Improved Correspondence Point Search and Image Matching Accuracy for Disturbanced Images Using TD(0) Method

This paper presents a novel reinforcement learning approach to enhance image matching, whereby the corresponding point candidates are detected from the feature points extracted from each of the two images. In general, robust estimation methods such as random sample consensus (RANSAC) are used to sel...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Simulation in Science and Engineering Vol. 12; no. 1; pp. 191 - 200
Main Authors Kamata, Hiroyuki, Omori, Haruki, Shimada, Mashiro
Format Journal Article
LanguageEnglish
Published Japan Society for Simulation Technology 2025
Subjects
Online AccessGet full text
ISSN2188-5303
2188-5303
DOI10.15748/jasse.12.191

Cover

Abstract This paper presents a novel reinforcement learning approach to enhance image matching, whereby the corresponding point candidates are detected from the feature points extracted from each of the two images. In general, robust estimation methods such as random sample consensus (RANSAC) are used to select valid corresponding points from the candidates. Therefore, we addressed the limitations of RANSAC random selection in the image-matching process, evaluating various reinforcement learning strategies, including deterministic and probabilistic approaches, and different value update mechanisms. The findings indicated that a probabilistic approach with suitable value updates provides a more robust solution for space-based navigation systems.
AbstractList This paper presents a novel reinforcement learning approach to enhance image matching, whereby the corresponding point candidates are detected from the feature points extracted from each of the two images. In general, robust estimation methods such as random sample consensus (RANSAC) are used to select valid corresponding points from the candidates. Therefore, we addressed the limitations of RANSAC random selection in the image-matching process, evaluating various reinforcement learning strategies, including deterministic and probabilistic approaches, and different value update mechanisms. The findings indicated that a probabilistic approach with suitable value updates provides a more robust solution for space-based navigation systems.
Author Omori, Haruki
Kamata, Hiroyuki
Shimada, Mashiro
Author_xml – sequence: 1
  fullname: Kamata, Hiroyuki
  organization: School of Science and Technology, Meiji University
– sequence: 1
  fullname: Omori, Haruki
  organization: Graduate School of Science and Technology, Meiji University
– sequence: 1
  fullname: Shimada, Mashiro
  organization: Graduate School of Science and Technology, Meiji University
BookMark eNqFkD1vwjAQhq2KSqWUsbvHdkhqx3GIpwpBP5BArVSYI2NfSGiwIztQ8e-bAkJsne6ke57T3XuLOsYaQOiekpDyQZw-raX3ENIopIJeoW5E0zTgjLDORX-D-t6vCSGMkSRivIu-J5va2R1oPLLOga-t0WAU4E9bmgZ_gXSqwNJoPNnIFeCZbFRRmhUeKrV1Uu1xbh0el77ZuqVsxRPo8cL_YfPxA3nEM2gKq-_QdS4rD_1T7aHF68t89B5MP94mo-E0UCymTSBiYMlSJJEQ0B7NtSQ81UKnOqFxwpY0zSknSjARK-AJ5TqSCY9TUAMQmgProfC4d2tquf-RVZXVrtxIt88oyQ5pZYe0MhplbVqtEBwF5az3DvJ_-ecjv_ZN--uZlq4pVQUX8Mk4T1QhXQaG_QI4OoXo
Cites_doi 10.1006/cviu.1999.0832
10.1007/s12524-020-01163-y
10.1299/jsmesec.2009.18.59
10.1109/ICMLA.2015.59
10.1109/ICCV.2019.00442
10.1007/978-981-97-7225-4_16
10.1109/TPAMI.2012.257
10.1023/B:VISI.0000029664.99615.94
10.1109/CVPR.2005.221
ContentType Journal Article
Copyright 2025 Japan Society for Simulation Technology
Copyright_xml – notice: 2025 Japan Society for Simulation Technology
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.15748/jasse.12.191
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2188-5303
EndPage 200
ExternalDocumentID 10.15748/jasse.12.191
10_15748_jasse_12_191
article_jasse_12_1_12_191_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c341t-94e36b96299e5305da058d9d8d61463b18f150c9394ce5615d2a6548ec7e9d5e3
IEDL.DBID UNPAY
ISSN 2188-5303
IngestDate Tue Aug 19 23:28:41 EDT 2025
Tue Jul 01 04:59:49 EDT 2025
Wed Sep 03 06:30:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-94e36b96299e5305da058d9d8d61463b18f150c9394ce5615d2a6548ec7e9d5e3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jasse/12/1/12_191/_pdf
PageCount 10
ParticipantIDs unpaywall_primary_10_15748_jasse_12_191
crossref_primary_10_15748_jasse_12_191
jstage_primary_article_jasse_12_1_12_191_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Journal of Advanced Simulation in Science and Engineering
PublicationTitleAlternate JASSE
PublicationYear 2025
Publisher Japan Society for Simulation Technology
Publisher_xml – name: Japan Society for Simulation Technology
References [4] O. Chum, J. Matas: Matching with PROSAC—Progressive Sample Consensus, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, California 2005, 220-226.
