A new implicit gradient damage model based on energy limiter for brittle fracture: Theory and numerical investigation

We present a general form of the gradient-enhanced damage theory and its numerical implementation using finite element method (FEM) in modeling quasi-static brittle crack growth in one- (1D), two- (2D) and three-dimensional (3D) bodies. Coupled equations of the equilibrium and a new implicit gradien...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 413; p. 116123
Main Authors Tran, Hung Thanh, Bui, Tinh Quoc, Chijiwa, Nobuhiro, Hirose, Sohichi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2023
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
DOI10.1016/j.cma.2023.116123

Cover

Abstract We present a general form of the gradient-enhanced damage theory and its numerical implementation using finite element method (FEM) in modeling quasi-static brittle crack growth in one- (1D), two- (2D) and three-dimensional (3D) bodies. Coupled equations of the equilibrium and a new implicit gradient damage formulation are introduced to govern the deformation of the solid and evolution of the damage. The resulting nonlocal damage evolution equation featuring the growth of diffusive crack is integrated with a characteristic length scale to eliminate the common mesh-bias issue in FEM implementation. In contrast to the traditional gradient-enhanced damage approaches, the nonlocal damage field here is defined as the primary variable of the damage evolution equation without interpolation mismatch between the displacement and nonlocal damage fields. For derivation of the material constitutive law and local damage parameter, a novel strain energy density (SED) function based on the energy limiter theory for brittle crack growth problems under small strain regime is introduced. To further improve the performance of the developed model, an initial SED threshold, which is used for determining the critical point when damage starts to initiate in the material, is integrated into the novel energy limiter theory. For preventing nonphysical failure in compression domains, the spectral decomposition technique for the strain tensor is adopted to split the reference SED. With integrating the energy limiter into the developed theory, unlike the conventional nonlocal damage theories where the interpretation of the length scale is still ambiguous, the developed nonlocal damage model defines the length scale parameter as the problem-dependent factor. The performance and ability of the proposed model are demonstrated via a set of representative numerical examples in 1D, 2D and 3D fracture problems. •We present a new nonlocal damage model with energy limiter for brittle fracture.•Different from traditional approaches, the nonlocal damage variable is considered as a primary unknown.•A physic-based characteristic length scale is derived.•Material constitutive and local damage laws are redefined in terms of energy limiter and initial damage threshold.•The new damage models are insensitive to the meshes (mesh-independent solutions are obtained).
AbstractList We present a general form of the gradient-enhanced damage theory and its numerical implementation using finite element method (FEM) in modeling quasi-static brittle crack growth in one- (1D), two- (2D) and three-dimensional (3D) bodies. Coupled equations of the equilibrium and a new implicit gradient damage formulation are introduced to govern the deformation of the solid and evolution of the damage. The resulting nonlocal damage evolution equation featuring the growth of diffusive crack is integrated with a characteristic length scale to eliminate the common mesh-bias issue in FEM implementation. In contrast to the traditional gradient-enhanced damage approaches, the nonlocal damage field here is defined as the primary variable of the damage evolution equation without interpolation mismatch between the displacement and nonlocal damage fields. For derivation of the material constitutive law and local damage parameter, a novel strain energy density (SED) function based on the energy limiter theory for brittle crack growth problems under small strain regime is introduced. To further improve the performance of the developed model, an initial SED threshold, which is used for determining the critical point when damage starts to initiate in the material, is integrated into the novel energy limiter theory. For preventing nonphysical failure in compression domains, the spectral decomposition technique for the strain tensor is adopted to split the reference SED. With integrating the energy limiter into the developed theory, unlike the conventional nonlocal damage theories where the interpretation of the length scale is still ambiguous, the developed nonlocal damage model defines the length scale parameter as the problem-dependent factor. The performance and ability of the proposed model are demonstrated via a set of representative numerical examples in 1D, 2D and 3D fracture problems. •We present a new nonlocal damage model with energy limiter for brittle fracture.•Different from traditional approaches, the nonlocal damage variable is considered as a primary unknown.•A physic-based characteristic length scale is derived.•Material constitutive and local damage laws are redefined in terms of energy limiter and initial damage threshold.•The new damage models are insensitive to the meshes (mesh-independent solutions are obtained).
