First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels
Analytic expressions for the first-order nonadiabatic coupling matrix elements between electronically excited states are first formulated exactly via both time-independent equation of motion and time-dependent response theory, and are then approximated at the configuration interaction singles, parti...
        Saved in:
      
    
          | Published in | The Journal of chemical physics Vol. 141; no. 1; p. 014110 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Institute of Physics
    
        07.07.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0021-9606 1089-7690 1089-7690  | 
| DOI | 10.1063/1.4885817 | 
Cover
| Abstract | Analytic expressions for the first-order nonadiabatic coupling matrix elements between electronically excited states are first formulated exactly via both time-independent equation of motion and time-dependent response theory, and are then approximated at the configuration interaction singles, particle-hole/particle-particle random phase approximation, and time-dependent density functional theory/Hartree-Fock levels of theory. Note that, to get the Pulay terms arising from the derivatives of basis functions, the standard response theory designed for electronic perturbations has to be extended to nuclear derivatives. The results are further recast into a Lagrangian form that is similar to that for excited-state energy gradients and allows to use atomic orbital based direct algorithms for large molecules. | 
    
|---|---|
| AbstractList | Analytic expressions for the first-order nonadiabatic coupling matrix elements between electronically excited states are first formulated exactly via both time-independent equation of motion and time-dependent response theory, and are then approximated at the configuration interaction singles, particle-hole/particle-particle random phase approximation, and time-dependent density functional theory/Hartree-Fock levels of theory. Note that, to get the Pulay terms arising from the derivatives of basis functions, the standard response theory designed for electronic perturbations has to be extended to nuclear derivatives. The results are further recast into a Lagrangian form that is similar to that for excited-state energy gradients and allows to use atomic orbital based direct algorithms for large molecules. Analytic expressions for the first-order nonadiabatic coupling matrix elements between electronically excited states are first formulated exactly via both time-independent equation of motion and time-dependent response theory, and are then approximated at the configuration interaction singles, particle-hole/particle-particle random phase approximation, and time-dependent density functional theory/Hartree-Fock levels of theory. Note that, to get the Pulay terms arising from the derivatives of basis functions, the standard response theory designed for electronic perturbations has to be extended to nuclear derivatives. The results are further recast into a Lagrangian form that is similar to that for excited-state energy gradients and allows to use atomic orbital based direct algorithms for large molecules.Analytic expressions for the first-order nonadiabatic coupling matrix elements between electronically excited states are first formulated exactly via both time-independent equation of motion and time-dependent response theory, and are then approximated at the configuration interaction singles, particle-hole/particle-particle random phase approximation, and time-dependent density functional theory/Hartree-Fock levels of theory. Note that, to get the Pulay terms arising from the derivatives of basis functions, the standard response theory designed for electronic perturbations has to be extended to nuclear derivatives. The results are further recast into a Lagrangian form that is similar to that for excited-state energy gradients and allows to use atomic orbital based direct algorithms for large molecules.  | 
    
| Author | Li, Zhendong Liu, Wenjian  | 
    
| Author_xml | – sequence: 1 givenname: Zhendong surname: Li fullname: Li, Zhendong – sequence: 2 givenname: Wenjian surname: Liu fullname: Liu, Wenjian  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25005280$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22308984$$D View this record in Osti.gov  | 
    
| BookMark | eNpt0cFuEzEQBmALFdG0cOAFkCUuIGVb27vrdbhFKaGVIoEgnFcTezZ1tWunthfKO_DQOCQUCXGyD59_6585IyfOOyTkJWcXnMnykl9UStWKN0_IhDM1Kxo5YydkwpjgxUwyeUrOYrxjjPFGVM_IqagZq4ViE_JzaUNMhQ8GA82xYCxsIFlNtR93vXVbOkAK9oFijwO6FOkG03dER_FB24SGxgQJ4zs6pyvYBnBbC452Pgxjn4O8o5BoukW6uPkypZ8_zad0fVVcL6cUnNlfr5Zr2uM37ONz8rSDPuKL43lOvi7frxfXxerjh5vFfFXosuKp0NhVnIumriq1ASGkNLKpa-gUlrIWdYUloCkRZKc0IDcbUwqDQquOK86gPCevD7k-JtvGfQ19q71zqFMrRJlHqKqs3hzULvj7EWNqBxs19j049GNsef6_FLyp-N_AR3rnx-Byh1ZwIRvZNEpk9eqoxs2Apt0FO0D40f7ZRgZvD0AHH2PA7pFw1u433fL2uOlsL_-xucbveacAtv_Pi1_-BKcl | 
    
| CitedBy_id | crossref_primary_10_1016_j_orgel_2017_09_004 crossref_primary_10_1063_1_5126440 crossref_primary_10_1039_D2TC05402G crossref_primary_10_1039_D2CP03500F crossref_primary_10_1063_5_0137326 crossref_primary_10_1063_5_0188277 crossref_primary_10_1021_acs_jpcb_1c05236 crossref_primary_10_1021_acs_jpclett_5b02062 crossref_primary_10_1021_acs_jctc_3c00347 crossref_primary_10_3389_fchem_2023_1259016 crossref_primary_10_1021_acs_jpclett_1c02020 crossref_primary_10_1021_ct501106d crossref_primary_10_1146_annurev_physchem_040215_112245 crossref_primary_10_1063_5_0130404 crossref_primary_10_1002_wcms_1665 crossref_primary_10_1039_D0TC02235G crossref_primary_10_1021_acs_chemrev_9b00447 crossref_primary_10_1063_1_4953039 crossref_primary_10_1021_acs_accounts_1c00312 crossref_primary_10_1063_1_4891984 crossref_primary_10_1063_5_0088271 crossref_primary_10_1002_jcc_25569 crossref_primary_10_1021_acs_chemrev_1c00074 crossref_primary_10_1021_acs_jpca_7b00752 crossref_primary_10_1021_acs_jpca_4c02503 crossref_primary_10_1021_acs_jctc_9b00859 crossref_primary_10_1063_1_5143173 crossref_primary_10_1063_1_4906941 crossref_primary_10_1016_j_comptc_2019_03_025 crossref_primary_10_1039_D1TC03345J crossref_primary_10_1038_s41534_019_0213_4 crossref_primary_10_1021_jacs_0c04952 crossref_primary_10_1063_5_0156532 crossref_primary_10_1021_acs_jpca_8b04392 crossref_primary_10_1021_acs_accounts_5b00026 crossref_primary_10_1063_1_4966235 crossref_primary_10_1021_acs_jpclett_3c03014 crossref_primary_10_1021_acs_jctc_7b01008 crossref_primary_10_1039_D2TC02896D crossref_primary_10_1088_1361_648X_aa836e crossref_primary_10_1063_1_4887256 crossref_primary_10_1021_acs_chemrev_7b00601 crossref_primary_10_1021_acs_jctc_5b01158 crossref_primary_10_1021_acs_jpclett_3c00122 crossref_primary_10_1021_acs_jctc_3c00960 crossref_primary_10_1063_5_0100339 crossref_primary_10_1021_jp5057682 crossref_primary_10_1039_C8CS00175H crossref_primary_10_1063_1_4903986 crossref_primary_10_1021_acs_jpca_0c05865 crossref_primary_10_1021_acs_jpclett_1c00932 crossref_primary_10_1063_5_0025428 crossref_primary_10_1063_5_0176705 crossref_primary_10_1021_jp505767b crossref_primary_10_1063_1_4991635 crossref_primary_10_1063_1_5022466 crossref_primary_10_1021_acs_jctc_5b00473 crossref_primary_10_1021_acs_jctc_2c00763 crossref_primary_10_1088_2516_1075_accb23 crossref_primary_10_1021_acs_jpcc_5b00276 crossref_primary_10_1021_acs_jctc_3c01008 crossref_primary_10_1063_5_0176140 crossref_primary_10_1063_1_5038112 crossref_primary_10_1016_j_cplett_2024_141125 crossref_primary_10_1063_5_0056182 crossref_primary_10_1021_acs_jpclett_0c00320 crossref_primary_10_1063_5_0064269 crossref_primary_10_1080_00268976_2018_1433335 crossref_primary_10_1021_acs_inorgchem_3c01071 crossref_primary_10_1063_1_4907376 crossref_primary_10_1080_00268976_2019_1665199 crossref_primary_10_1002_chem_202400024 crossref_primary_10_1063_5_0130617 crossref_primary_10_1007_s11664_019_07647_z crossref_primary_10_1063_1_5065504  | 
    
