Enhancing the function of the aids to navigation by practical usage of the deep learning algorithm

Information is provided to navigators through advanced onboard navigation equipment, such as the electronic chart display and information system (ECDIS), radar and the automatic identification system (AIS). However, maritime accidents still occur, especially in coastal and inland water where many na...

Full description

Saved in:
Bibliographic Details
Published inJournal of navigation Vol. 77; no. 3; pp. 347 - 358
Main Authors Sim, Yoontae, Chae, Chong-Ju
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.05.2024
Subjects
Online AccessGet full text
ISSN0373-4633
1469-7785
DOI10.1017/S0373463324000353

Cover

Abstract Information is provided to navigators through advanced onboard navigation equipment, such as the electronic chart display and information system (ECDIS), radar and the automatic identification system (AIS). However, maritime accidents still occur, especially in coastal and inland water where many navigational dangers exist. The recent artificial intelligence (AI) technology is actively applied in navigation fields, such as collision avoidance and ship detection. However, utilising the aids to navigation (AtoN) system requires more engagement and further exploration. The AtoN system provides critical navigation information by marking the navigation hazards, such as shallow water areas and wrecks, and visually marking narrow passageways. The prime function of the AtoN can be enhanced by applying AI technology, particularly deep learning technology. With the help of this technology, an algorithm could be constructed to detect AtoN in coastal and inland waters and utilise the detected AtoN to create a safety function to supplement watchkeepers using recent navigation equipment.
AbstractList Information is provided to navigators through advanced onboard navigation equipment, such as the electronic chart display and information system (ECDIS), radar and the automatic identification system (AIS). However, maritime accidents still occur, especially in coastal and inland water where many navigational dangers exist. The recent artificial intelligence (AI) technology is actively applied in navigation fields, such as collision avoidance and ship detection. However, utilising the aids to navigation (AtoN) system requires more engagement and further exploration. The AtoN system provides critical navigation information by marking the navigation hazards, such as shallow water areas and wrecks, and visually marking narrow passageways. The prime function of the AtoN can be enhanced by applying AI technology, particularly deep learning technology. With the help of this technology, an algorithm could be constructed to detect AtoN in coastal and inland waters and utilise the detected AtoN to create a safety function to supplement watchkeepers using recent navigation equipment.
Author Sim, Yoontae
Chae, Chong-Ju
Author_xml – sequence: 1
  givenname: Yoontae
  orcidid: 0009-0001-5360-3839
  surname: Sim
  fullname: Sim, Yoontae
  email: 12188@naver.com
  organization: 1Division of Navigation safety system, Mopko Maritime University, Mokpo, Korea
– sequence: 2
  givenname: Chong-Ju
  surname: Chae
  fullname: Chae, Chong-Ju
  organization: 2Maritime Safety & Environmental Administration (MSEA), World Maritime University, Malmo, Sweden
BookMark eNp1kN1LwzAUxYNMcFP_AN8CPleT3qYfjzLmBwx8UJ_LTZp0HV1Sk1bYf2-7TXwQny6H8zvnwlmQmXVWE3LD2R1nPLt_Y5BBkgLECWMMBJyROU_SIsqyXMzIfLKjyb8gixC2I5MnuZgTubIbtKqxNe03mprBqr5xljpz0NhUgfaOWvxqajw4ck87jyOlsKVDwFr_wJXWHW01ejvVYVs73_Sb3RU5N9gGfX26l-TjcfW-fI7Wr08vy4d1pCDhfYRKJQJZDBJ0lfBYaiEqQMOBFUrknEsNINNUFCY3ecWxiFHljEkjCm2qDC7J7bG38-5z0KEvt27wdnxZAi_SLE0LBiPFj5TyLgSvTdn5Zod-X3JWTlOWf6YcM3DK4E76pqr1b_X_qW-SqnfY
Cites_doi 10.1109/RADAR.2017.7944481
10.1016/j.ress.2021.107819
10.1145/3341525.3393997
10.1007/s40747-022-00683-z
10.1016/j.oceaneng.2022.111309
10.1017/S0373463319000481
10.1109/ICACSIS.2015.7415154
10.1016/j.bdr.2020.100178
10.1109/eScience.2018.00130
10.1186/s41072-021-00098-y
10.1155/2021/6794202
10.1109/ACCESS.2018.2874767
10.3389/frai.2020.534696
10.1515/aon-2017-0009
10.1109/CVPR.2016.91
10.1155/2021/6631074
10.1109/GLOBECOM38437.2019.9013931
10.1109/ACCESS.2018.2853620
10.5194/isprs-archives-XLI-B7-423-2016
10.1109/CVPR.2017.690
10.1109/ICITCS.2016.7740373
10.1016/j.compeleceng.2022.107871
10.1109/CVPR.2017.351
ContentType Journal Article
Copyright Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Institute of Navigation
Copyright_xml – notice: Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Institute of Navigation
DBID AAYXX
CITATION
3V.
7SC
7SP
7TN
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
H8D
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0373463324000353
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
Engineering
EISSN 1469-7785
EndPage 358
ExternalDocumentID 10_1017_S0373463324000353
GeographicLocations Singapore
GeographicLocations_xml – name: Singapore
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.FH
09C
09E
0E1
0R~
29L
4.4
5GY
5VS
6TJ
6~7
74X
74Y
7~V
88I
8CJ
8FE
8FG
8FH
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKNA
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABBZL
ABHFL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABXAU
ABZCX
ABZUI
ACBMC
ACDLN
ACEJA
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACOZI
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADMLS
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AEUYN
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGKLZ
AGLWM
AGQPQ
AHPGS
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
ANOYL
AQJOH
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BHPHI
BJBOZ
BKSAR
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
D1J
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
PCBAR
PHGZT
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
VH1
WFFJZ
WQ3
WXU
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~02
~V1
AAYXX
ABGDZ
ABXHF
AKMAY
CITATION
PHGZM
PQGLB
PUEGO
3V.
7SC
7SP
7TN
7XB
8FD
8FK
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c341t-acc45a023b3ed412be55d3af1309c5811be33b6659f8f8d1a92ac800bf59efd73
IEDL.DBID BENPR
ISSN 0373-4633
IngestDate Fri Jul 25 09:41:11 EDT 2025
Wed Oct 01 08:27:40 EDT 2025
Thu May 01 02:24:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning algorithm
object detection
AtoN detection
artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-acc45a023b3ed412be55d3af1309c5811be33b6659f8f8d1a92ac800bf59efd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-5360-3839
PQID 3196766903
PQPubID 29781
PageCount 12
ParticipantIDs proquest_journals_3196766903
crossref_primary_10_1017_S0373463324000353
cambridge_journals_10_1017_S0373463324000353
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of navigation
PublicationTitleAlternate J. Navigation
PublicationYear 2024
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2022; 254
2022; 100
2018; 6
2021; 6
2020; 3
2018; 1004
2021; 23
2020; 73
2021; 39
2021; 215
2022; 8
2017; 24
2021; 2021
S0373463324000353_ref30
S0373463324000353_ref31
S0373463324000353_ref10
S0373463324000353_ref33
S0373463324000353_ref11
S0373463324000353_ref2
S0373463324000353_ref12
S0373463324000353_ref34
S0373463324000353_ref35
S0373463324000353_ref1
S0373463324000353_ref13
S0373463324000353_ref14
S0373463324000353_ref36
S0373463324000353_ref15
S0373463324000353_ref37
S0373463324000353_ref6
S0373463324000353_ref5
S0373463324000353_ref4
Choe (S0373463324000353_ref7) 2021; 39
S0373463324000353_ref3
S0373463324000353_ref8
Du (S0373463324000353_ref9) 2018; 1004
S0373463324000353_ref16
S0373463324000353_ref38
S0373463324000353_ref17
S0373463324000353_ref39
S0373463324000353_ref18
S0373463324000353_ref19
S0373463324000353_ref20
S0373463324000353_ref21
S0373463324000353_ref22
S0373463324000353_ref23
S0373463324000353_ref24
S0373463324000353_ref25
S0373463324000353_ref26
Rothblum (S0373463324000353_ref32) 2000
S0373463324000353_ref27
S0373463324000353_ref28
S0373463324000353_ref29
References_xml – volume: 73
  start-page: 192
  issue: 1
  year: 2020
  end-page: 211
  article-title: Fusion of ship perceptual information for electronic navigational chart and radar images based on deep learning
  publication-title: The Journal of Navigation
– volume: 6
  start-page: 38656
  year: 2018
  end-page: 38668
  article-title: Deep CNN with multi-scale rotation invariance features for ship classification
  publication-title: IEEE Access
– volume: 100
  start-page: 107871
  year: 2022
  article-title: Intelligent deep learning-enabled autonomous small ship detection and classification model
  publication-title: Computers & Electrical Engineering
– volume: 39
  start-page: 540
  issue: 4
  year: 2021
  end-page: 554
  article-title: Identifying risk factors of marine accidents in coastal area by marine accident types
  publication-title: Daehan Gyotong Haghoeji
– volume: 254
  start-page: 111309
  year: 2022
  article-title: Automatic traffic scenarios generation for autonomous ships collision avoidance system testing
  publication-title: Ocean Engineering
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 11
  article-title: Intelligent recognition system based on contour accentuation for navigation marks
  publication-title: Wireless Communications and Mobile Computing
– volume: 8
  start-page: 3881
  year: 2022
  end-page: 3897
  article-title: Ship feature recognition methods for deep learning in complex marine environments
  publication-title: Complex & Intelligent. Systems
– volume: 1004
  start-page: 012029
  year: 2018
  article-title: Understanding of object detection based on CNN family and YOLO
  publication-title: Journal of Physics: Conference Series
– volume: 6
  start-page: 61677
  year: 2018
  end-page: 61685
  article-title: Performance analysis of google colaboratory as a tool for accelerating deep learning applications
  publication-title: IEEE Access
– volume: 24
  start-page: 119
  year: 2017
  end-page: 135
  article-title: Causes of ships groundings in terms of integrated navigation model
  publication-title: Annual of Navigation
– volume: 3
  start-page: 534696
  year: 2020
  article-title: Deep learning for understanding satellite imagery: An experimental survey
  publication-title: Frontiers in Artificial Intelligence
– volume: 2021
  start-page: 6794202
  year: 2021
  article-title: Multilabel video classification model of navigation mark's lights based on deep learning
  publication-title: Computational Intelligence and Neuroscience
– volume: 215
  start-page: 107819
  year: 2021
  article-title: An AIS-based deep learning framework for regional ship behavior prediction
  publication-title: Reliability Engineering & System Safety
– volume: 23
  start-page: 100178
  year: 2021
  article-title: Deep learning-based weather prediction: A survey
  publication-title: Big Data Research
– volume: 6
  start-page: 1
  issue: 1
  year: 2021
  end-page: 32
  article-title: Reducing maritime accidents in ships by tackling human error: A bibliometric review and research agenda
  publication-title: Journal of Shipping and Trade
– ident: S0373463324000353_ref2
– ident: S0373463324000353_ref22
  doi: 10.1109/RADAR.2017.7944481
– ident: S0373463324000353_ref24
  doi: 10.1016/j.ress.2021.107819
– volume: 1004
  start-page: 012029
  year: 2018
  ident: S0373463324000353_ref9
  article-title: Understanding of object detection based on CNN family and YOLO
  publication-title: Journal of Physics: Conference Series
– ident: S0373463324000353_ref4
– ident: S0373463324000353_ref25
  doi: 10.1145/3341525.3393997
– ident: S0373463324000353_ref38
  doi: 10.1007/s40747-022-00683-z
– ident: S0373463324000353_ref5
  doi: 10.1016/j.oceaneng.2022.111309
– ident: S0373463324000353_ref13
  doi: 10.1017/S0373463319000481
– ident: S0373463324000353_ref28
– ident: S0373463324000353_ref26
– ident: S0373463324000353_ref34
  doi: 10.1109/ICACSIS.2015.7415154
– ident: S0373463324000353_ref36
– ident: S0373463324000353_ref30
  doi: 10.1016/j.bdr.2020.100178
– ident: S0373463324000353_ref31
  doi: 10.1109/eScience.2018.00130
– ident: S0373463324000353_ref19
– ident: S0373463324000353_ref8
  doi: 10.1186/s41072-021-00098-y
– ident: S0373463324000353_ref15
  doi: 10.1155/2021/6794202
– ident: S0373463324000353_ref17
– ident: S0373463324000353_ref6
  doi: 10.1109/ACCESS.2018.2874767
– ident: S0373463324000353_ref23
  doi: 10.3389/frai.2020.534696
– ident: S0373463324000353_ref1
– ident: S0373463324000353_ref3
– ident: S0373463324000353_ref18
  doi: 10.1515/aon-2017-0009
– ident: S0373463324000353_ref29
  doi: 10.1109/CVPR.2016.91
– ident: S0373463324000353_ref10
  doi: 10.1155/2021/6631074
– ident: S0373463324000353_ref14
  doi: 10.1109/GLOBECOM38437.2019.9013931
– ident: S0373463324000353_ref21
– ident: S0373463324000353_ref37
– volume: 39
  start-page: 540
  year: 2021
  ident: S0373463324000353_ref7
  article-title: Identifying risk factors of marine accidents in coastal area by marine accident types
  publication-title: Daehan Gyotong Haghoeji
– ident: S0373463324000353_ref12
– volume-title: National Safety Council Congress and Expo
  year: 2000
  ident: S0373463324000353_ref32
– ident: S0373463324000353_ref35
  doi: 10.1109/ACCESS.2018.2853620
– ident: S0373463324000353_ref39
  doi: 10.5194/isprs-archives-XLI-B7-423-2016
– ident: S0373463324000353_ref27
  doi: 10.1109/CVPR.2017.690
– ident: S0373463324000353_ref20
  doi: 10.1109/ICITCS.2016.7740373
– ident: S0373463324000353_ref11
  doi: 10.1016/j.compeleceng.2022.107871
– ident: S0373463324000353_ref16
  doi: 10.1109/CVPR.2017.351
– ident: S0373463324000353_ref33
SSID ssj0008485
Score 2.3408496
Snippet Information is provided to navigators through advanced onboard navigation equipment, such as the electronic chart display and information system (ECDIS), radar...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Index Database
Publisher
StartPage 347
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Coastal waters
Collision avoidance
Collisions
Datasets
Deep learning
Information systems
Inland waters
Machine learning
Marine accidents
Maritime industry
Marking
Nautical charts
Navigation
Navigation systems
Navigational aids
Navigational hazards
Neural networks
Passageways
Python
Satellites
Sensors
Shallow water
Wrecks
Title Enhancing the function of the aids to navigation by practical usage of the deep learning algorithm
URI https://www.cambridge.org/core/product/identifier/S0373463324000353/type/journal_article
https://www.proquest.com/docview/3196766903
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1469-7785
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0008485
  issn: 0373-4633
  databaseCode: ADMLS
  dateStart: 19480101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1469-7785
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0008485
  issn: 0373-4633
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1469-7785
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0008485
  issn: 0373-4633
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8IwGH7Dx0UPRlEjiqQH48HYyGi7bgdj1IDERGKMJNxIu3ZgogNhmPDvbcsGEhOOa5se3u-ub58H4KIhBQ8okTjWOsA0JAKHjHPMRSCF4pHi2jXIdv1Ojz73Wb8A3fwtjG2rzGOiC9RqHNl_5DfWVLhvznLkbvKNLWuUvV3NKTRERq2gbh3EWBHKTYuMVYLyQ6v7-raKzQF1JJ0NwgmmPiH5PacDkTaDdsx2VTaIZUteoy1sZq3NoO0yUXsf9rISEt0vdX4ABZ1UYPcPsGAFTl4c-PZ0gS5RVxhjQpkPH4JsJSOLsZEMkan9kM1rVjdoHLtv8aFmKB2jRPw48A0zIxcoe0tl9pnbRrR8sdJ6gjLeiSESn0MjsHT0dQS9duv9sYMzogUcmSSWYiM9yoTJ3pJoRb2m1IwpImKT38KIBZ4nNSHS91kYB3GgPBE2RWQqTRmzUMeKk2MoJeNEnwDiQtq7XBZ6klGqLTqYMC6vufAkJbpRheuVUAeZu8wGy1YzPvingypc5XIfTJbwG9sW13LNrLde283p9ukz2GmagmXZzFiDUjqd63NTcKSyDsWg_VTPbOkX9GDRcg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BcigcKqCtgPLhQ9tDVaub2I6TA0J8LFoKrKoKJG6pHTsLEmSX3dBq_1x_W8dehy2qxI1jbMcHz8vMOB6_B_ChrZVMOdO0tDalPGOKZkJKKlWqlZGFkdYXyPaS7iX_diWu5uBPcxfGlVU2PtE7ajMo3D_yrw4qMsG9HNsb3lOnGuVOVxsJDRWkFcyupxgLFztO7eQ3buHGuydHaO-PcXzcuTjs0qAyQAv04DXFV7lQGLo0s4ZHsbZCGKZKdO5ZIdIo0pYxnSQiK9MyNZHKYlVgmqVLkdnSSIbzzsMCZzzDzd_CQaf3_cdjLEi5FwVtM8koTxhrzlU9aTU2ujZXxdlmTp15xu7wNEo-DRI-8h0vw-uQspL9KcZWYM5Wq7D0D5HhKqyde7Lv0YR8Ij2F4CXBZ7wB3amuHadH1SeYaxIXRx0WyKD0z-rGjEk9IJX65ck-sEdPSLi7hfM8uMK3ZrCxdkiCzkWfqNs-Gqi-vnsLly-y5O-gVQ0quwZEKu3OjkUWacG5dWxkCl2MlSrSnNn2Onx5XNQ8fJ7jfFraJvP_bLAOn5t1z4dTuo_nBm82lplNPcPpxvPdO_Cqe3F-lp-d9E7fw2KMydK0kHITWvXowW5hslPr7YAoAj9fGsR_AUeaDlU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3xISF6QEBBfOMD7QFhsYntODmgqiosUGDFASRuwY6dpRJkFzaA9q_x6zp2EhaExI1jbMsHz_PMOH5-A7DV0krGnGmaWxtTnjBFEyEllSrWysjMSOsJsp3o6JL_vRJXY_DSvIVxtMrGJ3pHbXqZ-0e-66AiIzzLsd28pkWc77d_9e-pqyDlblqbchoVRE7s8BmPb4O943209Y8wbB9c_DmidYUBmqH3LqnKMi4Uhi3NrOFBqK0QhqkcHXuSiTgItGVMR5FI8jiPTaCSUGWYYulcJDY3kuG84zApnYq7e6XePnyNAjH35UBbTDLKI8aaG1UvV42Nrs3xN1vM1WUe6Tq8j4_vw4OPee1ZmKmTVfK7QtccjNliHr69kTCch6UzL_P9MCQ_SUchbEntLb6DPihunJpH0SWYZRIXQR0KSC_33-qfGZCyRwr15GU-sEcPSf1qC-d5dJS3ZrCxtk_qChddom67aI7y5m4BLr9kwRdhougVdgmIVNrdGosk0IJz63TIFDoXK1WgObOtZdh5XdS03piDtCK1yfSDDZZhu1n3tF8JfXw2eK2xzGjqEUJXPu_ehCmEbnp63DlZhekQs6SKQbkGE-XDo13HLKfUGx5OBK6_Gr__AdP1C-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+function+of+the+aids+to+navigation+by+practical+usage+of+the+deep+learning+algorithm&rft.jtitle=Journal+of+navigation&rft.au=Sim%2C+Yoontae&rft.au=Chae%2C+Chong-Ju&rft.date=2024-05-01&rft.issn=0373-4633&rft.eissn=1469-7785&rft.volume=77&rft.issue=3&rft.spage=347&rft.epage=358&rft_id=info:doi/10.1017%2FS0373463324000353&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0373463324000353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0373-4633&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0373-4633&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0373-4633&client=summon