MODELING THE SWIFT BAT TRIGGER ALGORITHM WITH MACHINE LEARNING

To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift /BAT triggering algorithm for long GRBs, a computatio...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 818; no. 1; p. 55
Main Authors Graff, Philip B., Lien, Amy Y., Baker, John G., Sakamoto, Takanori
Format Journal Article
LanguageEnglish
Published United Kingdom 10.02.2016
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/0004-637X/818/1/55

Cover

Abstract To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift /BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of ≳97% (≲3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z , which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of with power-law indices of and for GRBs above and below a break point of . This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted) To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift/BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of [> ~]97% ([< ~3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of ... with power-law indices of ... for GRBs above and below a break point of ... This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting.
To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift/BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of ≳97% (≲3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of n{sub 0}∼0.48{sub −0.23}{sup +0.41} Gpc{sup −3} yr{sup −1} with power-law indices of n{sub 1}∼1.7{sub −0.5}{sup +0.6} and n{sub 2}∼−5.9{sub −0.1}{sup +5.7} for GRBs above and below a break point of z{sub 1}∼6.8{sub −3.2}{sup +2.8}. This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting.
To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift /BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of ≳97% (≲3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z , which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of with power-law indices of and for GRBs above and below a break point of . This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting.
Author Baker, John G.
Sakamoto, Takanori
Lien, Amy Y.
Graff, Philip B.
Author_xml – sequence: 1
  givenname: Philip B.
  surname: Graff
  fullname: Graff, Philip B.
– sequence: 2
  givenname: Amy Y.
  surname: Lien
  fullname: Lien, Amy Y.
– sequence: 3
  givenname: John G.
  surname: Baker
  fullname: Baker, John G.
– sequence: 4
  givenname: Takanori
  surname: Sakamoto
  fullname: Sakamoto, Takanori
BackLink https://www.osti.gov/biblio/22887054$$D View this record in Osti.gov
BookMark eNqFkEFPgzAUxxujidv0C3gi8eIFaUtL24sJTgYkbEsQM29NV0rEbDApO_jthcx48KDv8F7a_H4vL_8pOG_axgBwg-C9zwnzIITEDXz26nHEPeRRegYmiPrcJT5l52DyA1yCqbXv4xMLMQEPy_VTlKWr2CmSyHnepIvCeQwLp8jTOI5yJ8zidZ4WydLZDN1ZhvMkXUVOFoX5arCuwEWldtZcf88ZeFlExTxxs3WczsPM1T5BvRsYAisEg60olYAVU5AQyrBiW64wGX51WXImWIkMq7BBwZYIFYiyggZpjIg_A7enva3ta2l13Rv9ptumMbqXGHPOIB2puxN16NqPo7G93NdWm91ONaY9Wok4CiBChOL_USYIEcFQA4pPqO5aaztTyUNX71X3KRGUY_pyTFOO4cohfYkkpYPEf0nDzaqv26bvVL37S_0CJZSDvg
CitedBy_id crossref_primary_10_3847_1538_4357_ad6a56
crossref_primary_10_1093_mnras_stz1197
crossref_primary_10_3847_1538_4357_acbfab
crossref_primary_10_1093_mnras_stac2905
crossref_primary_10_3847_1538_4357_aba94f
crossref_primary_10_1051_0004_6361_201832835
crossref_primary_10_3847_1538_4357_ab6167
Cites_doi 10.1007/s11214-005-5096-3
10.1111/j.1365-2966.2010.16691.x
10.1088/0067-0049/218/1/13
10.1086/511417
10.1088/0004-637X/806/1/44
10.1088/0004-637X/749/1/68
10.1006/jcss.1997.1504
10.1088/0004-637X/752/1/32
10.1088/0004-637X/810/1/58
10.1111/j.1365-2966.2010.16787.x
10.1111/j.1365-2966.2009.14548.x
10.1093/mnras/stu642
10.1111/j.1365-2966.2007.12353.x
10.1023/A:1022604100933
10.1086/156922
10.1088/0004-637X/711/1/495
10.1051/0004-6361/201321963
10.1111/j.1365-2966.2011.20288.x
10.1111/j.1365-2966.2010.17044.x
10.1086/527671
10.1088/0004-637X/783/1/24
10.1086/591449
10.1088/0067-0049/185/2/526
10.1088/1475-7516/2007/07/003
10.1086/506610
10.1086/513460
10.1093/mnras/stt537
10.1088/0004-637X/705/2/L104
10.1088/0004-637X/744/2/95
10.1111/j.1365-2966.2008.14343.x
10.1111/j.1365-2966.2011.19501.x
10.1016/S0004-3702(97)00063-5
10.1088/0004-637X/754/1/46
10.1111/j.1365-2966.2011.19459.x
10.1051/0004-6361/201321623
10.1007/BF00994018
10.1086/422091
10.1088/0004-637X/752/1/62
10.1051/0004-6361:200809709
10.1093/mnras/stu1403
10.1023/A:1010933404324
ContentType Journal Article
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
OTOTI
DOI 10.3847/0004-637X/818/1/55
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 22887054
10_3847_0004_637X_818_1_55
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
AAYXX
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
ADIYS
AEFHF
AEINN
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CITATION
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
7TG
KL.
