An investigation of XGBoost-based algorithm for breast cancer classification

Breast cancer is one of the leading cancers affecting women around the world. The Computer-Aided Diagnosis (CAD) system is a powerful tool to assist pathologists during the process of diagnosing cancer, which effectively identifies the presence of cancerous cells. A standard CAD system includes proc...

Full description

Saved in:
Bibliographic Details
Published inMachine learning with applications Vol. 6; p. 100154
Main Authors Liew, Xin Yu, Hameed, Nazia, Clos, Jeremie
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2666-8270
2666-8270
DOI10.1016/j.mlwa.2021.100154

Cover

Abstract Breast cancer is one of the leading cancers affecting women around the world. The Computer-Aided Diagnosis (CAD) system is a powerful tool to assist pathologists during the process of diagnosing cancer, which effectively identifies the presence of cancerous cells. A standard CAD system includes processes of pre-processing, feature extraction, feature selection and classification. In this paper, we propose an enhanced breast cancer classification technique called Deep Learning and eXtreme Gradient Boosting (DLXGB) on histopathology breast cancer images using the BreaKHis dataset. This method first applies data augmentation and stain normalization for pre-processing, then pre-trained DenseNet201 will automatically learn features within an image and combine with a powerful gradient boosting classifier. The proposed classification technique is designed to classify breast cancer histology images into binary benign and malignant, and additionally one of eight non-overlapping/overlapping categories: i.e., Adenosis (A), Fibroadenoma (F), Phyllodes Tumour (PT), And Tubular Adenoma (TA) Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous Carcinoma (MC), And Papillary Carcinoma (PC). With DLXGB, we have obtained an accuracy of 97% for both binary and multi-classification improving the exiting work done by researchers using the BreaKHis dataset. The results indicated that this method could produce a powerful prediction for breast cancer image classification.
AbstractList Breast cancer is one of the leading cancers affecting women around the world. The Computer-Aided Diagnosis (CAD) system is a powerful tool to assist pathologists during the process of diagnosing cancer, which effectively identifies the presence of cancerous cells. A standard CAD system includes processes of pre-processing, feature extraction, feature selection and classification. In this paper, we propose an enhanced breast cancer classification technique called Deep Learning and eXtreme Gradient Boosting (DLXGB) on histopathology breast cancer images using the BreaKHis dataset. This method first applies data augmentation and stain normalization for pre-processing, then pre-trained DenseNet201 will automatically learn features within an image and combine with a powerful gradient boosting classifier. The proposed classification technique is designed to classify breast cancer histology images into binary benign and malignant, and additionally one of eight non-overlapping/overlapping categories: i.e., Adenosis (A), Fibroadenoma (F), Phyllodes Tumour (PT), And Tubular Adenoma (TA) Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous Carcinoma (MC), And Papillary Carcinoma (PC). With DLXGB, we have obtained an accuracy of 97% for both binary and multi-classification improving the exiting work done by researchers using the BreaKHis dataset. The results indicated that this method could produce a powerful prediction for breast cancer image classification.
ArticleNumber 100154
Author Liew, Xin Yu
Hameed, Nazia
Clos, Jeremie
Author_xml – sequence: 1
  givenname: Xin Yu
  orcidid: 0000-0001-7276-7313
  surname: Liew
  fullname: Liew, Xin Yu
  email: xinyu.liew@yahoo.com
– sequence: 2
  givenname: Nazia
  surname: Hameed
  fullname: Hameed, Nazia
  email: nazia.hameed@nottingham.ac.uk
– sequence: 3
  givenname: Jeremie
  orcidid: 0000-0003-4280-5993
  surname: Clos
  fullname: Clos, Jeremie
  email: jeremie.clos@nottingham.ac.uk
BookMark eNqNkU1r3DAQhkVIoWmaP9CT_4C3ow9bXsglDW0aWMglhd7ESBpttHitIKkJ-ff1rkMpPYSeZnjheWGe-cBOpzQRY584rDjw_vNutR-fcSVA8DkA3qkTdib6vm8HoeH0r_09uyhlBwBi4FxKdcY2V1MTpycqNW6xxjQ1KTQ_b76kVGprsZBvcNymHOvDvgkpNzYTlto4nBzlxo1YSgzRHdmP7F3AsdDF6zxnP759vb_-3m7ubm6vrzatkwpqGwIEQlCdsHztlXKosOuHQUil0KO02nMNpIVVOvR90B5wUBo0WDWnJM_Z7dLrE-7MY457zC8mYTTHIOWtwVyjG8lI7W0PljxxUkp3KLp1J8IapLfAnZ-75NL1a3rEl2ccxz-FHMzBr9mZg19z8GsWvzMlFsrlVEqm8H_Q8A_kYj2Kqxnj-DZ6uaA0a32KlE1xkeYX-JjJ1fnu-Bb-G5meqGI
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3518205
crossref_primary_10_3389_fpubh_2024_1462675
crossref_primary_10_1109_ACCESS_2024_3445954
crossref_primary_10_1016_j_heliyon_2024_e30889
crossref_primary_10_1049_ipr2_12449
crossref_primary_10_1080_19427867_2023_2279807
crossref_primary_10_1002_itl2_473
crossref_primary_10_1002_jbio_202400284
crossref_primary_10_3934_era_2023248
crossref_primary_10_4236_jilsa_2024_163014
crossref_primary_10_1016_j_heliyon_2025_e42756
crossref_primary_10_1002_cpe_7277
crossref_primary_10_37989_gumussagbil_1366530
crossref_primary_10_3389_fmed_2024_1427239
crossref_primary_10_1038_s41598_023_28163_5
crossref_primary_10_56294_dm2025511
crossref_primary_10_1007_s13198_023_01955_8
crossref_primary_10_1364_AO_496543
crossref_primary_10_58769_joinssr_1480695
crossref_primary_10_1016_j_foodchem_2025_143848
crossref_primary_10_1155_2022_4688327
crossref_primary_10_1038_s41598_024_78363_w
crossref_primary_10_1038_s41598_022_18366_7
crossref_primary_10_1016_j_bbe_2022_07_006
crossref_primary_10_1016_j_jksuci_2022_03_011
crossref_primary_10_3389_frai_2023_1232640
crossref_primary_10_1089_aipo_2024_0003
Cites_doi 10.1007/BF00994018
10.5858/arpa.2018-0147-OA
10.1016/j.artmed.2018.04.005
10.1007/BF00116251
10.3390/jcm9030749
10.1109/TBME.2015.2496264
10.1371/journal.pone.0177544
10.4103/2153-3539.83746
10.1109/TNNLS.2019.2918225
10.1016/j.physa.2019.123592
10.1016/j.neucom.2019.09.044
10.1186/1475-925X-11-83
10.1007/s10278-019-00182-7
10.1038/nature14539
10.1098/rsos.160558
10.1016/j.cogsys.2018.04.011
10.1155/2021/5580914
10.1016/j.media.2019.05.010
10.2478/v10136-012-0031-x
10.1186/s40537-019-0197-0
10.1016/j.bbe.2018.04.008
10.1016/j.patrec.2019.03.022
10.1109/ACCESS.2018.2831280
10.1016/j.bspc.2020.102192
10.1016/j.trsl.2017.10.010
10.1016/j.eswa.2018.09.049
10.34218/IJCET.10.3.2019.009
10.1049/cvi2.12021
10.1109/TMI.2016.2528162
10.1093/gigascience/giy065
10.1016/j.ins.2018.12.089
10.1016/j.asoc.2019.105765
10.1007/978-981-15-5566-4_40
10.1016/j.media.2019.02.012
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.mlwa.2021.100154
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2666-8270
ExternalDocumentID oai_doaj_org_article_37db60bede1e4475a25952f903db01cd
10.1016/j.mlwa.2021.100154
10_1016_j_mlwa_2021_100154
S2666827021000773
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADVLN
AEXQZ
AFJKZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c340t-ff0fea0452b19d44ca4a56882344ada3b7d170e72b47f66f7d0a847070b4e72e3
IEDL.DBID DOA
ISSN 2666-8270
IngestDate Fri Oct 03 12:43:44 EDT 2025
Tue Aug 19 17:40:48 EDT 2025
Tue Jul 01 02:33:44 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Sat Feb 15 15:52:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Extreme gradient boosting
Histopathology images
XGBoost
Machine learning
Classification
Breast cancer
Computer-aided diagnosis
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-ff0fea0452b19d44ca4a56882344ada3b7d170e72b47f66f7d0a847070b4e72e3
ORCID 0000-0001-7276-7313
0000-0003-4280-5993
OpenAccessLink https://doaj.org/article/37db60bede1e4475a25952f903db01cd
ParticipantIDs doaj_primary_oai_doaj_org_article_37db60bede1e4475a25952f903db01cd
unpaywall_primary_10_1016_j_mlwa_2021_100154
crossref_primary_10_1016_j_mlwa_2021_100154
crossref_citationtrail_10_1016_j_mlwa_2021_100154
elsevier_sciencedirect_doi_10_1016_j_mlwa_2021_100154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Machine learning with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Shorten, Khoshgoftaar (b56) 2019; 6
Veeling, Linmans, Winkens, Cohen, Welling (b65) 2018; vol. 11071
Veta, Heng, Stathonikos, Bejnordi, Beca, Wollmann, Rohr, Shah, Wang, Rousson, Hedlund, Tellez, Ciompi, Zerhouni, Lanyi, Viana, Kovalev, Liauchuk, Phoulady, Pluim (b67) 2019; 54
Bevilacqua, Brunetti, Guerriero, Trotta, Telegrafo, Moschetta (b11) 2019; 53
Cai, Sun, Zhou, Han, Yao (b15) 2019
Rakhlin, Shvets, Iglovikov, Kalinin (b52) 2018; vol. 10882
Deng, Dong, Socher, Li, Li, Fei-Fei (b22) 2009
Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (b55) 2016; 35
Kassani, Kassani, Wesolowski, Schneider, Deters (b33) 2020
Boumaraf, Liu, Zheng, Ma, Ferkous (b12) 2021; 63
Araujo, Aresta, Castro, Rouco, Aguiar, Eloy, Polonia, Campilho (b6) 2017; 12
Chollet (b19) 2017
Bayramoglu, Kannala, Heikkila (b9) 2016
(b45) 2014
Gandomkar, Brennan, Mello-Thoms (b23) 2018; 88
Parashar, Sumiti, Rai (b50) 2020
Pantanowitz, Evans, Pfeifer, Collins, Valenstein, Kaplan, Wilbur, Colgan (b49) 2011; 2
He, Zhang, Ren, Sun (b28) 2016
Li, Wu, Wu (b39) 2019; 7
Budak, Cömert, Rashid, Şengür, Çıbuk (b14) 2019; 85
(b13) 2016
Vesal, Ravikumar, Davari, Ellmann, Maier (b66) 2018; vol. 10882
Laxmisagar, Hanumantharaju (b36) 2021
Roux, Racoceanu, Loménie, Kulikova, Irshad, Klossa, Capron, Genestie, Naour, Gurcan (b54) 2013; 4
Macenko, Niethammer, Marron, Borland, Woosley, Guan, Schmitt, Thomas (b43) 2009
Aresta, Araújo, Kwok, Chennamsetty, Safwan, Alex, Marami, Prastawa, Chan, Donovan, Fernandez, Zeineh, Kohl, Walz, Ludwig, Braunewell, Baust, Vu, To, Aguiar (b7) 2019; 56
Yari, Nguyen (b71) 2020
(b16) 2014
Al-Haija, Adebanjo (b1) 2020
Nedjar, Mahmoudi, Chikh (b48) 2019; 14
Alirezazadeh, Hejrati, Monsef-Esfahani, Fathi (b2) 2018; 38
Kushwaha, Adil, Abuzar, Nazeer, Singh (b35) 2021
Lu, Lu, Zhang (b42) 2019; 30
Vo, Nguyen, Lee (b68) 2019; 482
Amato, López, Peña Méndez, Vaňhara, Hampl, Havel (b5) 2013; 11
Chen, Guestrin (b18) 2016
Wadkar, Pathak, Wagh (b69) 2019; 10
Alkassar, Jebur, Abdullah, Al-Khalidy, Chambers (b3) 2021; 15
Khan, Islam, Jan, Ud Din, Rodrigues (b34) 2019; 125
Huang, Liu, Van Der Maaten, Weinberger (b30) 2017
Litjens, Bandi, Bejnordi, Geessink, Balkenhol, Bult, Halilovic, Hermsen, van de Loo, Vogels, Manson, Stathonikos, Baidoshvili, van Diest, Wauters, van Dijk, van der Laak (b40) 2018; 7
Sudharshan, Petitjean, Spanhol, Oliveira, Heutte, Honeine (b62) 2019; 117
Alom, Yakopcic, Nasrin, Taha, Asari (b4) 2019; 32
Ghaznavi, Evans, Madabhushi, Feldman (b25) 2013
Liu, Kohlberger, Norouzi, Dahl, Smith, Mohtashamian, Olson, Peng, Hipp, Stumpe (b41) 2019; 143
Quinlan (b51) 1986; 1
LeCun, Kavukcuoglu, Farabet (b38) 2010
Witten, Frank, Hall, Pal (b70) 2016
Lecun, Bengio, Hinton (b37) 2015; 521
Robertson, Azizpour, Smith, Hartman (b53) 2018; 194
Sizilio, Leite, Guerreiro, Neto (b58) 2012; 11
George, Faziludeen, Sankaran, Paul (b24) 2019
Ioffe, Szegedy (b31) 2015
Irsoy, Alpaydin (b32) 2020; 31
Han, Wei, Zheng, Yin, Li, Li (b26) 2017; 7
Cortes, Vapnik (b21) 1995; 20
Murtaza, Shuib, Mujtaba, Raza (b47) 2020; 79
Munien, Viriri (b46) 2021; 2021
Ciompi, Geessink, Bejnordi, De Souza, Baidoshvili, Litjens, Van Ginneken, Nagtegaal, Van Der Laak (b20) 2017
Bardou, Zhang, Ahmad (b8) 2018; 6
Toğaçar, Özkurt, Ergen, Cömert (b64) 2020; 545
Chan, Tuszynski (b17) 2016; 3
Simonyan, Zisserman (b57) 2015
Spanhol, Oliveira, Petitjean, Heutte (b60) 2016; 63
Spanhol, Cavalin, Oliveira, Petitjean, Heutte (b59) 2017
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b63) 2015
He, Garcia (b27) 2009; 21
Benhammou, Achchab, Herrera, Tabik (b10) 2020; 375
Ho (b29) 1998; 20
Spanhol, Oliveira, Petitjean, Heutte (b61) 2016
Mahmood, Arsalan, Owais, Lee, Park (b44) 2020; 9
LeCun (10.1016/j.mlwa.2021.100154_b38) 2010
Pantanowitz (10.1016/j.mlwa.2021.100154_b49) 2011; 2
Alkassar (10.1016/j.mlwa.2021.100154_b3) 2021; 15
(10.1016/j.mlwa.2021.100154_b16) 2014
Munien (10.1016/j.mlwa.2021.100154_b46) 2021; 2021
Cai (10.1016/j.mlwa.2021.100154_b15) 2019
Lu (10.1016/j.mlwa.2021.100154_b42) 2019; 30
Gandomkar (10.1016/j.mlwa.2021.100154_b23) 2018; 88
Al-Haija (10.1016/j.mlwa.2021.100154_b1) 2020
Liu (10.1016/j.mlwa.2021.100154_b41) 2019; 143
Murtaza (10.1016/j.mlwa.2021.100154_b47) 2020; 79
Sudharshan (10.1016/j.mlwa.2021.100154_b62) 2019; 117
(10.1016/j.mlwa.2021.100154_b13) 2016
Aresta (10.1016/j.mlwa.2021.100154_b7) 2019; 56
Lecun (10.1016/j.mlwa.2021.100154_b37) 2015; 521
Boumaraf (10.1016/j.mlwa.2021.100154_b12) 2021; 63
Witten (10.1016/j.mlwa.2021.100154_b70) 2016
Chen (10.1016/j.mlwa.2021.100154_b18) 2016
Ioffe (10.1016/j.mlwa.2021.100154_b31) 2015
Irsoy (10.1016/j.mlwa.2021.100154_b32) 2020; 31
Kassani (10.1016/j.mlwa.2021.100154_b33) 2020
Quinlan (10.1016/j.mlwa.2021.100154_b51) 1986; 1
Huang (10.1016/j.mlwa.2021.100154_b30) 2017
Budak (10.1016/j.mlwa.2021.100154_b14) 2019; 85
Litjens (10.1016/j.mlwa.2021.100154_b40) 2018; 7
(10.1016/j.mlwa.2021.100154_b45) 2014
Vo (10.1016/j.mlwa.2021.100154_b68) 2019; 482
Bevilacqua (10.1016/j.mlwa.2021.100154_b11) 2019; 53
Chollet (10.1016/j.mlwa.2021.100154_b19) 2017
Veta (10.1016/j.mlwa.2021.100154_b67) 2019; 54
Sizilio (10.1016/j.mlwa.2021.100154_b58) 2012; 11
Vesal (10.1016/j.mlwa.2021.100154_b66) 2018; vol. 10882
Khan (10.1016/j.mlwa.2021.100154_b34) 2019; 125
Roux (10.1016/j.mlwa.2021.100154_b54) 2013; 4
Alom (10.1016/j.mlwa.2021.100154_b4) 2019; 32
Toğaçar (10.1016/j.mlwa.2021.100154_b64) 2020; 545
Wadkar (10.1016/j.mlwa.2021.100154_b69) 2019; 10
Szegedy (10.1016/j.mlwa.2021.100154_b63) 2015
Bayramoglu (10.1016/j.mlwa.2021.100154_b9) 2016
Ciompi (10.1016/j.mlwa.2021.100154_b20) 2017
Ghaznavi (10.1016/j.mlwa.2021.100154_b25) 2013
Chan (10.1016/j.mlwa.2021.100154_b17) 2016; 3
Nedjar (10.1016/j.mlwa.2021.100154_b48) 2019; 14
Alirezazadeh (10.1016/j.mlwa.2021.100154_b2) 2018; 38
Deng (10.1016/j.mlwa.2021.100154_b22) 2009
Robertson (10.1016/j.mlwa.2021.100154_b53) 2018; 194
Mahmood (10.1016/j.mlwa.2021.100154_b44) 2020; 9
Veeling (10.1016/j.mlwa.2021.100154_b65) 2018; vol. 11071
Bardou (10.1016/j.mlwa.2021.100154_b8) 2018; 6
Laxmisagar (10.1016/j.mlwa.2021.100154_b36) 2021
Amato (10.1016/j.mlwa.2021.100154_b5) 2013; 11
Han (10.1016/j.mlwa.2021.100154_b26) 2017; 7
Parashar (10.1016/j.mlwa.2021.100154_b50) 2020
Yari (10.1016/j.mlwa.2021.100154_b71) 2020
Kushwaha (10.1016/j.mlwa.2021.100154_b35) 2021
Benhammou (10.1016/j.mlwa.2021.100154_b10) 2020; 375
George (10.1016/j.mlwa.2021.100154_b24) 2019
Ho (10.1016/j.mlwa.2021.100154_b29) 1998; 20
Li (10.1016/j.mlwa.2021.100154_b39) 2019; 7
Araujo (10.1016/j.mlwa.2021.100154_b6) 2017; 12
He (10.1016/j.mlwa.2021.100154_b28) 2016
Macenko (10.1016/j.mlwa.2021.100154_b43) 2009
Shin (10.1016/j.mlwa.2021.100154_b55) 2016; 35
Spanhol (10.1016/j.mlwa.2021.100154_b60) 2016; 63
Rakhlin (10.1016/j.mlwa.2021.100154_b52) 2018; vol. 10882
Cortes (10.1016/j.mlwa.2021.100154_b21) 1995; 20
Spanhol (10.1016/j.mlwa.2021.100154_b61) 2016
He (10.1016/j.mlwa.2021.100154_b27) 2009; 21
Spanhol (10.1016/j.mlwa.2021.100154_b59) 2017
Shorten (10.1016/j.mlwa.2021.100154_b56) 2019; 6
Simonyan (10.1016/j.mlwa.2021.100154_b57) 2015
References_xml – volume: 56
  year: 2019
  ident: b7
  article-title: BACH: Grand challenge on breast cancer histology images
  publication-title: Medical Image Analysis
– volume: 85
  year: 2019
  ident: b14
  article-title: Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images
  publication-title: Applied Soft Computing
– volume: 194
  year: 2018
  ident: b53
  article-title: Digital image analysis in breast pathology—from image processing techniques to artificial intelligence
  publication-title: Translational Research
– year: 2021
  ident: b35
  article-title: Deep learning-based model for breast cancer histopathology image classification
  publication-title: Proceedings of 2021 2nd international conference on intelligent engineering and management, ICIEM 2021
– volume: 545
  year: 2020
  ident: b64
  article-title: BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: 7
  year: 2017
  ident: b26
  article-title: Breast cancer multi-classification from histopathological images with structured deep learning model
  publication-title: Scientific Reports
– volume: 7
  year: 2018
  ident: b40
  article-title: 1399 H & E-stained sentinel lymph node sections of breast cancer patients: The CAMELYON dataset
  publication-title: GigaScience
– year: 2016
  ident: b28
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, 2016-December
– year: 2019
  ident: b15
  article-title: Efficient mitosis detection in breast cancer histology images by RCNN
  publication-title: Proceedings - International symposium on biomedical imaging, 2019-April
– year: 2017
  ident: b30
  article-title: Densely connected convolutional networks
  publication-title: Proceedings - 30th IEEE conference on computer vision and pattern recognition, CVPR 2017, 2017-January
– volume: 35
  year: 2016
  ident: b55
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Transactions on Medical Imaging
– year: 2017
  ident: b59
  article-title: Deep features for breast cancer histopathological image classification
  publication-title: 2017 IEEE international conference on systems, man, and cybernetics, SMC 2017, 2017-January
– volume: 54
  year: 2019
  ident: b67
  article-title: Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge
  publication-title: Medical Image Analysis
– year: 2020
  ident: b71
  article-title: A state-of-the-art deep transfer learning-based model for accurate breast cancer recognition in histology images
  publication-title: Proceedings - IEEE 20th international conference on bioinformatics and bioengineering, BIBE 2020
– start-page: 248
  year: 2009
  end-page: 255
  ident: b22
  article-title: ImageNet: A large-scale hierarchical image database
– year: 2016
  ident: b9
  article-title: Deep learning for magnification independent breast cancer histopathology image classification
  publication-title: Proceedings - International conference on pattern recognition
– volume: 12
  year: 2017
  ident: b6
  article-title: Classification of breast cancer histology images using convolutional neural networks
  publication-title: PLoS ONE
– volume: 9
  year: 2020
  ident: b44
  article-title: Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs
  publication-title: Journal of Clinical Medicine
– year: 2015
  ident: b57
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: 3rd international conference on learning representations, ICLR 2015 - Conference track proceedings
– volume: 15
  start-page: 151
  year: 2021
  end-page: 164
  ident: b3
  article-title: Going deeper: magnification-invariant approach for breast cancer classification using histopathological images
  publication-title: IET Computer Vision
– volume: 2021
  year: 2021
  ident: b46
  article-title: Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with EfficientNets
  publication-title: Computational Intelligence and Neuroscience
– year: 2015
  ident: b63
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, 07-12-June-2015
– year: 2020
  ident: b50
  article-title: Breast cancer images classification by clustering of ROI and mapping of features by CNN with XGBOOST learning
  publication-title: Materials Today: Proceedings
– volume: vol. 10882
  year: 2018
  ident: b52
  article-title: Deep convolutional neural networks for breast cancer histology image analysis
  publication-title: Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)
– volume: 10
  year: 2019
  ident: b69
  article-title: Breast cancer detection using ann network and performance analysis with SVM
  publication-title: International Journal of Computer Engineering and Technology
– year: 2010
  ident: b38
  article-title: Convolutional networks and applications in vision
  publication-title: ISCAS 2010-2010 IEEE international symposium on circuits and systems: Nano-bio circuit fabrics and systems
– volume: 53
  start-page: 3
  year: 2019
  end-page: 19
  ident: b11
  article-title: A performance comparison between shallow and deeper neural networks supervised classification of tomosynthesis breast lesions images
  publication-title: Cognitive Systems Research
– volume: 482
  year: 2019
  ident: b68
  article-title: Classification of breast cancer histology images using incremental boosting convolution networks
  publication-title: Information Sciences
– year: 2015
  ident: b31
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: 32nd international conference on machine learning, ICML 2015, 1
– volume: 20
  year: 1995
  ident: b21
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: vol. 11071
  year: 2018
  ident: b65
  article-title: Rotation equivariant CNNs for digital pathology
  publication-title: Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)
– volume: 38
  year: 2018
  ident: b2
  article-title: Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images
  publication-title: Biocybernetics and Biomedical Engineering
– year: 2014
  ident: b16
  article-title: Breast cancer statistics
– year: 2019
  ident: b24
  article-title: Deep learned nucleus features for breast cancer histopathological image analysis based on belief theoretical classifier fusion
  publication-title: IEEE region 10 annual international conference, proceedings/TENCON, 2019-October
– volume: 21
  year: 2009
  ident: b27
  article-title: Learning from imbalanced data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 11
  year: 2013
  ident: b5
  article-title: Artificial neural networks in medical diagnosis
  publication-title: Journal of Applied Biomedicine
– volume: 3
  year: 2016
  ident: b17
  article-title: Automatic prediction of tumour malignancy in breast cancer with fractal dimension
  publication-title: Royal Society Open Science
– volume: 63
  year: 2021
  ident: b12
  article-title: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images
  publication-title: Biomedical Signal Processing and Control
– year: 2020
  ident: b33
  article-title: Classification of histopathological biopsy images using ensemble of deep learning networks
  publication-title: CASCON 2019 Proceedings - Conference of the centre for advanced studies on collaborative research - Proceedings of the 29th annual international conference on computer science and software engineering
– volume: 143
  year: 2019
  ident: b41
  article-title: Artificial intelligence–based breast cancer nodal metastasis detection insights into the black box for pathologists
  publication-title: Archives of Pathology and Laboratory Medicine
– volume: 117
  year: 2019
  ident: b62
  article-title: Multiple instance learning for histopathological breast cancer image classification
  publication-title: Expert Systems with Applications
– volume: 6
  year: 2019
  ident: b56
  article-title: A survey on image data augmentation for deep learning
  publication-title: Journal of Big Data
– volume: 7
  year: 2019
  ident: b39
  article-title: Classification of breast cancer histology images using multi-size and discriminative patches based on deep learning
  publication-title: IEEE Access
– volume: 14
  year: 2019
  ident: b48
  article-title: Classification of breast cancer histology images using consensus oriented by three deep convolutional neural networks
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– volume: 125
  year: 2019
  ident: b34
  article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning
  publication-title: Pattern Recognition Letters
– year: 2016
  ident: b61
  article-title: Breast cancer histopathological image classification using convolutional neural networks
  publication-title: Proceedings of the international joint conference on neural networks, 2016-October
– volume: 2
  year: 2011
  ident: b49
  article-title: Review of the current state of whole slide imaging in pathology
  publication-title: Journal of Pathology Informatics
– volume: 32
  year: 2019
  ident: b4
  article-title: Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network
  publication-title: Journal of Digital Imaging
– volume: 375
  year: 2020
  ident: b10
  article-title: BreakHis based breast cancer automatic diagnosis using deep learning: Taxonomy, survey and insights
  publication-title: Neurocomputing
– year: 2017
  ident: b19
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: Proceedings - 30th IEEE conference on computer vision and pattern recognition, CVPR 2017, 2017-January
– year: 2021
  ident: b36
  article-title: Design of an efficient deep neural network for multi-level classification of breast cancer histology images
  publication-title: Advances in intelligent systems and computing, Vol. 1172
– year: 2020
  ident: b1
  article-title: Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network
  publication-title: IEMTRONICS 2020 - International IOT, electronics and mechatronics conference, proceedings
– volume: 4
  year: 2013
  ident: b54
  article-title: Mitosis detection in breast cancer histological images an ICPR 2012 contest
  publication-title: Journal of Pathology Informatics
– start-page: 1107
  year: 2009
  end-page: 1110
  ident: b43
  article-title: A method for normalizing histology slides for quantitative analysis
  publication-title: Proceedings - 2009 IEEE international symposium on biomedical imaging: From nano to macro, ISBI 2009
– year: 2016
  ident: b18
  article-title: XGBoost
– start-page: 1
  year: 2016
  end-page: 19
  ident: b13
  article-title: What is breast cancer?
– volume: 63
  year: 2016
  ident: b60
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: vol. 10882
  year: 2018
  ident: b66
  article-title: Classification of breast cancer histology images using transfer learning
  publication-title: Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)
– year: 2014
  ident: b45
– year: 2017
  ident: b20
  article-title: The importance of stain normalization in colorectal tissue classification with convolutional networks
  publication-title: Proceedings - International symposium on biomedical imaging
– year: 2013
  ident: b25
  article-title: Digital imaging in pathology: Whole-slide imaging and beyond
  publication-title: Annual review of pathology: Mechanisms of disease, Vol. 8
– volume: 20
  year: 1998
  ident: b29
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 88
  year: 2018
  ident: b23
  article-title: MuDeRN: Multi-category classification of breast histopathological image using deep residual networks
  publication-title: Artificial Intelligence in Medicine
– year: 2016
  ident: b70
  article-title: Data mining: Practical machine learning tools and techniques
  publication-title: Data mining: Practical machine learning tools and techniques
– volume: 30
  year: 2019
  ident: b42
  article-title: Pathological brain detection based on AlexNet and transfer learning
  publication-title: Journal of Computer Science
– volume: 79
  year: 2020
  ident: b47
  article-title: Breast cancer multi-classification through deep neural network and hierarchical classification approach
  publication-title: Multimedia Tools and Applications
– volume: 11
  year: 2012
  ident: b58
  article-title: Fuzzy method for pre-diagnosis of breast cancer from the Fine Needle Aspirate analysis
  publication-title: BioMedical Engineering Online
– volume: 6
  year: 2018
  ident: b8
  article-title: Classification of breast cancer based on histology images using convolutional neural networks
  publication-title: IEEE Access
– volume: 31
  year: 2020
  ident: b32
  article-title: Continuously constructive deep neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 521
  year: 2015
  ident: b37
  article-title: Deep learning
  publication-title: Nature
– volume: 1
  year: 1986
  ident: b51
  article-title: Induction of decision trees
  publication-title: Machine Learning
– start-page: 1
  year: 2016
  ident: 10.1016/j.mlwa.2021.100154_b13
– volume: 20
  issue: 3
  year: 1995
  ident: 10.1016/j.mlwa.2021.100154_b21
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 21
  issue: 9
  year: 2009
  ident: 10.1016/j.mlwa.2021.100154_b27
  article-title: Learning from imbalanced data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2015
  ident: 10.1016/j.mlwa.2021.100154_b63
  article-title: Going deeper with convolutions
– volume: 143
  issue: 7
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b41
  article-title: Artificial intelligence–based breast cancer nodal metastasis detection insights into the black box for pathologists
  publication-title: Archives of Pathology and Laboratory Medicine
  doi: 10.5858/arpa.2018-0147-OA
– volume: 88
  year: 2018
  ident: 10.1016/j.mlwa.2021.100154_b23
  article-title: MuDeRN: Multi-category classification of breast histopathological image using deep residual networks
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2018.04.005
– year: 2017
  ident: 10.1016/j.mlwa.2021.100154_b30
  article-title: Densely connected convolutional networks
– volume: 1
  issue: 1
  year: 1986
  ident: 10.1016/j.mlwa.2021.100154_b51
  article-title: Induction of decision trees
  publication-title: Machine Learning
  doi: 10.1007/BF00116251
– volume: 9
  issue: 3
  year: 2020
  ident: 10.1016/j.mlwa.2021.100154_b44
  article-title: Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs
  publication-title: Journal of Clinical Medicine
  doi: 10.3390/jcm9030749
– volume: 63
  issue: 7
  year: 2016
  ident: 10.1016/j.mlwa.2021.100154_b60
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2015.2496264
– year: 2021
  ident: 10.1016/j.mlwa.2021.100154_b35
  article-title: Deep learning-based model for breast cancer histopathology image classification
– volume: 12
  issue: 6
  year: 2017
  ident: 10.1016/j.mlwa.2021.100154_b6
  article-title: Classification of breast cancer histology images using convolutional neural networks
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177544
– volume: 2
  issue: 1
  year: 2011
  ident: 10.1016/j.mlwa.2021.100154_b49
  article-title: Review of the current state of whole slide imaging in pathology
  publication-title: Journal of Pathology Informatics
  doi: 10.4103/2153-3539.83746
– volume: 31
  issue: 4
  year: 2020
  ident: 10.1016/j.mlwa.2021.100154_b32
  article-title: Continuously constructive deep neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2918225
– volume: 545
  year: 2020
  ident: 10.1016/j.mlwa.2021.100154_b64
  article-title: BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2019.123592
– year: 2016
  ident: 10.1016/j.mlwa.2021.100154_b70
  article-title: Data mining: Practical machine learning tools and techniques
– year: 2016
  ident: 10.1016/j.mlwa.2021.100154_b28
  article-title: Deep residual learning for image recognition
– year: 2015
  ident: 10.1016/j.mlwa.2021.100154_b31
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– year: 2013
  ident: 10.1016/j.mlwa.2021.100154_b25
  article-title: Digital imaging in pathology: Whole-slide imaging and beyond
– volume: 375
  year: 2020
  ident: 10.1016/j.mlwa.2021.100154_b10
  article-title: BreakHis based breast cancer automatic diagnosis using deep learning: Taxonomy, survey and insights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.044
– volume: 11
  year: 2012
  ident: 10.1016/j.mlwa.2021.100154_b58
  article-title: Fuzzy method for pre-diagnosis of breast cancer from the Fine Needle Aspirate analysis
  publication-title: BioMedical Engineering Online
  doi: 10.1186/1475-925X-11-83
– volume: 32
  issue: 4
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b4
  article-title: Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-019-00182-7
– volume: vol. 10882
  year: 2018
  ident: 10.1016/j.mlwa.2021.100154_b66
  article-title: Classification of breast cancer histology images using transfer learning
– volume: 521
  issue: 7553
  year: 2015
  ident: 10.1016/j.mlwa.2021.100154_b37
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2010
  ident: 10.1016/j.mlwa.2021.100154_b38
  article-title: Convolutional networks and applications in vision
– start-page: 1107
  year: 2009
  ident: 10.1016/j.mlwa.2021.100154_b43
  article-title: A method for normalizing histology slides for quantitative analysis
– volume: 3
  issue: 12
  year: 2016
  ident: 10.1016/j.mlwa.2021.100154_b17
  article-title: Automatic prediction of tumour malignancy in breast cancer with fractal dimension
  publication-title: Royal Society Open Science
  doi: 10.1098/rsos.160558
– volume: 53
  start-page: 3
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b11
  article-title: A performance comparison between shallow and deeper neural networks supervised classification of tomosynthesis breast lesions images
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.04.011
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.mlwa.2021.100154_b26
  article-title: Breast cancer multi-classification from histopathological images with structured deep learning model
  publication-title: Scientific Reports
– volume: 2021
  year: 2021
  ident: 10.1016/j.mlwa.2021.100154_b46
  article-title: Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with EfficientNets
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2021/5580914
– volume: 56
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b7
  article-title: BACH: Grand challenge on breast cancer histology images
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2019.05.010
– year: 2017
  ident: 10.1016/j.mlwa.2021.100154_b19
  article-title: Xception: Deep learning with depthwise separable convolutions
– volume: 11
  issue: 2
  year: 2013
  ident: 10.1016/j.mlwa.2021.100154_b5
  article-title: Artificial neural networks in medical diagnosis
  publication-title: Journal of Applied Biomedicine
  doi: 10.2478/v10136-012-0031-x
– year: 2016
  ident: 10.1016/j.mlwa.2021.100154_b9
  article-title: Deep learning for magnification independent breast cancer histopathology image classification
– year: 2015
  ident: 10.1016/j.mlwa.2021.100154_b57
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 6
  issue: 1
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b56
  article-title: A survey on image data augmentation for deep learning
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0197-0
– year: 2016
  ident: 10.1016/j.mlwa.2021.100154_b61
  article-title: Breast cancer histopathological image classification using convolutional neural networks
– volume: 38
  issue: 3
  year: 2018
  ident: 10.1016/j.mlwa.2021.100154_b2
  article-title: Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2018.04.008
– volume: vol. 11071
  year: 2018
  ident: 10.1016/j.mlwa.2021.100154_b65
  article-title: Rotation equivariant CNNs for digital pathology
– year: 2016
  ident: 10.1016/j.mlwa.2021.100154_b18
– year: 2017
  ident: 10.1016/j.mlwa.2021.100154_b20
  article-title: The importance of stain normalization in colorectal tissue classification with convolutional networks
– volume: 14
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b48
  article-title: Classification of breast cancer histology images using consensus oriented by three deep convolutional neural networks
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– volume: 125
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b34
  article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2019.03.022
– year: 2014
  ident: 10.1016/j.mlwa.2021.100154_b16
– year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b24
  article-title: Deep learned nucleus features for breast cancer histopathological image analysis based on belief theoretical classifier fusion
– year: 2020
  ident: 10.1016/j.mlwa.2021.100154_b50
  article-title: Breast cancer images classification by clustering of ROI and mapping of features by CNN with XGBOOST learning
  publication-title: Materials Today: Proceedings
– volume: 20
  issue: 8
  year: 1998
  ident: 10.1016/j.mlwa.2021.100154_b29
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 6
  year: 2018
  ident: 10.1016/j.mlwa.2021.100154_b8
  article-title: Classification of breast cancer based on histology images using convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2831280
– volume: 79
  issue: 21–22
  year: 2020
  ident: 10.1016/j.mlwa.2021.100154_b47
  article-title: Breast cancer multi-classification through deep neural network and hierarchical classification approach
  publication-title: Multimedia Tools and Applications
– start-page: 248
  year: 2009
  ident: 10.1016/j.mlwa.2021.100154_b22
– volume: 63
  year: 2021
  ident: 10.1016/j.mlwa.2021.100154_b12
  article-title: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.102192
– volume: 194
  year: 2018
  ident: 10.1016/j.mlwa.2021.100154_b53
  article-title: Digital image analysis in breast pathology—from image processing techniques to artificial intelligence
  publication-title: Translational Research
  doi: 10.1016/j.trsl.2017.10.010
– volume: vol. 10882
  year: 2018
  ident: 10.1016/j.mlwa.2021.100154_b52
  article-title: Deep convolutional neural networks for breast cancer histology image analysis
– volume: 117
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b62
  article-title: Multiple instance learning for histopathological breast cancer image classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.09.049
– volume: 10
  issue: 3
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b69
  article-title: Breast cancer detection using ann network and performance analysis with SVM
  publication-title: International Journal of Computer Engineering and Technology
  doi: 10.34218/IJCET.10.3.2019.009
– volume: 15
  start-page: 151
  issue: 2
  year: 2021
  ident: 10.1016/j.mlwa.2021.100154_b3
  article-title: Going deeper: magnification-invariant approach for breast cancer classification using histopathological images
  publication-title: IET Computer Vision
  doi: 10.1049/cvi2.12021
– volume: 35
  issue: 5
  year: 2016
  ident: 10.1016/j.mlwa.2021.100154_b55
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2528162
– year: 2020
  ident: 10.1016/j.mlwa.2021.100154_b71
  article-title: A state-of-the-art deep transfer learning-based model for accurate breast cancer recognition in histology images
– year: 2020
  ident: 10.1016/j.mlwa.2021.100154_b33
  article-title: Classification of histopathological biopsy images using ensemble of deep learning networks
– volume: 7
  issue: 6
  year: 2018
  ident: 10.1016/j.mlwa.2021.100154_b40
  article-title: 1399 H & E-stained sentinel lymph node sections of breast cancer patients: The CAMELYON dataset
  publication-title: GigaScience
  doi: 10.1093/gigascience/giy065
– volume: 482
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b68
  article-title: Classification of breast cancer histology images using incremental boosting convolution networks
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.12.089
– year: 2020
  ident: 10.1016/j.mlwa.2021.100154_b1
  article-title: Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network
– volume: 85
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b14
  article-title: Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105765
– year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b15
  article-title: Efficient mitosis detection in breast cancer histology images by RCNN
– volume: 4
  issue: 1
  year: 2013
  ident: 10.1016/j.mlwa.2021.100154_b54
  article-title: Mitosis detection in breast cancer histological images an ICPR 2012 contest
  publication-title: Journal of Pathology Informatics
– year: 2021
  ident: 10.1016/j.mlwa.2021.100154_b36
  article-title: Design of an efficient deep neural network for multi-level classification of breast cancer histology images
  doi: 10.1007/978-981-15-5566-4_40
– volume: 30
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b42
  article-title: Pathological brain detection based on AlexNet and transfer learning
  publication-title: Journal of Computer Science
– volume: 7
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b39
  article-title: Classification of breast cancer histology images using multi-size and discriminative patches based on deep learning
  publication-title: IEEE Access
– year: 2017
  ident: 10.1016/j.mlwa.2021.100154_b59
  article-title: Deep features for breast cancer histopathological image classification
– volume: 54
  year: 2019
  ident: 10.1016/j.mlwa.2021.100154_b67
  article-title: Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2019.02.012
– year: 2014
  ident: 10.1016/j.mlwa.2021.100154_b45
SSID ssj0002811334
Score 2.4551637
Snippet Breast cancer is one of the leading cancers affecting women around the world. The Computer-Aided Diagnosis (CAD) system is a powerful tool to assist...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 100154
SubjectTerms Breast cancer
Classification
Computer-aided diagnosis
Deep learning
Extreme gradient boosting
Histopathology images
Machine learning
XGBoost
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEF2VcIALtKKIFKj20BtstLb3wzkmCBpVbdQDkdKTtV-GUMdGwVEEv54d2wmkqlA4ejVjr2bHfs_a2TcIfTNcyziVnGgTR8QjtCFK6S7xcCIY16HPGTic_GsoBiP2Y8zHjUwOnIVZ27-v6rCm2QL0gcKgkgvibAttC-55dwttj4a_e3-ge5zn4CQOJW1OxfzfcQ15KoH-NQDamef36nGhsuwVwFzt152KHipdQqgr-duZl7pjnv5Rbdxs7h_RXsMzca9OjE_og8sP0M9ejicvwhpFjosUj7_3i-KhJIBnFqvspphNytsp9mwWayhZL7GB1JhhA0wbSosq389odHV5fTEgTTsFYiJGS5KmNHUKJNR10LWMGcUUF55hR4wpqyItbSCpk6FmMhUilZYqj13-m6CZH3XRIWrlRe6OEBZKaOUN4xjaiMNWXCiUx0BQFzQ0Um0ULEOdmEZrHFpeZMmyqOwugdgkEJukjk0bna187muljTet-7CCK0tQya4G_AIkzUuXRNJqQbWzLnAgbKj8vx4P0y6NrKaBsW3El-ufNISjJhL-VpM3H36-SpYN5vrlfebHaBeuoGYm4CeoVc7m7tQzn1J_bVL-GZvT-7s
  priority: 102
  providerName: Unpaywall
Title An investigation of XGBoost-based algorithm for breast cancer classification
URI https://dx.doi.org/10.1016/j.mlwa.2021.100154
https://doi.org/10.1016/j.mlwa.2021.100154
https://doaj.org/article/37db60bede1e4475a25952f903db01cd
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-8270
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002811334
  issn: 2666-8270
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-8270
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002811334
  issn: 2666-8270
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQOcAFgQBRFiofuIGFk_gjPbaopUK04kClcor8FdgqTapuqmov-9uZSdLSXhYOXHKwbMcaT_Ke7fEbQt45aXWaa8msSxMGCO2YMXbIAE6UkDYGn8HLyfOFmi3Fl5VcnaX6wpiwVh64NdzHRHuruA0-RAHF6QzwdRnnQ554yyPn8e_L0-HZYmrdbBlFsPjCI2UAIMXSWPPuxkwb3LUpDig6FEeNBpEUF6jUiPdfgNOjfbk1twdTFGfgM31KnnSskY7a0T4jD0L5nHwdlfT6j0xGVdIqp6vP46q6qRmik6em-FnB6v_XhgI3pRYD0GvqcKJ31CFvxkChpu0LspxOvn-asS45AnOJ4DXLc54Hg4LoNhp6IZwRRirgy4kQxpvEah9pHnRshc6VyrXnBpAIvnAroDQkL0mvrMrwilBllDVQMU0xKTgerMXKAKKhVqDjiemT6GiczHXK4ZjAosiOIWLrDA2aoUGz1qB98v7UZtvqZtxbe4w2P9VEzeumADwh6zwh-5sn9Ik8zljW0YeWFkBX1_e-_MNpev9hrK__x1ivyGPsEuNiIvmG9OrdPrwFdlPbQePI8JzfTQbk4XLxbfTjNx2h9mM
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEF2VcIALtKKIFKj20BtstLb3wzkmCBpVbdQDkdKTtV-GUMdGwVEEv54d2wmkqlA4ejVjr2bHfs_a2TcIfTNcyziVnGgTR8QjtCFK6S7xcCIY16HPGTic_GsoBiP2Y8zHjUwOnIVZ27-v6rCm2QL0gcKgkgvibAttC-55dwttj4a_e3-ge5zn4CQOJW1OxfzfcQ15KoH-NQDamef36nGhsuwVwFzt152KHipdQqgr-duZl7pjnv5Rbdxs7h_RXsMzca9OjE_og8sP0M9ejicvwhpFjosUj7_3i-KhJIBnFqvspphNytsp9mwWayhZL7GB1JhhA0wbSosq389odHV5fTEgTTsFYiJGS5KmNHUKJNR10LWMGcUUF55hR4wpqyItbSCpk6FmMhUilZYqj13-m6CZH3XRIWrlRe6OEBZKaOUN4xjaiMNWXCiUx0BQFzQ0Um0ULEOdmEZrHFpeZMmyqOwugdgkEJukjk0bna187muljTet-7CCK0tQya4G_AIkzUuXRNJqQbWzLnAgbKj8vx4P0y6NrKaBsW3El-ufNISjJhL-VpM3H36-SpYN5vrlfebHaBeuoGYm4CeoVc7m7tQzn1J_bVL-GZvT-7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+of+XGBoost-based+algorithm+for+breast+cancer+classification&rft.jtitle=Machine+learning+with+applications&rft.au=Liew%2C+Xin+Yu&rft.au=Hameed%2C+Nazia&rft.au=Clos%2C+Jeremie&rft.date=2021-12-15&rft.issn=2666-8270&rft.eissn=2666-8270&rft.volume=6&rft.spage=100154&rft_id=info:doi/10.1016%2Fj.mlwa.2021.100154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mlwa_2021_100154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-8270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-8270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-8270&client=summon