A Symbolic-Numeric Validation Algorithm for Linear ODEs with Newton–Picard Method

A symbolic-numeric validation algorithm is developed to compute rigorous and tight uniform error bounds for polynomial approximate solutions to linear ordinary differential equations, and in particular D-finite functions. It relies on an a posteriori validation scheme, where such an error bound is c...

Full description

Saved in:
Bibliographic Details
Published inMathematics in computer science Vol. 15; no. 3; pp. 373 - 405
Main Author Bréhard, Florent
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2021
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1661-8270
1661-8289
1661-8289
DOI10.1007/s11786-021-00510-7

Cover

Abstract A symbolic-numeric validation algorithm is developed to compute rigorous and tight uniform error bounds for polynomial approximate solutions to linear ordinary differential equations, and in particular D-finite functions. It relies on an a posteriori validation scheme, where such an error bound is computed afterwards, independently from how the approximation was built. Contrary to Newton–Galerkin validation methods, widely used in the mathematical community of computer-assisted proofs, our algorithm does not rely on finite-dimensional truncations of differential or integral operators, but on an efficient approximation of the resolvent kernel using a Chebyshev spectral method. The result is a much better complexity of the validation process, carefully investigated throughout this article. Indeed, the approximation degree for the resolvent kernel depends linearly on the magnitude of the input equation, while the truncation order used in Newton–Galerkin may be exponential in the same quantity. Numerical experiments based on an implementation in C corroborate this complexity advantage over other a posteriori validation methods, including Newton–Galerkin.
AbstractList A symbolic-numeric validation algorithm is developed to compute rigorous and tight uniform error bounds for polynomial approximate solutions to linear ordinary differential equations, and in particular D-finite functions. It relies on an a posteriori validation scheme, where such an error bound is computed afterwards, independently from how the approximation was built. Contrary to Newton-Galerkin validation methods, widely used in the mathematical community of computer-assisted proofs, our algorithm does not rely on finite-dimensional truncations of differential or integral operators, but on an efficient approximation of the resolvent kernel using a Chebyshev spectral method. The result is a much better complexity of the validation process, carefully investigated throughout this article. Indeed, the approximation degree for the resolvent kernel depends linearly on the magnitude of the input equation, while the truncation order used in Newton-Galerkin may be exponential in the same quantity. Numerical experiments based on an implementation in C corroborate this complexity advantage over other a posteriori validation methods, including Newton-Galerkin.
Author Bréhard, Florent
Author_xml – sequence: 1
  givenname: Florent
  surname: Bréhard
  fullname: Bréhard, Florent
  email: florent.brehard@univ-lille.fr
  organization: Department of Mathematics, Uppsala University
BackLink https://hal.science/hal-03161118$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454101$$DView record from Swedish Publication Index
BookMark eNp9kc9O3DAQxq2KSvxpX4CTJU5IDXgSx3aOEdCCtCyVaLlaTjLZNcrGWzvpilvfgTfsk9RLVlRcOM1o5jefvtF3SPZ61yMhx8DOgDF5HgCkEglLIWEsB5bID-QAhIBEparYe-0l2yeHITwyJlLgcEDuS3r_tKpcZ-tkPq7Q25o-mM42ZrCup2W3cN4OyxVtnacz26Px9O7yKtBNnNI5bgbX__3z_N3Wxjf0Foelaz6Rj63pAn7e1SPy8-vVj4vrZHb37eainCV1xmFIBMtzjpVo2gILZQqosJWYN4hSqSJPFcOWiypVTdtAbSRA3Ne8kRVLBVeYHZEvk27Y4Hqs9NrblfFP2hmrL-1DqZ1f6HHUPOfAIOKnE7403Rv2upzp7YxlIABA_d6yJxO79u7XiGHQj270ffxGp9G1gEzyLFLpRNXeheCxfZUFpre56CkXHXPRL7loGY-ynesI9wv0_6XfufoH3waRuA
Cites_doi 10.1016/j.aam.2020.102027
10.1145/2442829.2442849
10.1145/3208103
10.1515/9781400838974
10.1137/1.9781611970425
10.1023/A:1024467732637
10.1007/s10208-018-09411-x
10.1016/B978-0-12-505630-4.50028-6
10.1016/0378-4754(82)90046-5
10.1137/13090883X
10.1137/0728057
10.1145/178365.178368
10.1137/S0036142996304498
10.1137/120865458
10.1007/s102080010025
10.1109/SYNASC.2007.49
10.4230/LIPIcs.ITP.2019.8
10.1016/S0195-6698(80)80051-5
10.1137/0718028
10.1007/BF00933182
10.1023/A:1023061927787
10.1090/mcom/3135
10.1081/NFA-100105107
10.1090/mcom/3046
10.1115/1.3625776
10.1016/0378-4754(82)90045-3
10.1007/BF02239009
10.1090/noti1276
10.1145/1837934.1837966
10.1006/jsco.2000.0474
10.1145/1073884.1073886
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
VOOES
ADTPV
AOWAS
DF2
DOI 10.1007/s11786-021-00510-7
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList


ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1661-8289
EndPage 405
ExternalDocumentID oai_DiVA_org_uu_454101
oai:HAL:hal-03161118v1
10_1007_s11786_021_00510_7
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UCJ
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
1XC
VOOES
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c341t-60554eb6df9e98a91bef7e5dee78895280ef46b28dfd1ca711ef7c4d7b02648e3
IEDL.DBID AGYKE
ISSN 1661-8270
1661-8289
IngestDate Thu Aug 21 06:55:18 EDT 2025
Tue Oct 14 20:38:23 EDT 2025
Thu Sep 25 00:54:44 EDT 2025
Wed Oct 01 05:04:13 EDT 2025
Fri Feb 21 02:48:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords A posteriori validation
Chebyshev spectral methods
65G20
65L70
65L60
D-finite functions
65Y20
Linear differential equations
Validated numerics
validated numerics
a posteriori validation
linear differential equations
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-60554eb6df9e98a91bef7e5dee78895280ef46b28dfd1ca711ef7c4d7b02648e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3909-2099
OpenAccessLink https://hal.science/hal-03161118
PQID 2554613743
PQPubID 2044127
PageCount 33
ParticipantIDs swepub_primary_oai_DiVA_org_uu_454101
hal_primary_oai_HAL_hal_03161118v1
proquest_journals_2554613743
crossref_primary_10_1007_s11786_021_00510_7
springer_journals_10_1007_s11786_021_00510_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Mathematics in computer science
PublicationTitleAbbrev Math.Comput.Sci
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References NakaoMTNumerical verification methods for solutions of ordinary and partial differential equationsNumer. Funct. Anal. Optim.2001223–4321356184932310.1081/NFA-1001051071106.65315
PlumMComputer-assisted existence proofs for two-point boundary value problemsComputing19914611934110058210.1007/BF022390090782.65107
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art: the Calculus of Inductive Constructions. Springer (2013)
Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM (2013). http://www.chebfun.org/ATAP
Berinde, V.: Iterative Approximation of Fixed Points. Lecture Notes in Mathematics, vol. 1912. Springer, Berlin (2007)
Mezzarobba, M.: Autour de l’ évaluation numérique des fonctions D-finies. PhD thesis, École polytechnique (2011). URL: https://tel.archives-ouvertes.fr/pastel-00663017
Moore, R.E.: Interval Analysis. Prentice-Hall (1966)
SalvyBZimmermannPGfun: a Maple package for the manipulation of generating and holonomic functions in one variableACM Trans. Math. Softw. (TOMS)199420216317710.1145/178365.1783680888.65010
Brisebarre, N., Joldes, M.: Chebyshev interpolation polynomial-based tools for rigorous computing. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pp. 147–154. ACM (2010). URL: https://doi.org/10.1145/1837934.1837966
EpsteinCMirankerWLRivlinTJUltra-arithmetic. II. Intervals of polynomialsMath. Comput. Simul.198224192965465110.1016/0378-4754(82)90046-51402.65040
Kaucher, E., Miranker, W.L.: Validating computation in a function space. In: Reliability in computing: the role of interval methods in scientific computing, pages 403–425. Academic Press Professional, Inc. (1988). https://doi.org/10.1016/B978-0-12-505630-4.50028-6
Boyd, J.P.: Chebyshev and Fourier spectral methods. Dover Publications (2001)
EpsteinCMirankerWLRivlinTJUltra-arithmetic. I. Function data typesMath. Comput. Simul.19822411865465010.1016/0378-4754(82)90045-30493.42005
Joldes, M.: Rigorous Polynomial Approximations and Applications. PhD thesis, École normale supérieure de Lyon – Université de Lyon, Lyon, France (2011). https://tel.archives-ouvertes.fr/tel-00657843
LessardJ-PReinhardtCRigorous numerics for nonlinear differential equations using Chebyshev seriesSIAM J. Numer. Anal.2014521122314808410.1137/13090883X1290.65060
Salvy, B.: D-finiteness: Algorithms and applications. In: M. Kauers (ed.) ISSAC 2005: Proceedings of the 18th International Symposium on Symbolic and Algebraic Computation, Beijing, China, July 24-27, 2005, pages 2–3. ACM Press (2005). https://doi.org/10.1145/1073884.1073886
BenoitAJoldesMMezzarobbaMRigorous uniform approximation of D-finite functions using Chebyshev expansionsMath. Comput.20178630513031341361401910.1090/mcom/31351361.65045
Jiménez-PastorAPillweinVSingerMFSome structural results on Dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^n$$\end{document}-finite functionsAdv. Appl. Math.2020117102027407848910.1016/j.aam.2020.10202707183700
BerzMMakinoKVerified integration of ODEs and flows using differential algebraic methods on high-order Taylor modelsReliable Comput.199844361369165214710.1023/A:10244677326370976.65061
WilczakDZgliczyńskiPCr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document}-Lohner algorithmSchedae Informaticae201120942
Chyzak, F.: The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR), Université d’Orsay (2014). https://tel.archives-ouvertes.fr/tel-01069831
NeumaierATaylor forms—use and limitsReliable Comput.2003914379195212810.1023/A:10230619277871071.65070
GreengardLSpectral integration and two-point boundary value problemsSIAM J. Numer. Anal.199128410711080111145410.1137/07280570731.65064
Bournez, O., Graça, D.S., Pouly, A.: On the complexity of solving initial value problems. In: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, pp. 115–121 (2012). https://doi.org/10.1145/2442829.2442849
Salvy, B.: Linear differential equations as a data-structure. Foundations of Computational Mathematics, pp. 1071–1012, (2019). https://doi.org/10.1007/s10208-018-09411-x
Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications, vol. 26. SIAM (1977)
ZgliczyńskiPC1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} Lohner algorithmFound. Comput. Math.200224429465193094610.1007/s1020800100251049.65038
OlverSTownsendAA fast and well-conditioned spectral methodSIAM Rev.2013553462489308941010.1137/1208654581273.65182
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards Applied Mathematics Series. Courier Corporation (1964)
RallLBResolvent kernels of Green’s function kernels and other finite-rank modifications of Fredholm and Volterra kernelsJ. Optim. Theory Appl.197824598848891210.1007/BF009331820348.45002
KedemGA posteriori error bounds for two-point boundary value problemsSIAM J. Numer. Anal.198118343144861552410.1137/07180280469.65062
Koutschan, C.: Advanced Applications of the Holonomic Systems Approach. PhD thesis, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria (2009). https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
van den BergJBLessardJ-PRigorous numerics in dynamicsNot. AMS20156291344494210.1090/noti12761338.68301
Lalescu, T.: Introduction à la Théorie des Équations Intégrales (Introduction to the Theory of Integral Equations). Hermann, Librairie Scientifique A (1911)
Yamamoto, N.: A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal. 35(5), 2004–2013 (1998). https://doi.org/10.1137/S0036142996304498
Bréhard, F., Mahboubi, A., Pous, D.: A certificate-based approach to formally verified approximations. In: 10th International Conference on Interactive Theorem Proving (ITP 2019), vol. 141, pp. 8:1–8:19 (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.8
HungriaALessardJ-PMireles JamesJDRigorous numerics for analytic solutions of differential equations: the radii polynomial approachMath. Comput.20168529914271459345437010.1090/mcom/30461332.65114
van der HoevenJFast evaluation of holonomic functions near and in regular singularitiesJ. Symbol. Comput.2001316717743183400610.1006/jsco.2000.04740982.65024
BréhardFBrisebarreNJoldesMValidated and numerically efficient Chebyshev spectral methods for linear ordinary differential equationsACM Trans. Math. Softw.201844444:144:42386583210.1145/320810307003069
Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press (2011)
Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis. Oxford University Press, London-New York-Toronto, Ont. (1968)
StanleyRPDifferentiably finite power seriesEur. J. Combinat.1980117518858753010.1016/S0195-6698(80)80051-50445.05012
A Benoit (510_CR2) 2017; 86
D Wilczak (510_CR40) 2011; 20
510_CR41
C Epstein (510_CR12) 1982; 24
MT Nakao (510_CR27) 2001; 22
510_CR22
510_CR23
510_CR20
510_CR26
510_CR25
510_CR19
J-P Lessard (510_CR24) 2014; 52
M Plum (510_CR30) 1991; 46
G Kedem (510_CR21) 1981; 18
JB van den Berg (510_CR38) 2015; 62
LB Rall (510_CR31) 1978; 24
P Zgliczyński (510_CR42) 2002; 2
L Greengard (510_CR16) 1991; 28
A Hungria (510_CR17) 2016; 85
J van der Hoeven (510_CR39) 2001; 31
510_CR3
510_CR4
510_CR6
510_CR7
510_CR9
510_CR11
510_CR33
B Salvy (510_CR34) 1994; 20
S Olver (510_CR29) 2013; 55
510_CR10
510_CR32
510_CR15
510_CR37
C Epstein (510_CR13) 1982; 24
F Bréhard (510_CR8) 2018; 44
510_CR1
M Berz (510_CR5) 1998; 4
510_CR14
510_CR36
A Neumaier (510_CR28) 2003; 9
A Jiménez-Pastor (510_CR18) 2020; 117
RP Stanley (510_CR35) 1980; 1
References_xml – reference: WilczakDZgliczyńskiPCr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document}-Lohner algorithmSchedae Informaticae201120942
– reference: Berinde, V.: Iterative Approximation of Fixed Points. Lecture Notes in Mathematics, vol. 1912. Springer, Berlin (2007)
– reference: NeumaierATaylor forms—use and limitsReliable Comput.2003914379195212810.1023/A:10230619277871071.65070
– reference: StanleyRPDifferentiably finite power seriesEur. J. Combinat.1980117518858753010.1016/S0195-6698(80)80051-50445.05012
– reference: PlumMComputer-assisted existence proofs for two-point boundary value problemsComputing19914611934110058210.1007/BF022390090782.65107
– reference: Lalescu, T.: Introduction à la Théorie des Équations Intégrales (Introduction to the Theory of Integral Equations). Hermann, Librairie Scientifique A (1911)
– reference: Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications, vol. 26. SIAM (1977)
– reference: BenoitAJoldesMMezzarobbaMRigorous uniform approximation of D-finite functions using Chebyshev expansionsMath. Comput.20178630513031341361401910.1090/mcom/31351361.65045
– reference: EpsteinCMirankerWLRivlinTJUltra-arithmetic. I. Function data typesMath. Comput. Simul.19822411865465010.1016/0378-4754(82)90045-30493.42005
– reference: Bournez, O., Graça, D.S., Pouly, A.: On the complexity of solving initial value problems. In: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, pp. 115–121 (2012). https://doi.org/10.1145/2442829.2442849
– reference: Boyd, J.P.: Chebyshev and Fourier spectral methods. Dover Publications (2001)
– reference: Chyzak, F.: The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR), Université d’Orsay (2014). https://tel.archives-ouvertes.fr/tel-01069831
– reference: BréhardFBrisebarreNJoldesMValidated and numerically efficient Chebyshev spectral methods for linear ordinary differential equationsACM Trans. Math. Softw.201844444:144:42386583210.1145/320810307003069
– reference: Bréhard, F., Mahboubi, A., Pous, D.: A certificate-based approach to formally verified approximations. In: 10th International Conference on Interactive Theorem Proving (ITP 2019), vol. 141, pp. 8:1–8:19 (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.8
– reference: OlverSTownsendAA fast and well-conditioned spectral methodSIAM Rev.2013553462489308941010.1137/1208654581273.65182
– reference: SalvyBZimmermannPGfun: a Maple package for the manipulation of generating and holonomic functions in one variableACM Trans. Math. Softw. (TOMS)199420216317710.1145/178365.1783680888.65010
– reference: HungriaALessardJ-PMireles JamesJDRigorous numerics for analytic solutions of differential equations: the radii polynomial approachMath. Comput.20168529914271459345437010.1090/mcom/30461332.65114
– reference: RallLBResolvent kernels of Green’s function kernels and other finite-rank modifications of Fredholm and Volterra kernelsJ. Optim. Theory Appl.197824598848891210.1007/BF009331820348.45002
– reference: ZgliczyńskiPC1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} Lohner algorithmFound. Comput. Math.200224429465193094610.1007/s1020800100251049.65038
– reference: BerzMMakinoKVerified integration of ODEs and flows using differential algebraic methods on high-order Taylor modelsReliable Comput.199844361369165214710.1023/A:10244677326370976.65061
– reference: Joldes, M.: Rigorous Polynomial Approximations and Applications. PhD thesis, École normale supérieure de Lyon – Université de Lyon, Lyon, France (2011). https://tel.archives-ouvertes.fr/tel-00657843
– reference: Kaucher, E., Miranker, W.L.: Validating computation in a function space. In: Reliability in computing: the role of interval methods in scientific computing, pages 403–425. Academic Press Professional, Inc. (1988). https://doi.org/10.1016/B978-0-12-505630-4.50028-6
– reference: Salvy, B.: Linear differential equations as a data-structure. Foundations of Computational Mathematics, pp. 1071–1012, (2019). https://doi.org/10.1007/s10208-018-09411-x
– reference: GreengardLSpectral integration and two-point boundary value problemsSIAM J. Numer. Anal.199128410711080111145410.1137/07280570731.65064
– reference: Jiménez-PastorAPillweinVSingerMFSome structural results on Dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^n$$\end{document}-finite functionsAdv. Appl. Math.2020117102027407848910.1016/j.aam.2020.10202707183700
– reference: Moore, R.E.: Interval Analysis. Prentice-Hall (1966)
– reference: KedemGA posteriori error bounds for two-point boundary value problemsSIAM J. Numer. Anal.198118343144861552410.1137/07180280469.65062
– reference: LessardJ-PReinhardtCRigorous numerics for nonlinear differential equations using Chebyshev seriesSIAM J. Numer. Anal.2014521122314808410.1137/13090883X1290.65060
– reference: NakaoMTNumerical verification methods for solutions of ordinary and partial differential equationsNumer. Funct. Anal. Optim.2001223–4321356184932310.1081/NFA-1001051071106.65315
– reference: Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis. Oxford University Press, London-New York-Toronto, Ont. (1968)
– reference: Salvy, B.: D-finiteness: Algorithms and applications. In: M. Kauers (ed.) ISSAC 2005: Proceedings of the 18th International Symposium on Symbolic and Algebraic Computation, Beijing, China, July 24-27, 2005, pages 2–3. ACM Press (2005). https://doi.org/10.1145/1073884.1073886
– reference: EpsteinCMirankerWLRivlinTJUltra-arithmetic. II. Intervals of polynomialsMath. Comput. Simul.198224192965465110.1016/0378-4754(82)90046-51402.65040
– reference: Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art: the Calculus of Inductive Constructions. Springer (2013)
– reference: Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM (2013). http://www.chebfun.org/ATAP/
– reference: Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards Applied Mathematics Series. Courier Corporation (1964)
– reference: Brisebarre, N., Joldes, M.: Chebyshev interpolation polynomial-based tools for rigorous computing. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pp. 147–154. ACM (2010). URL: https://doi.org/10.1145/1837934.1837966
– reference: Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press (2011)
– reference: van den BergJBLessardJ-PRigorous numerics in dynamicsNot. AMS20156291344494210.1090/noti12761338.68301
– reference: van der HoevenJFast evaluation of holonomic functions near and in regular singularitiesJ. Symbol. Comput.2001316717743183400610.1006/jsco.2000.04740982.65024
– reference: Mezzarobba, M.: Autour de l’ évaluation numérique des fonctions D-finies. PhD thesis, École polytechnique (2011). URL: https://tel.archives-ouvertes.fr/pastel-00663017/
– reference: Yamamoto, N.: A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal. 35(5), 2004–2013 (1998). https://doi.org/10.1137/S0036142996304498
– reference: Koutschan, C.: Advanced Applications of the Holonomic Systems Approach. PhD thesis, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria (2009). https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
– volume: 117
  start-page: 102027
  year: 2020
  ident: 510_CR18
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2020.102027
– ident: 510_CR6
  doi: 10.1145/2442829.2442849
– volume: 44
  start-page: 44:1
  issue: 4
  year: 2018
  ident: 510_CR8
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/3208103
– volume: 20
  start-page: 9
  year: 2011
  ident: 510_CR40
  publication-title: Schedae Informaticae
– ident: 510_CR37
  doi: 10.1515/9781400838974
– ident: 510_CR15
  doi: 10.1137/1.9781611970425
– volume: 4
  start-page: 361
  issue: 4
  year: 1998
  ident: 510_CR5
  publication-title: Reliable Comput.
  doi: 10.1023/A:1024467732637
– ident: 510_CR33
  doi: 10.1007/s10208-018-09411-x
– ident: 510_CR20
  doi: 10.1016/B978-0-12-505630-4.50028-6
– volume: 24
  start-page: 19
  year: 1982
  ident: 510_CR13
  publication-title: Math. Comput. Simul.
  doi: 10.1016/0378-4754(82)90046-5
– volume: 52
  start-page: 1
  issue: 1
  year: 2014
  ident: 510_CR24
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/13090883X
– volume: 28
  start-page: 1071
  issue: 4
  year: 1991
  ident: 510_CR16
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0728057
– ident: 510_CR25
– ident: 510_CR23
– volume: 20
  start-page: 163
  issue: 2
  year: 1994
  ident: 510_CR34
  publication-title: ACM Trans. Math. Softw. (TOMS)
  doi: 10.1145/178365.178368
– ident: 510_CR41
  doi: 10.1137/S0036142996304498
– ident: 510_CR7
– volume: 55
  start-page: 462
  issue: 3
  year: 2013
  ident: 510_CR29
  publication-title: SIAM Rev.
  doi: 10.1137/120865458
– volume: 2
  start-page: 429
  issue: 4
  year: 2002
  ident: 510_CR42
  publication-title: Found. Comput. Math.
  doi: 10.1007/s102080010025
– ident: 510_CR3
  doi: 10.1109/SYNASC.2007.49
– ident: 510_CR9
  doi: 10.4230/LIPIcs.ITP.2019.8
– ident: 510_CR19
– volume: 1
  start-page: 175
  year: 1980
  ident: 510_CR35
  publication-title: Eur. J. Combinat.
  doi: 10.1016/S0195-6698(80)80051-5
– volume: 18
  start-page: 431
  issue: 3
  year: 1981
  ident: 510_CR21
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0718028
– ident: 510_CR11
– volume: 24
  start-page: 59
  year: 1978
  ident: 510_CR31
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00933182
– ident: 510_CR36
– volume: 9
  start-page: 43
  issue: 1
  year: 2003
  ident: 510_CR28
  publication-title: Reliable Comput.
  doi: 10.1023/A:1023061927787
– volume: 86
  start-page: 1303
  issue: 305
  year: 2017
  ident: 510_CR2
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3135
– ident: 510_CR14
– volume: 22
  start-page: 321
  issue: 3–4
  year: 2001
  ident: 510_CR27
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1081/NFA-100105107
– volume: 85
  start-page: 1427
  issue: 299
  year: 2016
  ident: 510_CR17
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3046
– ident: 510_CR1
  doi: 10.1115/1.3625776
– ident: 510_CR22
– ident: 510_CR4
– ident: 510_CR26
– volume: 24
  start-page: 1
  year: 1982
  ident: 510_CR12
  publication-title: Math. Comput. Simul.
  doi: 10.1016/0378-4754(82)90045-3
– volume: 46
  start-page: 19
  issue: 1
  year: 1991
  ident: 510_CR30
  publication-title: Computing
  doi: 10.1007/BF02239009
– volume: 62
  start-page: 1
  issue: 9
  year: 2015
  ident: 510_CR38
  publication-title: Not. AMS
  doi: 10.1090/noti1276
– ident: 510_CR10
  doi: 10.1145/1837934.1837966
– volume: 31
  start-page: 717
  issue: 6
  year: 2001
  ident: 510_CR39
  publication-title: J. Symbol. Comput.
  doi: 10.1006/jsco.2000.0474
– ident: 510_CR32
  doi: 10.1145/1073884.1073886
SSID ssj0062141
Score 2.1949801
Snippet A symbolic-numeric validation algorithm is developed to compute rigorous and tight uniform error bounds for polynomial approximate solutions to linear ordinary...
SourceID swepub
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 373
SubjectTerms A posteriori validation
Algorithms
Approximation
Chebyshev approximation
Chebyshev spectral methods
Complexity
Computer Science
D-finite functions
Differential equations
Galerkin method
Kernels
Linear differential equations
Mathematics
Mathematics and Statistics
Numerical Analysis
Operators (mathematics)
Ordinary differential equations
Polynomials
Spectral methods
Symbolic Computation
Validated numerics
Title A Symbolic-Numeric Validation Algorithm for Linear ODEs with Newton–Picard Method
URI https://link.springer.com/article/10.1007/s11786-021-00510-7
https://www.proquest.com/docview/2554613743
https://hal.science/hal-03161118
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454101
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1661-8289
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062141
  issn: 1661-8289
  databaseCode: AFBBN
  dateStart: 20071201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1661-8289
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062141
  issn: 1661-8289
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1661-8289
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062141
  issn: 1661-8289
  databaseCode: U2A
  dateStart: 20071211
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB416QUOlBYQKSVaIXqCrbyOf48uTYgKSZFKqnJaeb2zbQVNqsRGglPfoW_IkzDrn6StEFKvXmtt78zOfOOZ_QbgLRr00TEZ126ouEcazFMKwrjfU0ahk2Zp2aZzNA6GE-_w1D-tD4Utmmr3JiVZWurVYTcRRrZglsJfq0k8bMF6ybfVhvXk47dP_cYCB27VsVKQ7-GRGzr1YZl_z3LHIbXObTnkLay5TI_eoxIt3c9gAybNi1dVJ9_3ilztZb_vcTo-9MuewpMaj7KkUqBNWMPpFmw0vR5YvfW34PFoye-6eAbHCTv-dakspzAfF2XSh50Qoq8aNLHkx9lsfpGfXzKCxIzCXdpO7Oigv2D2ty8jw0qI88_1zRfSkLlmo7KL9XOYDPpfPwx53Z6BZ-T6ck6BkO-hCrSJMY7SWCg0IfoakcLq2HcjB40XKDfSRossDYWg8czToXJsWR32XkB7OpviS2C9LFWELJHwj6L41MSWtx41Gq2EzdN24F0jI3lVsXDIFd-yXT1JqyfL1ZNhB96QGJc3WgLtYfJZ2mtkwgKy7tFP0YGdRsqy3rYL6dqaPdEjVNWB942sVsP_e-RupR13nnpwcZLI2fxMFoX0fI-s3_bDpn0Fj9xSLWxN2w6083mBrwkE5apLOj_Y3x93a93vQmviJn8B6kL-xw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB7RcIAeaCmgpoRiITiBpfVmn8dVkyhAEpCaRL1Z6_U4iUSSKg8kbvwH_mF_Scf7SAhCSFx3V7Y0M575Zmf8DcBbNOijYzKu3VBxjyyYp5SEcb-pjEInzdJ8TGd_EHRH3qcb_6a8FLauut2rkmTuqfeX3UQY2YZZSn-tJfHwCB5aAivLmD9yk8r_Bm4xr1JQ5OGRGzrlVZm_r3EQjo6mthnyN6S5K47-QSSaB5_OKTwpUSNLCjU_hQe4OIOTaiIDKw_oGRz3dyys62dwnbDrH3NlmX_5YJuXZtiYcHcxRokl3ybL1WwznTMCroySUjJ69qXVXjP7c5aR-yNcePfz11fS40qzfj5r-jmMOu3hVZeXQxR4RgFqwyld8T1UgTYxxlEaC4UmRF8jUvIb-27koPEC5UbaaJGloRD0PvN0qBzb_IbNF1BbLBd4DqyZpYrwHxJKUZRFmtiyy6NGo5Ww1dQ6vK9kKW8Lrgy5Z0W2kpckeZlLXoZ1eEPi3n1oaa67SU_aZ-RoAvLB0XdRh0alDVkerrV0bWedaBL2qcOHSkP71__a8l2hxYNdW7NxIperidxuped75KMu_m_Z1_CoO-z3ZO_j4PNLeOzm5mW70BpQ26y2-Ipgy0Zd5lZ6D4dM4lI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xkBA90JaHCI92VcGJrvA6fh4tQhRakiJBELeV1zsLSCVBiYPEjf_Qf9hf0lk_EkAVElfb2pVmZme-8c58A7CHBn10TMa1GyrukQXzlJIw7jeVUeikWVqM6ez2gk7f-3HlXz3r4i-q3esrybKnwbI0DfLDe20OZ41vIoxs8SylwtaqeDgPi54lSiCL7rtJ7YsDt5xdKSgK8cgNnapt5v9rvAhN8ze2MPIZ6pxelL4iFS0CUfsTrFQIkiWlyj_DHA5W4WM9nYFVh3UVPnSnjKzjNThP2PnjnbIswLw3Ka5p2CVh8HKkEkt-Xw9Ht_nNHSMQyyhBpQPAfrWOx8z-qGXkCgkj_n36c0Y6HWnWLeZOr0O_fXxx1OHVQAWeUbDKOaUuvocq0CbGOEpjodCE6GtESoRj340cNF6g3EgbLbI0FILeZ54OlWML4bC5AQuD4QA3gTWzVBEWREIsijJKE1umedRotBL2ZrUBB7Us5X3JmyFnDMlW8pIkLwvJy7AB30jc0w8t5XUnOZX2GTmdgPxx9CAasFNrQ1YHbSxdW2UnmoSDGvC91tDs9Vtb7pdafLFr6_YykcPRtZxMpOd75K-23rfsV1g6a7Xl6Unv5zYsu4V12YK0HVjIRxPcJQSTqy-Fkf4DtN_mjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Symbolic-Numeric+Validation+Algorithm+for+Linear+ODEs+with+Newton-Picard+Method&rft.jtitle=Mathematics+in+computer+science&rft.au=Br%C3%A9hard%2C+Florent&rft.date=2021-09-01&rft.pub=Springer&rft.issn=1661-8270&rft.eissn=1661-8289&rft_id=info:doi/10.1007%2Fs11786-021-00510-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03161118v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8270&client=summon