MODELING THE SWIFT BAT TRIGGER ALGORITHM WITH MACHINE LEARNING
To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift /BAT triggering algorithm for long GRBs, a computatio...
Saved in:
| Published in | The Astrophysical journal Vol. 818; no. 1; p. 55 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United Kingdom
10.02.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0004-637X 1538-4357 |
| DOI | 10.3847/0004-637X/818/1/55 |
Cover
| Abstract | To draw inferences about gamma-ray burst (GRB) source populations based on
Swift
observations, it is essential to understand the detection efficiency of the
Swift
burst alert telescope (BAT). This study considers the problem of modeling the
Swift
/BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of ≳97% (≲3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of
Swift
as a function of redshift
z
, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of
with power-law indices of
and
for GRBs above and below a break point of
. This methodology is able to improve upon earlier studies by more accurately modeling
Swift
detection and using this for fully Bayesian model fitting. |
|---|---|
| AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted) To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift/BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of [> ~]97% ([< ~3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of ... with power-law indices of ... for GRBs above and below a break point of ... This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift/BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of ≳97% (≲3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of n{sub 0}∼0.48{sub −0.23}{sup +0.41} Gpc{sup −3} yr{sup −1} with power-law indices of n{sub 1}∼1.7{sub −0.5}{sup +0.6} and n{sub 2}∼−5.9{sub −0.1}{sup +5.7} for GRBs above and below a break point of z{sub 1}∼6.8{sub −3.2}{sup +2.8}. This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift /BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of ≳97% (≲3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z , which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of with power-law indices of and for GRBs above and below a break point of . This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. |
| Author | Baker, John G. Sakamoto, Takanori Lien, Amy Y. Graff, Philip B. |
| Author_xml | – sequence: 1 givenname: Philip B. surname: Graff fullname: Graff, Philip B. – sequence: 2 givenname: Amy Y. surname: Lien fullname: Lien, Amy Y. – sequence: 3 givenname: John G. surname: Baker fullname: Baker, John G. – sequence: 4 givenname: Takanori surname: Sakamoto fullname: Sakamoto, Takanori |
| BackLink | https://www.osti.gov/biblio/22887054$$D View this record in Osti.gov |
| BookMark | eNqFkEFPgzAUxxujidv0C3gi8eIFaUtL24sJTgYkbEsQM29NV0rEbDApO_jthcx48KDv8F7a_H4vL_8pOG_axgBwg-C9zwnzIITEDXz26nHEPeRRegYmiPrcJT5l52DyA1yCqbXv4xMLMQEPy_VTlKWr2CmSyHnepIvCeQwLp8jTOI5yJ8zidZ4WydLZDN1ZhvMkXUVOFoX5arCuwEWldtZcf88ZeFlExTxxs3WczsPM1T5BvRsYAisEg60olYAVU5AQyrBiW64wGX51WXImWIkMq7BBwZYIFYiyggZpjIg_A7enva3ta2l13Rv9ptumMbqXGHPOIB2puxN16NqPo7G93NdWm91ONaY9Wok4CiBChOL_USYIEcFQA4pPqO5aaztTyUNX71X3KRGUY_pyTFOO4cohfYkkpYPEf0nDzaqv26bvVL37S_0CJZSDvg |
| CitedBy_id | crossref_primary_10_3847_1538_4357_ad6a56 crossref_primary_10_1093_mnras_stz1197 crossref_primary_10_3847_1538_4357_acbfab crossref_primary_10_1093_mnras_stac2905 crossref_primary_10_3847_1538_4357_aba94f crossref_primary_10_1051_0004_6361_201832835 crossref_primary_10_3847_1538_4357_ab6167 |
| Cites_doi | 10.1007/s11214-005-5096-3 10.1111/j.1365-2966.2010.16691.x 10.1088/0067-0049/218/1/13 10.1086/511417 10.1088/0004-637X/806/1/44 10.1088/0004-637X/749/1/68 10.1006/jcss.1997.1504 10.1088/0004-637X/752/1/32 10.1088/0004-637X/810/1/58 10.1111/j.1365-2966.2010.16787.x 10.1111/j.1365-2966.2009.14548.x 10.1093/mnras/stu642 10.1111/j.1365-2966.2007.12353.x 10.1023/A:1022604100933 10.1086/156922 10.1088/0004-637X/711/1/495 10.1051/0004-6361/201321963 10.1111/j.1365-2966.2011.20288.x 10.1111/j.1365-2966.2010.17044.x 10.1086/527671 10.1088/0004-637X/783/1/24 10.1086/591449 10.1088/0067-0049/185/2/526 10.1088/1475-7516/2007/07/003 10.1086/506610 10.1086/513460 10.1093/mnras/stt537 10.1088/0004-637X/705/2/L104 10.1088/0004-637X/744/2/95 10.1111/j.1365-2966.2008.14343.x 10.1111/j.1365-2966.2011.19501.x 10.1016/S0004-3702(97)00063-5 10.1088/0004-637X/754/1/46 10.1111/j.1365-2966.2011.19459.x 10.1051/0004-6361/201321623 10.1007/BF00994018 10.1086/422091 10.1088/0004-637X/752/1/62 10.1051/0004-6361:200809709 10.1093/mnras/stu1403 10.1023/A:1010933404324 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M OTOTI |
| DOI | 10.3847/0004-637X/818/1/55 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
| DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics Physics |
| EISSN | 1538-4357 |
| ExternalDocumentID | 22887054 10_3847_0004_637X_818_1_55 |
| GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV AAYXX ABHWH ACBEA ACGFS ACHIP ACNCT ADACN ADIYS AEFHF AEINN AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CITATION CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW 7TG KL. 8FD H8D L7M ABPTK OTOTI |
| ID | FETCH-LOGICAL-c341t-6e40f106b9da90f7a044572a7b8a24b9dcdd8797d1e7f2e16b49a69df0e1c2143 |
| ISSN | 0004-637X |
| IngestDate | Fri May 19 01:42:36 EDT 2023 Thu Oct 02 06:40:43 EDT 2025 Tue Aug 05 10:58:56 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 Wed Oct 01 01:48:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c341t-6e40f106b9da90f7a044572a7b8a24b9dcdd8797d1e7f2e16b49a69df0e1c2143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1794496666 |
| PQPubID | 23462 |
| ParticipantIDs | osti_scitechconnect_22887054 proquest_miscellaneous_1816011452 proquest_miscellaneous_1794496666 crossref_primary_10_3847_0004_637X_818_1_55 crossref_citationtrail_10_3847_0004_637X_818_1_55 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-02-10 20160210 |
| PublicationDateYYYYMMDD | 2016-02-10 |
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | United Kingdom |
| PublicationPlace_xml | – name: United Kingdom |
| PublicationTitle | The Astrophysical journal |
| PublicationYear | 2016 |
| References | Kistler (apj522276bib26) 2009; 705 Yu (apj522276bib49) 2015; 218 Barthelmy (apj522276bib1) 2005; 120 Qin (apj522276bib38) 2010; 406 Guetta (apj522276bib19) 2007; 7 Pescalli (apj522276bib36) 2015 Fynbo (apj522276bib14) 2009; 185 Yüksel (apj522276bib50) 2008; 683 Jakobsson (apj522276bib23) 2012; 752 Wang (apj522276bib46) 2013; 556 Stevenson (apj522276bib42) 2015; 810 Cash (apj522276bib6) 1979; 228 Mingers (apj522276bib32) 1989; 4 Woosley (apj522276bib48) 2012; 752 Petrosian (apj522276bib37) 2015; 806 Le (apj522276bib28) 2007; 661 Palmer (apj522276bib33) 2004 Coward (apj522276bib8) 2013; 432 Gehrels (apj522276bib15) 2004; 611 Salvaterra (apj522276bib40) 2012; 749 Pedregosa (apj522276bib34) 2011; 12 Wikimedia Commons (apj522276bib47) 2008 Campisi (apj522276bib5) 2010; 407 Butler (apj522276bib4) 2010; 711 Wanderman (apj522276bib45) 2010; 406 Breiman (apj522276bib3) 2001; 45 Tanvir (apj522276bib43) 2012; 754 Hopkins (apj522276bib20) 2006; 651 Robertson (apj522276bib39) 2012; 744 Kanaan (apj522276bib24) 2013; 559 Pélangeon (apj522276bib35) 2008; 491 Guetta (apj522276bib18) 2007; 657 McLean (apj522276bib31) 2004 Blum (apj522276bib2) 1997; 97 Fenimore (apj522276bib9) 2004; 13 Graff (apj522276bib17) 2014; 441 Graff (apj522276bib16) 2012; 421 Fenimore (apj522276bib10) 2003 MacKay (apj522276bib30) 2003 Kistler (apj522276bib27) 2008; 673 Feroz (apj522276bib11) 2008; 384 Feroz (apj522276bib12) 2009; 398 Virgili (apj522276bib44) 2011; 417 Ishida (apj522276bib22) 2011; 418 Freund (apj522276bib13) 1997; 55 Kearns (apj522276bib25) 1998; 98 Howell (apj522276bib21) 2014; 444 Salvaterra (apj522276bib41) 2009; 396 Cortes (apj522276bib7) 1995; 20 Lien (apj522276bib29) 2014; 783 |
| References_xml | – volume: 120 start-page: 143 year: 2005 ident: apj522276bib1 publication-title: SSRv doi: 10.1007/s11214-005-5096-3 – volume: 406 start-page: 558 year: 2010 ident: apj522276bib38 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16691.x – volume: 218 start-page: 13 year: 2015 ident: apj522276bib49 publication-title: ApJS doi: 10.1088/0067-0049/218/1/13 – volume: 657 start-page: L73 year: 2007 ident: apj522276bib18 publication-title: ApJL doi: 10.1086/511417 – volume: 806 start-page: 44 year: 2015 ident: apj522276bib37 publication-title: ApJ doi: 10.1088/0004-637X/806/1/44 – volume: 749 start-page: 68 year: 2012 ident: apj522276bib40 publication-title: ApJ doi: 10.1088/0004-637X/749/1/68 – volume: 12 start-page: 2825 year: 2011 ident: apj522276bib34 publication-title: Journal of Machine Learning Research – volume: 55 start-page: 119 year: 1997 ident: apj522276bib13 publication-title: Journal of Computer and System Sciences doi: 10.1006/jcss.1997.1504 – start-page: 663 year: 2004 ident: apj522276bib33 – year: 2003 ident: apj522276bib30 – volume: 752 start-page: 32 year: 2012 ident: apj522276bib48 publication-title: ApJ doi: 10.1088/0004-637X/752/1/32 – year: 2015 ident: apj522276bib36 – volume: 810 start-page: 58 year: 2015 ident: apj522276bib42 publication-title: ApJ doi: 10.1088/0004-637X/810/1/58 – volume: 406 start-page: 1944 year: 2010 ident: apj522276bib45 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16787.x – volume: 398 start-page: 1601 year: 2009 ident: apj522276bib12 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14548.x – start-page: 667 year: 2004 ident: apj522276bib31 – volume: 441 start-page: 1741 year: 2014 ident: apj522276bib17 publication-title: MNRAS doi: 10.1093/mnras/stu642 – volume: 384 start-page: 449 year: 2008 ident: apj522276bib11 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12353.x – volume: 98 start-page: 269 year: 1998 ident: apj522276bib25 – volume: 4 start-page: 227 year: 1989 ident: apj522276bib32 publication-title: Machine learning doi: 10.1023/A:1022604100933 – volume: 228 start-page: 939 year: 1979 ident: apj522276bib6 publication-title: ApJ doi: 10.1086/156922 – volume: 711 start-page: 495 year: 2010 ident: apj522276bib4 publication-title: ApJ doi: 10.1088/0004-637X/711/1/495 – volume: 559 start-page: A64 year: 2013 ident: apj522276bib24 publication-title: A&A doi: 10.1051/0004-6361/201321963 – year: 2008 ident: apj522276bib47 publication-title: Svm max sep hyperplane with margin – volume: 421 start-page: 169 year: 2012 ident: apj522276bib16 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20288.x – start-page: 491 year: 2003 ident: apj522276bib10 – volume: 407 start-page: 1972 year: 2010 ident: apj522276bib5 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17044.x – volume: 673 start-page: L119 year: 2008 ident: apj522276bib27 publication-title: ApJL doi: 10.1086/527671 – volume: 783 start-page: 24 year: 2014 ident: apj522276bib29 publication-title: ApJ doi: 10.1088/0004-637X/783/1/24 – volume: 683 start-page: L5 year: 2008 ident: apj522276bib50 publication-title: ApJL doi: 10.1086/591449 – volume: 185 start-page: 526 year: 2009 ident: apj522276bib14 publication-title: ApJS doi: 10.1088/0067-0049/185/2/526 – volume: 7 start-page: 003 year: 2007 ident: apj522276bib19 publication-title: JCAP doi: 10.1088/1475-7516/2007/07/003 – volume: 651 start-page: 142 year: 2006 ident: apj522276bib20 publication-title: ApJ doi: 10.1086/506610 – volume: 661 start-page: 394 year: 2007 ident: apj522276bib28 publication-title: ApJ doi: 10.1086/513460 – volume: 432 start-page: 2141 year: 2013 ident: apj522276bib8 publication-title: MNRAS doi: 10.1093/mnras/stt537 – volume: 705 start-page: L104 year: 2009 ident: apj522276bib26 publication-title: ApJL doi: 10.1088/0004-637X/705/2/L104 – volume: 744 start-page: 95 year: 2012 ident: apj522276bib39 publication-title: ApJ doi: 10.1088/0004-637X/744/2/95 – volume: 396 start-page: 299 year: 2009 ident: apj522276bib41 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.14343.x – volume: 418 start-page: 500 year: 2011 ident: apj522276bib22 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19501.x – volume: 97 start-page: 245 year: 1997 ident: apj522276bib2 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00063-5 – volume: 754 start-page: 46 year: 2012 ident: apj522276bib43 publication-title: ApJ doi: 10.1088/0004-637X/754/1/46 – volume: 417 start-page: 3025 year: 2011 ident: apj522276bib44 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19459.x – volume: 556 start-page: A90 year: 2013 ident: apj522276bib46 publication-title: A&A doi: 10.1051/0004-6361/201321623 – volume: 20 start-page: 273 year: 1995 ident: apj522276bib7 publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 611 start-page: 1005 year: 2004 ident: apj522276bib15 publication-title: ApJ doi: 10.1086/422091 – volume: 752 start-page: 62 year: 2012 ident: apj522276bib23 publication-title: ApJ doi: 10.1088/0004-637X/752/1/62 – volume: 491 start-page: 157 year: 2008 ident: apj522276bib35 publication-title: A&A doi: 10.1051/0004-6361:200809709 – volume: 444 start-page: 15 year: 2014 ident: apj522276bib21 publication-title: MNRAS doi: 10.1093/mnras/stu1403 – volume: 45 start-page: 5 year: 2001 ident: apj522276bib3 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 13 start-page: 301 year: 2004 ident: apj522276bib9 publication-title: BaltA |
| SSID | ssj0004299 |
| Score | 2.2717378 |
| Snippet | To draw inferences about gamma-ray burst (GRB) source populations based on
Swift
observations, it is essential to understand the detection efficiency of the... (ProQuest: ... denotes formulae and/or non-USASCII text omitted) To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations,... To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the... |
| SourceID | osti proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 55 |
| SubjectTerms | Accuracy ALGORITHMS ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Bayesian analysis COMPUTERIZED SIMULATION COSMIC GAMMA BURSTS DATA ANALYSIS DECISION TREE ANALYSIS Decision trees DENSITY DETECTION DISTRIBUTION EFFICIENCY GAMMA RADIATION Gamma ray bursts Machine learning MATHEMATICAL METHODS AND COMPUTING Mathematical models Modelling NEURAL NETWORKS RANDOMNESS RED SHIFT TELESCOPES |
| Title | MODELING THE SWIFT BAT TRIGGER ALGORITHM WITH MACHINE LEARNING |
| URI | https://www.proquest.com/docview/1794496666 https://www.proquest.com/docview/1816011452 https://www.osti.gov/biblio/22887054 |
| Volume | 818 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: O3W dateStart: 19950701 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: IOP Electronic Journals customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: IOP dateStart: 19961101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: M~E dateStart: 18950101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELagCIkXBAtoCwsyEtqXKDR2nLh5QQpLeqAeqJtq-2bZiSPtAm1psw_w6xnnaMKh1YKiJpaV2JXny3hmMgdCbxxOdV-5ys5owm2mPGJLP3FtQlytfJXCYeyQ05k_WrKPK2_VlLcqokty9Tb58de4kv-hKvQBXU2U7D9Q9jAodEAb6AtnoDCcb0Xj6fxDNDHmJuO3c34xHsSgd8dWvBgPh9HCCifD-WIcj6agpscjaxqejcazyJpE4WJWJ5K6atAS7vPdZlvTrf0HyojqMn9jaYFpFWu-LBlX-PW7dRCL38vKWaNwzDmU7zqXnyVAo7DOxtBeb3aXbbMDKTyVKwfUmpUy23eLOvewkTTcE-Qv3mav_Ya_1jj6nW27sEWWfo7lkNCGp4xNAX5lFt9fM2XP5mKwnExEHK3i0-032xQRMx_bq4oqd9E9CkzeVPKYuxdNmCwNKm2onKaMoTKT9w59PZi4R3om8rMlp3Q2wG__2K0LESR-hB5WugMOSyA8Rnf0-ggdF2QzkSn4FLdIuD9C9z-VrSfoXY0UDEjBBVIwIAVXSMEHpGCDFFwhBddIeYqWgyg-G9lV5Qw7Aakkt33NnAyUfRWkMnAyLh3GPE4lV31JGfQmadrnAU-J5hnVxFcskH6QZo4mCQUR-hnqrDdrfYywp1PqyICplDssJS5c00wGINJozpjiXUTqdRJJlVbeVDf5IkC9NGtr3BuYMGsrYG0FEZ7XRdbhmW2ZVOXGu0_M8gsQCU1e48Q4gCW5oBT2R1A4uuh1TRYBrNF875JrvbneC7PXMFDnff-Ge_rENzYBjz6_xTgv0IPmXThBnXx3rV-CUJqrVwXUfgLXAH2H |
| linkProvider | IOP Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MODELING+THE+SWIFT+BAT+TRIGGER+ALGORITHM+WITH+MACHINE+LEARNING&rft.jtitle=The+Astrophysical+journal&rft.au=Graff%2C+Philip+B&rft.au=Lien%2C+Amy+Y&rft.au=Baker%2C+John+G&rft.au=Sakamoto%2C+Takanori&rft.date=2016-02-10&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=818&rft.issue=1&rft_id=info:doi/10.3847%2F0004-637X%2F818%2F1%2F55&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |