Generation of Atmospheric Pressure Plasma by Repetitive Nanosecond Pulses in Air Using Water Electrodes
Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator...
Saved in:
Published in | Plasma science & technology Vol. 13; no. 6; pp. 735 - 739 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 |
DOI | 10.1088/1009-0630/13/6/19 |
Cover
Abstract | Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime, Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system. |
---|---|
AbstractList | Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime, Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system. |
Author | 邵涛 于洋 章程 姜慧 严萍 周远翔 |
AuthorAffiliation | Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190, China State Key Laboratory of Control and Simulation of Power Systems and Generating Equipment, Electrical Engineering Department, Tsinghua University, Beijing 100084, China |
Author_xml | – sequence: 1 fullname: 邵涛 于洋 章程 姜慧 严萍 周远翔 |
BookMark | eNqNkE1PAjEQhnvAREB_gLd68-BKu92vHglBNCFKjMRjU8oUapZ2bYsJ_95FCAdjjKdJ3jzPZObtoY51FhC6ouSOkqoaUEJ4QgpGBpQNigHlHdQ9ZeeoF8I7IXnGK9ZFqwlY8DIaZ7HTeBg3LjRr8EbhmYcQth7wrJZhI_Fih1-ggWii-QT8JK0LoJxd4tm2DhCwsXhoPJ4HY1f4TUbweFyDit4tIVygMy1b7PI4-2h-P34dPSTT58njaDhNFMtoTMpyqdJUy4zrLE2LBeFQSZVrpvM2oAAUmErzSmUpL8qyBK5KstAVpHleAKOsj8rDXuVdCB60UCZ-vxe9NLWgROw7Evs-xL4PQZkoBOWtSX-YjTcb6Xd_OrcHx7jmX_jNb_gPTDRL3aLXx2vWzq4-2kpPQkaKtOB5xr4A7dOTTQ |
CitedBy_id | crossref_primary_10_1016_j_saa_2013_10_004 crossref_primary_10_1088_2058_6272_aadc05 crossref_primary_10_1088_1009_0630_15_12_08 crossref_primary_10_1088_1009_0630_18_4_03 crossref_primary_10_1007_s12043_018_1520_6 crossref_primary_10_1007_s40094_017_0271_y crossref_primary_10_1088_1755_1315_1171_1_012058 crossref_primary_10_1063_5_0007662 crossref_primary_10_1016_j_combustflame_2024_113515 crossref_primary_10_1088_2058_6272_19_3_035402 crossref_primary_10_1063_1_5038943 crossref_primary_10_1109_TPS_2016_2519440 crossref_primary_10_1017_S0022377812000463 crossref_primary_10_1039_D3CP06198A crossref_primary_10_1063_1_5085456 crossref_primary_10_1109_TPS_2017_2716976 crossref_primary_10_1038_s41598_024_54111_y crossref_primary_10_1109_TPS_2013_2279254 |
Cites_doi | 10.1088/0256-307X/26/3/035203 10.1088/1009-0630/13/5/15 10.1109/TPS.2010.2048724 10.1063/1.3540504 10.1016/j.tsf.2010.07.044 10.1109/TPS.2004.823973 10.1088/0022-3727/43/3/032001 10.1088/0963-0252/19/4/045017 10.1143/JJAP.47.1071 10.1109/TPS.2008.917947 10.1088/1009-0630/12/2/10 10.1088/0022-3727/43/45/455202 10.1063/1.2819073 10.1016/j.elstat.2008.12.001 10.1063/1.3239512 10.1088/0022-3727/38/2/R01 10.1088/0022-3727/41/21/215203 10.1063/1.3315881 10.1088/1009-0630/9/6/21 10.1063/1.3381132 10.1088/1367-2630/13/11/113035 10.1109/TPS.2009.2037908 10.1063/1.2198100 10.1109/TDEI.2010.5658235 10.1016/j.apsusc.2010.01.045 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION |
DOI | 10.1088/1009-0630/13/6/19 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Generation of Atmospheric Pressure Plasma by Repetitive Nanosecond Pulses in Air Using Water Electrodes |
EndPage | 739 |
ExternalDocumentID | 10_1088_1009_0630_13_6_19 40626954 |
GroupedDBID | 02O 042 123 1JI 1WK 2B. 2C. 2RA 4.4 5B3 5VR 5VS 5ZH 7.M 7.Q 92E 92I 92L 92Q 93N AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 CW9 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO JCGBZ KNG KOT LAP M45 N5L N9A NS0 NT- NT. P2P PJBAE Q02 R4D RIN RNS RO9 ROL RPA RW3 S3P SY9 T37 TCJ TGP W28 W92 ~WA AAPBV CDYEO UNR -SA -S~ AAYXX ACARI ADEQX AEINN AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K |
ID | FETCH-LOGICAL-c341t-77dc22fa49f4226b09e8ac5f3f5f421ee1e3c258c4296777e9c70bf8e2556e313 |
IEDL.DBID | IOP |
ISSN | 1009-0630 |
IngestDate | Wed Oct 01 04:22:47 EDT 2025 Thu Apr 24 23:09:28 EDT 2025 Tue Nov 10 14:15:00 EST 2020 Mon May 13 15:50:46 EDT 2019 Wed Feb 14 10:25:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c341t-77dc22fa49f4226b09e8ac5f3f5f421ee1e3c258c4296777e9c70bf8e2556e313 |
Notes | SHAO Tao , YU Yang , ZHANG Cheng, JIANG Hui , YAN Ping , ZHOU Yuanxiang ( 1.Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; 2.Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190, China; 3.State Key Laboratory of Control and Simulation of Power Systems and Generating Equipment, Electrical Engineering Department, Tsinghua University, Beijing 100084, China) non-thermal plasma; dielectric barrier discharge; pulsed power; nanosecondpulse; pulse repetition frequency; atmospheric pressure air; emission spectra. 34-1187/TL Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime, Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system. |
PageCount | 5 |
ParticipantIDs | iop_primary_10_1088_1009_0630_13_6_19 crossref_citationtrail_10_1088_1009_0630_13_6_19 crossref_primary_10_1088_1009_0630_13_6_19 chongqing_primary_40626954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-12-01 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Plasma science & technology |
PublicationTitleAlternate | Plasma Science & Technology |
PublicationYear | 2011 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 Fridman A (3) 2005; 38 23 Shao T (27) 2011; 13 Wang X (2) 2009; 35 Liu F (8) 2010; 19 Shao T (13) 2008; 41 Lv X (12) 2010; 12 Shao T (24) 2011; 38 10 11 Yang D (7) 2010; 43 Walsh J L (20) 2010; 43 Shao T (26) 2011; 13 14 15 16 17 18 19 Wang X (9) 2007; 9 1 4 5 6 Zhang J (25) 2009; 26 21 |
References_xml | – volume: 26 start-page: 035203 issn: 0256-307X year: 2009 ident: 25 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/26/3/035203 – volume: 13 start-page: 591 issn: 1009-0630 year: 2011 ident: 26 publication-title: Plasma Sci. Technol. doi: 10.1088/1009-0630/13/5/15 – ident: 21 doi: 10.1109/TPS.2010.2048724 – ident: 6 doi: 10.1063/1.3540504 – ident: 1 doi: 10.1016/j.tsf.2010.07.044 – ident: 16 doi: 10.1109/TPS.2004.823973 – volume: 43 start-page: 032001 year: 2010 ident: 20 publication-title: J. Phys. D: Appl. Phy. doi: 10.1088/0022-3727/43/3/032001 – volume: 19 start-page: 045017 issn: 0963-0252 year: 2010 ident: 8 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/19/4/045017 – ident: 23 doi: 10.1143/JJAP.47.1071 – ident: 15 doi: 10.1109/TPS.2008.917947 – volume: 12 start-page: 177 issn: 1009-0630 year: 2010 ident: 12 publication-title: Plasma Sci. Technol. doi: 10.1088/1009-0630/12/2/10 – volume: 43 start-page: 455202 issn: 0022-3727 year: 2010 ident: 7 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/45/455202 – ident: 4 doi: 10.1063/1.2819073 – ident: 14 doi: 10.1016/j.elstat.2008.12.001 – ident: 10 doi: 10.1063/1.3239512 – volume: 38 start-page: 2060 issn: 0093-3813 year: 2011 ident: 24 publication-title: IEEE Trans. Plasma Sci. – volume: 38 start-page: R1 issn: 0022-3727 year: 2005 ident: 3 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/38/2/R01 – volume: 41 start-page: 215203 issn: 0022-3727 year: 2008 