Enhancing the function of the aids to navigation by practical usage of the deep learning algorithm
Information is provided to navigators through advanced onboard navigation equipment, such as the electronic chart display and information system (ECDIS), radar and the automatic identification system (AIS). However, maritime accidents still occur, especially in coastal and inland water where many na...
        Saved in:
      
    
          | Published in | Journal of navigation Vol. 77; no. 3; pp. 347 - 358 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cambridge, UK
          Cambridge University Press
    
        01.05.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0373-4633 1469-7785  | 
| DOI | 10.1017/S0373463324000353 | 
Cover
| Abstract | Information is provided to navigators through advanced onboard navigation equipment, such as the electronic chart display and information system (ECDIS), radar and the automatic identification system (AIS). However, maritime accidents still occur, especially in coastal and inland water where many navigational dangers exist. The recent artificial intelligence (AI) technology is actively applied in navigation fields, such as collision avoidance and ship detection. However, utilising the aids to navigation (AtoN) system requires more engagement and further exploration. The AtoN system provides critical navigation information by marking the navigation hazards, such as shallow water areas and wrecks, and visually marking narrow passageways. The prime function of the AtoN can be enhanced by applying AI technology, particularly deep learning technology. With the help of this technology, an algorithm could be constructed to detect AtoN in coastal and inland waters and utilise the detected AtoN to create a safety function to supplement watchkeepers using recent navigation equipment. | 
    
|---|---|
| AbstractList | Information is provided to navigators through advanced onboard navigation equipment, such as the electronic chart display and information system (ECDIS), radar and the automatic identification system (AIS). However, maritime accidents still occur, especially in coastal and inland water where many navigational dangers exist. The recent artificial intelligence (AI) technology is actively applied in navigation fields, such as collision avoidance and ship detection. However, utilising the aids to navigation (AtoN) system requires more engagement and further exploration. The AtoN system provides critical navigation information by marking the navigation hazards, such as shallow water areas and wrecks, and visually marking narrow passageways. The prime function of the AtoN can be enhanced by applying AI technology, particularly deep learning technology. With the help of this technology, an algorithm could be constructed to detect AtoN in coastal and inland waters and utilise the detected AtoN to create a safety function to supplement watchkeepers using recent navigation equipment. | 
    
| Author | Sim, Yoontae Chae, Chong-Ju  | 
    
| Author_xml | – sequence: 1 givenname: Yoontae orcidid: 0009-0001-5360-3839 surname: Sim fullname: Sim, Yoontae email: 12188@naver.com organization: 1Division of Navigation safety system, Mopko Maritime University, Mokpo, Korea – sequence: 2 givenname: Chong-Ju surname: Chae fullname: Chae, Chong-Ju organization: 2Maritime Safety & Environmental Administration (MSEA), World Maritime University, Malmo, Sweden  | 
    
| BookMark | eNp1kN1LwzAUxYNMcFP_AN8CPleT3qYfjzLmBwx8UJ_LTZp0HV1Sk1bYf2-7TXwQny6H8zvnwlmQmXVWE3LD2R1nPLt_Y5BBkgLECWMMBJyROU_SIsqyXMzIfLKjyb8gixC2I5MnuZgTubIbtKqxNe03mprBqr5xljpz0NhUgfaOWvxqajw4ck87jyOlsKVDwFr_wJXWHW01ejvVYVs73_Sb3RU5N9gGfX26l-TjcfW-fI7Wr08vy4d1pCDhfYRKJQJZDBJ0lfBYaiEqQMOBFUrknEsNINNUFCY3ecWxiFHljEkjCm2qDC7J7bG38-5z0KEvt27wdnxZAi_SLE0LBiPFj5TyLgSvTdn5Zod-X3JWTlOWf6YcM3DK4E76pqr1b_X_qW-SqnfY | 
    
| Cites_doi | 10.1109/RADAR.2017.7944481 10.1016/j.ress.2021.107819 10.1145/3341525.3393997 10.1007/s40747-022-00683-z 10.1016/j.oceaneng.2022.111309 10.1017/S0373463319000481 10.1109/ICACSIS.2015.7415154 10.1016/j.bdr.2020.100178 10.1109/eScience.2018.00130 10.1186/s41072-021-00098-y 10.1155/2021/6794202 10.1109/ACCESS.2018.2874767 10.3389/frai.2020.534696 10.1515/aon-2017-0009 10.1109/CVPR.2016.91 10.1155/2021/6631074 10.1109/GLOBECOM38437.2019.9013931 10.1109/ACCESS.2018.2853620 10.5194/isprs-archives-XLI-B7-423-2016 10.1109/CVPR.2017.690 10.1109/ICITCS.2016.7740373 10.1016/j.compeleceng.2022.107871 10.1109/CVPR.2017.351  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Institute of Navigation | 
    
| Copyright_xml | – notice: Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Institute of Navigation | 
    
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TN 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ H8D H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U  | 
    
| DOI | 10.1017/S0373463324000353 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Science Database Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Military & Naval Science Engineering  | 
    
| EISSN | 1469-7785 | 
    
| EndPage | 358 | 
    
| ExternalDocumentID | 10_1017_S0373463324000353 | 
    
| GeographicLocations | Singapore | 
    
| GeographicLocations_xml | – name: Singapore | 
    
| GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .FH 09C 09E 0E1 0R~ 29L 4.4 5GY 5VS 6TJ 6~7 74X 74Y 7~V 88I 8CJ 8FE 8FG 8FH 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAKNA AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB ABBXD ABBZL ABHFL ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABVKB ABXAU ABZCX ABZUI ACBMC ACDLN ACEJA ACETC ACGFS ACGOD ACIMK ACIWK ACOZI ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADMLS ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMFK AEMTW AENCP AENEX AENGE AEUYN AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGKLZ AGLWM AGQPQ AHPGS AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO ANOYL AQJOH ARABE ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BHPHI BJBOZ BKSAR BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 D1J DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD GNUQQ HCIFZ HG- HST HZ~ H~9 I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P PCBAR PHGZT PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S6- S6U SAAAG T9M UT1 VH1 WFFJZ WQ3 WXU WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~02 ~V1 AAYXX ABGDZ ABXHF AKMAY CITATION PHGZM PQGLB PUEGO 3V. 7SC 7SP 7TN 7XB 8FD 8FK F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c341t-acc45a023b3ed412be55d3af1309c5811be33b6659f8f8d1a92ac800bf59efd73 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0373-4633 | 
    
| IngestDate | Fri Jul 25 09:41:11 EDT 2025 Wed Oct 01 08:27:40 EDT 2025 Thu May 01 02:24:08 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | deep learning algorithm object detection AtoN detection artificial intelligence  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c341t-acc45a023b3ed412be55d3af1309c5811be33b6659f8f8d1a92ac800bf59efd73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0001-5360-3839 | 
    
| PQID | 3196766903 | 
    
| PQPubID | 29781 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_journals_3196766903 crossref_primary_10_1017_S0373463324000353 cambridge_journals_10_1017_S0373463324000353  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-05-01 | 
    
| PublicationDateYYYYMMDD | 2024-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cambridge, UK | 
    
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge  | 
    
| PublicationTitle | Journal of navigation | 
    
| PublicationTitleAlternate | J. Navigation | 
    
| PublicationYear | 2024 | 
    
| Publisher | Cambridge University Press | 
    
| Publisher_xml | – name: Cambridge University Press | 
    
| References | 2022; 254 2022; 100 2018; 6 2021; 6 2020; 3 2018; 1004 2021; 23 2020; 73 2021; 39 2021; 215 2022; 8 2017; 24 2021; 2021 S0373463324000353_ref30 S0373463324000353_ref31 S0373463324000353_ref10 S0373463324000353_ref33 S0373463324000353_ref11 S0373463324000353_ref2 S0373463324000353_ref12 S0373463324000353_ref34 S0373463324000353_ref35 S0373463324000353_ref1 S0373463324000353_ref13 S0373463324000353_ref14 S0373463324000353_ref36 S0373463324000353_ref15 S0373463324000353_ref37 S0373463324000353_ref6 S0373463324000353_ref5 S0373463324000353_ref4 Choe (S0373463324000353_ref7) 2021; 39 S0373463324000353_ref3 S0373463324000353_ref8 Du (S0373463324000353_ref9) 2018; 1004 S0373463324000353_ref16 S0373463324000353_ref38 S0373463324000353_ref17 S0373463324000353_ref39 S0373463324000353_ref18 S0373463324000353_ref19 S0373463324000353_ref20 S0373463324000353_ref21 S0373463324000353_ref22 S0373463324000353_ref23 S0373463324000353_ref24 S0373463324000353_ref25 S0373463324000353_ref26 Rothblum (S0373463324000353_ref32) 2000 S0373463324000353_ref27 S0373463324000353_ref28 S0373463324000353_ref29  | 
    
| References_xml | – volume: 73 start-page: 192 issue: 1 year: 2020 end-page: 211 article-title: Fusion of ship perceptual information for electronic navigational chart and radar images based on deep learning publication-title: The Journal of Navigation – volume: 6 start-page: 38656 year: 2018 end-page: 38668 article-title: Deep CNN with multi-scale rotation invariance features for ship classification publication-title: IEEE Access – volume: 100 start-page: 107871 year: 2022 article-title: Intelligent deep learning-enabled autonomous small ship detection and classification model publication-title: Computers & Electrical Engineering – volume: 39 start-page: 540 issue: 4 year: 2021 end-page: 554 article-title: Identifying risk factors of marine accidents in coastal area by marine accident types publication-title: Daehan Gyotong Haghoeji – volume: 254 start-page: 111309 year: 2022 article-title: Automatic traffic scenarios generation for autonomous ships collision avoidance system testing publication-title: Ocean Engineering – volume: 2021 start-page: 1 year: 2021 end-page: 11 article-title: Intelligent recognition system based on contour accentuation for navigation marks publication-title: Wireless Communications and Mobile Computing – volume: 8 start-page: 3881 year: 2022 end-page: 3897 article-title: Ship feature recognition methods for deep learning in complex marine environments publication-title: Complex & Intelligent. Systems – volume: 1004 start-page: 012029 year: 2018 article-title: Understanding of object detection based on CNN family and YOLO publication-title: Journal of Physics: Conference Series – volume: 6 start-page: 61677 year: 2018 end-page: 61685 article-title: Performance analysis of google colaboratory as a tool for accelerating deep learning applications publication-title: IEEE Access – volume: 24 start-page: 119 year: 2017 end-page: 135 article-title: Causes of ships groundings in terms of integrated navigation model publication-title: Annual of Navigation – volume: 3 start-page: 534696 year: 2020 article-title: Deep learning for understanding satellite imagery: An experimental survey publication-title: Frontiers in Artificial Intelligence – volume: 2021 start-page: 6794202 year: 2021 article-title: Multilabel video classification model of navigation mark's lights based on deep learning publication-title: Computational Intelligence and Neuroscience – volume: 215 start-page: 107819 year: 2021 article-title: An AIS-based deep learning framework for regional ship behavior prediction publication-title: Reliability Engineering & System Safety – volume: 23 start-page: 100178 year: 2021 article-title: Deep learning-based weather prediction: A survey publication-title: Big Data Research – volume: 6 start-page: 1 issue: 1 year: 2021 end-page: 32 article-title: Reducing maritime accidents in ships by tackling human error: A bibliometric review and research agenda publication-title: Journal of Shipping and Trade – ident: S0373463324000353_ref2 – ident: S0373463324000353_ref22 doi: 10.1109/RADAR.2017.7944481 – ident: S0373463324000353_ref24 doi: 10.1016/j.ress.2021.107819 – volume: 1004 start-page: 012029 year: 2018 ident: S0373463324000353_ref9 article-title: Understanding of object detection based on CNN family and YOLO publication-title: Journal of Physics: Conference Series – ident: S0373463324000353_ref4 – ident: S0373463324000353_ref25 doi: 10.1145/3341525.3393997 – ident: S0373463324000353_ref38 doi: 10.1007/s40747-022-00683-z – ident: S0373463324000353_ref5 doi: 10.1016/j.oceaneng.2022.111309 – ident: S0373463324000353_ref13 doi: 10.1017/S0373463319000481 – ident: S0373463324000353_ref28 – ident: S0373463324000353_ref26 – ident: S0373463324000353_ref34 doi: 10.1109/ICACSIS.2015.7415154 – ident: S0373463324000353_ref36 – ident: S0373463324000353_ref30 doi: 10.1016/j.bdr.2020.100178 – ident: S0373463324000353_ref31 doi: 10.1109/eScience.2018.00130 – ident: S0373463324000353_ref19 – ident: S0373463324000353_ref8 doi: 10.1186/s41072-021-00098-y – ident: S0373463324000353_ref15 doi: 10.1155/2021/6794202 – ident: S0373463324000353_ref17 – ident: S0373463324000353_ref6 doi: 10.1109/ACCESS.2018.2874767 – ident: S0373463324000353_ref23 doi: 10.3389/frai.2020.534696 – ident: S0373463324000353_ref1 – ident: S0373463324000353_ref3 – ident: S0373463324000353_ref18 doi: 10.1515/aon-2017-0009 – ident: S0373463324000353_ref29 doi: 10.1109/CVPR.2016.91 – ident: S0373463324000353_ref10 doi: 10.1155/2021/6631074 – ident: S0373463324000353_ref14 doi: 10.1109/GLOBECOM38437.2019.9013931 – ident: S0373463324000353_ref21 – ident: S0373463324000353_ref37 – volume: 39 start-page: 540 year: 2021 ident: S0373463324000353_ref7 article-title: Identifying risk factors of marine accidents in coastal area by marine accident types publication-title: Daehan Gyotong Haghoeji – ident: S0373463324000353_ref12 – volume-title: National Safety Council Congress and Expo year: 2000 ident: S0373463324000353_ref32 – ident: S0373463324000353_ref35 doi: 10.1109/ACCESS.2018.2853620 – ident: S0373463324000353_ref39 doi: 10.5194/isprs-archives-XLI-B7-423-2016 – ident: S0373463324000353_ref27 doi: 10.1109/CVPR.2017.690 – ident: S0373463324000353_ref20 doi: 10.1109/ICITCS.2016.7740373 – ident: S0373463324000353_ref11 doi: 10.1016/j.compeleceng.2022.107871 – ident: S0373463324000353_ref16 doi: 10.1109/CVPR.2017.351 – ident: S0373463324000353_ref33  | 
    
| SSID | ssj0008485 | 
    
| Score | 2.3408496 | 
    
| Snippet | Information is provided to navigators through advanced onboard navigation equipment, such as the electronic chart display and information system (ECDIS), radar... | 
    
| SourceID | proquest crossref cambridge  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 347 | 
    
| SubjectTerms | Accuracy Algorithms Artificial intelligence Coastal waters Collision avoidance Collisions Datasets Deep learning Information systems Inland waters Machine learning Marine accidents Maritime industry Marking Nautical charts Navigation Navigation systems Navigational aids Navigational hazards Neural networks Passageways Python Satellites Sensors Shallow water Wrecks  | 
    
| Title | Enhancing the function of the aids to navigation by practical usage of the deep learning algorithm | 
    
| URI | https://www.cambridge.org/core/product/identifier/S0373463324000353/type/journal_article https://www.proquest.com/docview/3196766903  | 
    
| Volume | 77 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1469-7785 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0008485 issn: 0373-4633 databaseCode: ADMLS dateStart: 19480101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1469-7785 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008485 issn: 0373-4633 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1469-7785 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008485 issn: 0373-4633 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8IwGH7Dx0UPRlEjiqQH48HYyGi7bgdj1IDERGKMJNxIu3ZgogNhmPDvbcsGEhOOa5se3u-ub58H4KIhBQ8okTjWOsA0JAKHjHPMRSCF4pHi2jXIdv1Ojz73Wb8A3fwtjG2rzGOiC9RqHNl_5DfWVLhvznLkbvKNLWuUvV3NKTRERq2gbh3EWBHKTYuMVYLyQ6v7-raKzQF1JJ0NwgmmPiH5PacDkTaDdsx2VTaIZUteoy1sZq3NoO0yUXsf9rISEt0vdX4ABZ1UYPcPsGAFTl4c-PZ0gS5RVxhjQpkPH4JsJSOLsZEMkan9kM1rVjdoHLtv8aFmKB2jRPw48A0zIxcoe0tl9pnbRrR8sdJ6gjLeiSESn0MjsHT0dQS9duv9sYMzogUcmSSWYiM9yoTJ3pJoRb2m1IwpImKT38KIBZ4nNSHS91kYB3GgPBE2RWQqTRmzUMeKk2MoJeNEnwDiQtq7XBZ6klGqLTqYMC6vufAkJbpRheuVUAeZu8wGy1YzPvingypc5XIfTJbwG9sW13LNrLde283p9ukz2GmagmXZzFiDUjqd63NTcKSyDsWg_VTPbOkX9GDRcg | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BcigcKqCtgPLhQ9tDVaub2I6TA0J8LFoKrKoKJG6pHTsLEmSX3dBq_1x_W8dehy2qxI1jbMcHz8vMOB6_B_ChrZVMOdO0tDalPGOKZkJKKlWqlZGFkdYXyPaS7iX_diWu5uBPcxfGlVU2PtE7ajMo3D_yrw4qMsG9HNsb3lOnGuVOVxsJDRWkFcyupxgLFztO7eQ3buHGuydHaO-PcXzcuTjs0qAyQAv04DXFV7lQGLo0s4ZHsbZCGKZKdO5ZIdIo0pYxnSQiK9MyNZHKYlVgmqVLkdnSSIbzzsMCZzzDzd_CQaf3_cdjLEi5FwVtM8koTxhrzlU9aTU2ujZXxdlmTp15xu7wNEo-DRI-8h0vw-uQspL9KcZWYM5Wq7D0D5HhKqyde7Lv0YR8Ij2F4CXBZ7wB3amuHadH1SeYaxIXRx0WyKD0z-rGjEk9IJX65ck-sEdPSLi7hfM8uMK3ZrCxdkiCzkWfqNs-Gqi-vnsLly-y5O-gVQ0quwZEKu3OjkUWacG5dWxkCl2MlSrSnNn2Onx5XNQ8fJ7jfFraJvP_bLAOn5t1z4dTuo_nBm82lplNPcPpxvPdO_Cqe3F-lp-d9E7fw2KMydK0kHITWvXowW5hslPr7YAoAj9fGsR_AUeaDlU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3xISF6QEBBfOMD7QFhsYntODmgqiosUGDFASRuwY6dpRJkFzaA9q_x6zp2EhaExI1jbMsHz_PMOH5-A7DV0krGnGmaWxtTnjBFEyEllSrWysjMSOsJsp3o6JL_vRJXY_DSvIVxtMrGJ3pHbXqZ-0e-66AiIzzLsd28pkWc77d_9e-pqyDlblqbchoVRE7s8BmPb4O943209Y8wbB9c_DmidYUBmqH3LqnKMi4Uhi3NrOFBqK0QhqkcHXuSiTgItGVMR5FI8jiPTaCSUGWYYulcJDY3kuG84zApnYq7e6XePnyNAjH35UBbTDLKI8aaG1UvV42Nrs3xN1vM1WUe6Tq8j4_vw4OPee1ZmKmTVfK7QtccjNliHr69kTCch6UzL_P9MCQ_SUchbEntLb6DPihunJpH0SWYZRIXQR0KSC_33-qfGZCyRwr15GU-sEcPSf1qC-d5dJS3ZrCxtk_qChddom67aI7y5m4BLr9kwRdhougVdgmIVNrdGosk0IJz63TIFDoXK1WgObOtZdh5XdS03piDtCK1yfSDDZZhu1n3tF8JfXw2eK2xzGjqEUJXPu_ehCmEbnp63DlZhekQs6SKQbkGE-XDo13HLKfUGx5OBK6_Gr__AdP1C-8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+function+of+the+aids+to+navigation+by+practical+usage+of+the+deep+learning+algorithm&rft.jtitle=Journal+of+navigation&rft.au=Sim%2C+Yoontae&rft.au=Chae%2C+Chong-Ju&rft.date=2024-05-01&rft.issn=0373-4633&rft.eissn=1469-7785&rft.volume=77&rft.issue=3&rft.spage=347&rft.epage=358&rft_id=info:doi/10.1017%2FS0373463324000353&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0373463324000353 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0373-4633&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0373-4633&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0373-4633&client=summon |