Visualization of Sex-Dimorphic Changes in the Intestinal Transcriptome of Fabp2 Gene-Ablated Mice
Background/Aims: Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the analysis of transcriptome data to identify sex differences and sex-dimorphic responses to experimental conditions in mice. Methods: Profilin...
Saved in:
Published in | Journal of nutrigenetics and nutrigenomics Vol. 5; no. 1; pp. 45 - 55 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
01.01.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-3161 2504-3188 1661-6758 |
DOI | 10.1159/000337193 |
Cover
Abstract | Background/Aims: Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the analysis of transcriptome data to identify sex differences and sex-dimorphic responses to experimental conditions in mice. Methods: Profiling of the small intestine transcriptome of chow-fed C57BL/6J (wild-type, WT) and Fabp2 –/– mice was carried out by microarray analysis. Sex-specific and androgynous effects of Fabp2 gene ablation were examined using FlexArray V1.6 by comparing WT to Fabp2 –/– mice. The data generated were exported into a single spreadsheet, collated and transformed to identify the differentially expressed genes for pathway analysis. Results: The method revealed enrichment of 17 sex-dimorphic pathways in the small intestine of WT mice compared to only 4 in Fabp2 –/– mice. Comparison of the effects of Fabp2 loss in individual sexes revealed a male-specific upregulation of 5 pathways involved in the production of unsaturated fatty acids, and a female-specific downregulation of pathways involved in xenobiotic metabolism. Conclusions: Our approach detected the common as well as sex-differential pathways that are modified due to the loss of Fabp2. These findings suggest that the pathways involved in nutrient and xenobiotic metabolism in the intestine are regulated by sex-specific mechanisms. |
---|---|
AbstractList | Background/Aims: Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the analysis of transcriptome data to identify sex differences and sex-dimorphic responses to experimental conditions in mice. Methods: Profiling of the small intestine transcriptome of chow-fed C57BL/6J (wild-type, WT) and Fabp2–/– mice was carried out by microarray analysis. Sex-specific and androgynous effects of Fabp2 gene ablation were examined using FlexArray V1.6 by comparing WT to Fabp2–/– mice. The data generated were exported into a single spreadsheet, collated and transformed to identify the differentially expressed genes for pathway analysis. Results: The method revealed enrichment of 17 sex-dimorphic pathways in the small intestine of WT mice compared to only 4 in Fabp2–/– mice. Comparison of the effects of Fabp2 loss in individual sexes revealed a male-specific upregulation of 5 pathways involved in the production of unsaturated fatty acids, and a female-specific downregulation of pathways involved in xenobiotic metabolism. Conclusions: Our approach detected the common as well as sex-differential pathways that are modified due to the loss of Fabp2. These findings suggest that the pathways involved in nutrient and xenobiotic metabolism in the intestine are regulated by sex-specific mechanisms. Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the analysis of transcriptome data to identify sex differences and sex-dimorphic responses to experimental conditions in mice. Profiling of the small intestine transcriptome of chow-fed C57BL/6J (wild-type, WT) and Fabp2⁻/⁻ mice was carried out by microarray analysis. Sex-specific and androgynous effects of Fabp2 gene ablation were examined using FlexArray V1.6 by comparing WT to Fabp2⁻/⁻ mice. The data generated were exported into a single spreadsheet, collated and transformed to identify the differentially expressed genes for pathway analysis. The method revealed enrichment of 17 sex-dimorphic pathways in the small intestine of WT mice compared to only 4 in Fabp2⁻/⁻ mice. Comparison of the effects of Fabp2 loss in individual sexes revealed a male-specific upregulation of 5 pathways involved in the production of unsaturated fatty acids, and a female-specific downregulation of pathways involved in xenobiotic metabolism. Our approach detected the common as well as sex-differential pathways that are modified due to the loss of Fabp2. These findings suggest that the pathways involved in nutrient and xenobiotic metabolism in the intestine are regulated by sex-specific mechanisms. |
Author | Agellon, Luis B. Agellon, Al B. Sugiyama, Michael G. Hobson, Luc |
Author_xml | – sequence: 1 givenname: Michael G. surname: Sugiyama fullname: Sugiyama, Michael G. – sequence: 2 givenname: Luc surname: Hobson fullname: Hobson, Luc – sequence: 3 givenname: Al B. surname: Agellon fullname: Agellon, Al B. email: luis.agellon@mcgill.ca – sequence: 4 givenname: Luis B. surname: Agellon fullname: Agellon, Luis B. email: luis.agellon@mcgill.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22584290$$D View this record in MEDLINE/PubMed |
BookMark | eNptkL1PwzAUxC1UREvpwI6QV4ZQ2_loMqJCS6UiBgpr9OI8t4bUiWxXAv56UvoxIKZ30vvdSXfnpGNqg4RccnbLeZwNGWNhOOJZeEJ6ImZREPI07Rx1wrtk4Nx7i7VMJKLwjHSFiNNIZKxH4E27DVT6G7yuDa0VfcHP4F6va9ustKTjFZglOqoN9SukM-PReW2gogsLxkmrG1-vcWucQNEIOkWDwV1RgceSPmmJF-RUQeVwsL998jp5WIwfg_nzdDa-mwcyjLgPCiZkXCRJBjFXXCFTMRZSjrgEnpUSklIWkkGaKSwhyljMMGybCzkSPFIsCvvkepfbbIo1lnlj9RrsV37o2gLDHSBt7ZxFlUvtf2t7C7rKOcu3g-bHQVvHzR_HIfQ_9mrHfoBdoj2S-_cPiTd9gw |
CitedBy_id | crossref_primary_10_1074_jbc_M113_501676 crossref_primary_10_1186_s13293_014_0011_9 crossref_primary_10_1186_s13293_015_0032_z crossref_primary_10_3390_genes11080943 |
Cites_doi | 10.2337%2Fdiabetes.50.1.69 10.1517%2F17425255.4.4.413 10.1038%2Foby.2007.171 10.1055%2Fs-2006-925405 10.1093%2Fbiostatistics%2F4.2.249 10.1093%2Fnar%2Fgkp896 10.1084%2Fjem.20061839 10.1124%2Fdmd.107.019349 10.1172%2FJCI117778 10.1016%2Fj.metabol.2006.11.014 10.1139%2Fo11-067 10.1093%2Fhmg%2Fddh240 10.1023%2FA%3A1020520521025 10.1038%2Fnm1185 10.1016%2FS0014-5793%2803%2900578-7 10.1073%2Fpnas.091062498 10.1007%2Fs00125-003-1289-z 10.1096%2Ffj.99-0959com 10.1007%2Fs11010-005-9042-1 10.1093%2Fnar%2Fgki475 10.1152%2Fphysiolgenomics.00198.2006 10.1016%2FS0092-8674%2801%2980012-X 10.1152%2Fajpgi.00229.2010 10.1172%2FJCI118285 10.1210%2Fen.2002-220630 10.1248%2Fbpb.30.818 10.1152%2Fphysiolgenomics.00110.2009 10.1021%2Fbi000314z 10.1111%2Fj.1749-6632.2002.tb04315.x 10.1006%2Fabio.1987.9999 10.1172%2FJCI26498 |
ContentType | Journal Article |
Copyright | 2012 S. Karger AG, Basel Copyright © 2012 S. Karger AG, Basel. |
Copyright_xml | – notice: 2012 S. Karger AG, Basel – notice: Copyright © 2012 S. Karger AG, Basel. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1159/000337193 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2504-3188 1661-6758 |
EndPage | 55 |
ExternalDocumentID | 22584290 10_1159_000337193 337193 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ M-- O1H RKO 04C 0~5 7RV 7X2 7X7 88E 8FI 8FJ AAYXX ABBTS ABJNI ABPAZ ABUWG ACGFS ADBBV AEUYN AFJJK AFKRA AHFRZ ALDHI ATCPS AZPMC BBNVY BENPR BHPHI BMSDO CCPQU CITATION CYUIP EBS EIHBH EJD FYUFA HCIFZ HMCUK IAO IEP IHR INH ITC M0K M1P M7P NAPCQ O9- OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PSQYO UKHRP --- 0R~ 0~B 3O. 4.4 5GY 8UI AAYIC ABWCG ACPSR AENEX AEYAO CAG CGR COF CS3 CUY CVF DU5 E0A ECM EIF F5P FB. HZ~ IY7 KUZGX N9A NPM P2P UJ6 |
ID | FETCH-LOGICAL-c341t-b02c5b669a51f1fe0f5ebcc71ca19dca6dcbc0a89feda49050e30032c7214f043 |
ISSN | 2504-3161 |
IngestDate | Wed Feb 19 01:52:55 EST 2025 Thu Apr 24 23:10:15 EDT 2025 Tue Aug 05 12:06:06 EDT 2025 Thu Aug 29 12:04:46 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Transcriptome analysis Fatty acid binding proteins Sex differences Lipid metabolism Method Small intestine KEGG pathways |
Language | English |
License | Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. https://www.karger.com/Services/SiteLicenses Copyright © 2012 S. Karger AG, Basel. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c341t-b02c5b669a51f1fe0f5ebcc71ca19dca6dcbc0a89feda49050e30032c7214f043 |
OpenAccessLink | https://doi.org/10.1159/000337193 |
PMID | 22584290 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1159_000337193 pubmed_primary_22584290 karger_primary_337193 crossref_citationtrail_10_1159_000337193 |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Switzerland |
PublicationTitle | Journal of nutrigenetics and nutrigenomics |
PublicationTitleAlternate | Lifestyle Genomics |
PublicationYear | 2012 |
References | Dunn SE, Ousman SS, Sobel RA, Zuniga L, Baranzini SE, Youssef S, Crowell A, Loh J, Oksenberg J, Steinman L: Peroxisome proliferator-activated receptor (PPAR)alpha expression in T cells mediates gender differences in development of T cell-mediated autoimmunity. J Exp Med 2007;204:321–330.10.1084%2Fjem.20061839 Gatti DM, Zhao N, Chesler EJ, Bradford BU, Shabalin AA, Yordanova R, Lu L, Rusyn I: Sex-specific gene expression in the BXD mouse liver. Physiol Genomics 2010;42:456–468.10.1152%2Fphysiolgenomics.00110.2009 Scandlyn MJ, Stuart EC, Rosengren RJ: Sex-specific differences in CYP450 isoforms in humans. Expert Opin Drug Metab Toxicol 2008;4:413–424.10.1517%2F17425255.4.4.413 Mahan JT, Heda GD, Rao RH, Mansbach CM 2nd: The intestine expresses pancreatic triacylglycerol lipase: regulation by dietary lipid. Am J Physiol Gastrointest Liver Physiol 2001;280:G1187–G1196. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M: IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005;11:191–198.1568517010.1038%2Fnm1185 Jalouli M, Carlsson L, Ameen C, Linden D, Ljungberg A, Michalik L, Eden S, Wahli W, Oscarsson J: Sex difference in hepatic peroxisome proliferator-activated receptor alpha expression: influence of pituitary and gonadal hormones. Endocrinology 2003;144:101–109.10.1210%2Fen.2002-220630 Sakuma T, Masaki K, Itoh S, Yokoi T, Kamataki T: Sex-related differences in the expression of cytochrome P450 in hamsters: cDNA cloning and examination of the expression of three distinct CYP2C cDNAs. Mol Pharmacol 1994;45:228–236.8114672 Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001;98:5116–5121.1130949910.1073%2Fpnas.091062498 Bunger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJ, Muller M: Genome-wide analysis of PPARalpha activation in murine small intestine. Physiol Genomics 2007;30:192–204.10.1152%2Fphysiolgenomics.00198.2006 Tai ES, bin Ali A, Zhang Q, Loh LM, Tan CE, Retnam L, El Oakley RM, Lim SK: Hepatic expression of PPARalpha, a molecular target of fibrates, is regulated during inflammation in a gender-specific manner. FEBS Lett 2003;546:237–240.10.1016%2FS0014-5793%2803%2900578-7 Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494–1505.1669129110.1172%2FJCI26498 Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G, Tataranni PA, Mochizuki H, Bennett PH, Bogardus C, Prochazka M: An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest 1995;95:1281–1287.788397610.1172%2FJCI117778 Helwig U, Rubin D, Klapper M, Li Y, Nothnagel M, Folsch UR, Doring F, Schreiber S, Schrezenmeir J: The association of fatty acid-binding protein 2 A54T polymorphism with postprandial lipemia depends on promoter variability. Metabolism 2007;56:723–731.10.1016%2Fj.metabol.2006.11.014 Agellon LB, Li L, Luong L, Uwiera RR: Adaptations to the loss of intestinal fatty acid binding protein in mice. Mol Cell Biochem 2006;284:159–166.10.1007%2Fs11010-005-9042-1 Formanack ML, Baier LJ: Variation in the FABP2 promoter affects gene expression: implications for prior association studies. Diabetologia 2004;47:349–351.10.1007%2Fs00125-003-1289-z Richieri GV, Ogata RT, Zimmerman AW, Veerkamp JH, Kleinfeld AM: Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry 2000;39:7197–7204.10.1021%2Fbi000314z Li Y, Fisher E, Klapper M, Boeing H, Pfeiffer A, Hampe J, Schreiber S, Burwinkel B, Schrezenmeir J, Doring F: Association between functional FABP2 promoter haplotype and type 2 diabetes. Horm Metab Res 2006;38:300–307.10.1055%2Fs-2006-925405 Lagakos WS, Gajda AM, Agellon L, Binas B, Choi V, Mandap B, Russnak T, Zhou YX, Storch J: Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Am J Physiol Gastrointest Liver Physiol 2011;300:G803–G814.10.1152%2Fajpgi.00229.2010 Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249–264.1292552010.1093%2Fbiostatistics%2F4.2.249 Kadowaki K, Fukino K, Negishi E, Ueno K: Sex differences in PPARgamma expressions in rat adipose tissues. Biol Pharm Bull 2007;30:818–820.10.1248%2Fbpb.30.818 Zhang B, Kirov S, Snoddy J: Webgestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 2005;33:W741–W748.1598057510.1093%2Fnar%2Fgki475 Sheardown SA, Duthie SM, Johnston CM, Newall AE, Formstone EJ, Arkell RM, Nesterova TB, Alghisi GC, Rastan S, Brockdorff N: Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell 1997;91:99–107.933533810.1016%2FS0092-8674%2801%2980012-X Kawashima Y, Uy-Yu N, Kozuka H: Sex-related differences in the enhancing effects of perfluoro-octanoic acid on stearoyl-CoA desaturase and its influence on the acyl composition of phospholipid in rat liver. Comparison with clofibric acid and tiadenol. Biochem J 1989;263:897–904. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010;38:D355–D360.10.1093%2Fnar%2Fgkp896 Damcott CM, Feingold E, Moffett SP, Barmada MM, Marshall JA, Hamman RF, Ferrell RE: Variation in the FABP2 promoter alters transcriptional activity and is associated with body composition and plasma lipid levels. Hum Genet 2003;112:610–616. Lofgren S, Baldwin RM, Hiratsuka M, Lindqvist A, Carlberg A, Sim SC, Schulke M, Snait M, Edenro A, Fransson-Steen R, Terelius Y, Ingelman-Sundberg M: Generation of mice transgenic for human CYP2C18 and CYP2C19: characterization of the sexually dimorphic gene and enzyme expression. Drug Metab Dispos 2008;36:955–962.10.1124%2Fdmd.107.019349 Sugiyama MG, Agellon LB: Sex differences in lipid metabolism and metabolic disease risk. Biochem Cell Biol 2012, DOI: 10.1139/o11-067.10.1139%2Fo11-067 Jeong S, Yoon M: Inhibition of the actions of peroxisome proliferator-activated receptor alpha on obesity by estrogen. Obesity (Silver Spring) 2007;15:1430–1440.10.1038%2Foby.2007.171 Yoon M, Jeong S, Nicol CJ, Lee H, Han M, Kim JJ, Seo YJ, Ryu C, Oh GT: Fenofibrate regulates obesity and lipid metabolism with sexual dimorphism. Exp Mol Med 2002;34:481–488. Agellon LB, Toth MJ, Thomson AB: Intracellular lipid binding proteins of the small intestine. Mol Cell Biochem 2002;239:79–82.10.1023%2FA%3A1020520521025 Vassileva G, Huwyler L, Poirier K, Agellon LB, Toth MJ: The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J 2000;14:2040–2046.10.1096%2Ffj.99-0959com Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821–1830.14679177 Agellon LB, Drozdowski L, Li L, Iordache C, Luong L, Clandinin MT, Uwiera RR, Toth MJ, Thomson AB: Loss of intestinal fatty acid binding protein increases the susceptibility of male mice to high fat diet-induced fatty liver. Biochim Biophys Acta 2007;1771:1283–1288. Ditton HJ, Zimmer J, Kamp C, Rajpert-De Meyts E, Vogt PH: The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum Mol Genet 2004;13:2333–2341.1529487610.1093%2Fhmg%2Fddh240 Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY: Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 2001;50:69–76.1114779710.2337%2Fdiabetes.50.1.69 Jensen MD: Gender differences in regional fatty acid metabolism before and after meal ingestion. J Clin Invest 1995;96:2297–2303.10.1172%2FJCI118285 Geschonke K, Klempt M, Lynch N, Schreiber S, Fenselau S, Schrezenmeir J: Detection of a promoter polymorphism in the gene of intestinal fatty acid binding protein (I-FABP). Ann N Y Acad Sci 2002;967:548–553.10.1111%2Fj.1749-6632.2002.tb04315.x Chomczynski P, Sacchi N: Single-step method of rna isolation by acid guanidinium thiocyanate phenol chloroform extraction. Analytical Biochemistry 1987;162:156–159.244033910.1006%2Fabio.1987.9999 Rolf B, Oudenampsen-Kruger E, Borchers T, Faergeman NJ, Knudsen J, Lezius A, Spener F: Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim Biophys Acta 1995;1259:245–253. ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – reference: Agellon LB, Li L, Luong L, Uwiera RR: Adaptations to the loss of intestinal fatty acid binding protein in mice. Mol Cell Biochem 2006;284:159–166.10.1007%2Fs11010-005-9042-1 – reference: Lofgren S, Baldwin RM, Hiratsuka M, Lindqvist A, Carlberg A, Sim SC, Schulke M, Snait M, Edenro A, Fransson-Steen R, Terelius Y, Ingelman-Sundberg M: Generation of mice transgenic for human CYP2C18 and CYP2C19: characterization of the sexually dimorphic gene and enzyme expression. Drug Metab Dispos 2008;36:955–962.10.1124%2Fdmd.107.019349 – reference: Tai ES, bin Ali A, Zhang Q, Loh LM, Tan CE, Retnam L, El Oakley RM, Lim SK: Hepatic expression of PPARalpha, a molecular target of fibrates, is regulated during inflammation in a gender-specific manner. FEBS Lett 2003;546:237–240.10.1016%2FS0014-5793%2803%2900578-7 – reference: Kadowaki K, Fukino K, Negishi E, Ueno K: Sex differences in PPARgamma expressions in rat adipose tissues. Biol Pharm Bull 2007;30:818–820.10.1248%2Fbpb.30.818 – reference: Ditton HJ, Zimmer J, Kamp C, Rajpert-De Meyts E, Vogt PH: The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum Mol Genet 2004;13:2333–2341.1529487610.1093%2Fhmg%2Fddh240 – reference: Geschonke K, Klempt M, Lynch N, Schreiber S, Fenselau S, Schrezenmeir J: Detection of a promoter polymorphism in the gene of intestinal fatty acid binding protein (I-FABP). Ann N Y Acad Sci 2002;967:548–553.10.1111%2Fj.1749-6632.2002.tb04315.x – reference: Formanack ML, Baier LJ: Variation in the FABP2 promoter affects gene expression: implications for prior association studies. Diabetologia 2004;47:349–351.10.1007%2Fs00125-003-1289-z – reference: Yoon M, Jeong S, Nicol CJ, Lee H, Han M, Kim JJ, Seo YJ, Ryu C, Oh GT: Fenofibrate regulates obesity and lipid metabolism with sexual dimorphism. Exp Mol Med 2002;34:481–488. – reference: Chomczynski P, Sacchi N: Single-step method of rna isolation by acid guanidinium thiocyanate phenol chloroform extraction. Analytical Biochemistry 1987;162:156–159.244033910.1006%2Fabio.1987.9999 – reference: Jensen MD: Gender differences in regional fatty acid metabolism before and after meal ingestion. J Clin Invest 1995;96:2297–2303.10.1172%2FJCI118285 – reference: Helwig U, Rubin D, Klapper M, Li Y, Nothnagel M, Folsch UR, Doring F, Schreiber S, Schrezenmeir J: The association of fatty acid-binding protein 2 A54T polymorphism with postprandial lipemia depends on promoter variability. Metabolism 2007;56:723–731.10.1016%2Fj.metabol.2006.11.014 – reference: Agellon LB, Drozdowski L, Li L, Iordache C, Luong L, Clandinin MT, Uwiera RR, Toth MJ, Thomson AB: Loss of intestinal fatty acid binding protein increases the susceptibility of male mice to high fat diet-induced fatty liver. Biochim Biophys Acta 2007;1771:1283–1288. – reference: Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494–1505.1669129110.1172%2FJCI26498 – reference: Agellon LB, Toth MJ, Thomson AB: Intracellular lipid binding proteins of the small intestine. Mol Cell Biochem 2002;239:79–82.10.1023%2FA%3A1020520521025 – reference: Bunger M, van den Bosch HM, van der Meijde J, Kersten S, Hooiveld GJ, Muller M: Genome-wide analysis of PPARalpha activation in murine small intestine. Physiol Genomics 2007;30:192–204.10.1152%2Fphysiolgenomics.00198.2006 – reference: Sakuma T, Masaki K, Itoh S, Yokoi T, Kamataki T: Sex-related differences in the expression of cytochrome P450 in hamsters: cDNA cloning and examination of the expression of three distinct CYP2C cDNAs. Mol Pharmacol 1994;45:228–236.8114672 – reference: Gatti DM, Zhao N, Chesler EJ, Bradford BU, Shabalin AA, Yordanova R, Lu L, Rusyn I: Sex-specific gene expression in the BXD mouse liver. Physiol Genomics 2010;42:456–468.10.1152%2Fphysiolgenomics.00110.2009 – reference: Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010;38:D355–D360.10.1093%2Fnar%2Fgkp896 – reference: Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821–1830.14679177 – reference: Lagakos WS, Gajda AM, Agellon L, Binas B, Choi V, Mandap B, Russnak T, Zhou YX, Storch J: Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Am J Physiol Gastrointest Liver Physiol 2011;300:G803–G814.10.1152%2Fajpgi.00229.2010 – reference: Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249–264.1292552010.1093%2Fbiostatistics%2F4.2.249 – reference: Vassileva G, Huwyler L, Poirier K, Agellon LB, Toth MJ: The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J 2000;14:2040–2046.10.1096%2Ffj.99-0959com – reference: Dunn SE, Ousman SS, Sobel RA, Zuniga L, Baranzini SE, Youssef S, Crowell A, Loh J, Oksenberg J, Steinman L: Peroxisome proliferator-activated receptor (PPAR)alpha expression in T cells mediates gender differences in development of T cell-mediated autoimmunity. J Exp Med 2007;204:321–330.10.1084%2Fjem.20061839 – reference: Damcott CM, Feingold E, Moffett SP, Barmada MM, Marshall JA, Hamman RF, Ferrell RE: Variation in the FABP2 promoter alters transcriptional activity and is associated with body composition and plasma lipid levels. Hum Genet 2003;112:610–616. – reference: Sugiyama MG, Agellon LB: Sex differences in lipid metabolism and metabolic disease risk. Biochem Cell Biol 2012, DOI: 10.1139/o11-067.10.1139%2Fo11-067 – reference: Jalouli M, Carlsson L, Ameen C, Linden D, Ljungberg A, Michalik L, Eden S, Wahli W, Oscarsson J: Sex difference in hepatic peroxisome proliferator-activated receptor alpha expression: influence of pituitary and gonadal hormones. Endocrinology 2003;144:101–109.10.1210%2Fen.2002-220630 – reference: Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001;98:5116–5121.1130949910.1073%2Fpnas.091062498 – reference: Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M: IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005;11:191–198.1568517010.1038%2Fnm1185 – reference: Jeong S, Yoon M: Inhibition of the actions of peroxisome proliferator-activated receptor alpha on obesity by estrogen. Obesity (Silver Spring) 2007;15:1430–1440.10.1038%2Foby.2007.171 – reference: Zhang B, Kirov S, Snoddy J: Webgestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 2005;33:W741–W748.1598057510.1093%2Fnar%2Fgki475 – reference: Rolf B, Oudenampsen-Kruger E, Borchers T, Faergeman NJ, Knudsen J, Lezius A, Spener F: Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim Biophys Acta 1995;1259:245–253. – reference: Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G, Tataranni PA, Mochizuki H, Bennett PH, Bogardus C, Prochazka M: An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest 1995;95:1281–1287.788397610.1172%2FJCI117778 – reference: Mahan JT, Heda GD, Rao RH, Mansbach CM 2nd: The intestine expresses pancreatic triacylglycerol lipase: regulation by dietary lipid. Am J Physiol Gastrointest Liver Physiol 2001;280:G1187–G1196. – reference: Sheardown SA, Duthie SM, Johnston CM, Newall AE, Formstone EJ, Arkell RM, Nesterova TB, Alghisi GC, Rastan S, Brockdorff N: Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell 1997;91:99–107.933533810.1016%2FS0092-8674%2801%2980012-X – reference: Li Y, Fisher E, Klapper M, Boeing H, Pfeiffer A, Hampe J, Schreiber S, Burwinkel B, Schrezenmeir J, Doring F: Association between functional FABP2 promoter haplotype and type 2 diabetes. Horm Metab Res 2006;38:300–307.10.1055%2Fs-2006-925405 – reference: Richieri GV, Ogata RT, Zimmerman AW, Veerkamp JH, Kleinfeld AM: Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry 2000;39:7197–7204.10.1021%2Fbi000314z – reference: Kawashima Y, Uy-Yu N, Kozuka H: Sex-related differences in the enhancing effects of perfluoro-octanoic acid on stearoyl-CoA desaturase and its influence on the acyl composition of phospholipid in rat liver. Comparison with clofibric acid and tiadenol. Biochem J 1989;263:897–904. – reference: Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY: Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 2001;50:69–76.1114779710.2337%2Fdiabetes.50.1.69 – reference: Scandlyn MJ, Stuart EC, Rosengren RJ: Sex-specific differences in CYP450 isoforms in humans. Expert Opin Drug Metab Toxicol 2008;4:413–424.10.1517%2F17425255.4.4.413 – ident: ref24 doi: 10.2337%2Fdiabetes.50.1.69 – ident: ref7 doi: 10.1517%2F17425255.4.4.413 – ident: ref8 doi: 10.1038%2Foby.2007.171 – ident: ref30 doi: 10.1055%2Fs-2006-925405 – ident: ref15 doi: 10.1093%2Fbiostatistics%2F4.2.249 – ident: ref18 doi: 10.1093%2Fnar%2Fgkp896 – ident: ref2 doi: 10.1084%2Fjem.20061839 – ident: ref6 doi: 10.1124%2Fdmd.107.019349 – ident: ref27 doi: 10.1172%2FJCI117778 – ident: ref29 doi: 10.1016%2Fj.metabol.2006.11.014 – ident: ref1 doi: 10.1139%2Fo11-067 – ident: ref20 doi: 10.1093%2Fhmg%2Fddh240 – ident: ref10 doi: 10.1023%2FA%3A1020520521025 – ident: ref23 doi: 10.1038%2Fnm1185 – ident: ref9 doi: 10.1016%2FS0014-5793%2803%2900578-7 – ident: ref16 doi: 10.1073%2Fpnas.091062498 – ident: ref28 doi: 10.1007%2Fs00125-003-1289-z – ident: ref12 doi: 10.1096%2Ffj.99-0959com – ident: ref13 doi: 10.1007%2Fs11010-005-9042-1 – ident: ref17 doi: 10.1093%2Fnar%2Fgki475 – ident: ref25 doi: 10.1152%2Fphysiolgenomics.00198.2006 – ident: ref19 doi: 10.1016%2FS0092-8674%2801%2980012-X – ident: ref26 doi: 10.1152%2Fajpgi.00229.2010 – ident: ref21 doi: 10.1172%2FJCI118285 – ident: ref3 doi: 10.1210%2Fen.2002-220630 – ident: ref4 doi: 10.1248%2Fbpb.30.818 – ident: ref5 doi: 10.1152%2Fphysiolgenomics.00110.2009 – ident: ref11 doi: 10.1021%2Fbi000314z – ident: ref31 doi: 10.1111%2Fj.1749-6632.2002.tb04315.x – ident: ref14 doi: 10.1006%2Fabio.1987.9999 – ident: ref22 doi: 10.1172%2FJCI26498 |
SSID | ssj0001934243 ssib050734973 ssj0060163 |
Score | 1.8803941 |
Snippet | Background/Aims: Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the... Sex differences in gene expression program have not been effectively explored at the transcriptome level. We aimed to develop a method for the analysis of... |
SourceID | pubmed crossref karger |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 45 |
SubjectTerms | Animals Down-Regulation Fatty Acid-Binding Proteins - genetics Female Intestines - metabolism Male Mice Mice, Inbred C57BL Mice, Knockout Original Paper Sex Characteristics Transcriptome Up-Regulation |
Title | Visualization of Sex-Dimorphic Changes in the Intestinal Transcriptome of Fabp2 Gene-Ablated Mice |
URI | https://karger.com/doi/10.1159/000337193 https://www.ncbi.nlm.nih.gov/pubmed/22584290 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JbxMxFLZC4cAFgShQNlmIA1I1YRaPJz6GpVSoqZDaot4ir9WINKmajER74qfzvIw70-RQuIyiF9vSvPflLc5bEHoPRpJmhrJEgO1JSG5owlRKEqVNVTGwl9LNIZsc0v0T8v20PB0M_nSylpqVGMrrjXUl_yNVoIFcbZXsP0g2HgoE-AzyhSdIGJ53kvHPemlrIq-j23ekfydfgPvAvFqGyoFlm8poL__gB23dT2ehnL5YnLtLgz0uLnLXgzoZixm3bugkZMXFaunawParmbZTl20tc_TGj5qz-oqf804a_u63YQTMoh1RftDIiK8z3f7hP57tfhpuoB809bL9JlxLuPyO9lrCaS_bGg0UvO-0PtRdmp_j16rfcg1lXpX6LpPBKPtWvuvqvmQ-P7IoqsxPWuy31L5l6mICogt9SjaNW--h-3kF3lcnKAeNBM5yQVhw8NytHStI7lIx4_uFdlVw2sd4Ws_JefDL5vRf3opbnP9y_Bg9CoEHHnsUPUEDPX-KeA9BeGFwD0E4IAjXcwwIwjcIwj0E2Y0OQbiLIGwRtI1O9r4ef95PwtCNRIJDs0pEmstSUMp4mZnM6NSUWkhZZZJnTElOlRQy5SNmtOKEAYt0Aa-dyyrPiElJ8QxtzRdz_QJhBbaB8ExAiC8JYWIklKKVoqnWEEUos4M-tFyaytCR3g5GmU3XxLOD3sWlF74Ny6ZF257VcUlLf-45H-lgxEbgiKUv73LsK_TwBuCv0dbqstFvwBNdibcOLPA8_DH5C2CYg9o |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualization+of+Sex-Dimorphic+Changes+in+the+Intestinal+Transcriptome+of+Fabp2+Gene-Ablated+Mice&rft.jtitle=Lifestyle+genomics&rft.au=Sugiyama%2C+Michael+G.&rft.au=Hobson%2C+Luc&rft.au=Agellon%2C+Al+B.&rft.au=Agellon%2C+Luis+B.&rft.date=2012-01-01&rft.issn=2504-3161&rft.eissn=2504-3188&rft.volume=5&rft.issue=1&rft.spage=45&rft.epage=55&rft_id=info:doi/10.1159%2F000337193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1159_000337193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3161&client=summon |