ident: 13 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/41/21/215203 – ident: 17 doi: 10.1063/1.3315881 – volume: 9 start-page: 728 issn: 1009-0630 year: 2007 ident: 9 publication-title: Plasma Sci. Technol. doi: 10.1088/1009-0630/9/6/21 – volume: 35 start-page: 1 year: 2009 ident: 2 publication-title: High Voltage Eng. – ident: 19 doi: 10.1063/1.3381132 – volume: 13 start-page: 110335 issn: 1367-2630 year: 2011 ident: 27 publication-title: New J. Phys. doi: 10.1088/1367-2630/13/11/113035 – ident: 5 doi: 10.1109/TPS.2009.2037908 – ident: 18 doi: 10.1063/1.2198100 – ident: 22 doi: 10.1109/TDEI.2010.5658235 – ident: 11 doi: 10.1016/j.apsusc.2010.01.045 |
SSID | ssj0054983 |
Score | 1.9537678 |
Snippet | Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge... |
SourceID | crossref iop chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 735 |
SubjectTerms | DBD 介质阻挡放电 常压等离子体 水电极 空气等离子 纳秒 脉冲电源 非热等离子体 |
Title | Generation of Atmospheric Pressure Plasma by Repetitive Nanosecond Pulses in Air Using Water Electrodes |
URI | http://lib.cqvip.com/qk/84262X/201106/40626954.html http://iopscience.iop.org/1009-0630/13/6/19 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: AUTh Library subscriptions: IOP Publishing issn: 1009-0630 databaseCode: IOP dateStart: 19990101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://iopscience.iop.org/ omitProxy: false ssIdentifier: ssj0054983 providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5UELz4FuuLFfQitM1mk032WEQRQe1Bsbcl-9KiTWqTHvTXO5uk1VoUbyGZbEJmM_PNzsy3CJ2Eice0dUVhPo-aAY9tUwahgqjVEqKkYVq55uSbW3b1EFz3wt4Xz3Y_G9aWvwWHdSbfLd8z6rUJbbN2SfHpflPXrHfXnVhdCHPiqpi-lp5kMCHAmxvB8Sg8Z-nTG3iHGX-0CA_95l4u16q-7bxkJXRVJS-tcSFb6mOes_E_b76OVmuYiTvVvNhACybdRMtluafKt9BTxTbtlIIzizvFIMsdv0Bf4apfcGRwF3D1IMHyHQNId71oYBcxGOMsdzG0xt0xeNUc91Pc6Y9wWXqAHwG5jvBFtbWONvk2eri8uD-_atZbLjQVuLMCsLZWvm-TgFvXYis9buJEhZbaEE4QY4ihyg9jBW6MRVFkuIo8aWPjmMwMJXQHLaVZanYR1p6GUCyhBgBEYHjCpW-lRwPNiFKWsQbamypBDCtqDQHwwmc8DBrIm2hFqJqs3O2Z8SrKpHkcO65lLtzHFYQKJghvoLPpLZPh_hA-Bi19k_txXQy1baDTWZlfxtr7p9w-WikXpMtamAO0VIzG5hAQTSGPyqn8Ceee6WY |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IRAXKC-xhRYjwQVpd-M4ceLjCrpqeZQ9UNGbFb_KCposm-wBfj3jOKm2VamQekqUjC3HE818Y898BnidFhE3zieFxSIbJiJ3Q5WkGqNWR6lWlhvti5M_H_PDk-TDaXq6VsU_rxad6R_hbSAKDlPYJcTlePXr-ZxFY8rGfEzFeGHcJmynjDPPnn_0ZdbbYgx-8pBi3zXp9zWv68azK3yvyrNf6DMuealNHMma05k-gKIfbsg1-TFaNWqk_1xhcrzN9-zA_Q6RkkmQfwgbtnwEd9rMUF0_hrNATO31RypHJs15VXsqgrkmobRwackMIfh5QdRvgnjel62hCSVot6vah9uGzFbogGsyL8lkviRtlgL5hiB3SQ7CKTzG1k_gZHrw9d3hsDudYajR8zUIy42OY1ckwvlqXBUJmxc6dcyl-IBaSy3TcZpr9Hg8yzIrdBYpl1tPemYZZU9hq6xK-wyIiQxGbQWziDUSKwqhYqcilhhOtXacD2D3QjNyEVg4JCKRmIs0GUDUq0rqjtfcH6_xU7b763nuaZmF9BMsKZNcUjGAtxdN-u5uEH6FmluTu_JeorYG8OayzD_62v1PuZdwd_Z-Kj8dHX98DvfaZew2g-YFbDXLld1DHNSo_fZX_wtscPlP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+Atmospheric+Pressure+Plasma+by+Repetitive+Nanosecond+Pulses+in+Air+Using+Water+Electrodes&rft.jtitle=Plasma+science+%26+technology&rft.au=Shao%2C+Tao+%28%E6%B6%9B%E9%82%B5%29&rft.au=Yu%2C+Yang+%28%E6%B4%8B%E4%BA%8E%29&rft.au=Zhang%2C+Cheng+%28%E7%A8%8B%E7%AB%A0%29&rft.au=Jiang%2C+Hui+%28%E6%85%A7%E5%A7%9C%29&rft.date=2011-12-01&rft.pub=IOP+Publishing&rft.issn=1009-0630&rft.volume=13&rft.spage=735&rft_id=info:doi/10.1088%2F1009-0630%2F13%2F6%2F19&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1009_0630_13_6_19 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84262X%2F84262X.jpg |