ArticleNumber 116123
Author Tran, Hung Thanh
Hirose, Sohichi
Chijiwa, Nobuhiro
Bui, Tinh Quoc
Author_xml – sequence: 1
  givenname: Hung Thanh
  surname: Tran
  fullname: Tran, Hung Thanh
  organization: Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-W8-22, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
– sequence: 2
  givenname: Tinh Quoc
  surname: Bui
  fullname: Bui, Tinh Quoc
  email: buiquoctinh@duytan.edu.vn
  organization: Duy Tan Research Institute for Computational Engineering (DTRICE), Duy Tan University, 6 Tran Nhat Duat, Dist. 1, Ho Chi Minh City 700000, Viet Nam
– sequence: 3
  givenname: Nobuhiro
  orcidid: 0000-0002-8981-1488
  surname: Chijiwa
  fullname: Chijiwa, Nobuhiro
  organization: Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-W8-22, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
– sequence: 4
  givenname: Sohichi
  surname: Hirose
  fullname: Hirose, Sohichi
  organization: Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-W8-22, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
BookMark eNp90L1OwzAQwHELFYm28ABsfoEEn5MmDkxVxZdUiaXMlmOfg6vEqRy3qG9PSpkY6uWm_-n8m5GJ7z0Scg8sBQbFwzbVnUo541kKUADPrsgURFklHDIxIVPG8kVSCr64IbNh2LLxCeBTsl9Sj9_UdbvWaRdpE5Rx6CM1qlMN0q432NJaDWho7yl6DM2Rtq5zEQO1faB1cDG2SG1QOu4DPtLNF_bhSJU31O87DE6rljp_wCG6RkXX-1tybVU74N3fnJPPl-fN6i1Zf7y-r5brRGc5xKTUminIcl1wrEq9EAJqCzlTtS01ikrwUlXWZJlgFg3UjIMQqIzmmNsCMZsTOO_VoR-GgFbugutUOEpg8uQmt3J0kyc3eXYbm_JfM7r8Xh2Dcu3F8ulc4vilg8MgBz1aajQuoI7S9O5C_QNabYxS
CitedBy_id crossref_primary_10_1016_j_tafmec_2024_104329
crossref_primary_10_1016_j_compscitech_2024_110540
crossref_primary_10_1016_j_compstruc_2024_107418
crossref_primary_10_1016_j_compstruct_2024_118707
crossref_primary_10_1016_j_mechmat_2025_105310
crossref_primary_10_1016_j_ijnonlinmec_2024_104755
crossref_primary_10_3390_app14188230
crossref_primary_10_1007_s00466_023_02391_y
Cites_doi 10.1007/s00466-014-1109-y
10.1002/nag.518
10.1016/j.cma.2016.09.005
10.1016/j.mechrescom.2010.10.006
10.1016/j.cma.2021.114134
10.1007/s10704-008-9307-2
10.1115/1.1636795
10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
10.1016/S0022-5096(98)00034-9
10.1007/s42558-019-0004-2
10.1016/j.cma.2012.01.008
10.1016/j.jmps.2013.06.007
10.1016/j.engfracmech.2017.06.019
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
10.1007/s10704-010-9448-y
10.1002/nme.1620280214
10.1177/1056789513504319
10.1016/j.ijsolstr.2011.08.012
10.1016/j.engfracmech.2021.107705
10.1007/s00466-022-02143-4
10.1111/j.1460-2695.2005.00864.x
10.1007/BF01181824
10.1016/S0045-7825(99)00213-3
10.1016/j.cma.2010.04.011
10.1016/j.jmps.2007.02.012
10.1016/j.cma.2016.12.038
10.1016/j.cma.2016.05.015
10.1016/j.finel.2017.03.002
10.1016/j.compstruc.2012.06.006
10.1016/j.jmps.2009.04.011
10.1002/nag.422
10.1016/j.cma.2017.09.019
10.1016/S0167-6636(97)00048-3
10.1016/S0013-7944(03)00015-8
10.1007/s00466-020-01939-6
10.1108/EC-08-2013-0203
10.1002/nme.1262
10.1016/0167-6636(85)90007-9
10.1016/0013-7944(86)90021-4
10.1016/0148-9062(91)93232-U
10.1016/j.cma.2018.10.042
10.1002/nme.2861
10.1016/j.finel.2018.01.002
10.1016/j.cma.2017.04.028
10.1016/j.engfracmech.2021.107688
10.1007/s10659-007-9107-3
10.1016/j.engfracmech.2016.01.020
10.1016/j.ijnonlinmec.2017.06.018
10.1016/j.ijsolstr.2003.09.020
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cma.2023.116123
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2023_116123
S0045782523002475
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
VH1
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c341t-7cc0a134c62e97c5881bf140abf7ce89827a9fd3380fed1b02188eadc2e4f6ee3
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Wed Oct 01 05:16:10 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Fri Feb 23 02:38:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gradient-enhanced damage model
Energy decomposition
Energy limiter
Mesh bias
Brittle fracture
FEM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-7cc0a134c62e97c5881bf140abf7ce89827a9fd3380fed1b02188eadc2e4f6ee3
ORCID 0000-0002-8981-1488
ParticipantIDs crossref_primary_10_1016_j_cma_2023_116123
crossref_citationtrail_10_1016_j_cma_2023_116123
elsevier_sciencedirect_doi_10_1016_j_cma_2023_116123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bui, Tran (b40) 2021; 387
Volokh (b37) 2010; 37
Giry, Dufour, Mazars (b21) 2011; 48
Bažant, Gettu, Kazemi (b48) 1991; 28
Oliver (b14) 1989; 28
Khoramishad, Akbardoost, Ayatollahi (b49) 2014; 23
Pereira, Weerheijm, Sluys (b7) 2017; 182
Jirásek, Marfia (b23) 2005; 63
Francfort, Marigo (b26) 1998; 46
Miehe, Schänzel (b30) 2014; 65
Peerlings, de Borst, Brekelmans, de Vree (b5) 1996; 39
Volokh (b35) 2004; 71
Ortiz (b41) 1985; 4
Teichtmeister, Kienle, Aldakheel, Keip (b31) 2017; 97
Borden, Verhoosel, Scott, Hughes, Landis (b50) 2012; 217–220
Bellis, Wriggers, Hudobivnik, Zavarise (b19) 2018; 144
Rodríguez-Ferran, Morata, Huerta (b24) 2005; 29
Zhang, Bui (b2) 2015; 32
Bui, Tran (b15) 2022; 69
Kuhl, Ramm, de Borst (b25) 2000; 183
Zhang, Sloan, Vignes, Sheng (b32) 2017; 322
Miehe, Welschinger, Hofacker (b28) 2010; 83
Volokh (b36) 2007; 55
Bui, Hu (b29) 2021; 248
Buchholz, Just, Richard (b54) 2005; 28
Peerlings, de Borst, Brekelmans, Geers (b43) 1998; 3
Dekker, van der Meer, Maljaars, Sluys (b3) 2021; 248
Ahmed, Volyiadjis, Park (b10) 2021; 68
Lazarus, Buchholz, Fulland, Wiebesiek (b55) 2008; 153
Moës, Dolbow, Belytschko (b1) 1999; 46
Molnár, Gravouil (b52) 2017; 130
Nguyen, Bui, Hirose (b8) 2018; 328
Pigazzini, Kamensky, van Iersel, Alaydin, Remmers, Bazilevs (b9) 2019; 346
Jirásek, Bauer (b13) 2012; 110–111
Bažant, Oh (b6) 1983; 16
Rots, Nauta, Kuster, Blaauwendraad (b12) 1985; 30
Trapper, Volokh (b38) 2010; 162
Kurumatani, Terada, Kato, Kyoya, Kashiyama (b17) 2016; 155
Cervera, Chiumenti (b16) 2006; 30
Faye, Lev, Volokh (b39) 2019; 1
Borden, Hughes, Landis, Anvari, Lee (b33) 2016; 312
Peerlings, de Borst, Brekelmans, de Vree, Spee (b45) 1996; 15
Lemaitre (b11) 1986; 25
Amor, Marigo, Maurini (b46) 2009; 57
Geers, Peerlings, Brekelmans, de Borst (b22) 2000; 144
Kim, Armero (b4) 2017; 317
Simone, Askes, Sluys (b20) 2004; 41
Bourdin, Francfort, Marigo (b27) 2008; 91
Sumi, Wang (b51) 1998; 28
de Borst, Benallal, Heeres (b44) 1996; 6
Miehe, Hofacker, Welschinger (b42) 2010; 199
Pijaudier-Cabot, Bažant (b18) 1987; 113
de Borst, Verhoosel (b34) 2016; 312
Ambati, Gerasimov, Lorenzis (b47) 2015; 55
Buchholz, Chergui, Richard (b53) 2004; 71
Kim (10.1016/j.cma.2023.116123_b4) 2017; 317
Moës (10.1016/j.cma.2023.116123_b1) 1999; 46
Bui (10.1016/j.cma.2023.116123_b40) 2021; 387
Pijaudier-Cabot (10.1016/j.cma.2023.116123_b18) 1987; 113
Nguyen (10.1016/j.cma.2023.116123_b8) 2018; 328
Sumi (10.1016/j.cma.2023.116123_b51) 1998; 28
Borden (10.1016/j.cma.2023.116123_b33) 2016; 312
Ortiz (10.1016/j.cma.2023.116123_b41) 1985; 4
de Borst (10.1016/j.cma.2023.116123_b44) 1996; 6
Miehe (10.1016/j.cma.2023.116123_b42) 2010; 199
Lemaitre (10.1016/j.cma.2023.116123_b11) 1986; 25
Bellis (10.1016/j.cma.2023.116123_b19) 2018; 144
Cervera (10.1016/j.cma.2023.116123_b16) 2006; 30
Bui (10.1016/j.cma.2023.116123_b15) 2022; 69
Bui (10.1016/j.cma.2023.116123_b29) 2021; 248
Kuhl (10.1016/j.cma.2023.116123_b25) 2000; 183
Faye (10.1016/j.cma.2023.116123_b39) 2019; 1
Kurumatani (10.1016/j.cma.2023.116123_b17) 2016; 155
Buchholz (10.1016/j.cma.2023.116123_b53) 2004; 71
Teichtmeister (10.1016/j.cma.2023.116123_b31) 2017; 97
Ambati (10.1016/j.cma.2023.116123_b47) 2015; 55
Simone (10.1016/j.cma.2023.116123_b20) 2004; 41
Molnár (10.1016/j.cma.2023.116123_b52) 2017; 130
Rodríguez-Ferran (10.1016/j.cma.2023.116123_b24) 2005; 29
Bažant (10.1016/j.cma.2023.116123_b48) 1991; 28
Giry (10.1016/j.cma.2023.116123_b21) 2011; 48
Miehe (10.1016/j.cma.2023.116123_b30) 2014; 65
Jirásek (10.1016/j.cma.2023.116123_b13) 2012; 110–111
Pigazzini (10.1016/j.cma.2023.116123_b9) 2019; 346
de Borst (10.1016/j.cma.2023.116123_b34) 2016; 312
Zhang (10.1016/j.cma.2023.116123_b32) 2017; 322
Bourdin (10.1016/j.cma.2023.116123_b27) 2008; 91
Volokh (10.1016/j.cma.2023.116123_b36) 2007; 55
Miehe (10.1016/j.cma.2023.116123_b28) 2010; 83
Khoramishad (10.1016/j.cma.2023.116123_b49) 2014; 23
Oliver (10.1016/j.cma.2023.116123_b14) 1989; 28
Geers (10.1016/j.cma.2023.116123_b22) 2000; 144
Amor (10.1016/j.cma.2023.116123_b46) 2009; 57
Peerlings (10.1016/j.cma.2023.116123_b5) 1996; 39
Ahmed (10.1016/j.cma.2023.116123_b10) 2021; 68
Trapper (10.1016/j.cma.2023.116123_b38) 2010; 162
Peerlings (10.1016/j.cma.2023.116123_b43) 1998; 3
Dekker (10.1016/j.cma.2023.116123_b3) 2021; 248
Francfort (10.1016/j.cma.2023.116123_b26) 1998; 46
Lazarus (10.1016/j.cma.2023.116123_b55) 2008; 153
Buchholz (10.1016/j.cma.2023.116123_b54) 2005; 28
Jirásek (10.1016/j.cma.2023.116123_b23) 2005; 63
Volokh (10.1016/j.cma.2023.116123_b35) 2004; 71
Peerlings (10.1016/j.cma.2023.116123_b45) 1996; 15
Volokh (10.1016/j.cma.2023.116123_b37) 2010; 37
Bažant (10.1016/j.cma.2023.116123_b6) 1983; 16
Rots (10.1016/j.cma.2023.116123_b12) 1985; 30
Pereira (10.1016/j.cma.2023.116123_b7) 2017; 182
Borden (10.1016/j.cma.2023.116123_b50) 2012; 217–220
Zhang (10.1016/j.cma.2023.116123_b2) 2015; 32
References_xml – volume: 46
  start-page: 131
  year: 1999
  end-page: 150
  ident: b1
  article-title: A finite element method for crack growth without remeshing
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 155
  start-page: 49
  year: 2016
  end-page: 66
  ident: b17
  article-title: An isotropic damage model based on fracture mechanics for concrete
  publication-title: Eng. Fract. Mech.
– volume: 71
  start-page: 455
  year: 2004
  end-page: 468
  ident: b53
  article-title: Fracture analyses and experimental results of crack growth under general mixed mode loading conditions
  publication-title: Eng. Fract. Mech.
– volume: 6
  start-page: C6
  year: 1996
  end-page: 491–C6–502
  ident: b44
  article-title: A gradient-enhanced damage approach to fracture
  publication-title: J. de Phys. IV Proc.
– volume: 217–220
  start-page: 77
  year: 2012
  end-page: 95
  ident: b50
  article-title: A phase-field description of dynamic brittle fracture
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 71
  start-page: 141
  year: 2004
  end-page: 143
  ident: b35
  article-title: Nonlinear elasticity for modeling fracture of isotropic brittle solids
  publication-title: J. Appl. Mech.
– volume: 312
  start-page: 78
  year: 2016
  end-page: 94
  ident: b34
  article-title: Gradient damage vs phase-field approaches for fracture: Similarities and differences
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 57
  start-page: 1209
  year: 2009
  end-page: 1229
  ident: b46
  article-title: Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments
  publication-title: J. Mech. Phys. Solids
– volume: 28
  start-page: 43
  year: 1991
  end-page: 51
  ident: b48
  article-title: Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves
  publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstracts
– volume: 28
  start-page: 197
  year: 1998
  end-page: 206
  ident: b51
  article-title: A finite-element simulation method for a system of growing cracks in a heterogeneous material
  publication-title: Mech. Mater.
– volume: 48
  start-page: 3431
  year: 2011
  end-page: 3443
  ident: b21
  article-title: Stress-based nonlocal damage model
  publication-title: Int. J. Solids Struct.
– volume: 97
  start-page: 1
  year: 2017
  end-page: 21
  ident: b31
  article-title: Phase field modeling of fracture in anisotropic brittle solids
  publication-title: Int. J. Non-Linear Mech.
– volume: 91
  start-page: 5
  year: 2008
  end-page: 148
  ident: b27
  article-title: The variational approach to fracture
  publication-title: J. Elasticity
– volume: 328
  start-page: 498
  year: 2018
  end-page: 541
  ident: b8
  article-title: Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 39
  start-page: 3391
  year: 1996
  end-page: 3403
  ident: b5
  article-title: Gradient enhanced damage for quasi-brittle materials
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 15
  start-page: 937
  year: 1996
  end-page: 953
  ident: b45
  article-title: Some observations on localisation in non-local and gradient damage models
  publication-title: Eur. J. Mech. A
– volume: 46
  start-page: 1319
  year: 1998
  end-page: 1342
  ident: b26
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
– volume: 130
  start-page: 27
  year: 2017
  end-page: 38
  ident: b52
  article-title: 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture
  publication-title: Finite Elem. Anal. Des.
– volume: 182
  start-page: 689
  year: 2017
  end-page: 707
  ident: b7
  article-title: A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage model
  publication-title: Eng. Fract. Mech.
– volume: 32
  start-page: 473
  year: 2015
  end-page: 497
  ident: b2
  article-title: A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures
  publication-title: Eng. Comput.
– volume: 41
  start-page: 351
  year: 2004
  end-page: 363
  ident: b20
  article-title: Incorrect initiation and propagation of failure in non-local and gradient-enhanced media
  publication-title: Int. J. Solids Struct.
– volume: 28
  start-page: 461
  year: 1989
  end-page: 474
  ident: b14
  article-title: A consistent characteristic length for smeared cracking models
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 322
  start-page: 123
  year: 2017
  end-page: 136
  ident: b32
  article-title: A modification of the phase-field model for mixed mode crack propagation in rock-like materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 25
  start-page: 523
  year: 1986
  end-page: 537
  ident: b11
  article-title: Local approach of fracture
  publication-title: Eng. Fract. Mech.
– volume: 55
  start-page: 2237
  year: 2007
  end-page: 2264
  ident: b36
  article-title: Hyperelasticity with softening for modeling materials failure
  publication-title: J. Mech. Phys. Solids
– volume: 248
  year: 2021
  ident: b3
  article-title: A cohesive XFEM model for simulating fatigue crack growth under various load conditions
  publication-title: Eng. Fract. Mech.
– volume: 183
  start-page: 87
  year: 2000
  end-page: 103
  ident: b25
  article-title: An anisotropic gradient damage model for quasi-brittle materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 144
  start-page: 1
  year: 2000
  end-page: 15
  ident: b22
  article-title: Phenomenological nonlocal approaches based on implicit gradient-enhanced damage
  publication-title: Acta Mech.
– volume: 1
  start-page: 4
  year: 2019
  ident: b39
  article-title: The effect of local inertia around the crack-tip in dynamic fracture of soft materials
  publication-title: Mech.Soft Mater.
– volume: 68
  start-page: 461
  year: 2021
  end-page: 486
  ident: b10
  article-title: A nonlocal damage model for concrete with three length scales
  publication-title: Comput. Mech.
– volume: 153
  start-page: 141
  year: 2008
  end-page: 151
  ident: b55
  article-title: Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments
  publication-title: Int. J. Fract.
– volume: 312
  start-page: 130
  year: 2016
  end-page: 166
  ident: b33
  article-title: A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 346
  start-page: 152
  year: 2019
  end-page: 179
  ident: b9
  article-title: Gradient-enhanced damage modeling in Kirchhoff–Love shells: Application to isogeometric analysis of composite laminates
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 162
  start-page: 245
  year: 2010
  end-page: 253
  ident: b38
  article-title: Modeling dynamic failure in rubber
  publication-title: Int. J. Fract.
– volume: 69
  start-page: 1323
  year: 2022
  end-page: 1346
  ident: b15
  article-title: Dynamic brittle fracture with a new energy limiter-based scalar damage model
  publication-title: Comput. Mech.
– volume: 63
  start-page: 77
  year: 2005
  end-page: 102
  ident: b23
  article-title: Non-local damage model based on displacement averaging
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 4
  start-page: 67
  year: 1985
  end-page: 93
  ident: b41
  article-title: A constitutive theory for the inelastic behavior of concrete
  publication-title: Mech. Mater.
– volume: 30
  year: 1985
  ident: b12
  article-title: Smeared crack approach and fracture localization in concrete
  publication-title: HERON
– volume: 29
  start-page: 473
  year: 2005
  end-page: 493
  ident: b24
  article-title: A new damage model based on non-local displacements
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 110–111
  start-page: 60
  year: 2012
  end-page: 78
  ident: b13
  article-title: Numerical aspects of the crack band approach
  publication-title: Comput. Struct.
– volume: 55
  start-page: 383
  year: 2015
  end-page: 405
  ident: b47
  article-title: A review on phase-field models of brittle fracture and a new fast hybrid formulation
  publication-title: Comput. Mech.
– volume: 248
  year: 2021
  ident: b29
  article-title: A review of phase-field models, fundamentals and their applications to composite laminates
  publication-title: Eng. Fract. Mech.
– volume: 317
  year: 2017
  ident: b4
  article-title: Three-dimensional finite elements with embedded strong discontinuities for the analysis of solids at failure in the finite deformation range
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 16
  start-page: 155
  year: 1983
  end-page: 177
  ident: b6
  article-title: Crack band theory for fracture of concrete
  publication-title: Mater. Struct.
– volume: 199
  start-page: 2765
  year: 2010
  end-page: 2778
  ident: b42
  article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 113
  start-page: 1512
  year: 1987
  end-page: 1533
  ident: b18
  article-title: Nonlocal damage theory
  publication-title: J. Eng. Mech.
– volume: 23
  start-page: 588
  year: 2014
  end-page: 605
  ident: b49
  article-title: Size effects on parameters of cohesive zone model in mode I fracture of limestone
  publication-title: Int. J. Damage Mech.
– volume: 83
  start-page: 1273
  year: 2010
  end-page: 1311
  ident: b28
  article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 3
  start-page: 323
  year: 1998
  end-page: 342
  ident: b43
  article-title: Gradient-enhanced damage modelling of concrete fracture
  publication-title: Mech. Cohesive-Frictional Mater.
– volume: 387
  year: 2021
  ident: b40
  article-title: A localized mass-field damage model with energy decomposition: Formulation and FE implementation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 144
  start-page: 38
  year: 2018
  end-page: 48
  ident: b19
  article-title: Virtual element formulation for isotropic damage
  publication-title: Finite Elem. Anal. Des.
– volume: 65
  start-page: 93
  year: 2014
  end-page: 113
  ident: b30
  article-title: Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure
  publication-title: J. Mech. Phys. Solids
– volume: 30
  start-page: 1173
  year: 2006
  end-page: 1199
  ident: b16
  article-title: Smeared crack approach: back to the original track
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 37
  start-page: 684
  year: 2010
  end-page: 689
  ident: b37
  article-title: On modeling failure of rubber-like materials
  publication-title: Mech. Res. Commun.
– volume: 28
  start-page: 127
  year: 2005
  end-page: 134
  ident: b54
  article-title: Computational simulation and experimental findings of three-dimensional fatigue crack growth in a single-edge notched specimen under torsion loading
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 55
  start-page: 383
  year: 2015
  ident: 10.1016/j.cma.2023.116123_b47
  article-title: A review on phase-field models of brittle fracture and a new fast hybrid formulation
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-014-1109-y
– volume: 30
  start-page: 1173
  issue: 12
  year: 2006
  ident: 10.1016/j.cma.2023.116123_b16
  article-title: Smeared crack approach: back to the original track
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.518
– volume: 312
  start-page: 130
  year: 2016
  ident: 10.1016/j.cma.2023.116123_b33
  article-title: A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.09.005
– volume: 37
  start-page: 684
  issue: 8
  year: 2010
  ident: 10.1016/j.cma.2023.116123_b37
  article-title: On modeling failure of rubber-like materials
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2010.10.006
– volume: 387
  year: 2021
  ident: 10.1016/j.cma.2023.116123_b40
  article-title: A localized mass-field damage model with energy decomposition: Formulation and FE implementation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114134
– volume: 153
  start-page: 141
  year: 2008
  ident: 10.1016/j.cma.2023.116123_b55
  article-title: Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-008-9307-2
– volume: 71
  start-page: 141
  issue: 1
  year: 2004
  ident: 10.1016/j.cma.2023.116123_b35
  article-title: Nonlinear elasticity for modeling fracture of isotropic brittle solids
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.1636795
– volume: 3
  start-page: 323
  issue: 4
  year: 1998
  ident: 10.1016/j.cma.2023.116123_b43
  article-title: Gradient-enhanced damage modelling of concrete fracture
  publication-title: Mech. Cohesive-Frictional Mater.
  doi: 10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
– volume: 16
  start-page: 155
  year: 1983
  ident: 10.1016/j.cma.2023.116123_b6
  article-title: Crack band theory for fracture of concrete
  publication-title: Mater. Struct.
– volume: 46
  start-page: 1319
  issue: 8
  year: 1998
  ident: 10.1016/j.cma.2023.116123_b26
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(98)00034-9
– volume: 1
  start-page: 4
  issue: 1
  year: 2019
  ident: 10.1016/j.cma.2023.116123_b39
  article-title: The effect of local inertia around the crack-tip in dynamic fracture of soft materials
  publication-title: Mech.Soft Mater.
  doi: 10.1007/s42558-019-0004-2
– volume: 217–220
  start-page: 77
  year: 2012
  ident: 10.1016/j.cma.2023.116123_b50
  article-title: A phase-field description of dynamic brittle fracture
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2012.01.008
– volume: 65
  start-page: 93
  year: 2014
  ident: 10.1016/j.cma.2023.116123_b30
  article-title: Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2013.06.007
– volume: 182
  start-page: 689
  year: 2017
  ident: 10.1016/j.cma.2023.116123_b7
  article-title: A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage model
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.06.019
– volume: 46
  start-page: 131
  issue: 1
  year: 1999
  ident: 10.1016/j.cma.2023.116123_b1
  article-title: A finite element method for crack growth without remeshing
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
– volume: 39
  start-page: 3391
  issue: 19
  year: 1996
  ident: 10.1016/j.cma.2023.116123_b5
  article-title: Gradient enhanced damage for quasi-brittle materials
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
– volume: 162
  start-page: 245
  year: 2010
  ident: 10.1016/j.cma.2023.116123_b38
  article-title: Modeling dynamic failure in rubber
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-010-9448-y
– volume: 113
  start-page: 1512
  issue: 10
  year: 1987
  ident: 10.1016/j.cma.2023.116123_b18
  article-title: Nonlocal damage theory
  publication-title: J. Eng. Mech.
– volume: 28
  start-page: 461
  issue: 2
  year: 1989
  ident: 10.1016/j.cma.2023.116123_b14
  article-title: A consistent characteristic length for smeared cracking models
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620280214
– volume: 23
  start-page: 588
  issue: 4
  year: 2014
  ident: 10.1016/j.cma.2023.116123_b49
  article-title: Size effects on parameters of cohesive zone model in mode I fracture of limestone
  publication-title: Int. J. Damage Mech.
  doi: 10.1177/1056789513504319
– volume: 48
  start-page: 3431
  issue: 25–26
  year: 2011
  ident: 10.1016/j.cma.2023.116123_b21
  article-title: Stress-based nonlocal damage model
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2011.08.012
– volume: 248
  year: 2021
  ident: 10.1016/j.cma.2023.116123_b29
  article-title: A review of phase-field models, fundamentals and their applications to composite laminates
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2021.107705
– volume: 69
  start-page: 1323
  year: 2022
  ident: 10.1016/j.cma.2023.116123_b15
  article-title: Dynamic brittle fracture with a new energy limiter-based scalar damage model
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-022-02143-4
– volume: 28
  start-page: 127
  issue: 1-2
  year: 2005
  ident: 10.1016/j.cma.2023.116123_b54
  article-title: Computational simulation and experimental findings of three-dimensional fatigue crack growth in a single-edge notched specimen under torsion loading
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/j.1460-2695.2005.00864.x
– volume: 144
  start-page: 1
  year: 2000
  ident: 10.1016/j.cma.2023.116123_b22
  article-title: Phenomenological nonlocal approaches based on implicit gradient-enhanced damage
  publication-title: Acta Mech.
  doi: 10.1007/BF01181824
– volume: 183
  start-page: 87
  issue: 1-2
  year: 2000
  ident: 10.1016/j.cma.2023.116123_b25
  article-title: An anisotropic gradient damage model for quasi-brittle materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00213-3
– volume: 199
  start-page: 2765
  issue: 45–48
  year: 2010
  ident: 10.1016/j.cma.2023.116123_b42
  article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2010.04.011
– volume: 55
  start-page: 2237
  issue: 10
  year: 2007
  ident: 10.1016/j.cma.2023.116123_b36
  article-title: Hyperelasticity with softening for modeling materials failure
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2007.02.012
– volume: 317
  year: 2017
  ident: 10.1016/j.cma.2023.116123_b4
  article-title: Three-dimensional finite elements with embedded strong discontinuities for the analysis of solids at failure in the finite deformation range
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.12.038
– volume: 312
  start-page: 78
  year: 2016
  ident: 10.1016/j.cma.2023.116123_b34
  article-title: Gradient damage vs phase-field approaches for fracture: Similarities and differences
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.05.015
– volume: 130
  start-page: 27
  year: 2017
  ident: 10.1016/j.cma.2023.116123_b52
  article-title: 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.03.002
– volume: 110–111
  start-page: 60
  year: 2012
  ident: 10.1016/j.cma.2023.116123_b13
  article-title: Numerical aspects of the crack band approach
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.06.006
– volume: 57
  start-page: 1209
  issue: 8
  year: 2009
  ident: 10.1016/j.cma.2023.116123_b46
  article-title: Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2009.04.011
– volume: 29
  start-page: 473
  issue: 5
  year: 2005
  ident: 10.1016/j.cma.2023.116123_b24
  article-title: A new damage model based on non-local displacements
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.422
– volume: 328
  start-page: 498
  year: 2018
  ident: 10.1016/j.cma.2023.116123_b8
  article-title: Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2017.09.019
– volume: 28
  start-page: 197
  issue: 1-4
  year: 1998
  ident: 10.1016/j.cma.2023.116123_b51
  article-title: A finite-element simulation method for a system of growing cracks in a heterogeneous material
  publication-title: Mech. Mater.
  doi: 10.1016/S0167-6636(97)00048-3
– volume: 71
  start-page: 455
  issue: 4-6
  year: 2004
  ident: 10.1016/j.cma.2023.116123_b53
  article-title: Fracture analyses and experimental results of crack growth under general mixed mode loading conditions
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/S0013-7944(03)00015-8
– volume: 68
  start-page: 461
  year: 2021
  ident: 10.1016/j.cma.2023.116123_b10
  article-title: A nonlocal damage model for concrete with three length scales
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-020-01939-6
– volume: 32
  start-page: 473
  issue: 2
  year: 2015
  ident: 10.1016/j.cma.2023.116123_b2
  article-title: A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures
  publication-title: Eng. Comput.
  doi: 10.1108/EC-08-2013-0203
– volume: 63
  start-page: 77
  issue: 1
  year: 2005
  ident: 10.1016/j.cma.2023.116123_b23
  article-title: Non-local damage model based on displacement averaging
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1262
– volume: 4
  start-page: 67
  issue: 1
  year: 1985
  ident: 10.1016/j.cma.2023.116123_b41
  article-title: A constitutive theory for the inelastic behavior of concrete
  publication-title: Mech. Mater.
  doi: 10.1016/0167-6636(85)90007-9
– volume: 25
  start-page: 523
  issue: 5-6
  year: 1986
  ident: 10.1016/j.cma.2023.116123_b11
  article-title: Local approach of fracture
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(86)90021-4
– volume: 28
  start-page: 43
  issue: 1
  year: 1991
  ident: 10.1016/j.cma.2023.116123_b48
  article-title: Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves
  publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstracts
  doi: 10.1016/0148-9062(91)93232-U
– volume: 30
  issue: 1
  year: 1985
  ident: 10.1016/j.cma.2023.116123_b12
  article-title: Smeared crack approach and fracture localization in concrete
  publication-title: HERON
– volume: 15
  start-page: 937
  issue: 6
  year: 1996
  ident: 10.1016/j.cma.2023.116123_b45
  article-title: Some observations on localisation in non-local and gradient damage models
  publication-title: Eur. J. Mech. A
– volume: 346
  start-page: 152
  year: 2019
  ident: 10.1016/j.cma.2023.116123_b9
  article-title: Gradient-enhanced damage modeling in Kirchhoff–Love shells: Application to isogeometric analysis of composite laminates
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.10.042
– volume: 83
  start-page: 1273
  issue: 10
  year: 2010
  ident: 10.1016/j.cma.2023.116123_b28
  article-title: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2861
– volume: 144
  start-page: 38
  year: 2018
  ident: 10.1016/j.cma.2023.116123_b19
  article-title: Virtual element formulation for isotropic damage
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2018.01.002
– volume: 322
  start-page: 123
  year: 2017
  ident: 10.1016/j.cma.2023.116123_b32
  article-title: A modification of the phase-field model for mixed mode crack propagation in rock-like materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2017.04.028
– volume: 248
  year: 2021
  ident: 10.1016/j.cma.2023.116123_b3
  article-title: A cohesive XFEM model for simulating fatigue crack growth under various load conditions
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2021.107688
– volume: 91
  start-page: 5
  year: 2008
  ident: 10.1016/j.cma.2023.116123_b27
  article-title: The variational approach to fracture
  publication-title: J. Elasticity
  doi: 10.1007/s10659-007-9107-3
– volume: 155
  start-page: 49
  year: 2016
  ident: 10.1016/j.cma.2023.116123_b17
  article-title: An isotropic damage model based on fracture mechanics for concrete
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2016.01.020
– volume: 6
  start-page: C6
  year: 1996
  ident: 10.1016/j.cma.2023.116123_b44
  article-title: A gradient-enhanced damage approach to fracture
  publication-title: J. de Phys. IV Proc.