| Cites_doi | 10.1063/1.1353585 10.1063/1.4820485 10.1063/1.3573374 10.1098/rspa.1958.0182 10.1103/PhysRevA.26.42 10.1063/1.1508368 10.1063/1.3232011 10.1063/1.3097192 10.1063/1.3660688 10.1063/1.2755665 10.1063/1.480511 10.1080/00268970500417762 10.1063/1.478179 10.1063/1.1668615 10.1039/c0cp00273a 10.1103/RevModPhys.40.153 10.1063/1.3463799 10.1063/1.3665031 10.1063/1.463477 10.1007/BF00527713 10.1103/PhysRevA.82.062508 10.1016/0009-2614(85)80935-0 10.1063/1.448223 10.1063/1.3292571 10.1021/jp908032x 10.1063/1.2900647 10.1021/jz402549p 10.1103/RevModPhys.44.602 10.1063/1.466123 10.1063/1.4834875 10.1063/1.3226344 10.1063/1.2210471 10.1063/1.2786997 10.1103/PhysRevLett.52.997 10.1016/j.chemphys.2011.09.014 10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z 10.1063/1.3503765 10.1063/1.4757762 10.1080/00268976.2013.785611 10.1063/1.2978380 10.1016/S0009-2614(02)01214-9 10.1063/1.3265858 10.1080/00268976.2010.521777 10.1021/ct500154k 10.1063/1.1670299 10.1063/1.447428 10.1103/PhysRevLett.98.023001 10.1142/2914  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 AIP Publishing LLC. | 
    
| Copyright_xml | – notice: 2014 AIP Publishing LLC. | 
    
| DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 OTOTI  | 
    
| DOI | 10.1063/1.4885817 | 
    
| DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV  | 
    
| DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic  | 
    
| DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry Physics  | 
    
| EISSN | 1089-7690 | 
    
| ExternalDocumentID | 22308984 25005280 10_1063_1_4885817  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 NPM 8FD H8D L7M 7X8 0ZJ AAEUA ABPTK AGIHO ESX OTOTI UE8 ZHY  | 
    
| ID | FETCH-LOGICAL-c341t-cef411275448ba2266d6755af8e365254e3aed3ea6f8cae1dbd32de2c8f1810a3 | 
    
| ISSN | 0021-9606 1089-7690  | 
    
| IngestDate | Thu May 18 22:30:00 EDT 2023 Thu Jul 10 18:23:21 EDT 2025 Mon Jun 30 05:57:29 EDT 2025 Mon Jul 21 06:04:18 EDT 2025 Tue Jul 01 04:15:46 EDT 2025 Thu Apr 24 23:12:58 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c341t-cef411275448ba2266d6755af8e365254e3aed3ea6f8cae1dbd32de2c8f1810a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PMID | 25005280 | 
    
| PQID | 2126767782 | 
    
| PQPubID | 2050685 | 
    
| ParticipantIDs | osti_scitechconnect_22308984 proquest_miscellaneous_1544321741 proquest_journals_2126767782 pubmed_primary_25005280 crossref_primary_10_1063_1_4885817 crossref_citationtrail_10_1063_1_4885817  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-07-07 2014-Jul-07 20140707  | 
    
| PublicationDateYYYYMMDD | 2014-07-07 | 
    
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-07 day: 07  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Melville  | 
    
| PublicationTitle | The Journal of chemical physics | 
    
| PublicationTitleAlternate | J Chem Phys | 
    
| PublicationYear | 2014 | 
    
| Publisher | American Institute of Physics | 
    
| Publisher_xml | – name: American Institute of Physics | 
    
| References | (2023070323413359500_c8) 2004; 120 (2023070323413359500_c54) 2011; 135 (2023070323413359500_c45) 1968; 49 (2023070323413359500_c6) 1985; 113 (2023070323413359500_c42) 2002; 117 (2023070323413359500_c24) 2007; 127 (2023070323413359500_c21) 2009; 131 (2023070323413359500_c14) 2002; 364 (2023070323413359500_c37) 1993; 99 (2023070323413359500_c50) 1981 (2023070323413359500_c18) 2010; 82 (2023070323413359500_c49) 1972; 44 (2023070323413359500_c25) 2008; 129 (2023070323413359500_c38) 1998; 68 (2023070323413359500_c13) 2000; 112 (2023070323413359500_c36) 1985; 82 (2023070323413359500_c44) 2013; 139 (2023070323413359500_c33) 2013; 139 (2023070323413359500_c28) 2014; 5 (2023070323413359500_c23) 2010; 132 (2023070323413359500_c3) 1984; 52 (2023070323413359500_c16) 2008; 128 (2023070323413359500_c17) 2009; 131 (2023070323413359500_c30) 2010; 12 (2023070323413359500_c22) 2010; 133 (2023070323413359500_c55) 2013; 111 (2023070323413359500_c47) 1958; A247 (2023070323413359500_c20) 2009; 130 (2023070323413359500_c7) 1992; 97 (2023070323413359500_c52) 2010; 133 (2023070323413359500_c46) 1979; 16 2023070323413359500_c51 (2023070323413359500_c31) 2009; 113 (2023070323413359500_c35) 1982; 26 (2023070323413359500_c53) 2011; 134 (2023070323413359500_c2) 1972 (2023070323413359500_c32) 2014 (2023070323413359500_c15) 2007; 127 (2023070323413359500_c10) 2012; 401 (2023070323413359500_c5) 1984; 81 (2023070323413359500_c12) 2009; 131 (2023070323413359500_c41) 2001; 114 Marques (2023070323413359500_c26) 2011 (2023070323413359500_c39) 2011; 135 Chang (2023070323413359500_c4) 1995 (2023070323413359500_c9) 2010; 108 (2023070323413359500_c48) 1991 (2023070323413359500_c27) 2006; 104 2023070323413359500_c29 (2023070323413359500_c34) 1968; 40 (2023070323413359500_c1) 2012; 137 (2023070323413359500_c43) 2006; 125 (2023070323413359500_c11) 1999; 110 (2023070323413359500_c19) 2007; 98 (2023070323413359500_c40) 1989; 75  | 
    
| References_xml | – volume: 114 start-page: 5982 year: 2001 ident: 2023070323413359500_c41 publication-title: J. Chem. Phys. doi: 10.1063/1.1353585 – volume: 139 start-page: 124112 year: 2013 ident: 2023070323413359500_c44 publication-title: J. Chem. Phys. doi: 10.1063/1.4820485 – volume-title: Second Quantization-Based Methods in Quantum Chemistry year: 1981 ident: 2023070323413359500_c50 – volume: 134 start-page: 134101 year: 2011 ident: 2023070323413359500_c53 publication-title: J. Chem. Phys. doi: 10.1063/1.3573374 – volume: A247 start-page: 245 year: 1958 ident: 2023070323413359500_c47 publication-title: Proc. Roy. Soc. (London) doi: 10.1098/rspa.1958.0182 – volume: 26 start-page: 42 year: 1982 ident: 2023070323413359500_c35 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.26.42 – volume: 117 start-page: 7433 year: 2002 ident: 2023070323413359500_c42 publication-title: J. Chem. Phys. doi: 10.1063/1.1508368 – start-page: 279 volume-title: Fundamentals of Time-Dependent Density-Functional Theory year: 2011 ident: 2023070323413359500_c26 – volume: 131 start-page: 124104 year: 2009 ident: 2023070323413359500_c12 publication-title: J. Chem. Phys. doi: 10.1063/1.3232011 – volume: 130 start-page: 124107 year: 2009 ident: 2023070323413359500_c20 publication-title: J. Chem. Phys. doi: 10.1063/1.3097192 – volume: 135 start-page: 194106 year: 2011 ident: 2023070323413359500_c54 publication-title: J. Chem. Phys. doi: 10.1063/1.3660688 – volume: 127 start-page: 064103 year: 2007 ident: 2023070323413359500_c15 publication-title: J. Chem. Phys. doi: 10.1063/1.2755665 – volume: 112 start-page: 3572 year: 2000 ident: 2023070323413359500_c13 publication-title: J. Chem. Phys. doi: 10.1063/1.480511 – volume: 104 start-page: 1039 year: 2006 ident: 2023070323413359500_c27 publication-title: Mol. Phys. doi: 10.1080/00268970500417762 – volume-title: Analysis on Manifolds year: 1991 ident: 2023070323413359500_c48 – volume: 110 start-page: 711 year: 1999 ident: 2023070323413359500_c11 publication-title: J. Chem. Phys. doi: 10.1063/1.478179 – volume: 120 start-page: 7322 year: 2004 ident: 2023070323413359500_c8 publication-title: J. Chem. Phys. doi: 10.1063/1.1668615 – volume: 12 start-page: 12811 year: 2010 ident: 2023070323413359500_c30 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00273a – volume: 40 start-page: 153 year: 1968 ident: 2023070323413359500_c34 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.40.153 – volume: 133 start-page: 064106 year: 2010 ident: 2023070323413359500_c52 publication-title: J. Chem. Phys. doi: 10.1063/1.3463799 – volume: 135 start-page: 234105 year: 2011 ident: 2023070323413359500_c39 publication-title: J. Chem. Phys. doi: 10.1063/1.3665031 – volume: 97 start-page: 7573 year: 1992 ident: 2023070323413359500_c7 publication-title: J. Chem. Phys. doi: 10.1063/1.463477 – volume: 75 start-page: 111 year: 1989 ident: 2023070323413359500_c40 publication-title: Theor. Chim. Acta doi: 10.1007/BF00527713 – volume: 82 start-page: 062508 year: 2010 ident: 2023070323413359500_c18 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.062508 – volume: 113 start-page: 159 year: 1985 ident: 2023070323413359500_c6 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(85)80935-0 – volume: 82 start-page: 3235 year: 1985 ident: 2023070323413359500_c36 publication-title: J. Chem. Phys. doi: 10.1063/1.448223 – ident: 2023070323413359500_c29 – volume: 132 start-page: 044107 year: 2010 ident: 2023070323413359500_c23 publication-title: J. Chem. Phys. doi: 10.1063/1.3292571 – volume: 113 start-page: 12749 year: 2009 ident: 2023070323413359500_c31 publication-title: J. Phys. Chem. A doi: 10.1021/jp908032x – volume-title: The Quantum Mechanics of Many Body Systems year: 1972 ident: 2023070323413359500_c2 – volume: 16 start-page: 225 year: 1979 ident: 2023070323413359500_c46 publication-title: Int. J. Quantum Chem., Symp. – volume: 128 start-page: 154111 year: 2008 ident: 2023070323413359500_c16 publication-title: J. Chem. Phys. doi: 10.1063/1.2900647 – volume: 5 start-page: 322 year: 2014 ident: 2023070323413359500_c28 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz402549p – volume: 44 start-page: 602 year: 1972 ident: 2023070323413359500_c49 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.44.602 – volume: 99 start-page: 3738 year: 1993 ident: 2023070323413359500_c37 publication-title: J. Chem. Phys. doi: 10.1063/1.466123 – volume: 139 start-page: 224105 year: 2013 ident: 2023070323413359500_c33 publication-title: J. Chem. Phys. doi: 10.1063/1.4834875 – volume: 131 start-page: 114101 year: 2009 ident: 2023070323413359500_c17 publication-title: J. Chem. Phys. doi: 10.1063/1.3226344 – volume: 125 start-page: 014110 year: 2006 ident: 2023070323413359500_c43 publication-title: J. Chem. Phys. doi: 10.1063/1.2210471 – volume: 127 start-page: 164111 year: 2007 ident: 2023070323413359500_c24 publication-title: J. Chem. Phys. doi: 10.1063/1.2786997 – volume: 52 start-page: 997 year: 1984 ident: 2023070323413359500_c3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.52.997 – volume: 401 start-page: 88 year: 2012 ident: 2023070323413359500_c10 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2011.09.014 – volume: 68 start-page: 1 year: 1998 ident: 2023070323413359500_c38 publication-title: Int. J. Quant. Chem. doi: 10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z – volume: 133 start-page: 194104 year: 2010 ident: 2023070323413359500_c22 publication-title: J. Chem. Phys. doi: 10.1063/1.3503765 – volume: 137 start-page: 22A301 year: 2012 ident: 2023070323413359500_c1 publication-title: J. Chem. Phys. doi: 10.1063/1.4757762 – volume: 111 start-page: 3741 year: 2013 ident: 2023070323413359500_c55 publication-title: Mol. Phys. doi: 10.1080/00268976.2013.785611 – volume: 129 start-page: 124108 year: 2008 ident: 2023070323413359500_c25 publication-title: J. Chem. Phys. doi: 10.1063/1.2978380 – volume: 364 start-page: 75 year: 2002 ident: 2023070323413359500_c14 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)01214-9 – volume: 131 start-page: 196101 year: 2009 ident: 2023070323413359500_c21 publication-title: J. Chem. Phys. doi: 10.1063/1.3265858 – volume: 108 start-page: 2703 year: 2010 ident: 2023070323413359500_c9 publication-title: Mol. Phys. doi: 10.1080/00268976.2010.521777 – volume-title: J. Chem. Theory Comput. year: 2014 ident: 2023070323413359500_c32 article-title: Shape of multireference, equation-of-motion coupled-cluster, and density functional theory potential energy surfaces at a conical intersection doi: 10.1021/ct500154k – volume: 49 start-page: 1719 year: 1968 ident: 2023070323413359500_c45 publication-title: J. Chem. Phys. doi: 10.1063/1.1670299 – volume: 81 start-page: 4549 year: 1984 ident: 2023070323413359500_c5 publication-title: J. Chem. Phys. doi: 10.1063/1.447428 – ident: 2023070323413359500_c51 article-title: First-order nondiabatic coupling matrix elements between excited states at the TD-DFT and pp-RPA levels: II. Pilot applications – volume: 98 start-page: 023001 year: 2007 ident: 2023070323413359500_c19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.023001 – volume-title: Recent Advances in Density Functional Methods year: 1995 ident: 2023070323413359500_c4 doi: 10.1142/2914  | 
    
| SSID | ssj0001724 | 
    
| Score | 2.4246392 | 
    
| Snippet | Analytic expressions for the first-order nonadiabatic coupling matrix elements between electronically excited states are first formulated exactly via both... | 
    
| SourceID | osti proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 014110 | 
    
| SubjectTerms | ATOMIC AND MOLECULAR PHYSICS Basis functions Configuration interaction COUPLING Coupling (molecular) DENSITY FUNCTIONAL METHOD Density functional theory Derivatives Energy gradient EQUATIONS OF MOTION EXCITED STATES HARTREE-FOCK METHOD INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY LAGRANGIAN FUNCTION Mathematical analysis MATRIX ELEMENTS MOLECULES PARTICLES RANDOM PHASE APPROXIMATION TIME DEPENDENCE  | 
    
| Title | First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25005280 https://www.proquest.com/docview/2126767782 https://www.proquest.com/docview/1544321741 https://www.osti.gov/biblio/22308984  | 
    
| Volume | 141 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB5qF9EX0fVWXWUUEaGdNfemvpV2S5XuumgKxZdhMpl0lbWtJoHFv6A_2jO3NMVV1JfQTkJu58vMd2bO-Q5Czwa5z1Po9QgXPCSBYC5J44EgcRrkIRvISAyZO3x8Ek3nwZtFuGi1vjeilqoyPeTfLs0r-R-rQhvYVWbJ_oNl65NCA_wG-8IWLAzbv7Lx5CNwN6LUM7vgxkuZgVQpsPJ1tVF55p-lAv9FV-gg8aIOyxIXXHFNlU9U6PT0GVvCwLVU0x7AZE1dL5Pt2B29VkF-706HysRjMp3YyE_4M54k3XMZf1Q02e4270wxXm7FCfR0Ss3mZyqi4MOZkJVFltvWSgUAitUnC2EzO-EGKpK1v8WTXXbaCX04bVzF5hS4RPpSelTSXbETD0g_0sVE675aq2Q1QfnLGACkS05HHELXFMY6MXRXZ_vkLZ3MZzOaHC2S55svRJYgk0v1ph7LFbTnwRDhtNHecHw8e18P7MD1jKi3vlkrVBX5L-ur7dCb9hoe-veui6IwyU10w1gCDzWQbqGWWO2jayNb8m8fXTWv7Db60YAWbkILW2hhDS1soYUNtLCBFtbQeoWHeAss3AAWZiUGYGEAVg8DrHpYgaqHAVJYQwprSN1B88lRMpoSU7iDcCBFJXz3eeDKygHg-6cMCH6UgV8asjwWfhR6YSB8JjJfsCiPORNulma-lwmPxzkQTof5d1EbHk3cRzhzPJ7LpXfPywIPPMEscPwwh5Em9Po84B30wr5vyo2qvSyuck5VdEXkU5ca03TQ0_rQjZZyueygA2k0WshXxc-4jDbjJQUSDXCMA9htjUlNR1BQYH9S9hC4dgc9qXeD6eTaG1uJdVVQKXrlS_ff7aB7GgT1TcDTOaEXOw_-fPKH6Pr2CztA7fJrJR4BIy7TxwapPwFOc7bp | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-order+nonadiabatic+coupling+matrix+elements+between+excited+states%3A+A+Lagrangian+formulation+at+the+CIS%2C+RPA%2C+TD-HF%2C+and+TD-DFT+levels&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Li%2C+Zhendong&rft.au=Liu%2C+Wenjian&rft.date=2014-07-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=141&rft.issue=1&rft_id=info:doi/10.1063%2F1.4885817&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |