Lattice Boltzmann Simulation of One Particle Migrating in a Pulsating Flow in Microvessel

A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segrd-Silberb...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 56; no. 10; pp. 756 - 760
Main Author 邱冰 谭惠丽 李华兵
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.10.2011
Subjects
Online AccessGet full text
ISSN0253-6102
DOI10.1088/0253-6102/56/4/27

Cover

More Information
Summary:A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segrd-Silberberg effect will not respond to the pulsation of the flow when the Reynolds number is relatively high. However, when the Reynolds number is low enough, Segrd-Silberberg effect disappears. In the steady flow, different initial position leads to different equilibrium positions. In a pulsating flow, different frequencies of pulsation also cause different equilibrium positions. Particularly, when the frequency of pulsation is closed to the human heart rate, Segrd-Silberberg effect presents again. The evolutions of velocity, rotation, and trajectory of the particle are investigated to find the dynamics of such abnormal phenomenon.
Bibliography:Segre Silberberg effect, lattice Boltzmann method, red blood cell, pulsating flow
11-2592/O3
A lattice Boltzmann model of two dimensions is used to simulate the movement of a single rigid particle suspended in a pulsating flow in micro vessel The particle is as big as a red blood cell, and the micro vessel is four times as wide as the diameter of the particle. It is found that Segrd-Silberberg effect will not respond to the pulsation of the flow when the Reynolds number is relatively high. However, when the Reynolds number is low enough, Segrd-Silberberg effect disappears. In the steady flow, different initial position leads to different equilibrium positions. In a pulsating flow, different frequencies of pulsation also cause different equilibrium positions. Particularly, when the frequency of pulsation is closed to the human heart rate, Segrd-Silberberg effect presents again. The evolutions of velocity, rotation, and trajectory of the particle are investigated to find the dynamics of such abnormal phenomenon.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0253-6102
DOI:10.1088/0253-6102/56/4/27