0gxmoAU91To1TDHvbUX2gg93bCD36npqsLVZtgd6FOGbR3tIJMGZ0xpSWNQq9TXRJawDoazjYhNmahRo0DphmNHQMnR0ek4cOhmSfnNZL8unN7cfdu-Luw9v3u5u7woiqnPNbQWtWVcZyIWpd6S1rdGOE5KWsupJp14BhTLZa8FKblktXa-lKl0POuVZckldH77To0XYm_0iEQU0xzxoPKgCqP088flZ92CsptlyKJgtenAQxfFtsmtWIaf0M8DYsSZVNw2UtWrmiz36_6_6SX-Vk4OoImBhSitbdI5yptXqVq1en6jPN_6INzj-rzIPi8I_M82MmLNN_5T8AVb7GQw |
CitedBy_id | crossref_primary_10_1016_j_semcancer_2023_02_007 crossref_primary_10_1038_s41588_023_01646_x crossref_primary_10_1126_sciadv_add9818 crossref_primary_10_1093_bioinformatics_btac825 crossref_primary_10_1007_s12539_024_00603_4 crossref_primary_10_3389_fimmu_2024_1499301 |
Cites_doi | 10.1038/s43018-020-0087-6 10.1158/1078-0432.CCR-13-3271 10.1093/nar/gkab043 10.1186/s13059-019-1874-1 10.1016/j.celrep.2018.03.086 10.1038/nmeth.4636 10.1186/s13059-021-02362-7 10.1038/nmeth.3337 10.1038/s41587-021-01139-4 10.1186/s13059-017-1256-5 10.1101/2021.12.26.474183 10.1038/s43018-020-0085-8 10.1158/0008-5472.CAN-21-0691 10.1007/978-1-4939-7493-1_12 10.1016/j.celrep.2019.08.077 10.1101/2020.05.31.125658 10.1186/s13059-017-1305-0 10.1038/s41587-020-0739-1 10.1101/2020.08.29.272831 10.1093/bioinformatics/btz363 10.1038/s41467-018-06052-0 10.1038/s42003-020-01247-y 10.1016/j.cell.2020.10.026 10.1258/ebm.2011.011007 10.1038/s41592-019-0701-7 10.1038/s41588-021-00873-4 10.1038/s41592-019-0529-1 10.1126/science.aaw1219 10.1038/s41587-019-0392-8 10.1038/s41592-019-0548-y 10.1101/362624 10.1198/jbes.2009.07145 10.1038/s41467-017-02289-3 10.1093/bioinformatics/btt090 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022 The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkac320 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | e80 |
ExternalDocumentID | PMC9371936 35536287 10_1093_nar_gkac320 10.1093/nar/gkac320 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: R00 HG009679 – fundername: NCI NIH HHS grantid: R01 CA260060 – fundername: NIGMS NIH HHS grantid: R35 GM138293 – fundername: ; grantid: R00HG009679 – fundername: ; – fundername: ; grantid: R35GM138293 – fundername: ; grantid: R01CA260060 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABQTQ ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AHMBA AIAGR AJDVS ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI M49 MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX CITATION OVT CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c342t-10abb044ce1335b4b706b6c391294d20bf6ac0098b312bc819f5b9f2fb04fff83 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:04:53 EDT 2025 Fri Jul 11 08:04:06 EDT 2025 Thu Apr 03 07:04:20 EDT 2025 Thu Apr 24 22:58:10 EDT 2025 Tue Jul 01 02:59:14 EDT 2025 Wed Apr 02 06:56:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-10abb044ce1335b4b706b6c391294d20bf6ac0098b312bc819f5b9f2fb04fff83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5128-0087 0000-0003-4503-6608 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkac320 |
PMID | 35536287 |
PQID | 2661953896 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371936 proquest_miscellaneous_2661953896 pubmed_primary_35536287 crossref_primary_10_1093_nar_gkac320 crossref_citationtrail_10_1093_nar_gkac320 oup_primary_10_1093_nar_gkac320 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-12 |
PublicationDateYYYYMMDD | 2022-08-12 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Jochems (2022081200003503700_B36) 2011; 236 Elosua-Bayes (2022081200003503700_B14) 2021; 49 Cable (2022081200003503700_B19) 2021 Fu (2022081200003503700_B35) 2020; 1 Rodriques (2022081200003503700_B3) 2019; 363 Liu (2022081200003503700_B4) 2020; 183 Sun (2022081200003503700_B9) 2020; 17 Sarkar (2022081200003503700_B20) 2021; 53 Arnol (2022081200003503700_B13) 2019; 29 Pham (2022081200003503700_B10) 2020 Gong (2022081200003503700_B31) 2013; 29 Taube (2022081200003503700_B37) 2014; 20 Juárez (2022081200003503700_B21) 2010; 28 Sturm (2022081200003503700_B25) 2019; 35 Tanevski (2022081200003503700_B12) 2020 Chen (2022081200003503700_B5) 2021 Zappia (2022081200003503700_B23) 2017; 18 Andersson (2022081200003503700_B17) 2020; 3 Wagner (2022081200003503700_B28) 2018 Dong (2022081200003503700_B32) 2021; 22 Zhang (2022081200003503700_B24) 2019; 16 Kather (2022081200003503700_B34) 2020; 1 Schelker (2022081200003503700_B26) 2017; 8 Svensson (2022081200003503700_B8) 2018; 15 Li (2022081200003503700_B18) 2017; 18 Kleshchevnikov (2022081200003503700_B33) 2022 Vickovic (2022081200003503700_B1) 2019; 16 Van de Velde (2022081200003503700_B6) 2021; 81 Cable (2022081200003503700_B15) 2021 Karaayvaz (2022081200003503700_B38) 2018; 9 Stickels (2022081200003503700_B2) 2021; 39 Biancalani (2022081200003503700_B16) 2020 Hafemeister (2022081200003503700_B29) 2019; 20 Maaskola (2022081200003503700_B11) 2018 Moncada (2022081200003503700_B7) 2020; 38 Chen (2022081200003503700_B30) 2018 Newman (2022081200003503700_B27) 2015; 12 Saltz (2022081200003503700_B22) 2018; 23 |
References_xml | – volume: 1 start-page: 789 year: 2020 ident: 2022081200003503700_B34 article-title: Pan-cancer image-based detection of clinically actionable genetic alterations publication-title: Nat. Cancer doi: 10.1038/s43018-020-0087-6 – volume: 20 start-page: 5064 year: 2014 ident: 2022081200003503700_B37 article-title: Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti–PD-1 therapy publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-3271 – year: 2020 ident: 2022081200003503700_B12 article-title: Explainable multi-view framework for dissecting inter-cellular signaling from highly multiplexed spatial data – volume: 49 start-page: e50 year: 2021 ident: 2022081200003503700_B14 article-title: SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab043 – volume: 20 start-page: 296 year: 2019 ident: 2022081200003503700_B29 article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression publication-title: Genome Biol. doi: 10.1186/s13059-019-1874-1 – year: 2021 ident: 2022081200003503700_B5 article-title: Large field of view-spatially resolved transcriptomics at nanoscale resolution – volume: 23 start-page: 181 year: 2018 ident: 2022081200003503700_B22 article-title: Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.03.086 – volume: 15 start-page: 343 year: 2018 ident: 2022081200003503700_B8 article-title: SpatialDE: identification of spatially variable genes publication-title: Nat. Methods doi: 10.1038/nmeth.4636 – volume: 22 start-page: 145 year: 2021 ident: 2022081200003503700_B32 article-title: SpatialDWLS: accurate deconvolution of spatial transcriptomic data publication-title: Genome Biol. doi: 10.1186/s13059-021-02362-7 – volume: 12 start-page: 453 year: 2015 ident: 2022081200003503700_B27 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat. Methods doi: 10.1038/nmeth.3337 – year: 2022 ident: 2022081200003503700_B33 article-title: Cell2location maps fine-grained cell types in spatial transcriptomics publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01139-4 – volume: 18 start-page: 127 year: 2017 ident: 2022081200003503700_B18 article-title: Revisit linear regression-based deconvolution methods for tumor gene expression data publication-title: Genome Biol. doi: 10.1186/s13059-017-1256-5 – year: 2021 ident: 2022081200003503700_B19 article-title: Cell type-specific differential expression for spatial transcriptomics doi: 10.1101/2021.12.26.474183 – volume: 1 start-page: 800 year: 2020 ident: 2022081200003503700_B35 article-title: Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis publication-title: Nat. Cancer doi: 10.1038/s43018-020-0085-8 – volume: 81 start-page: 5047 year: 2021 ident: 2022081200003503700_B6 article-title: Neuroblastoma formation requires unconventional CD4 t cells and myeloid amino acid metabolism publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-21-0691 – start-page: 243 volume-title: Cancer systems biology year: 2018 ident: 2022081200003503700_B30 doi: 10.1007/978-1-4939-7493-1_12 – volume: 29 start-page: 202 year: 2019 ident: 2022081200003503700_B13 article-title: Modeling cell–cell interactions from spatial molecular data with spatial variance component analysis publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.077 – year: 2020 ident: 2022081200003503700_B10 article-title: stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell–cell interactions and spatial trajectories within undissociated tissues doi: 10.1101/2020.05.31.125658 – volume: 18 start-page: 174 year: 2017 ident: 2022081200003503700_B23 article-title: Splatter: simulation of single-cell RNA sequencing data publication-title: Genome Biol. doi: 10.1186/s13059-017-1305-0 – volume: 39 start-page: 313 year: 2021 ident: 2022081200003503700_B2 article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0739-1 – year: 2020 ident: 2022081200003503700_B16 article-title: Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the mouse brain with tangram doi: 10.1101/2020.08.29.272831 – volume: 35 start-page: i436 year: 2019 ident: 2022081200003503700_B25 article-title: Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz363 – volume: 9 start-page: 3588 year: 2018 ident: 2022081200003503700_B38 article-title: Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq publication-title: Nat. Commun. doi: 10.1038/s41467-018-06052-0 – volume: 3 start-page: 565 year: 2020 ident: 2022081200003503700_B17 article-title: Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography publication-title: Commun. Biol. doi: 10.1038/s42003-020-01247-y – volume: 183 start-page: 1665 year: 2020 ident: 2022081200003503700_B4 article-title: High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue publication-title: Cell doi: 10.1016/j.cell.2020.10.026 – volume: 236 start-page: 567 year: 2011 ident: 2022081200003503700_B36 article-title: Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity publication-title: Exp. Biol. Med. doi: 10.1258/ebm.2011.011007 – volume: 17 start-page: 193 year: 2020 ident: 2022081200003503700_B9 article-title: Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies publication-title: Nat. Methods doi: 10.1038/s41592-019-0701-7 – volume: 53 start-page: 770 year: 2021 ident: 2022081200003503700_B20 article-title: Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis publication-title: Nat. Genet. doi: 10.1038/s41588-021-00873-4 – volume: 16 start-page: 1007 year: 2019 ident: 2022081200003503700_B24 article-title: Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling publication-title: Nat. Methods doi: 10.1038/s41592-019-0529-1 – volume: 363 start-page: 1463 year: 2019 ident: 2022081200003503700_B3 article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution publication-title: Science doi: 10.1126/science.aaw1219 – volume: 38 start-page: 333 year: 2020 ident: 2022081200003503700_B7 article-title: Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0392-8 – volume: 16 start-page: 987 year: 2019 ident: 2022081200003503700_B1 article-title: High-definition spatial transcriptomics for in situ tissue profiling publication-title: Nat. Methods doi: 10.1038/s41592-019-0548-y – year: 2018 ident: 2022081200003503700_B28 article-title: K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data – year: 2018 ident: 2022081200003503700_B11 article-title: Charting tissue expression anatomy by spatial transcriptome decomposition doi: 10.1101/362624 – volume: 28 start-page: 52 year: 2010 ident: 2022081200003503700_B21 article-title: Model-based clustering of non-Gaussian panel data based on skew-t distributions publication-title: J. Bus. Econom. Statist. doi: 10.1198/jbes.2009.07145 – volume: 8 start-page: 2032 year: 2017 ident: 2022081200003503700_B26 article-title: Estimation of immune cell content in tumour tissue using single-cell RNA-seq data publication-title: Nat. Commun. doi: 10.1038/s41467-017-02289-3 – start-page: 517 year: 2021 ident: 2022081200003503700_B15 article-title: Robust decomposition of cell type mixtures in spatial transcriptomics publication-title: Nat. Biotechnol. – volume: 29 start-page: 1083 year: 2013 ident: 2022081200003503700_B31 article-title: DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt090 |
SSID | ssj0014154 |
Score | 2.4522533 |
Snippet | Abstract
Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues... Spatial transcriptomics technologies have recently emerged as a powerful tool for measuring spatially resolved gene expression directly in tissues sections,... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e80 |
SubjectTerms | Animals Bayes Theorem Fluorescent Antibody Technique Methods Online Mice Models, Statistical Transcriptome |
Title | Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35536287 https://www.proquest.com/docview/2661953896 https://pubmed.ncbi.nlm.nih.gov/PMC9371936 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT_MwDI4QF7ggvl4Yn0ZCHF6pojRp1xxhAiEOcAFptypOUpjeURAth_0hfid22k0MoZfznGiKXT-OYz8W4liizQgGzyJCMxORw8OIoiId5cr50nh0EkOV7212_aBuhumwK5Ctf3jC1_K0Mm-nj_-MlQlfzQl-2Zzv74azxwLCoJYlKpBqqrxrw_u2dg545prZvsSU30sjv2DN1apY6YJEOG-1uiYWfLUuNs4ruiA_T-AEQtlmyIevi6XBdGTbhvgY-PEYOKsKI9eVAYWTh1EFNddO064No1PwFdyQXAPXiAIdMCCtCikG7wAnMPZk5WGGEXB2P-Jto45nlX0kvBpylw6aoDpaSp6pBq6jfwQDF2biuT8TeGJNYPFlQmgIg3c2xcPV5f3gOuoGMURWqqShQzWIsVLW0402RYX9OMPMSk3BgnJJjGVmLDOTojxL0FKQUaaoy6SkRWVZ5vKPWKxeKr8tQCfGpy73eaqcyjUiWuPivK9jpMuQ9D3xd6qlwnYs5TwsY1y0r-WyIJUWnUp74ngm_NqSc_wsdkjq_r_E0dQUClIZn6qp_Mt7XXD8ogkUdNYTW61pzDaiUI3gP-_3RH_OaGYCTN09_0s1egoU3sxCqGW28-s_2xXLCTdcMAlvsicWm7d3v09hUIMHIX1wED6FTzfODdY |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+type+identification+in+spatial+transcriptomics+data+can+be+improved+by+leveraging+cell-type-informative+paired+tissue+images+using+a+Bayesian+probabilistic+model&rft.jtitle=Nucleic+acids+research&rft.au=Zubair%2C+Asif&rft.au=Chapple%2C+Richard+H&rft.au=Natarajan%2C+Sivaraman&rft.au=Wright%2C+William+C&rft.date=2022-08-12&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=50&rft.issue=14&rft.spage=e80&rft.epage=e80&rft_id=info:doi/10.1093%2Fnar%2Fgkac320&rft_id=info%3Apmid%2F35536287&rft.externalDocID=PMC9371936 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |