Visualization of Sex-Dimorphic Changes in the Intestinal Transcriptome of Fabp2 Gene-Ablated Mice

Background/Aims: Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the analysis of transcriptome data to identify sex differences and sex-dimorphic responses to experimental conditions in mice. Methods: Profilin...

Full description

Saved in:
Bibliographic Details
Published inJournal of nutrigenetics and nutrigenomics Vol. 5; no. 1; pp. 45 - 55
Main Authors Sugiyama, Michael G., Hobson, Luc, Agellon, Al B., Agellon, Luis B.
Format Journal Article
LanguageEnglish
Published Basel, Switzerland 01.01.2012
Subjects
Online AccessGet full text
ISSN2504-3161
2504-3188
1661-6758
DOI10.1159/000337193

Cover

Abstract Background/Aims: Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the analysis of transcriptome data to identify sex differences and sex-dimorphic responses to experimental conditions in mice. Methods: Profiling of the small intestine transcriptome of chow-fed C57BL/6J (wild-type, WT) and Fabp2 –/– mice was carried out by microarray analysis. Sex-specific and androgynous effects of Fabp2 gene ablation were examined using FlexArray V1.6 by comparing WT to Fabp2 –/– mice. The data generated were exported into a single spreadsheet, collated and transformed to identify the differentially expressed genes for pathway analysis. Results: The method revealed enrichment of 17 sex-dimorphic pathways in the small intestine of WT mice compared to only 4 in Fabp2 –/– mice. Comparison of the effects of Fabp2 loss in individual sexes revealed a male-specific upregulation of 5 pathways involved in the production of unsaturated fatty acids, and a female-specific downregulation of pathways involved in xenobiotic metabolism. Conclusions: Our approach detected the common as well as sex-differential pathways that are modified due to the loss of Fabp2. These findings suggest that the pathways involved in nutrient and xenobiotic metabolism in the intestine are regulated by sex-specific mechanisms.
AbstractList Background/Aims: Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the analysis of transcriptome data to identify sex differences and sex-dimorphic responses to experimental conditions in mice. Methods: Profiling of the small intestine transcriptome of chow-fed C57BL/6J (wild-type, WT) and Fabp2–/– mice was carried out by microarray analysis. Sex-specific and androgynous effects of Fabp2 gene ablation were examined using FlexArray V1.6 by comparing WT to Fabp2–/– mice. The data generated were exported into a single spreadsheet, collated and transformed to identify the differentially expressed genes for pathway analysis. Results: The method revealed enrichment of 17 sex-dimorphic pathways in the small intestine of WT mice compared to only 4 in Fabp2–/– mice. Comparison of the effects of Fabp2 loss in individual sexes revealed a male-specific upregulation of 5 pathways involved in the production of unsaturated fatty acids, and a female-specific downregulation of pathways involved in xenobiotic metabolism. Conclusions: Our approach detected the common as well as sex-differential pathways that are modified due to the loss of Fabp2. These findings suggest that the pathways involved in nutrient and xenobiotic metabolism in the intestine are regulated by sex-specific mechanisms.
Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the analysis of transcriptome data to identify sex differences and sex-dimorphic responses to experimental conditions in mice. Profiling of the small intestine transcriptome of chow-fed C57BL/6J (wild-type, WT) and Fabp2⁻/⁻ mice was carried out by microarray analysis. Sex-specific and androgynous effects of Fabp2 gene ablation were examined using FlexArray V1.6 by comparing WT to Fabp2⁻/⁻ mice. The data generated were exported into a single spreadsheet, collated and transformed to identify the differentially expressed genes for pathway analysis. The method revealed enrichment of 17 sex-dimorphic pathways in the small intestine of WT mice compared to only 4 in Fabp2⁻/⁻ mice. Comparison of the effects of Fabp2 loss in individual sexes revealed a male-specific upregulation of 5 pathways involved in the production of unsaturated fatty acids, and a female-specific downregulation of pathways involved in xenobiotic metabolism. Our approach detected the common as well as sex-differential pathways that are modified due to the loss of Fabp2. These findings suggest that the pathways involved in nutrient and xenobiotic metabolism in the intestine are regulated by sex-specific mechanisms.
Author Agellon, Luis B.
Agellon, Al B.
Sugiyama, Michael G.
Hobson, Luc
Author_xml – sequence: 1
  givenname: Michael G.
  surname: Sugiyama
  fullname: Sugiyama, Michael G.
– sequence: 2
  givenname: Luc
  surname: Hobson
  fullname: Hobson, Luc
– sequence: 3
  givenname: Al B.
  surname: Agellon
  fullname: Agellon, Al B.
  email: luis.agellon@mcgill.ca
– sequence: 4
  givenname: Luis B.
  surname: Agellon
  fullname: Agellon, Luis B.
  email: luis.agellon@mcgill.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22584290$$D View this record in MEDLINE/PubMed
BookMark eNptkL1PwzAUxC1UREvpwI6QV4ZQ2_loMqJCS6UiBgpr9OI8t4bUiWxXAv56UvoxIKZ30vvdSXfnpGNqg4RccnbLeZwNGWNhOOJZeEJ6ImZREPI07Rx1wrtk4Nx7i7VMJKLwjHSFiNNIZKxH4E27DVT6G7yuDa0VfcHP4F6va9ustKTjFZglOqoN9SukM-PReW2gogsLxkmrG1-vcWucQNEIOkWDwV1RgceSPmmJF-RUQeVwsL998jp5WIwfg_nzdDa-mwcyjLgPCiZkXCRJBjFXXCFTMRZSjrgEnpUSklIWkkGaKSwhyljMMGybCzkSPFIsCvvkepfbbIo1lnlj9RrsV37o2gLDHSBt7ZxFlUvtf2t7C7rKOcu3g-bHQVvHzR_HIfQ_9mrHfoBdoj2S-_cPiTd9gw
CitedBy_id crossref_primary_10_1074_jbc_M113_501676
crossref_primary_10_1186_s13293_014_0011_9
crossref_primary_10_1186_s13293_015_0032_z
crossref_primary_10_3390_genes11080943
Cites_doi 10.2337%2Fdiabetes.50.1.69
10.1517%2F17425255.4.4.413
10.1038%2Foby.2007.171
10.1055%2Fs-2006-925405
10.1093%2Fbiostatistics%2F4.2.249
10.1093%2Fnar%2Fgkp896
10.1084%2Fjem.20061839
10.1124%2Fdmd.107.019349
10.1172%2FJCI117778
10.1016%2Fj.metabol.2006.11.014
10.1139%2Fo11-067
10.1093%2Fhmg%2Fddh240
10.1023%2FA%3A1020520521025
10.1038%2Fnm1185
10.1016%2FS0014-5793%2803%2900578-7
10.1073%2Fpnas.091062498
10.1007%2Fs00125-003-1289-z
10.1096%2Ffj.99-0959com
10.1007%2Fs11010-005-9042-1
10.1093%2Fnar%2Fgki475
10.1152%2Fphysiolgenomics.00198.2006
10.1016%2FS0092-8674%2801%2980012-X
10.1152%2Fajpgi.00229.2010
10.1172%2FJCI118285
10.1210%2Fen.2002-220630
10.1248%2Fbpb.30.818
10.1152%2Fphysiolgenomics.00110.2009
10.1021%2Fbi000314z
10.1111%2Fj.1749-6632.2002.tb04315.x
10.1006%2Fabio.1987.9999
10.1172%2FJCI26498
ContentType Journal Article
Copyright 2012 S. Karger AG, Basel
Copyright © 2012 S. Karger AG, Basel.
Copyright_xml – notice: 2012 S. Karger AG, Basel
– notice: Copyright © 2012 S. Karger AG, Basel.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1159/000337193
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2504-3188
1661-6758
EndPage 55
ExternalDocumentID 22584290
10_1159_000337193
337193
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M--
O1H
RKO
04C
0~5
7RV
7X2
7X7
88E
8FI
8FJ
AAYXX
ABBTS
ABJNI
ABPAZ
ABUWG
ACGFS
ADBBV
AEUYN
AFJJK
AFKRA
AHFRZ
ALDHI
ATCPS
AZPMC
BBNVY
BENPR
BHPHI
BMSDO
CCPQU
CITATION
CYUIP
EBS
EIHBH
EJD
FYUFA
HCIFZ
HMCUK
IAO
IEP
IHR
INH
ITC
M0K
M1P
M7P
NAPCQ
O9-
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PSQYO
UKHRP
---
0R~
0~B
3O.
4.4
5GY
8UI
AAYIC
ABWCG
ACPSR
AENEX
AEYAO
CAG
CGR
COF
CS3
CUY
CVF
DU5
E0A
ECM
EIF
F5P
FB.
HZ~
IY7
KUZGX
N9A
NPM
P2P
UJ6
ID FETCH-LOGICAL-c341t-b02c5b669a51f1fe0f5ebcc71ca19dca6dcbc0a89feda49050e30032c7214f043
ISSN 2504-3161
IngestDate Wed Feb 19 01:52:55 EST 2025
Thu Apr 24 23:10:15 EDT 2025
Tue Aug 05 12:06:06 EDT 2025
Thu Aug 29 12:04:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Transcriptome analysis
Fatty acid binding proteins
Sex differences
Lipid metabolism
Method
Small intestine
KEGG pathways
Language English
License Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
https://www.karger.com/Services/SiteLicenses
Copyright © 2012 S. Karger AG, Basel.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c341t-b02c5b669a51f1fe0f5ebcc71ca19dca6dcbc0a89feda49050e30032c7214f043
OpenAccessLink https://doi.org/10.1159/000337193
PMID 22584290
PageCount 11
ParticipantIDs crossref_primary_10_1159_000337193
pubmed_primary_22584290
karger_primary_337193
crossref_citationtrail_10_1159_000337193
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Switzerland
PublicationTitle Journal of nutrigenetics and nutrigenomics
PublicationTitleAlternate Lifestyle Genomics
PublicationYear 2012
References Dunn SE, Ousman SS, Sobel RA, Zuniga L, Baranzini SE, Youssef S, Crowell A, Loh J, Oksenberg J, Steinman L: Peroxisome proliferator-activated receptor (PPAR)alpha expression in T cells mediates gender differences in development of T cell-mediated autoimmunity. J Exp Med 2007;204:321–330.10.1084%2Fjem.20061839
Gatti DM, Zhao N, Chesler EJ, Bradford BU, Shabalin AA, Yordanova R, Lu L, Rusyn I: Sex-specific gene expression in the BXD mouse liver. Physiol Genomics 2010;42:456–468.10.1152%2Fphysiolgenomics.00110.2009
Scandlyn MJ, Stuart EC, Rosengren RJ: Sex-specific differences in CYP450 isoforms in humans. Expert Opin Drug Metab Toxicol 2008;4:413–424.10.1517%2F17425255.4.4.413
Mahan JT, Heda GD, Rao RH, Mansbach CM 2nd: The intestine expresses pancreatic triacylglycerol lipase: regulation by dietary lipid. Am J Physiol Gastrointest Liver Physiol 2001;280:G1187–G1196.
Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M: IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005;11:191–198.1568517010.1038%2Fnm1185
Jalouli M, Carlsson L, Ameen C, Linden D, Ljungberg A, Michalik L, Eden S, Wahli W, Oscarsson J: Sex difference in hepatic peroxisome proliferator-activated receptor alpha expression: influence of pituitary and gonadal hormones. Endocrinology 2003;144:101–109.10.1210%2Fen.2002-220630
Sakuma T, Masaki K, Itoh S, Yokoi T, Kamataki T: Sex-related differences in the expression of cytochrome P450 in hamsters: cDNA cloning and examination of the expression of three distinct CYP2C cDNAs. Mol Pharmacol 1994;45:228–236.8114672
Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001;98:5116–5121.1130949910.1073%2Fpnas.091062498
Bunger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJ, Muller M: Genome-wide analysis of PPARalpha activation in murine small intestine. Physiol Genomics 2007;30:192–204.10.1152%2Fphysiolgenomics.00198.2006
Tai ES, bin Ali A, Zhang Q, Loh LM, Tan CE, Retnam L, El Oakley RM, Lim SK: Hepatic expression of PPARalpha, a molecular target of fibrates, is regulated during inflammation in a gender-specific manner. FEBS Lett 2003;546:237–240.10.1016%2FS0014-5793%2803%2900578-7
Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494–1505.1669129110.1172%2FJCI26498
Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G, Tataranni PA, Mochizuki H, Bennett PH, Bogardus C, Prochazka M: An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest 1995;95:1281–1287.788397610.1172%2FJCI117778
Helwig U, Rubin D, Klapper M, Li Y, Nothnagel M, Folsch UR, Doring F, Schreiber S, Schrezenmeir J: The association of fatty acid-binding protein 2 A54T polymorphism with postprandial lipemia depends on promoter variability. Metabolism 2007;56:723–731.10.1016%2Fj.metabol.2006.11.014
Agellon LB, Li L, Luong L, Uwiera RR: Adaptations to the loss of intestinal fatty acid binding protein in mice. Mol Cell Biochem 2006;284:159–166.10.1007%2Fs11010-005-9042-1
Formanack ML, Baier LJ: Variation in the FABP2 promoter affects gene expression: implications for prior association studies. Diabetologia 2004;47:349–351.10.1007%2Fs00125-003-1289-z
Richieri GV, Ogata RT, Zimmerman AW, Veerkamp JH, Kleinfeld AM: Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry 2000;39:7197–7204.10.1021%2Fbi000314z
Li Y, Fisher E, Klapper M, Boeing H, Pfeiffer A, Hampe J, Schreiber S, Burwinkel B, Schrezenmeir J, Doring F: Association between functional FABP2 promoter haplotype and type 2 diabetes. Horm Metab Res 2006;38:300–307.10.1055%2Fs-2006-925405
Lagakos WS, Gajda AM, Agellon L, Binas B, Choi V, Mandap B, Russnak T, Zhou YX, Storch J: Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Am J Physiol Gastrointest Liver Physiol 2011;300:G803–G814.10.1152%2Fajpgi.00229.2010
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249–264.1292552010.1093%2Fbiostatistics%2F4.2.249
Kadowaki K, Fukino K, Negishi E, Ueno K: Sex differences in PPARgamma expressions in rat adipose tissues. Biol Pharm Bull 2007;30:818–820.10.1248%2Fbpb.30.818
Zhang B, Kirov S, Snoddy J: Webgestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 2005;33:W741–W748.1598057510.1093%2Fnar%2Fgki475
Sheardown SA, Duthie SM, Johnston CM, Newall AE, Formstone EJ, Arkell RM, Nesterova TB, Alghisi GC, Rastan S, Brockdorff N: Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell 1997;91:99–107.933533810.1016%2FS0092-8674%2801%2980012-X
Kawashima Y, Uy-Yu N, Kozuka H: Sex-related differences in the enhancing effects of perfluoro-octanoic acid on stearoyl-CoA desaturase and its influence on the acyl composition of phospholipid in rat liver. Comparison with clofibric acid and tiadenol. Biochem J 1989;263:897–904.
Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010;38:D355–D360.10.1093%2Fnar%2Fgkp896
Damcott CM, Feingold E, Moffett SP, Barmada MM, Marshall JA, Hamman RF, Ferrell RE: Variation in the FABP2 promoter alters transcriptional activity and is associated with body composition and plasma lipid levels. Hum Genet 2003;112:610–616.
Lofgren S, Baldwin RM, Hiratsuka M, Lindqvist A, Carlberg A, Sim SC, Schulke M, Snait M, Edenro A, Fransson-Steen R, Terelius Y, Ingelman-Sundberg M: Generation of mice transgenic for human CYP2C18 and CYP2C19: characterization of the sexually dimorphic gene and enzyme expression. Drug Metab Dispos 2008;36:955–962.10.1124%2Fdmd.107.019349
Sugiyama MG, Agellon LB: Sex differences in lipid metabolism and metabolic disease risk. Biochem Cell Biol 2012, DOI: 10.1139/o11-067.10.1139%2Fo11-067
Jeong S, Yoon M: Inhibition of the actions of peroxisome proliferator-activated receptor alpha on obesity by estrogen. Obesity (Silver Spring) 2007;15:1430–1440.10.1038%2Foby.2007.171
Yoon M, Jeong S, Nicol CJ, Lee H, Han M, Kim JJ, Seo YJ, Ryu C, Oh GT: Fenofibrate regulates obesity and lipid metabolism with sexual dimorphism. Exp Mol Med 2002;34:481–488.
Agellon LB, Toth MJ, Thomson AB: Intracellular lipid binding proteins of the small intestine. Mol Cell Biochem 2002;239:79–82.10.1023%2FA%3A1020520521025
Vassileva G, Huwyler L, Poirier K, Agellon LB, Toth MJ: The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J 2000;14:2040–2046.10.1096%2Ffj.99-0959com
Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821–1830.14679177
Agellon LB, Drozdowski L, Li L, Iordache C, Luong L, Clandinin MT, Uwiera RR, Toth MJ, Thomson AB: Loss of intestinal fatty acid binding protein increases the susceptibility of male mice to high fat diet-induced fatty liver. Biochim Biophys Acta 2007;1771:1283–1288.
Ditton HJ, Zimmer J, Kamp C, Rajpert-De Meyts E, Vogt PH: The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum Mol Genet 2004;13:2333–2341.1529487610.1093%2Fhmg%2Fddh240
Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY: Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 2001;50:69–76.1114779710.2337%2Fdiabetes.50.1.69
Jensen MD: Gender differences in regional fatty acid metabolism before and after meal ingestion. J Clin Invest 1995;96:2297–2303.10.1172%2FJCI118285
Geschonke K, Klempt M, Lynch N, Schreiber S, Fenselau S, Schrezenmeir J: Detection of a promoter polymorphism in the gene of intestinal fatty acid binding protein (I-FABP). Ann N Y Acad Sci 2002;967:548–553.10.1111%2Fj.1749-6632.2002.tb04315.x
Chomczynski P, Sacchi N: Single-step method of rna isolation by acid guanidinium thiocyanate phenol chloroform extraction. Analytical Biochemistry 1987;162:156–159.244033910.1006%2Fabio.1987.9999
Rolf B, Oudenampsen-Kruger E, Borchers T, Faergeman NJ, Knudsen J, Lezius A, Spener F: Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim Biophys Acta 1995;1259:245–253.
ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – reference: Agellon LB, Li L, Luong L, Uwiera RR: Adaptations to the loss of intestinal fatty acid binding protein in mice. Mol Cell Biochem 2006;284:159–166.10.1007%2Fs11010-005-9042-1
– reference: Lofgren S, Baldwin RM, Hiratsuka M, Lindqvist A, Carlberg A, Sim SC, Schulke M, Snait M, Edenro A, Fransson-Steen R, Terelius Y, Ingelman-Sundberg M: Generation of mice transgenic for human CYP2C18 and CYP2C19: characterization of the sexually dimorphic gene and enzyme expression. Drug Metab Dispos 2008;36:955–962.10.1124%2Fdmd.107.019349
– reference: Tai ES, bin Ali A, Zhang Q, Loh LM, Tan CE, Retnam L, El Oakley RM, Lim SK: Hepatic expression of PPARalpha, a molecular target of fibrates, is regulated during inflammation in a gender-specific manner. FEBS Lett 2003;546:237–240.10.1016%2FS0014-5793%2803%2900578-7
– reference: Kadowaki K, Fukino K, Negishi E, Ueno K: Sex differences in PPARgamma expressions in rat adipose tissues. Biol Pharm Bull 2007;30:818–820.10.1248%2Fbpb.30.818
– reference: Ditton HJ, Zimmer J, Kamp C, Rajpert-De Meyts E, Vogt PH: The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum Mol Genet 2004;13:2333–2341.1529487610.1093%2Fhmg%2Fddh240
– reference: Geschonke K, Klempt M, Lynch N, Schreiber S, Fenselau S, Schrezenmeir J: Detection of a promoter polymorphism in the gene of intestinal fatty acid binding protein (I-FABP). Ann N Y Acad Sci 2002;967:548–553.10.1111%2Fj.1749-6632.2002.tb04315.x
– reference: Formanack ML, Baier LJ: Variation in the FABP2 promoter affects gene expression: implications for prior association studies. Diabetologia 2004;47:349–351.10.1007%2Fs00125-003-1289-z
– reference: Yoon M, Jeong S, Nicol CJ, Lee H, Han M, Kim JJ, Seo YJ, Ryu C, Oh GT: Fenofibrate regulates obesity and lipid metabolism with sexual dimorphism. Exp Mol Med 2002;34:481–488.
– reference: Chomczynski P, Sacchi N: Single-step method of rna isolation by acid guanidinium thiocyanate phenol chloroform extraction. Analytical Biochemistry 1987;162:156–159.244033910.1006%2Fabio.1987.9999
– reference: Jensen MD: Gender differences in regional fatty acid metabolism before and after meal ingestion. J Clin Invest 1995;96:2297–2303.10.1172%2FJCI118285
– reference: Helwig U, Rubin D, Klapper M, Li Y, Nothnagel M, Folsch UR, Doring F, Schreiber S, Schrezenmeir J: The association of fatty acid-binding protein 2 A54T polymorphism with postprandial lipemia depends on promoter variability. Metabolism 2007;56:723–731.10.1016%2Fj.metabol.2006.11.014
– reference: Agellon LB, Drozdowski L, Li L, Iordache C, Luong L, Clandinin MT, Uwiera RR, Toth MJ, Thomson AB: Loss of intestinal fatty acid binding protein increases the susceptibility of male mice to high fat diet-induced fatty liver. Biochim Biophys Acta 2007;1771:1283–1288.
– reference: Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494–1505.1669129110.1172%2FJCI26498
– reference: Agellon LB, Toth MJ, Thomson AB: Intracellular lipid binding proteins of the small intestine. Mol Cell Biochem 2002;239:79–82.10.1023%2FA%3A1020520521025
– reference: Bunger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJ, Muller M: Genome-wide analysis of PPARalpha activation in murine small intestine. Physiol Genomics 2007;30:192–204.10.1152%2Fphysiolgenomics.00198.2006
– reference: Sakuma T, Masaki K, Itoh S, Yokoi T, Kamataki T: Sex-related differences in the expression of cytochrome P450 in hamsters: cDNA cloning and examination of the expression of three distinct CYP2C cDNAs. Mol Pharmacol 1994;45:228–236.8114672
– reference: Gatti DM, Zhao N, Chesler EJ, Bradford BU, Shabalin AA, Yordanova R, Lu L, Rusyn I: Sex-specific gene expression in the BXD mouse liver. Physiol Genomics 2010;42:456–468.10.1152%2Fphysiolgenomics.00110.2009
– reference: Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010;38:D355–D360.10.1093%2Fnar%2Fgkp896
– reference: Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821–1830.14679177
– reference: Lagakos WS, Gajda AM, Agellon L, Binas B, Choi V, Mandap B, Russnak T, Zhou YX, Storch J: Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Am J Physiol Gastrointest Liver Physiol 2011;300:G803–G814.10.1152%2Fajpgi.00229.2010
– reference: Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249–264.1292552010.1093%2Fbiostatistics%2F4.2.249
– reference: Vassileva G, Huwyler L, Poirier K, Agellon LB, Toth MJ: The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J 2000;14:2040–2046.10.1096%2Ffj.99-0959com
– reference: Dunn SE, Ousman SS, Sobel RA, Zuniga L, Baranzini SE, Youssef S, Crowell A, Loh J, Oksenberg J, Steinman L: Peroxisome proliferator-activated receptor (PPAR)alpha expression in T cells mediates gender differences in development of T cell-mediated autoimmunity. J Exp Med 2007;204:321–330.10.1084%2Fjem.20061839
– reference: Damcott CM, Feingold E, Moffett SP, Barmada MM, Marshall JA, Hamman RF, Ferrell RE: Variation in the FABP2 promoter alters transcriptional activity and is associated with body composition and plasma lipid levels. Hum Genet 2003;112:610–616.
– reference: Sugiyama MG, Agellon LB: Sex differences in lipid metabolism and metabolic disease risk. Biochem Cell Biol 2012, DOI: 10.1139/o11-067.10.1139%2Fo11-067
– reference: Jalouli M, Carlsson L, Ameen C, Linden D, Ljungberg A, Michalik L, Eden S, Wahli W, Oscarsson J: Sex difference in hepatic peroxisome proliferator-activated receptor alpha expression: influence of pituitary and gonadal hormones. Endocrinology 2003;144:101–109.10.1210%2Fen.2002-220630
– reference: Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001;98:5116–5121.1130949910.1073%2Fpnas.091062498
– reference: Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M: IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005;11:191–198.1568517010.1038%2Fnm1185
– reference: Jeong S, Yoon M: Inhibition of the actions of peroxisome proliferator-activated receptor alpha on obesity by estrogen. Obesity (Silver Spring) 2007;15:1430–1440.10.1038%2Foby.2007.171
– reference: Zhang B, Kirov S, Snoddy J: Webgestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 2005;33:W741–W748.1598057510.1093%2Fnar%2Fgki475
– reference: Rolf B, Oudenampsen-Kruger E, Borchers T, Faergeman NJ, Knudsen J, Lezius A, Spener F: Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim Biophys Acta 1995;1259:245–253.
– reference: Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G, Tataranni PA, Mochizuki H, Bennett PH, Bogardus C, Prochazka M: An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest 1995;95:1281–1287.788397610.1172%2FJCI117778
– reference: Mahan JT, Heda GD, Rao RH, Mansbach CM 2nd: The intestine expresses pancreatic triacylglycerol lipase: regulation by dietary lipid. Am J Physiol Gastrointest Liver Physiol 2001;280:G1187–G1196.
– reference: Sheardown SA, Duthie SM, Johnston CM, Newall AE, Formstone EJ, Arkell RM, Nesterova TB, Alghisi GC, Rastan S, Brockdorff N: Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell 1997;91:99–107.933533810.1016%2FS0092-8674%2801%2980012-X
– reference: Li Y, Fisher E, Klapper M, Boeing H, Pfeiffer A, Hampe J, Schreiber S, Burwinkel B, Schrezenmeir J, Doring F: Association between functional FABP2 promoter haplotype and type 2 diabetes. Horm Metab Res 2006;38:300–307.10.1055%2Fs-2006-925405
– reference: Richieri GV, Ogata RT, Zimmerman AW, Veerkamp JH, Kleinfeld AM: Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry 2000;39:7197–7204.10.1021%2Fbi000314z
– reference: Kawashima Y, Uy-Yu N, Kozuka H: Sex-related differences in the enhancing effects of perfluoro-octanoic acid on stearoyl-CoA desaturase and its influence on the acyl composition of phospholipid in rat liver. Comparison with clofibric acid and tiadenol. Biochem J 1989;263:897–904.
– reference: Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY: Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 2001;50:69–76.1114779710.2337%2Fdiabetes.50.1.69
– reference: Scandlyn MJ, Stuart EC, Rosengren RJ: Sex-specific differences in CYP450 isoforms in humans. Expert Opin Drug Metab Toxicol 2008;4:413–424.10.1517%2F17425255.4.4.413
– ident: ref24
  doi: 10.2337%2Fdiabetes.50.1.69
– ident: ref7
  doi: 10.1517%2F17425255.4.4.413
– ident: ref8
  doi: 10.1038%2Foby.2007.171
– ident: ref30
  doi: 10.1055%2Fs-2006-925405
– ident: ref15
  doi: 10.1093%2Fbiostatistics%2F4.2.249
– ident: ref18
  doi: 10.1093%2Fnar%2Fgkp896
– ident: ref2
  doi: 10.1084%2Fjem.20061839
– ident: ref6
  doi: 10.1124%2Fdmd.107.019349
– ident: ref27
  doi: 10.1172%2FJCI117778
– ident: ref29
  doi: 10.1016%2Fj.metabol.2006.11.014
– ident: ref1
  doi: 10.1139%2Fo11-067
– ident: ref20
  doi: 10.1093%2Fhmg%2Fddh240
– ident: ref10
  doi: 10.1023%2FA%3A1020520521025
– ident: ref23
  doi: 10.1038%2Fnm1185
– ident: ref9
  doi: 10.1016%2FS0014-5793%2803%2900578-7
– ident: ref16
  doi: 10.1073%2Fpnas.091062498
– ident: ref28
  doi: 10.1007%2Fs00125-003-1289-z
– ident: ref12
  doi: 10.1096%2Ffj.99-0959com
– ident: ref13
  doi: 10.1007%2Fs11010-005-9042-1
– ident: ref17
  doi: 10.1093%2Fnar%2Fgki475
– ident: ref25
  doi: 10.1152%2Fphysiolgenomics.00198.2006
– ident: ref19
  doi: 10.1016%2FS0092-8674%2801%2980012-X
– ident: ref26
  doi: 10.1152%2Fajpgi.00229.2010
– ident: ref21
  doi: 10.1172%2FJCI118285
– ident: ref3
  doi: 10.1210%2Fen.2002-220630
– ident: ref4
  doi: 10.1248%2Fbpb.30.818
– ident: ref5
  doi: 10.1152%2Fphysiolgenomics.00110.2009
– ident: ref11
  doi: 10.1021%2Fbi000314z
– ident: ref31
  doi: 10.1111%2Fj.1749-6632.2002.tb04315.x
– ident: ref14
  doi: 10.1006%2Fabio.1987.9999
– ident: ref22
  doi: 10.1172%2FJCI26498
SSID ssj0001934243
ssib050734973
ssj0060163
Score 1.8803941
Snippet Background/Aims: Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the...
Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the analysis of...
SourceID pubmed
crossref
karger
SourceType Index Database
Enrichment Source
Publisher
StartPage 45
SubjectTerms Animals
Down-Regulation
Fatty Acid-Binding Proteins - genetics
Female
Intestines - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Original Paper
Sex Characteristics
Transcriptome
Up-Regulation
Title Visualization of Sex-Dimorphic Changes in the Intestinal Transcriptome of Fabp2 Gene-Ablated Mice
URI https://karger.com/doi/10.1159/000337193
https://www.ncbi.nlm.nih.gov/pubmed/22584290
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JbxMxFLZC4cAFgShQNlmIA1I1YRaPJz6GpVSoqZDaot4ir9WINKmajER74qfzvIw70-RQuIyiF9vSvPflLc5bEHoPRpJmhrJEgO1JSG5owlRKEqVNVTGwl9LNIZsc0v0T8v20PB0M_nSylpqVGMrrjXUl_yNVoIFcbZXsP0g2HgoE-AzyhSdIGJ53kvHPemlrIq-j23ekfydfgPvAvFqGyoFlm8poL__gB23dT2ehnL5YnLtLgz0uLnLXgzoZixm3bugkZMXFaunawParmbZTl20tc_TGj5qz-oqf804a_u63YQTMoh1RftDIiK8z3f7hP57tfhpuoB809bL9JlxLuPyO9lrCaS_bGg0UvO-0PtRdmp_j16rfcg1lXpX6LpPBKPtWvuvqvmQ-P7IoqsxPWuy31L5l6mICogt9SjaNW--h-3kF3lcnKAeNBM5yQVhw8NytHStI7lIx4_uFdlVw2sd4Ws_JefDL5vRf3opbnP9y_Bg9CoEHHnsUPUEDPX-KeA9BeGFwD0E4IAjXcwwIwjcIwj0E2Y0OQbiLIGwRtI1O9r4ef95PwtCNRIJDs0pEmstSUMp4mZnM6NSUWkhZZZJnTElOlRQy5SNmtOKEAYt0Aa-dyyrPiElJ8QxtzRdz_QJhBbaB8ExAiC8JYWIklKKVoqnWEEUos4M-tFyaytCR3g5GmU3XxLOD3sWlF74Ny6ZF257VcUlLf-45H-lgxEbgiKUv73LsK_TwBuCv0dbqstFvwBNdibcOLPA8_DH5C2CYg9o
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualization+of+Sex-Dimorphic+Changes+in+the+Intestinal+Transcriptome+of+Fabp2+Gene-Ablated+Mice&rft.jtitle=Lifestyle+genomics&rft.au=Sugiyama%2C+Michael+G.&rft.au=Hobson%2C+Luc&rft.au=Agellon%2C+Al+B.&rft.au=Agellon%2C+Luis+B.&rft.date=2012-01-01&rft.issn=2504-3161&rft.eissn=2504-3188&rft.volume=5&rft.issue=1&rft.spage=45&rft.epage=55&rft_id=info:doi/10.1159%2F000337193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1159_000337193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3161&client=summon