[5] P. Torr, A. Zisserman: MLESAC: A new robust estimator with application to estimating image geometry, Comput. Vis. Image Understand., 78:1 (2000), 138–156.
[6] E. Brachmann, C. Rother: Neural-guided RANSAC: Learning where to sample model hypotheses, in IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 2019, 4322-4331.
[2] S. Sharma, K. Jain: Image Stitching using AKAZE Features. Journal of the Indian Society of Remote Sensing, 48 (2020), 1389-1401.
[10] H. Miura, H. Kamata: "Autonomous Navigation with Feature Points Map for Self-position Estimation for High-Accuracy Landing on Unknown Celestial Bodies” in Methods and Applications for Modeling and Simulation of Complex Systems, Springer Nature Singapore, Singapore, 2024, 202-216.
[3] R. Raguram, O. Chum, M. Pollefeys, J. Matas: USAC: A Universal Framework for Random Sample Consensus, IEEE Transactions on Software Engineering, 35:8 (2013), 2022-2038.
[7] D. Lowe: Distinctive image features from scale invariant keypoints, International Journal of Computer Vision, 60 (2004), 91–110.
[1] S. Yoshikawa, M. Kunugi, R. Yasumitsu, S. Sawai, S. Fukuda, T. Mizuno, K. Nakaya, Y. Fujii, N. Takatsuka: Conceptual study on the guidance, navigation and control system of the smart landing for investigating moon (SLIM), in Proceedings of Global Lunar Conference, Beijing, 2010, 59–62.
[8] T. Watanabe, Y. Saito: A Fuzzy RANSAC Algorithm Based on Reinforcement Learning, in 28th Fuzzy System Symposium, Nagoya, 2012, 991-993. (in Japanese)
[9] K. Saito, A. Notsu, S. Ubukata, K. Honda: Performance Investigation of UCB Policy in Q-learning, in IEEE 14th International Conference on Machine Learning and Applications, Florida, 2015, 777-780.
1
2
3
4
5
6
7
8
9
10
References_xml – reference: [10] H. Miura, H. Kamata: "Autonomous Navigation with Feature Points Map for Self-position Estimation for High-Accuracy Landing on Unknown Celestial Bodies” in Methods and Applications for Modeling and Simulation of Complex Systems, Springer Nature Singapore, Singapore, 2024, 202-216.
– reference: [7] D. Lowe: Distinctive image features from scale invariant keypoints, International Journal of Computer Vision, 60 (2004), 91–110.
– reference: [1] S. Yoshikawa, M. Kunugi, R. Yasumitsu, S. Sawai, S. Fukuda, T. Mizuno, K. Nakaya, Y. Fujii, N. Takatsuka: Conceptual study on the guidance, navigation and control system of the smart landing for investigating moon (SLIM), in Proceedings of Global Lunar Conference, Beijing, 2010, 59–62.
– reference: [8] T. Watanabe, Y. Saito: A Fuzzy RANSAC Algorithm Based on Reinforcement Learning, in 28th Fuzzy System Symposium, Nagoya, 2012, 991-993. (in Japanese)
– reference: [4] O. Chum, J. Matas: Matching with PROSAC—Progressive Sample Consensus, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, California 2005, 220-226.
– reference: [2] S. Sharma, K. Jain: Image Stitching using AKAZE Features. Journal of the Indian Society of Remote Sensing, 48 (2020), 1389-1401.
– reference: [6] E. Brachmann, C. Rother: Neural-guided RANSAC: Learning where to sample model hypotheses, in IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 2019, 4322-4331.
– reference: [3] R. Raguram, O. Chum, M. Pollefeys, J. Matas: USAC: A Universal Framework for Random Sample Consensus, IEEE Transactions on Software Engineering, 35:8 (2013), 2022-2038.
– reference: [9] K. Saito, A. Notsu, S. Ubukata, K. Honda: Performance Investigation of UCB Policy in Q-learning, in IEEE 14th International Conference on Machine Learning and Applications, Florida, 2015, 777-780.
– reference: [5] P. Torr, A. Zisserman: MLESAC: A new robust estimator with application to estimating image geometry, Comput. Vis. Image Understand., 78:1 (2000), 138–156.
– ident: 5
  doi: 10.1006/cviu.1999.0832
– ident: 2
  doi: 10.1007/s12524-020-01163-y
– ident: 1
  doi: 10.1299/jsmesec.2009.18.59
– ident: 9
  doi: 10.1109/ICMLA.2015.59
– ident: 6
  doi: 10.1109/ICCV.2019.00442
– ident: 8
– ident: 10
  doi: 10.1007/978-981-97-7225-4_16
– ident: 3
  doi: 10.1109/TPAMI.2012.257
– ident: 7
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 4
  doi: 10.1109/CVPR.2005.221
SSID ssj0003306235
Score 2.2820773
Snippet This paper presents a novel reinforcement learning approach to enhance image matching, whereby the corresponding point candidates are detected from the feature...
SourceID unpaywall
crossref
jstage
SourceType Open Access Repository
Index Database
Publisher
StartPage 191
SubjectTerms Disturbanced images
Image matching
RANSAC
Reinforcement learning
Title Improved Correspondence Point Search and Image Matching Accuracy for Disturbanced Images Using TD(0) Method
URI https://www.jstage.jst.go.jp/article/jasse/12/1/12_191/_article/-char/en
https://www.jstage.jst.go.jp/article/jasse/12/1/12_191/_pdf
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Simulation in Science and Engineering, 2025, Vol.12(1), pp.191-200
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2188-5303
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003306235
  issn: 2188-5303
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CuLBBypWVPYgPg5pmiabZPFUfOADRcGCghD2VbHWNNQEqb_e2Wxa1IOIlwSSWXaZWWa-mZ2dAdjpdplSnEZOFArloPaLHBG1uEO1jJrcC4TkZbbFdXjWCS7u6f0UHI7vwpi0yh7ioidtXo2nQaOXuRUT3R7iSe16LdfDR4KehptkqjsNM6E5XarBTOf6pv1g2sl5KH-K2rmqqkmjILajTezPY943KzRrJ5yHuSLN-Oid9_tfbMzpIjyOV2dTS14aRS4a8uNH4cZ_Ln8JFirsSdqWcBmmdLoCLzasoBU5Kht1ZIO0bDNKbgbPaU5sOjLhqSLnrzghuULdbaJWpC1lMeRyRBD2kmPcLcVQlOkElvCNlNkI5O54v3lArspG1avQOT25Ozpzqg4MjkTrljss0H4oWIg2SyM7qeJNGiumYoVWPfSFF3cRUErms0BqRGJUtbhpRI-C1kxR7a9BLR2keh2IzzhF16QZBwz1BNci0rqFYzR-9QOm6rA7lkiS2UIbiXFQjOiSknOJZVodYsvhCVnF3y9UFenkj7nBhmqgDnsTCf8-ycafKTehlg8LvYXQJBfbMH15G29XG_ETvzXpyg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qFcSDD1SsqOxBfBzSNE02yeKp-EAFpYcWKghhXxWrpqEmiP56Z7NpUQ8iXhJIZtllZpn5ZnZ2BmB_OGRKcRo5USiUg9ovckTU5g7VMmpxLxCSl9kWt-FlP7ge0EENTqZ3YUxa5Qhx0YM2r-bDuDnK3IqJ7gjxpHa9tuvhI0FPw00yNZyD-dCcLtVhvn_b7dyZdnIeyp-idq6qatIoiO1oE_vzmPfNCi3YCZdgsUgz_v7Gn5-_2JiLFbifrs6mljw1i1w05cePwo3_XP4qLFfYk3Qs4RrUdLoOTzasoBU5LRt1ZOO0bDNKuuPHNCc2HZnwVJGrF5yQ3KDuNlEr0pGymHD5ThD2kjPcLcVElOkElvCVlNkIpHd21DomN2Wj6g3oX5z3Ti-dqgODI9G65Q4LtB8KFqLN0shOqniLxoqpWKFVD33hxUMElJL5LJAakRhVbW4a0aOgNVNU-5tQT8ep3gLiM07RNWnFAUM9wbWItG7jGI1f_YCpBhxMJZJkttBGYhwUI7qk5FximdaA2HJ4Rlbx9wtVRTr7Y26woRpowOFMwr9Psv1nyh2o55NC7yI0ycVetQU_AUnp6NU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Correspondence+Point+Search+and+Image+Matching+Accuracy+for+Disturbanced+Images+Using+TD%280%29+Method&rft.jtitle=Journal+of+Advanced+Simulation+in+Science+and+Engineering&rft.au=Kamata%2C+Hiroyuki&rft.au=Omori%2C+Haruki&rft.au=Shimada%2C+Mashiro&rft.date=2025&rft.pub=Japan+Society+for+Simulation+Technology&rft.eissn=2188-5303&rft.volume=12&rft.issue=1&rft.spage=191&rft.epage=200&rft_id=info:doi/10.15748%2Fjasse.12.191&rft.externalDocID=article_jasse_12_1_12_191_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2188-5303&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2188-5303&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2188-5303&client=summon