8FD
H8D
L7M
ABPTK
OTOTI
ID FETCH-LOGICAL-c341t-6e40f106b9da90f7a044572a7b8a24b9dcdd8797d1e7f2e16b49a69df0e1c2143
ISSN 0004-637X
IngestDate Fri May 19 01:42:36 EDT 2023
Thu Oct 02 06:40:43 EDT 2025
Tue Aug 05 10:58:56 EDT 2025
Thu Apr 24 23:00:20 EDT 2025
Wed Oct 01 01:48:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c341t-6e40f106b9da90f7a044572a7b8a24b9dcdd8797d1e7f2e16b49a69df0e1c2143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1794496666
PQPubID 23462
ParticipantIDs osti_scitechconnect_22887054
proquest_miscellaneous_1816011452
proquest_miscellaneous_1794496666
crossref_primary_10_3847_0004_637X_818_1_55
crossref_citationtrail_10_3847_0004_637X_818_1_55
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-10
20160210
PublicationDateYYYYMMDD 2016-02-10
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-10
  day: 10
PublicationDecade 2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle The Astrophysical journal
PublicationYear 2016
References Kistler (apj522276bib26) 2009; 705
Yu (apj522276bib49) 2015; 218
Barthelmy (apj522276bib1) 2005; 120
Qin (apj522276bib38) 2010; 406
Guetta (apj522276bib19) 2007; 7
Pescalli (apj522276bib36) 2015
Fynbo (apj522276bib14) 2009; 185
Yüksel (apj522276bib50) 2008; 683
Jakobsson (apj522276bib23) 2012; 752
Wang (apj522276bib46) 2013; 556
Stevenson (apj522276bib42) 2015; 810
Cash (apj522276bib6) 1979; 228
Mingers (apj522276bib32) 1989; 4
Woosley (apj522276bib48) 2012; 752
Petrosian (apj522276bib37) 2015; 806
Le (apj522276bib28) 2007; 661
Palmer (apj522276bib33) 2004
Coward (apj522276bib8) 2013; 432
Gehrels (apj522276bib15) 2004; 611
Salvaterra (apj522276bib40) 2012; 749
Pedregosa (apj522276bib34) 2011; 12
Wikimedia Commons (apj522276bib47) 2008
Campisi (apj522276bib5) 2010; 407
Butler (apj522276bib4) 2010; 711
Wanderman (apj522276bib45) 2010; 406
Breiman (apj522276bib3) 2001; 45
Tanvir (apj522276bib43) 2012; 754
Hopkins (apj522276bib20) 2006; 651
Robertson (apj522276bib39) 2012; 744
Kanaan (apj522276bib24) 2013; 559
Pélangeon (apj522276bib35) 2008; 491
Guetta (apj522276bib18) 2007; 657
McLean (apj522276bib31) 2004
Blum (apj522276bib2) 1997; 97
Fenimore (apj522276bib9) 2004; 13
Graff (apj522276bib17) 2014; 441
Graff (apj522276bib16) 2012; 421
Fenimore (apj522276bib10) 2003
MacKay (apj522276bib30) 2003
Kistler (apj522276bib27) 2008; 673
Feroz (apj522276bib11) 2008; 384
Feroz (apj522276bib12) 2009; 398
Virgili (apj522276bib44) 2011; 417
Ishida (apj522276bib22) 2011; 418
Freund (apj522276bib13) 1997; 55
Kearns (apj522276bib25) 1998; 98
Howell (apj522276bib21) 2014; 444
Salvaterra (apj522276bib41) 2009; 396
Cortes (apj522276bib7) 1995; 20
Lien (apj522276bib29) 2014; 783
References_xml – volume: 120
  start-page: 143
  year: 2005
  ident: apj522276bib1
  publication-title: SSRv
  doi: 10.1007/s11214-005-5096-3
– volume: 406
  start-page: 558
  year: 2010
  ident: apj522276bib38
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16691.x
– volume: 218
  start-page: 13
  year: 2015
  ident: apj522276bib49
  publication-title: ApJS
  doi: 10.1088/0067-0049/218/1/13
– volume: 657
  start-page: L73
  year: 2007
  ident: apj522276bib18
  publication-title: ApJL
  doi: 10.1086/511417
– volume: 806
  start-page: 44
  year: 2015
  ident: apj522276bib37
  publication-title: ApJ
  doi: 10.1088/0004-637X/806/1/44
– volume: 749
  start-page: 68
  year: 2012
  ident: apj522276bib40
  publication-title: ApJ
  doi: 10.1088/0004-637X/749/1/68
– volume: 12
  start-page: 2825
  year: 2011
  ident: apj522276bib34
  publication-title: Journal of Machine Learning Research
– volume: 55
  start-page: 119
  year: 1997
  ident: apj522276bib13
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.1997.1504
– start-page: 663
  year: 2004
  ident: apj522276bib33
– year: 2003
  ident: apj522276bib30
– volume: 752
  start-page: 32
  year: 2012
  ident: apj522276bib48
  publication-title: ApJ
  doi: 10.1088/0004-637X/752/1/32
– year: 2015
  ident: apj522276bib36
– volume: 810
  start-page: 58
  year: 2015
  ident: apj522276bib42
  publication-title: ApJ
  doi: 10.1088/0004-637X/810/1/58
– volume: 406
  start-page: 1944
  year: 2010
  ident: apj522276bib45
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16787.x
– volume: 398
  start-page: 1601
  year: 2009
  ident: apj522276bib12
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14548.x
– start-page: 667
  year: 2004
  ident: apj522276bib31
– volume: 441
  start-page: 1741
  year: 2014
  ident: apj522276bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/stu642
– volume: 384
  start-page: 449
  year: 2008
  ident: apj522276bib11
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12353.x
– volume: 98
  start-page: 269
  year: 1998
  ident: apj522276bib25
– volume: 4
  start-page: 227
  year: 1989
  ident: apj522276bib32
  publication-title: Machine learning
  doi: 10.1023/A:1022604100933
– volume: 228
  start-page: 939
  year: 1979
  ident: apj522276bib6
  publication-title: ApJ
  doi: 10.1086/156922
– volume: 711
  start-page: 495
  year: 2010
  ident: apj522276bib4
  publication-title: ApJ
  doi: 10.1088/0004-637X/711/1/495
– volume: 559
  start-page: A64
  year: 2013
  ident: apj522276bib24
  publication-title: A&A
  doi: 10.1051/0004-6361/201321963
– year: 2008
  ident: apj522276bib47
  publication-title: Svm max sep hyperplane with margin
– volume: 421
  start-page: 169
  year: 2012
  ident: apj522276bib16
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.20288.x
– start-page: 491
  year: 2003
  ident: apj522276bib10
– volume: 407
  start-page: 1972
  year: 2010
  ident: apj522276bib5
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17044.x
– volume: 673
  start-page: L119
  year: 2008
  ident: apj522276bib27
  publication-title: ApJL
  doi: 10.1086/527671
– volume: 783
  start-page: 24
  year: 2014
  ident: apj522276bib29
  publication-title: ApJ
  doi: 10.1088/0004-637X/783/1/24
– volume: 683
  start-page: L5
  year: 2008
  ident: apj522276bib50
  publication-title: ApJL
  doi: 10.1086/591449
– volume: 185
  start-page: 526
  year: 2009
  ident: apj522276bib14
  publication-title: ApJS
  doi: 10.1088/0067-0049/185/2/526
– volume: 7
  start-page: 003
  year: 2007
  ident: apj522276bib19
  publication-title: JCAP
  doi: 10.1088/1475-7516/2007/07/003
– volume: 651
  start-page: 142
  year: 2006
  ident: apj522276bib20
  publication-title: ApJ
  doi: 10.1086/506610
– volume: 661
  start-page: 394
  year: 2007
  ident: apj522276bib28
  publication-title: ApJ
  doi: 10.1086/513460
– volume: 432
  start-page: 2141
  year: 2013
  ident: apj522276bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stt537
– volume: 705
  start-page: L104
  year: 2009
  ident: apj522276bib26
  publication-title: ApJL
  doi: 10.1088/0004-637X/705/2/L104
– volume: 744
  start-page: 95
  year: 2012
  ident: apj522276bib39
  publication-title: ApJ
  doi: 10.1088/0004-637X/744/2/95
– volume: 396
  start-page: 299
  year: 2009
  ident: apj522276bib41
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14343.x
– volume: 418
  start-page: 500
  year: 2011
  ident: apj522276bib22
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19501.x
– volume: 97
  start-page: 245
  year: 1997
  ident: apj522276bib2
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00063-5
– volume: 754
  start-page: 46
  year: 2012
  ident: apj522276bib43
  publication-title: ApJ
  doi: 10.1088/0004-637X/754/1/46
– volume: 417
  start-page: 3025
  year: 2011
  ident: apj522276bib44
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19459.x
– volume: 556
  start-page: A90
  year: 2013
  ident: apj522276bib46
  publication-title: A&A
  doi: 10.1051/0004-6361/201321623
– volume: 20
  start-page: 273
  year: 1995
  ident: apj522276bib7
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 611
  start-page: 1005
  year: 2004
  ident: apj522276bib15
  publication-title: ApJ
  doi: 10.1086/422091
– volume: 752
  start-page: 62
  year: 2012
  ident: apj522276bib23
  publication-title: ApJ
  doi: 10.1088/0004-637X/752/1/62
– volume: 491
  start-page: 157
  year: 2008
  ident: apj522276bib35
  publication-title: A&A
  doi: 10.1051/0004-6361:200809709
– volume: 444
  start-page: 15
  year: 2014
  ident: apj522276bib21
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1403
– volume: 45
  start-page: 5
  year: 2001
  ident: apj522276bib3
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 13
  start-page: 301
  year: 2004
  ident: apj522276bib9
  publication-title: BaltA
SSID ssj0004299
Score 2.2717378
Snippet To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted) To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations,...
To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 55
SubjectTerms Accuracy
ALGORITHMS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Bayesian analysis
COMPUTERIZED SIMULATION
COSMIC GAMMA BURSTS
DATA ANALYSIS
DECISION TREE ANALYSIS
Decision trees
DENSITY
DETECTION
DISTRIBUTION
EFFICIENCY
GAMMA RADIATION
Gamma ray bursts
Machine learning
MATHEMATICAL METHODS AND COMPUTING
Mathematical models
Modelling
NEURAL NETWORKS
RANDOMNESS
RED SHIFT
TELESCOPES
Title MODELING THE SWIFT BAT TRIGGER ALGORITHM WITH MACHINE LEARNING
URI https://www.proquest.com/docview/1794496666
https://www.proquest.com/docview/1816011452
https://www.osti.gov/biblio/22887054
Volume 818
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: O3W
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Electronic Journals
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: IOP
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: M~E
  dateStart: 18950101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELagCIkXBAtoCwsyEtqXKDR2nLh5QQpLeqAeqJtq-2bZiSPtAm1psw_w6xnnaMKh1YKiJpaV2JXny3hmMgdCbxxOdV-5ys5owm2mPGJLP3FtQlytfJXCYeyQ05k_WrKPK2_VlLcqokty9Tb58de4kv-hKvQBXU2U7D9Q9jAodEAb6AtnoDCcb0Xj6fxDNDHmJuO3c34xHsSgd8dWvBgPh9HCCifD-WIcj6agpscjaxqejcazyJpE4WJWJ5K6atAS7vPdZlvTrf0HyojqMn9jaYFpFWu-LBlX-PW7dRCL38vKWaNwzDmU7zqXnyVAo7DOxtBeb3aXbbMDKTyVKwfUmpUy23eLOvewkTTcE-Qv3mav_Ya_1jj6nW27sEWWfo7lkNCGp4xNAX5lFt9fM2XP5mKwnExEHK3i0-032xQRMx_bq4oqd9E9CkzeVPKYuxdNmCwNKm2onKaMoTKT9w59PZi4R3om8rMlp3Q2wG__2K0LESR-hB5WugMOSyA8Rnf0-ggdF2QzkSn4FLdIuD9C9z-VrSfoXY0UDEjBBVIwIAVXSMEHpGCDFFwhBddIeYqWgyg-G9lV5Qw7Aakkt33NnAyUfRWkMnAyLh3GPE4lV31JGfQmadrnAU-J5hnVxFcskH6QZo4mCQUR-hnqrDdrfYywp1PqyICplDssJS5c00wGINJozpjiXUTqdRJJlVbeVDf5IkC9NGtr3BuYMGsrYG0FEZ7XRdbhmW2ZVOXGu0_M8gsQCU1e48Q4gCW5oBT2R1A4uuh1TRYBrNF875JrvbneC7PXMFDnff-Ge_rENzYBjz6_xTgv0IPmXThBnXx3rV-CUJqrVwXUfgLXAH2H
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MODELING+THE+SWIFT+BAT+TRIGGER+ALGORITHM+WITH+MACHINE+LEARNING&rft.jtitle=The+Astrophysical+journal&rft.au=Graff%2C+Philip+B&rft.au=Lien%2C+Amy+Y&rft.au=Baker%2C+John+G&rft.au=Sakamoto%2C+Takanori&rft.date=2016-02-10&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=818&rft.issue=1&rft_id=info:doi/10.3847%2F0004-637X%2F818%2F1%2F55&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon