An investigation of XGBoost-based algorithm for breast cancer classification
Breast cancer is one of the leading cancers affecting women around the world. The Computer-Aided Diagnosis (CAD) system is a powerful tool to assist pathologists during the process of diagnosing cancer, which effectively identifies the presence of cancerous cells. A standard CAD system includes proc...
Saved in:
| Published in | Machine learning with applications Vol. 6; p. 100154 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.12.2021
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2666-8270 2666-8270 |
| DOI | 10.1016/j.mlwa.2021.100154 |
Cover
| Abstract | Breast cancer is one of the leading cancers affecting women around the world. The Computer-Aided Diagnosis (CAD) system is a powerful tool to assist pathologists during the process of diagnosing cancer, which effectively identifies the presence of cancerous cells. A standard CAD system includes processes of pre-processing, feature extraction, feature selection and classification. In this paper, we propose an enhanced breast cancer classification technique called Deep Learning and eXtreme Gradient Boosting (DLXGB) on histopathology breast cancer images using the BreaKHis dataset. This method first applies data augmentation and stain normalization for pre-processing, then pre-trained DenseNet201 will automatically learn features within an image and combine with a powerful gradient boosting classifier. The proposed classification technique is designed to classify breast cancer histology images into binary benign and malignant, and additionally one of eight non-overlapping/overlapping categories: i.e., Adenosis (A), Fibroadenoma (F), Phyllodes Tumour (PT), And Tubular Adenoma (TA) Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous Carcinoma (MC), And Papillary Carcinoma (PC). With DLXGB, we have obtained an accuracy of 97% for both binary and multi-classification improving the exiting work done by researchers using the BreaKHis dataset. The results indicated that this method could produce a powerful prediction for breast cancer image classification. |
|---|---|
| AbstractList | Breast cancer is one of the leading cancers affecting women around the world. The Computer-Aided Diagnosis (CAD) system is a powerful tool to assist pathologists during the process of diagnosing cancer, which effectively identifies the presence of cancerous cells. A standard CAD system includes processes of pre-processing, feature extraction, feature selection and classification. In this paper, we propose an enhanced breast cancer classification technique called Deep Learning and eXtreme Gradient Boosting (DLXGB) on histopathology breast cancer images using the BreaKHis dataset. This method first applies data augmentation and stain normalization for pre-processing, then pre-trained DenseNet201 will automatically learn features within an image and combine with a powerful gradient boosting classifier. The proposed classification technique is designed to classify breast cancer histology images into binary benign and malignant, and additionally one of eight non-overlapping/overlapping categories: i.e., Adenosis (A), Fibroadenoma (F), Phyllodes Tumour (PT), And Tubular Adenoma (TA) Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous Carcinoma (MC), And Papillary Carcinoma (PC). With DLXGB, we have obtained an accuracy of 97% for both binary and multi-classification improving the exiting work done by researchers using the BreaKHis dataset. The results indicated that this method could produce a powerful prediction for breast cancer image classification. |
| ArticleNumber | 100154 |
| Author | Liew, Xin Yu Hameed, Nazia Clos, Jeremie |
| Author_xml | – sequence: 1 givenname: Xin Yu orcidid: 0000-0001-7276-7313 surname: Liew fullname: Liew, Xin Yu email: xinyu.liew@yahoo.com – sequence: 2 givenname: Nazia surname: Hameed fullname: Hameed, Nazia email: nazia.hameed@nottingham.ac.uk – sequence: 3 givenname: Jeremie orcidid: 0000-0003-4280-5993 surname: Clos fullname: Clos, Jeremie email: jeremie.clos@nottingham.ac.uk |
| BookMark | eNqNkU1r3DAQhkVIoWmaP9CT_4C3ow9bXsglDW0aWMglhd7ESBpttHitIKkJ-ff1rkMpPYSeZnjheWGe-cBOpzQRY584rDjw_vNutR-fcSVA8DkA3qkTdib6vm8HoeH0r_09uyhlBwBi4FxKdcY2V1MTpycqNW6xxjQ1KTQ_b76kVGprsZBvcNymHOvDvgkpNzYTlto4nBzlxo1YSgzRHdmP7F3AsdDF6zxnP759vb_-3m7ubm6vrzatkwpqGwIEQlCdsHztlXKosOuHQUil0KO02nMNpIVVOvR90B5wUBo0WDWnJM_Z7dLrE-7MY457zC8mYTTHIOWtwVyjG8lI7W0PljxxUkp3KLp1J8IapLfAnZ-75NL1a3rEl2ccxz-FHMzBr9mZg19z8GsWvzMlFsrlVEqm8H_Q8A_kYj2Kqxnj-DZ6uaA0a32KlE1xkeYX-JjJ1fnu-Bb-G5meqGI |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3518205 crossref_primary_10_3389_fpubh_2024_1462675 crossref_primary_10_1109_ACCESS_2024_3445954 crossref_primary_10_1016_j_heliyon_2024_e30889 crossref_primary_10_1049_ipr2_12449 crossref_primary_10_1080_19427867_2023_2279807 crossref_primary_10_1002_itl2_473 crossref_primary_10_1002_jbio_202400284 crossref_primary_10_3934_era_2023248 crossref_primary_10_4236_jilsa_2024_163014 crossref_primary_10_1016_j_heliyon_2025_e42756 crossref_primary_10_1002_cpe_7277 crossref_primary_10_37989_gumussagbil_1366530 crossref_primary_10_3389_fmed_2024_1427239 crossref_primary_10_1038_s41598_023_28163_5 crossref_primary_10_56294_dm2025511 crossref_primary_10_1007_s13198_023_01955_8 crossref_primary_10_1364_AO_496543 crossref_primary_10_58769_joinssr_1480695 crossref_primary_10_1016_j_foodchem_2025_143848 crossref_primary_10_1155_2022_4688327 crossref_primary_10_1038_s41598_024_78363_w crossref_primary_10_1038_s41598_022_18366_7 crossref_primary_10_1016_j_bbe_2022_07_006 crossref_primary_10_1016_j_jksuci_2022_03_011 crossref_primary_10_3389_frai_2023_1232640 crossref_primary_10_1089_aipo_2024_0003 |
| Cites_doi | 10.1007/BF00994018 10.5858/arpa.2018-0147-OA 10.1016/j.artmed.2018.04.005 10.1007/BF00116251 10.3390/jcm9030749 10.1109/TBME.2015.2496264 10.1371/journal.pone.0177544 10.4103/2153-3539.83746 10.1109/TNNLS.2019.2918225 10.1016/j.physa.2019.123592 10.1016/j.neucom.2019.09.044 10.1186/1475-925X-11-83 10.1007/s10278-019-00182-7 10.1038/nature14539 10.1098/rsos.160558 10.1016/j.cogsys.2018.04.011 10.1155/2021/5580914 10.1016/j.media.2019.05.010 10.2478/v10136-012-0031-x 10.1186/s40537-019-0197-0 10.1016/j.bbe.2018.04.008 10.1016/j.patrec.2019.03.022 10.1109/ACCESS.2018.2831280 10.1016/j.bspc.2020.102192 10.1016/j.trsl.2017.10.010 10.1016/j.eswa.2018.09.049 10.34218/IJCET.10.3.2019.009 10.1049/cvi2.12021 10.1109/TMI.2016.2528162 10.1093/gigascience/giy065 10.1016/j.ins.2018.12.089 10.1016/j.asoc.2019.105765 10.1007/978-981-15-5566-4_40 10.1016/j.media.2019.02.012 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) |
| Copyright_xml | – notice: 2021 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.mlwa.2021.100154 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2666-8270 |
| ExternalDocumentID | oai_doaj_org_article_37db60bede1e4475a25952f903db01cd 10.1016/j.mlwa.2021.100154 10_1016_j_mlwa_2021_100154 S2666827021000773 |
| GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO ADVLN AEXQZ AFJKZ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c340t-ff0fea0452b19d44ca4a56882344ada3b7d170e72b47f66f7d0a847070b4e72e3 |
| IEDL.DBID | DOA |
| ISSN | 2666-8270 |
| IngestDate | Fri Oct 03 12:43:44 EDT 2025 Tue Aug 19 17:40:48 EDT 2025 Tue Jul 01 02:33:44 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Sat Feb 15 15:52:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Extreme gradient boosting Histopathology images XGBoost Machine learning Classification Breast cancer Computer-aided diagnosis |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c340t-ff0fea0452b19d44ca4a56882344ada3b7d170e72b47f66f7d0a847070b4e72e3 |
| ORCID | 0000-0001-7276-7313 0000-0003-4280-5993 |
| OpenAccessLink | https://doaj.org/article/37db60bede1e4475a25952f903db01cd |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_37db60bede1e4475a25952f903db01cd unpaywall_primary_10_1016_j_mlwa_2021_100154 crossref_primary_10_1016_j_mlwa_2021_100154 crossref_citationtrail_10_1016_j_mlwa_2021_100154 elsevier_sciencedirect_doi_10_1016_j_mlwa_2021_100154 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-15 |
| PublicationDateYYYYMMDD | 2021-12-15 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Machine learning with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Shorten, Khoshgoftaar (b56) 2019; 6 Veeling, Linmans, Winkens, Cohen, Welling (b65) 2018; vol. 11071 Veta, Heng, Stathonikos, Bejnordi, Beca, Wollmann, Rohr, Shah, Wang, Rousson, Hedlund, Tellez, Ciompi, Zerhouni, Lanyi, Viana, Kovalev, Liauchuk, Phoulady, Pluim (b67) 2019; 54 Bevilacqua, Brunetti, Guerriero, Trotta, Telegrafo, Moschetta (b11) 2019; 53 Cai, Sun, Zhou, Han, Yao (b15) 2019 Rakhlin, Shvets, Iglovikov, Kalinin (b52) 2018; vol. 10882 Deng, Dong, Socher, Li, Li, Fei-Fei (b22) 2009 Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (b55) 2016; 35 Kassani, Kassani, Wesolowski, Schneider, Deters (b33) 2020 Boumaraf, Liu, Zheng, Ma, Ferkous (b12) 2021; 63 Araujo, Aresta, Castro, Rouco, Aguiar, Eloy, Polonia, Campilho (b6) 2017; 12 Chollet (b19) 2017 Bayramoglu, Kannala, Heikkila (b9) 2016 (b45) 2014 Gandomkar, Brennan, Mello-Thoms (b23) 2018; 88 Parashar, Sumiti, Rai (b50) 2020 Pantanowitz, Evans, Pfeifer, Collins, Valenstein, Kaplan, Wilbur, Colgan (b49) 2011; 2 He, Zhang, Ren, Sun (b28) 2016 Li, Wu, Wu (b39) 2019; 7 Budak, Cömert, Rashid, Şengür, Çıbuk (b14) 2019; 85 (b13) 2016 Vesal, Ravikumar, Davari, Ellmann, Maier (b66) 2018; vol. 10882 Laxmisagar, Hanumantharaju (b36) 2021 Roux, Racoceanu, Loménie, Kulikova, Irshad, Klossa, Capron, Genestie, Naour, Gurcan (b54) 2013; 4 Macenko, Niethammer, Marron, Borland, Woosley, Guan, Schmitt, Thomas (b43) 2009 Aresta, Araújo, Kwok, Chennamsetty, Safwan, Alex, Marami, Prastawa, Chan, Donovan, Fernandez, Zeineh, Kohl, Walz, Ludwig, Braunewell, Baust, Vu, To, Aguiar (b7) 2019; 56 Yari, Nguyen (b71) 2020 (b16) 2014 Al-Haija, Adebanjo (b1) 2020 Nedjar, Mahmoudi, Chikh (b48) 2019; 14 Alirezazadeh, Hejrati, Monsef-Esfahani, Fathi (b2) 2018; 38 Kushwaha, Adil, Abuzar, Nazeer, Singh (b35) 2021 Lu, Lu, Zhang (b42) 2019; 30 Vo, Nguyen, Lee (b68) 2019; 482 Amato, López, Peña Méndez, Vaňhara, Hampl, Havel (b5) 2013; 11 Chen, Guestrin (b18) 2016 Wadkar, Pathak, Wagh (b69) 2019; 10 Alkassar, Jebur, Abdullah, Al-Khalidy, Chambers (b3) 2021; 15 Khan, Islam, Jan, Ud Din, Rodrigues (b34) 2019; 125 Huang, Liu, Van Der Maaten, Weinberger (b30) 2017 Litjens, Bandi, Bejnordi, Geessink, Balkenhol, Bult, Halilovic, Hermsen, van de Loo, Vogels, Manson, Stathonikos, Baidoshvili, van Diest, Wauters, van Dijk, van der Laak (b40) 2018; 7 Sudharshan, Petitjean, Spanhol, Oliveira, Heutte, Honeine (b62) 2019; 117 Alom, Yakopcic, Nasrin, Taha, Asari (b4) 2019; 32 Ghaznavi, Evans, Madabhushi, Feldman (b25) 2013 Liu, Kohlberger, Norouzi, Dahl, Smith, Mohtashamian, Olson, Peng, Hipp, Stumpe (b41) 2019; 143 Quinlan (b51) 1986; 1 LeCun, Kavukcuoglu, Farabet (b38) 2010 Witten, Frank, Hall, Pal (b70) 2016 Lecun, Bengio, Hinton (b37) 2015; 521 Robertson, Azizpour, Smith, Hartman (b53) 2018; 194 Sizilio, Leite, Guerreiro, Neto (b58) 2012; 11 George, Faziludeen, Sankaran, Paul (b24) 2019 Ioffe, Szegedy (b31) 2015 Irsoy, Alpaydin (b32) 2020; 31 Han, Wei, Zheng, Yin, Li, Li (b26) 2017; 7 Cortes, Vapnik (b21) 1995; 20 Murtaza, Shuib, Mujtaba, Raza (b47) 2020; 79 Munien, Viriri (b46) 2021; 2021 Ciompi, Geessink, Bejnordi, De Souza, Baidoshvili, Litjens, Van Ginneken, Nagtegaal, Van Der Laak (b20) 2017 Bardou, Zhang, Ahmad (b8) 2018; 6 Toğaçar, Özkurt, Ergen, Cömert (b64) 2020; 545 Chan, Tuszynski (b17) 2016; 3 Simonyan, Zisserman (b57) 2015 Spanhol, Oliveira, Petitjean, Heutte (b60) 2016; 63 Spanhol, Cavalin, Oliveira, Petitjean, Heutte (b59) 2017 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b63) 2015 He, Garcia (b27) 2009; 21 Benhammou, Achchab, Herrera, Tabik (b10) 2020; 375 Ho (b29) 1998; 20 Spanhol, Oliveira, Petitjean, Heutte (b61) 2016 Mahmood, Arsalan, Owais, Lee, Park (b44) 2020; 9 LeCun (10.1016/j.mlwa.2021.100154_b38) 2010 Pantanowitz (10.1016/j.mlwa.2021.100154_b49) 2011; 2 Alkassar (10.1016/j.mlwa.2021.100154_b3) 2021; 15 (10.1016/j.mlwa.2021.100154_b16) 2014 Munien (10.1016/j.mlwa.2021.100154_b46) 2021; 2021 Cai (10.1016/j.mlwa.2021.100154_b15) 2019 Lu (10.1016/j.mlwa.2021.100154_b42) 2019; 30 Gandomkar (10.1016/j.mlwa.2021.100154_b23) 2018; 88 Al-Haija (10.1016/j.mlwa.2021.100154_b1) 2020 Liu (10.1016/j.mlwa.2021.100154_b41) 2019; 143 Murtaza (10.1016/j.mlwa.2021.100154_b47) 2020; 79 Sudharshan (10.1016/j.mlwa.2021.100154_b62) 2019; 117 (10.1016/j.mlwa.2021.100154_b13) 2016 Aresta (10.1016/j.mlwa.2021.100154_b7) 2019; 56 Lecun (10.1016/j.mlwa.2021.100154_b37) 2015; 521 Boumaraf (10.1016/j.mlwa.2021.100154_b12) 2021; 63 Witten (10.1016/j.mlwa.2021.100154_b70) 2016 Chen (10.1016/j.mlwa.2021.100154_b18) 2016 Ioffe (10.1016/j.mlwa.2021.100154_b31) 2015 Irsoy (10.1016/j.mlwa.2021.100154_b32) 2020; 31 Kassani (10.1016/j.mlwa.2021.100154_b33) 2020 Quinlan (10.1016/j.mlwa.2021.100154_b51) 1986; 1 Huang (10.1016/j.mlwa.2021.100154_b30) 2017 Budak (10.1016/j.mlwa.2021.100154_b14) 2019; 85 Litjens (10.1016/j.mlwa.2021.100154_b40) 2018; 7 (10.1016/j.mlwa.2021.100154_b45) 2014 Vo (10.1016/j.mlwa.2021.100154_b68) 2019; 482 Bevilacqua (10.1016/j.mlwa.2021.100154_b11) 2019; 53 Chollet (10.1016/j.mlwa.2021.100154_b19) 2017 Veta (10.1016/j.mlwa.2021.100154_b67) 2019; 54 Sizilio (10.1016/j.mlwa.2021.100154_b58) 2012; 11 Vesal (10.1016/j.mlwa.2021.100154_b66) 2018; vol. 10882 Khan (10.1016/j.mlwa.2021.100154_b34) 2019; 125 Roux (10.1016/j.mlwa.2021.100154_b54) 2013; 4 Alom (10.1016/j.mlwa.2021.100154_b4) 2019; 32 Toğaçar (10.1016/j.mlwa.2021.100154_b64) 2020; 545 Wadkar (10.1016/j.mlwa.2021.100154_b69) 2019; 10 Szegedy (10.1016/j.mlwa.2021.100154_b63) 2015 Bayramoglu (10.1016/j.mlwa.2021.100154_b9) 2016 Ciompi (10.1016/j.mlwa.2021.100154_b20) 2017 Ghaznavi (10.1016/j.mlwa.2021.100154_b25) 2013 Chan (10.1016/j.mlwa.2021.100154_b17) 2016; 3 Nedjar (10.1016/j.mlwa.2021.100154_b48) 2019; 14 Alirezazadeh (10.1016/j.mlwa.2021.100154_b2) 2018; 38 Deng (10.1016/j.mlwa.2021.100154_b22) 2009 Robertson (10.1016/j.mlwa.2021.100154_b53) 2018; 194 Mahmood (10.1016/j.mlwa.2021.100154_b44) 2020; 9 Veeling (10.1016/j.mlwa.2021.100154_b65) 2018; vol. 11071 Bardou (10.1016/j.mlwa.2021.100154_b8) 2018; 6 Laxmisagar (10.1016/j.mlwa.2021.100154_b36) 2021 Amato (10.1016/j.mlwa.2021.100154_b5) 2013; 11 Han (10.1016/j.mlwa.2021.100154_b26) 2017; 7 Parashar (10.1016/j.mlwa.2021.100154_b50) 2020 Yari (10.1016/j.mlwa.2021.100154_b71) 2020 Kushwaha (10.1016/j.mlwa.2021.100154_b35) 2021 Benhammou (10.1016/j.mlwa.2021.100154_b10) 2020; 375 George (10.1016/j.mlwa.2021.100154_b24) 2019 Ho (10.1016/j.mlwa.2021.100154_b29) 1998; 20 Li (10.1016/j.mlwa.2021.100154_b39) 2019; 7 Araujo (10.1016/j.mlwa.2021.100154_b6) 2017; 12 He (10.1016/j.mlwa.2021.100154_b28) 2016 Macenko (10.1016/j.mlwa.2021.100154_b43) 2009 Shin (10.1016/j.mlwa.2021.100154_b55) 2016; 35 Spanhol (10.1016/j.mlwa.2021.100154_b60) 2016; 63 Rakhlin (10.1016/j.mlwa.2021.100154_b52) 2018; vol. 10882 Cortes (10.1016/j.mlwa.2021.100154_b21) 1995; 20 Spanhol (10.1016/j.mlwa.2021.100154_b61) 2016 He (10.1016/j.mlwa.2021.100154_b27) 2009; 21 Spanhol (10.1016/j.mlwa.2021.100154_b59) 2017 Shorten (10.1016/j.mlwa.2021.100154_b56) 2019; 6 Simonyan (10.1016/j.mlwa.2021.100154_b57) 2015 |
| References_xml | – volume: 56 year: 2019 ident: b7 article-title: BACH: Grand challenge on breast cancer histology images publication-title: Medical Image Analysis – volume: 85 year: 2019 ident: b14 article-title: Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images publication-title: Applied Soft Computing – volume: 194 year: 2018 ident: b53 article-title: Digital image analysis in breast pathology—from image processing techniques to artificial intelligence publication-title: Translational Research – year: 2021 ident: b35 article-title: Deep learning-based model for breast cancer histopathology image classification publication-title: Proceedings of 2021 2nd international conference on intelligent engineering and management, ICIEM 2021 – volume: 545 year: 2020 ident: b64 article-title: BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer publication-title: Physica A: Statistical Mechanics and its Applications – volume: 7 year: 2017 ident: b26 article-title: Breast cancer multi-classification from histopathological images with structured deep learning model publication-title: Scientific Reports – volume: 7 year: 2018 ident: b40 article-title: 1399 H & E-stained sentinel lymph node sections of breast cancer patients: The CAMELYON dataset publication-title: GigaScience – year: 2016 ident: b28 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, 2016-December – year: 2019 ident: b15 article-title: Efficient mitosis detection in breast cancer histology images by RCNN publication-title: Proceedings - International symposium on biomedical imaging, 2019-April – year: 2017 ident: b30 article-title: Densely connected convolutional networks publication-title: Proceedings - 30th IEEE conference on computer vision and pattern recognition, CVPR 2017, 2017-January – volume: 35 year: 2016 ident: b55 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Transactions on Medical Imaging – year: 2017 ident: b59 article-title: Deep features for breast cancer histopathological image classification publication-title: 2017 IEEE international conference on systems, man, and cybernetics, SMC 2017, 2017-January – volume: 54 year: 2019 ident: b67 article-title: Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge publication-title: Medical Image Analysis – year: 2020 ident: b71 article-title: A state-of-the-art deep transfer learning-based model for accurate breast cancer recognition in histology images publication-title: Proceedings - IEEE 20th international conference on bioinformatics and bioengineering, BIBE 2020 – start-page: 248 year: 2009 end-page: 255 ident: b22 article-title: ImageNet: A large-scale hierarchical image database – year: 2016 ident: b9 article-title: Deep learning for magnification independent breast cancer histopathology image classification publication-title: Proceedings - International conference on pattern recognition – volume: 12 year: 2017 ident: b6 article-title: Classification of breast cancer histology images using convolutional neural networks publication-title: PLoS ONE – volume: 9 year: 2020 ident: b44 article-title: Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs publication-title: Journal of Clinical Medicine – year: 2015 ident: b57 article-title: Very deep convolutional networks for large-scale image recognition publication-title: 3rd international conference on learning representations, ICLR 2015 - Conference track proceedings – volume: 15 start-page: 151 year: 2021 end-page: 164 ident: b3 article-title: Going deeper: magnification-invariant approach for breast cancer classification using histopathological images publication-title: IET Computer Vision – volume: 2021 year: 2021 ident: b46 article-title: Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with EfficientNets publication-title: Computational Intelligence and Neuroscience – year: 2015 ident: b63 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, 07-12-June-2015 – year: 2020 ident: b50 article-title: Breast cancer images classification by clustering of ROI and mapping of features by CNN with XGBOOST learning publication-title: Materials Today: Proceedings – volume: vol. 10882 year: 2018 ident: b52 article-title: Deep convolutional neural networks for breast cancer histology image analysis publication-title: Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) – volume: 10 year: 2019 ident: b69 article-title: Breast cancer detection using ann network and performance analysis with SVM publication-title: International Journal of Computer Engineering and Technology – year: 2010 ident: b38 article-title: Convolutional networks and applications in vision publication-title: ISCAS 2010-2010 IEEE international symposium on circuits and systems: Nano-bio circuit fabrics and systems – volume: 53 start-page: 3 year: 2019 end-page: 19 ident: b11 article-title: A performance comparison between shallow and deeper neural networks supervised classification of tomosynthesis breast lesions images publication-title: Cognitive Systems Research – volume: 482 year: 2019 ident: b68 article-title: Classification of breast cancer histology images using incremental boosting convolution networks publication-title: Information Sciences – year: 2015 ident: b31 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: 32nd international conference on machine learning, ICML 2015, 1 – volume: 20 year: 1995 ident: b21 article-title: Support-vector networks publication-title: Machine Learning – volume: vol. 11071 year: 2018 ident: b65 article-title: Rotation equivariant CNNs for digital pathology publication-title: Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) – volume: 38 year: 2018 ident: b2 article-title: Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images publication-title: Biocybernetics and Biomedical Engineering – year: 2014 ident: b16 article-title: Breast cancer statistics – year: 2019 ident: b24 article-title: Deep learned nucleus features for breast cancer histopathological image analysis based on belief theoretical classifier fusion publication-title: IEEE region 10 annual international conference, proceedings/TENCON, 2019-October – volume: 21 year: 2009 ident: b27 article-title: Learning from imbalanced data publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 11 year: 2013 ident: b5 article-title: Artificial neural networks in medical diagnosis publication-title: Journal of Applied Biomedicine – volume: 3 year: 2016 ident: b17 article-title: Automatic prediction of tumour malignancy in breast cancer with fractal dimension publication-title: Royal Society Open Science – volume: 63 year: 2021 ident: b12 article-title: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images publication-title: Biomedical Signal Processing and Control – year: 2020 ident: b33 article-title: Classification of histopathological biopsy images using ensemble of deep learning networks publication-title: CASCON 2019 Proceedings - Conference of the centre for advanced studies on collaborative research - Proceedings of the 29th annual international conference on computer science and software engineering – volume: 143 year: 2019 ident: b41 article-title: Artificial intelligence–based breast cancer nodal metastasis detection insights into the black box for pathologists publication-title: Archives of Pathology and Laboratory Medicine – volume: 117 year: 2019 ident: b62 article-title: Multiple instance learning for histopathological breast cancer image classification publication-title: Expert Systems with Applications – volume: 6 year: 2019 ident: b56 article-title: A survey on image data augmentation for deep learning publication-title: Journal of Big Data – volume: 7 year: 2019 ident: b39 article-title: Classification of breast cancer histology images using multi-size and discriminative patches based on deep learning publication-title: IEEE Access – volume: 14 year: 2019 ident: b48 article-title: Classification of breast cancer histology images using consensus oriented by three deep convolutional neural networks publication-title: International Journal of Computer Assisted Radiology and Surgery – volume: 125 year: 2019 ident: b34 article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning publication-title: Pattern Recognition Letters – year: 2016 ident: b61 article-title: Breast cancer histopathological image classification using convolutional neural networks publication-title: Proceedings of the international joint conference on neural networks, 2016-October – volume: 2 year: 2011 ident: b49 article-title: Review of the current state of whole slide imaging in pathology publication-title: Journal of Pathology Informatics – volume: 32 year: 2019 ident: b4 article-title: Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network publication-title: Journal of Digital Imaging – volume: 375 year: 2020 ident: b10 article-title: BreakHis based breast cancer automatic diagnosis using deep learning: Taxonomy, survey and insights publication-title: Neurocomputing – year: 2017 ident: b19 article-title: Xception: Deep learning with depthwise separable convolutions publication-title: Proceedings - 30th IEEE conference on computer vision and pattern recognition, CVPR 2017, 2017-January – year: 2021 ident: b36 article-title: Design of an efficient deep neural network for multi-level classification of breast cancer histology images publication-title: Advances in intelligent systems and computing, Vol. 1172 – year: 2020 ident: b1 article-title: Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network publication-title: IEMTRONICS 2020 - International IOT, electronics and mechatronics conference, proceedings – volume: 4 year: 2013 ident: b54 article-title: Mitosis detection in breast cancer histological images an ICPR 2012 contest publication-title: Journal of Pathology Informatics – start-page: 1107 year: 2009 end-page: 1110 ident: b43 article-title: A method for normalizing histology slides for quantitative analysis publication-title: Proceedings - 2009 IEEE international symposium on biomedical imaging: From nano to macro, ISBI 2009 – year: 2016 ident: b18 article-title: XGBoost – start-page: 1 year: 2016 end-page: 19 ident: b13 article-title: What is breast cancer? – volume: 63 year: 2016 ident: b60 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Transactions on Biomedical Engineering – volume: vol. 10882 year: 2018 ident: b66 article-title: Classification of breast cancer histology images using transfer learning publication-title: Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) – year: 2014 ident: b45 – year: 2017 ident: b20 article-title: The importance of stain normalization in colorectal tissue classification with convolutional networks publication-title: Proceedings - International symposium on biomedical imaging – year: 2013 ident: b25 article-title: Digital imaging in pathology: Whole-slide imaging and beyond publication-title: Annual review of pathology: Mechanisms of disease, Vol. 8 – volume: 20 year: 1998 ident: b29 article-title: The random subspace method for constructing decision forests publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 88 year: 2018 ident: b23 article-title: MuDeRN: Multi-category classification of breast histopathological image using deep residual networks publication-title: Artificial Intelligence in Medicine – year: 2016 ident: b70 article-title: Data mining: Practical machine learning tools and techniques publication-title: Data mining: Practical machine learning tools and techniques – volume: 30 year: 2019 ident: b42 article-title: Pathological brain detection based on AlexNet and transfer learning publication-title: Journal of Computer Science – volume: 79 year: 2020 ident: b47 article-title: Breast cancer multi-classification through deep neural network and hierarchical classification approach publication-title: Multimedia Tools and Applications – volume: 11 year: 2012 ident: b58 article-title: Fuzzy method for pre-diagnosis of breast cancer from the Fine Needle Aspirate analysis publication-title: BioMedical Engineering Online – volume: 6 year: 2018 ident: b8 article-title: Classification of breast cancer based on histology images using convolutional neural networks publication-title: IEEE Access – volume: 31 year: 2020 ident: b32 article-title: Continuously constructive deep neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 521 year: 2015 ident: b37 article-title: Deep learning publication-title: Nature – volume: 1 year: 1986 ident: b51 article-title: Induction of decision trees publication-title: Machine Learning – start-page: 1 year: 2016 ident: 10.1016/j.mlwa.2021.100154_b13 – volume: 20 issue: 3 year: 1995 ident: 10.1016/j.mlwa.2021.100154_b21 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 21 issue: 9 year: 2009 ident: 10.1016/j.mlwa.2021.100154_b27 article-title: Learning from imbalanced data publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2015 ident: 10.1016/j.mlwa.2021.100154_b63 article-title: Going deeper with convolutions – volume: 143 issue: 7 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b41 article-title: Artificial intelligence–based breast cancer nodal metastasis detection insights into the black box for pathologists publication-title: Archives of Pathology and Laboratory Medicine doi: 10.5858/arpa.2018-0147-OA – volume: 88 year: 2018 ident: 10.1016/j.mlwa.2021.100154_b23 article-title: MuDeRN: Multi-category classification of breast histopathological image using deep residual networks publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2018.04.005 – year: 2017 ident: 10.1016/j.mlwa.2021.100154_b30 article-title: Densely connected convolutional networks – volume: 1 issue: 1 year: 1986 ident: 10.1016/j.mlwa.2021.100154_b51 article-title: Induction of decision trees publication-title: Machine Learning doi: 10.1007/BF00116251 – volume: 9 issue: 3 year: 2020 ident: 10.1016/j.mlwa.2021.100154_b44 article-title: Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs publication-title: Journal of Clinical Medicine doi: 10.3390/jcm9030749 – volume: 63 issue: 7 year: 2016 ident: 10.1016/j.mlwa.2021.100154_b60 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2015.2496264 – year: 2021 ident: 10.1016/j.mlwa.2021.100154_b35 article-title: Deep learning-based model for breast cancer histopathology image classification – volume: 12 issue: 6 year: 2017 ident: 10.1016/j.mlwa.2021.100154_b6 article-title: Classification of breast cancer histology images using convolutional neural networks publication-title: PLoS ONE doi: 10.1371/journal.pone.0177544 – volume: 2 issue: 1 year: 2011 ident: 10.1016/j.mlwa.2021.100154_b49 article-title: Review of the current state of whole slide imaging in pathology publication-title: Journal of Pathology Informatics doi: 10.4103/2153-3539.83746 – volume: 31 issue: 4 year: 2020 ident: 10.1016/j.mlwa.2021.100154_b32 article-title: Continuously constructive deep neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2918225 – volume: 545 year: 2020 ident: 10.1016/j.mlwa.2021.100154_b64 article-title: BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2019.123592 – year: 2016 ident: 10.1016/j.mlwa.2021.100154_b70 article-title: Data mining: Practical machine learning tools and techniques – year: 2016 ident: 10.1016/j.mlwa.2021.100154_b28 article-title: Deep residual learning for image recognition – year: 2015 ident: 10.1016/j.mlwa.2021.100154_b31 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – year: 2013 ident: 10.1016/j.mlwa.2021.100154_b25 article-title: Digital imaging in pathology: Whole-slide imaging and beyond – volume: 375 year: 2020 ident: 10.1016/j.mlwa.2021.100154_b10 article-title: BreakHis based breast cancer automatic diagnosis using deep learning: Taxonomy, survey and insights publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.044 – volume: 11 year: 2012 ident: 10.1016/j.mlwa.2021.100154_b58 article-title: Fuzzy method for pre-diagnosis of breast cancer from the Fine Needle Aspirate analysis publication-title: BioMedical Engineering Online doi: 10.1186/1475-925X-11-83 – volume: 32 issue: 4 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b4 article-title: Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network publication-title: Journal of Digital Imaging doi: 10.1007/s10278-019-00182-7 – volume: vol. 10882 year: 2018 ident: 10.1016/j.mlwa.2021.100154_b66 article-title: Classification of breast cancer histology images using transfer learning – volume: 521 issue: 7553 year: 2015 ident: 10.1016/j.mlwa.2021.100154_b37 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2010 ident: 10.1016/j.mlwa.2021.100154_b38 article-title: Convolutional networks and applications in vision – start-page: 1107 year: 2009 ident: 10.1016/j.mlwa.2021.100154_b43 article-title: A method for normalizing histology slides for quantitative analysis – volume: 3 issue: 12 year: 2016 ident: 10.1016/j.mlwa.2021.100154_b17 article-title: Automatic prediction of tumour malignancy in breast cancer with fractal dimension publication-title: Royal Society Open Science doi: 10.1098/rsos.160558 – volume: 53 start-page: 3 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b11 article-title: A performance comparison between shallow and deeper neural networks supervised classification of tomosynthesis breast lesions images publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.04.011 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.mlwa.2021.100154_b26 article-title: Breast cancer multi-classification from histopathological images with structured deep learning model publication-title: Scientific Reports – volume: 2021 year: 2021 ident: 10.1016/j.mlwa.2021.100154_b46 article-title: Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with EfficientNets publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2021/5580914 – volume: 56 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b7 article-title: BACH: Grand challenge on breast cancer histology images publication-title: Medical Image Analysis doi: 10.1016/j.media.2019.05.010 – year: 2017 ident: 10.1016/j.mlwa.2021.100154_b19 article-title: Xception: Deep learning with depthwise separable convolutions – volume: 11 issue: 2 year: 2013 ident: 10.1016/j.mlwa.2021.100154_b5 article-title: Artificial neural networks in medical diagnosis publication-title: Journal of Applied Biomedicine doi: 10.2478/v10136-012-0031-x – year: 2016 ident: 10.1016/j.mlwa.2021.100154_b9 article-title: Deep learning for magnification independent breast cancer histopathology image classification – year: 2015 ident: 10.1016/j.mlwa.2021.100154_b57 article-title: Very deep convolutional networks for large-scale image recognition – volume: 6 issue: 1 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b56 article-title: A survey on image data augmentation for deep learning publication-title: Journal of Big Data doi: 10.1186/s40537-019-0197-0 – year: 2016 ident: 10.1016/j.mlwa.2021.100154_b61 article-title: Breast cancer histopathological image classification using convolutional neural networks – volume: 38 issue: 3 year: 2018 ident: 10.1016/j.mlwa.2021.100154_b2 article-title: Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2018.04.008 – volume: vol. 11071 year: 2018 ident: 10.1016/j.mlwa.2021.100154_b65 article-title: Rotation equivariant CNNs for digital pathology – year: 2016 ident: 10.1016/j.mlwa.2021.100154_b18 – year: 2017 ident: 10.1016/j.mlwa.2021.100154_b20 article-title: The importance of stain normalization in colorectal tissue classification with convolutional networks – volume: 14 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b48 article-title: Classification of breast cancer histology images using consensus oriented by three deep convolutional neural networks publication-title: International Journal of Computer Assisted Radiology and Surgery – volume: 125 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b34 article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2019.03.022 – year: 2014 ident: 10.1016/j.mlwa.2021.100154_b16 – year: 2019 ident: 10.1016/j.mlwa.2021.100154_b24 article-title: Deep learned nucleus features for breast cancer histopathological image analysis based on belief theoretical classifier fusion – year: 2020 ident: 10.1016/j.mlwa.2021.100154_b50 article-title: Breast cancer images classification by clustering of ROI and mapping of features by CNN with XGBOOST learning publication-title: Materials Today: Proceedings – volume: 20 issue: 8 year: 1998 ident: 10.1016/j.mlwa.2021.100154_b29 article-title: The random subspace method for constructing decision forests publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 6 year: 2018 ident: 10.1016/j.mlwa.2021.100154_b8 article-title: Classification of breast cancer based on histology images using convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2831280 – volume: 79 issue: 21–22 year: 2020 ident: 10.1016/j.mlwa.2021.100154_b47 article-title: Breast cancer multi-classification through deep neural network and hierarchical classification approach publication-title: Multimedia Tools and Applications – start-page: 248 year: 2009 ident: 10.1016/j.mlwa.2021.100154_b22 – volume: 63 year: 2021 ident: 10.1016/j.mlwa.2021.100154_b12 article-title: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2020.102192 – volume: 194 year: 2018 ident: 10.1016/j.mlwa.2021.100154_b53 article-title: Digital image analysis in breast pathology—from image processing techniques to artificial intelligence publication-title: Translational Research doi: 10.1016/j.trsl.2017.10.010 – volume: vol. 10882 year: 2018 ident: 10.1016/j.mlwa.2021.100154_b52 article-title: Deep convolutional neural networks for breast cancer histology image analysis – volume: 117 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b62 article-title: Multiple instance learning for histopathological breast cancer image classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.09.049 – volume: 10 issue: 3 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b69 article-title: Breast cancer detection using ann network and performance analysis with SVM publication-title: International Journal of Computer Engineering and Technology doi: 10.34218/IJCET.10.3.2019.009 – volume: 15 start-page: 151 issue: 2 year: 2021 ident: 10.1016/j.mlwa.2021.100154_b3 article-title: Going deeper: magnification-invariant approach for breast cancer classification using histopathological images publication-title: IET Computer Vision doi: 10.1049/cvi2.12021 – volume: 35 issue: 5 year: 2016 ident: 10.1016/j.mlwa.2021.100154_b55 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2528162 – year: 2020 ident: 10.1016/j.mlwa.2021.100154_b71 article-title: A state-of-the-art deep transfer learning-based model for accurate breast cancer recognition in histology images – year: 2020 ident: 10.1016/j.mlwa.2021.100154_b33 article-title: Classification of histopathological biopsy images using ensemble of deep learning networks – volume: 7 issue: 6 year: 2018 ident: 10.1016/j.mlwa.2021.100154_b40 article-title: 1399 H & E-stained sentinel lymph node sections of breast cancer patients: The CAMELYON dataset publication-title: GigaScience doi: 10.1093/gigascience/giy065 – volume: 482 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b68 article-title: Classification of breast cancer histology images using incremental boosting convolution networks publication-title: Information Sciences doi: 10.1016/j.ins.2018.12.089 – year: 2020 ident: 10.1016/j.mlwa.2021.100154_b1 article-title: Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network – volume: 85 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b14 article-title: Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105765 – year: 2019 ident: 10.1016/j.mlwa.2021.100154_b15 article-title: Efficient mitosis detection in breast cancer histology images by RCNN – volume: 4 issue: 1 year: 2013 ident: 10.1016/j.mlwa.2021.100154_b54 article-title: Mitosis detection in breast cancer histological images an ICPR 2012 contest publication-title: Journal of Pathology Informatics – year: 2021 ident: 10.1016/j.mlwa.2021.100154_b36 article-title: Design of an efficient deep neural network for multi-level classification of breast cancer histology images doi: 10.1007/978-981-15-5566-4_40 – volume: 30 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b42 article-title: Pathological brain detection based on AlexNet and transfer learning publication-title: Journal of Computer Science – volume: 7 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b39 article-title: Classification of breast cancer histology images using multi-size and discriminative patches based on deep learning publication-title: IEEE Access – year: 2017 ident: 10.1016/j.mlwa.2021.100154_b59 article-title: Deep features for breast cancer histopathological image classification – volume: 54 year: 2019 ident: 10.1016/j.mlwa.2021.100154_b67 article-title: Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge publication-title: Medical Image Analysis doi: 10.1016/j.media.2019.02.012 – year: 2014 ident: 10.1016/j.mlwa.2021.100154_b45 |
| SSID | ssj0002811334 |
| Score | 2.4551637 |
| Snippet | Breast cancer is one of the leading cancers affecting women around the world. The Computer-Aided Diagnosis (CAD) system is a powerful tool to assist... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 100154 |
| SubjectTerms | Breast cancer Classification Computer-aided diagnosis Deep learning Extreme gradient boosting Histopathology images Machine learning XGBoost |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEF2VcIALtKKIFKj20BtstLb3wzkmCBpVbdQDkdKTtV-GUMdGwVEEv54d2wmkqlA4ejVjr2bHfs_a2TcIfTNcyziVnGgTR8QjtCFK6S7xcCIY16HPGTic_GsoBiP2Y8zHjUwOnIVZ27-v6rCm2QL0gcKgkgvibAttC-55dwttj4a_e3-ge5zn4CQOJW1OxfzfcQ15KoH-NQDamef36nGhsuwVwFzt152KHipdQqgr-duZl7pjnv5Rbdxs7h_RXsMzca9OjE_og8sP0M9ejicvwhpFjosUj7_3i-KhJIBnFqvspphNytsp9mwWayhZL7GB1JhhA0wbSosq389odHV5fTEgTTsFYiJGS5KmNHUKJNR10LWMGcUUF55hR4wpqyItbSCpk6FmMhUilZYqj13-m6CZH3XRIWrlRe6OEBZKaOUN4xjaiMNWXCiUx0BQFzQ0Um0ULEOdmEZrHFpeZMmyqOwugdgkEJukjk0bna187muljTet-7CCK0tQya4G_AIkzUuXRNJqQbWzLnAgbKj8vx4P0y6NrKaBsW3El-ufNISjJhL-VpM3H36-SpYN5vrlfebHaBeuoGYm4CeoVc7m7tQzn1J_bVL-GZvT-7s priority: 102 providerName: Unpaywall |
| Title | An investigation of XGBoost-based algorithm for breast cancer classification |
| URI | https://dx.doi.org/10.1016/j.mlwa.2021.100154 https://doi.org/10.1016/j.mlwa.2021.100154 https://doaj.org/article/37db60bede1e4475a25952f903db01cd |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2666-8270 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002811334 issn: 2666-8270 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2666-8270 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002811334 issn: 2666-8270 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQOcAFgQBRFiofuIGFk_gjPbaopUK04kClcor8FdgqTapuqmov-9uZSdLSXhYOXHKwbMcaT_Ke7fEbQt45aXWaa8msSxMGCO2YMXbIAE6UkDYGn8HLyfOFmi3Fl5VcnaX6wpiwVh64NdzHRHuruA0-RAHF6QzwdRnnQ554yyPn8e_L0-HZYmrdbBlFsPjCI2UAIMXSWPPuxkwb3LUpDig6FEeNBpEUF6jUiPdfgNOjfbk1twdTFGfgM31KnnSskY7a0T4jD0L5nHwdlfT6j0xGVdIqp6vP46q6qRmik6em-FnB6v_XhgI3pRYD0GvqcKJ31CFvxkChpu0LspxOvn-asS45AnOJ4DXLc54Hg4LoNhp6IZwRRirgy4kQxpvEah9pHnRshc6VyrXnBpAIvnAroDQkL0mvrMrwilBllDVQMU0xKTgerMXKAKKhVqDjiemT6GiczHXK4ZjAosiOIWLrDA2aoUGz1qB98v7UZtvqZtxbe4w2P9VEzeumADwh6zwh-5sn9Ik8zljW0YeWFkBX1_e-_MNpev9hrK__x1ivyGPsEuNiIvmG9OrdPrwFdlPbQePI8JzfTQbk4XLxbfTjNx2h9mM |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEF2VcIALtKKIFKj20BtstLb3wzkmCBpVbdQDkdKTtV-GUMdGwVEEv54d2wmkqlA4ejVjr2bHfs_a2TcIfTNcyziVnGgTR8QjtCFK6S7xcCIY16HPGTic_GsoBiP2Y8zHjUwOnIVZ27-v6rCm2QL0gcKgkgvibAttC-55dwttj4a_e3-ge5zn4CQOJW1OxfzfcQ15KoH-NQDamef36nGhsuwVwFzt152KHipdQqgr-duZl7pjnv5Rbdxs7h_RXsMzca9OjE_og8sP0M9ejicvwhpFjosUj7_3i-KhJIBnFqvspphNytsp9mwWayhZL7GB1JhhA0wbSosq389odHV5fTEgTTsFYiJGS5KmNHUKJNR10LWMGcUUF55hR4wpqyItbSCpk6FmMhUilZYqj13-m6CZH3XRIWrlRe6OEBZKaOUN4xjaiMNWXCiUx0BQFzQ0Um0ULEOdmEZrHFpeZMmyqOwugdgkEJukjk0bna187muljTet-7CCK0tQya4G_AIkzUuXRNJqQbWzLnAgbKj8vx4P0y6NrKaBsW3El-ufNISjJhL-VpM3H36-SpYN5vrlfebHaBeuoGYm4CeoVc7m7tQzn1J_bVL-GZvT-7s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+of+XGBoost-based+algorithm+for+breast+cancer+classification&rft.jtitle=Machine+learning+with+applications&rft.au=Liew%2C+Xin+Yu&rft.au=Hameed%2C+Nazia&rft.au=Clos%2C+Jeremie&rft.date=2021-12-15&rft.issn=2666-8270&rft.eissn=2666-8270&rft.volume=6&rft.spage=100154&rft_id=info:doi/10.1016%2Fj.mlwa.2021.100154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mlwa_2021_100154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-8270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-8270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-8270&client=summon |