– volume: 97
  start-page: 1
  year: 2017
  ident: 10.1016/j.cma.2023.116123_b31
  article-title: Phase field modeling of fracture in anisotropic brittle solids
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2017.06.018
– volume: 41
  start-page: 351
  issue: 2
  year: 2004
  ident: 10.1016/j.cma.2023.116123_b20
  article-title: Incorrect initiation and propagation of failure in non-local and gradient-enhanced media
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2003.09.020
SSID ssj0000812
Score 2.4903696
Snippet We present a general form of the gradient-enhanced damage theory and its numerical implementation using finite element method (FEM) in modeling quasi-static...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116123
SubjectTerms Brittle fracture
Energy decomposition
Energy limiter
FEM
Gradient-enhanced damage model
Mesh bias
Title A new implicit gradient damage model based on energy limiter for brittle fracture: Theory and numerical investigation
URI https://dx.doi.org/10.1016/j.cma.2023.116123
Volume 413
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AKRWK
  dateStart: 19720601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUCUR3UDE1JomzhxwlZVVAVEJyp1ixw_UFBJq5Cs_HbOTkKLBAyMiWwp8tl338X3fUfI1UCHMuDMcxAqU4cmmKdwT0rHCzVTIgiE8AzB-WkaTGb0Ye7PW2TUcGFMWWXt-yufbr11_aZXr2ZvlaaG40uNFrv5rYmBhhmiOaXMdDG4-ViXeWDIqxTDqe-Y0c3Npq3xElZ6yPXQcRgZkp9j00a8GR-QvRoowrD6lkPSUlmb7NegEeoj-d4muxuKgkekHALiZEhtnXhawEtuS7oKkPwNPQfYxjdgQpeEZQbKMv9gYVlOOSCAhSRPjawxaEOfKnN1CxV9H3gmISurC54FpGt9jmV2TGbju-fRxKk7KzgCo1bhMCH6fOBREbgqYsIPEbxqTLV4oplQYRS6jEdaYvra10oOEgMEQtxzwlVUB0p5J2QrW2bqlADiDRFpt699DzO9QCOeQRRCuUyEYJK7HdJv1jQWtey46X6xiJv6stcYzRAbM8SVGTrk-mvKqtLc-GswbQwVf9s4McaE36ed_W_aOdkxT1UF4AXZKvJSXSIqKZKu3XZdsj28f5xMPwEFEeIR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADb8SbG5iQAm3ixClbhUDl1QkktsjxAwWVFIV05bdzdhJaJGBgTWIp8jl338Xf9xnguGtiFQkeeASVmcdS6lNEoJQXxIZrGUVSBlbgfD-MBo_s5il8asFFo4WxtMo691c53WXr-spZPZtnb1lmNb7MerHb35pUaHg4B_Ms9LntwE4_pjwPqnmVZTgLPft4s7XpSF7SeQ_5AWUO60Pyc3GaKThXq7BcI0XsVy-zBi2dr8NKjRqx_ibf12FpxlJwAyZ9JKCMmSOKZyU-F47TVaISr5Q60J18g7Z2KRznqJ30D0dO5lQgIVhMi8z6GqOx-qlJoc-x0u-jyBXmk2qHZ4TZ1KBjnG_C49Xlw8XAq49W8CSVrdLjUnZEN2Ay8nWPyzAm9Gqo1xKp4VLHvdjnomcU9a8do1U3tUggpkUnfc1MpHWwBe18nOttQAIcsmf8jgkDavUiQ4CGYAgTKpWSK-HvQKeZ00TWvuP2-ItR0hDMXhIKQ2LDkFRh2IGTryFvlenGXw-zJlDJt5WTUFH4fdju_4YdwcLg4f4uubse3u7Bor1T0QH3oV0WE31AEKVMD90S_ARX3OOm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+implicit+gradient+damage+model+based+on+energy+limiter+for+brittle+fracture%3A+Theory+and+numerical+investigation&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Tran%2C+Hung+Thanh&rft.au=Bui%2C+Tinh+Quoc&rft.au=Chijiwa%2C+Nobuhiro&rft.au=Hirose%2C+Sohichi&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=413&rft_id=info:doi/10.1016%2Fj.cma.2023.116123&rft.externalDocID=S0045782523002475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon