Endosomal RFFL ubiquitin ligase regulates mitochondrial morphology by targeting mitofusin 2

Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes and endosomes. Although it is known that mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal–mitochondrial...

Full description

Saved in:
Bibliographic Details
Published inJournal of cell science Vol. 138; no. 12
Main Authors Narendradev, Nikhil Dev, Ravindran, Rishith, Jain, Parul, Chaudhary, Shikha, Velikkakath, Anoop Kumar G., Sudharman, Abyasree, Janardhanan, Adithya, Nag, Tapas Chandra, Yadav, Subhash Chandra, Srinivasula, Srinivasa Murty
Format Journal Article
LanguageEnglish
Published England The Company of Biologists 15.06.2025
Subjects
Online AccessGet full text
ISSN0021-9533
1477-9137
1477-9137
DOI10.1242/jcs.263830

Cover

Abstract Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes and endosomes. Although it is known that mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal–mitochondrial interactions remains unclear. Previously, we have reported that vesicles positive for the endosomal ubiquitin ligase RFFL are associated with damaged mitochondria and prime the organelle for PRKN recruitment. Now, we establish that RFFL is a ubiquitin ligase for mitofusin 2 (MFN2). Using electron microscopy and confocal imaging analyses, we demonstrate that RFFL-knockout cells exhibit enlarged mitochondrial morphology. RFFL interacts at an endogenous level with MFN2 and contributes to its ubiquitylation upon mitochondrial damage. Recombinant RFFL interacts and ubiquitylates MFN2 protein in vitro. Furthermore, exogenous RFFL, in a ligase-dependent manner, specifically reduces the exogenous protein levels of both MFN1 and MFN2, but not that of DRP1, and also perturbs lipid homeostasis. Importantly, we show that the hyperfused mitochondria morphology reported with expression of pathogenic disease mutants of MFN2 (T206I and R364W) of Charcot–Marie–Tooth disease type 2A can be rescued by RFFL co-expression. The study unravels novel mechanisms involving endosomal ubiquitin ligases in mitochondrial networks.
AbstractList Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes and endosomes. Although it is known that mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal–mitochondrial interactions remains unclear. Previously, we have reported that vesicles positive for the endosomal ubiquitin ligase RFFL are associated with damaged mitochondria and prime the organelle for PRKN recruitment. Now, we establish that RFFL is a ubiquitin ligase for mitofusin 2 (MFN2). Using electron microscopy and confocal imaging analyses, we demonstrate that RFFL-knockout cells exhibit enlarged mitochondrial morphology. RFFL interacts at an endogenous level with MFN2 and contributes to its ubiquitylation upon mitochondrial damage. Recombinant RFFL interacts and ubiquitylates MFN2 protein in vitro . Furthermore, exogenous RFFL, in a ligase-dependent manner, specifically reduces the exogenous protein levels of both MFN1 and MFN2, but not that of DRP1, and also perturbs lipid homeostasis. Importantly, we show that the hyperfused mitochondria morphology reported with expression of pathogenic disease mutants of MFN2 (T206I and R364W) of Charcot–Marie–Tooth disease type 2A can be rescued by RFFL co-expression. The study unravels novel mechanisms involving endosomal ubiquitin ligases in mitochondrial networks. Highlighted Article: The endosomal ubiquitin ligase RFFL associates with and primes mitochondria for PRKN recruitment, targets mitofusins for degradation and contributes to mitochondrial networks and lipid homeostasis.
Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes and endosomes. Although it is known that mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal-mitochondrial interactions remains unclear. Previously, we have reported that vesicles positive for the endosomal ubiquitin ligase RFFL are associated with damaged mitochondria and prime the organelle for PRKN recruitment. Now, we establish that RFFL is a ubiquitin ligase for mitofusin 2 (MFN2). Using electron microscopy and confocal imaging analyses, we demonstrate that RFFL-knockout cells exhibit enlarged mitochondrial morphology. RFFL interacts at an endogenous level with MFN2 and contributes to its ubiquitylation upon mitochondrial damage. Recombinant RFFL interacts and ubiquitylates MFN2 protein in vitro. Furthermore, exogenous RFFL, in a ligase-dependent manner, specifically reduces the exogenous protein levels of both MFN1 and MFN2, but not that of DRP1, and also perturbs lipid homeostasis. Importantly, we show that the hyperfused mitochondria morphology reported with expression of pathogenic disease mutants of MFN2 (T206I and R364W) of Charcot-Marie-Tooth disease type 2A can be rescued by RFFL co-expression. The study unravels novel mechanisms involving endosomal ubiquitin ligases in mitochondrial networks.
Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes, and endosomes. While mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal-mitochondrial interactions remains unclear. Previously, we reported that endosomal ubiquitin ligase, RFFL-positive vesicles are associated with damaged mitochondria and prime the organelle for PRKN recruitment. Now, we establish that RFFL is a ubiquitin ligase for MFN2. Using electron microscopy and confocal imaging analyses, we demonstrate that RFFL knockout cells exhibit enlarged mitochondrial morphology. RFFL interacts at an endogenous level with MFN2 and contributes to its ubiquitination upon mitochondrial damage. Recombinant RFFL interacts and ubiquitinates MFN2 protein in vitro. Furthermore, exogenous RFFL in a ligase-dependent manner specifically reduces the exogenous protein levels of both MFN1 and MFN2, but not that of DRP1, and also perturbs lipid homeostasis. Importantly, we show that hyperfused mitochondria morphology reported with expression of pathogenic disease mutants of MFN2 (T206I and R364W) of Charcot-Marie-Tooth disease type 2A can be rescued by RFFL co-expression. The study unravels novel mechanisms involving endosomal ubiquitin ligases in mitochondrial networks.Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes, and endosomes. While mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal-mitochondrial interactions remains unclear. Previously, we reported that endosomal ubiquitin ligase, RFFL-positive vesicles are associated with damaged mitochondria and prime the organelle for PRKN recruitment. Now, we establish that RFFL is a ubiquitin ligase for MFN2. Using electron microscopy and confocal imaging analyses, we demonstrate that RFFL knockout cells exhibit enlarged mitochondrial morphology. RFFL interacts at an endogenous level with MFN2 and contributes to its ubiquitination upon mitochondrial damage. Recombinant RFFL interacts and ubiquitinates MFN2 protein in vitro. Furthermore, exogenous RFFL in a ligase-dependent manner specifically reduces the exogenous protein levels of both MFN1 and MFN2, but not that of DRP1, and also perturbs lipid homeostasis. Importantly, we show that hyperfused mitochondria morphology reported with expression of pathogenic disease mutants of MFN2 (T206I and R364W) of Charcot-Marie-Tooth disease type 2A can be rescued by RFFL co-expression. The study unravels novel mechanisms involving endosomal ubiquitin ligases in mitochondrial networks.
Author Sudharman, Abyasree
Janardhanan, Adithya
Chaudhary, Shikha
Narendradev, Nikhil Dev
Srinivasula, Srinivasa Murty
Velikkakath, Anoop Kumar G.
Nag, Tapas Chandra
Jain, Parul
Yadav, Subhash Chandra
Ravindran, Rishith
AuthorAffiliation 2 Electron Microscope Facility, Department of Anatomy , All India Institute of Medical Sciences , 110029 New Delhi , India
1 School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram , Thiruvananthapuram 695551 Kerala , India
3 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya University , Deralakatte 575018, Mangalore , India
AuthorAffiliation_xml – name: 3 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya University , Deralakatte 575018, Mangalore , India
– name: 2 Electron Microscope Facility, Department of Anatomy , All India Institute of Medical Sciences , 110029 New Delhi , India
– name: 1 School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram , Thiruvananthapuram 695551 Kerala , India
Author_xml – sequence: 1
  givenname: Nikhil Dev
  orcidid: 0000-0002-5641-3571
  surname: Narendradev
  fullname: Narendradev, Nikhil Dev
– sequence: 2
  givenname: Rishith
  orcidid: 0000-0002-5093-9652
  surname: Ravindran
  fullname: Ravindran, Rishith
– sequence: 3
  givenname: Parul
  surname: Jain
  fullname: Jain, Parul
– sequence: 4
  givenname: Shikha
  surname: Chaudhary
  fullname: Chaudhary, Shikha
– sequence: 5
  givenname: Anoop Kumar G.
  orcidid: 0000-0002-3863-918X
  surname: Velikkakath
  fullname: Velikkakath, Anoop Kumar G.
– sequence: 6
  givenname: Abyasree
  surname: Sudharman
  fullname: Sudharman, Abyasree
– sequence: 7
  givenname: Adithya
  surname: Janardhanan
  fullname: Janardhanan, Adithya
– sequence: 8
  givenname: Tapas Chandra
  orcidid: 0000-0002-6962-0844
  surname: Nag
  fullname: Nag, Tapas Chandra
– sequence: 9
  givenname: Subhash Chandra
  orcidid: 0000-0002-2536-843X
  surname: Yadav
  fullname: Yadav, Subhash Chandra
– sequence: 10
  givenname: Srinivasa Murty
  orcidid: 0000-0003-4804-6916
  surname: Srinivasula
  fullname: Srinivasula, Srinivasa Murty
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40444323$$D View this record in MEDLINE/PubMed
BookMark eNpVkV1LwzAUhoNMdE5v_AHSSxGqJx9tlyuR4VQYCKJXXoQ0Pe0ibbMlrbB_b-em6NWBnCfPC-c9IaPWtUjIOYVrygS7-TDhmqV8yuGAjKnIslhSno3IGIDRWCacH5OTED4AIGMyOyLHAoQQnPExeb9vCxdco-voZT5fRH1u173tbBvVttIBI49VX-sOQ9TYzpmlawtvB7pxfrV0tas2Ub6JOu0rHH5V31TZh0HATslhqeuAZ_s5IW_z-9fZY7x4fnia3S1iwwV0cYmCodA5lGASraWmLJGFniaQpkVaFsALIyRIWbDhNUUjymmeSVYiijznlE_I7c676vMGC4Nt53WtVt422m-U01b937R2qSr3qShjlCapGAyXe4N36x5DpxobDNa1btH1QXFGBYdUwDbs4m_Yb8rPSQfgagcY70LwWP4iFNS2LzX0pXZ98S8-bYqD
Cites_doi 10.1186/s13064-016-0058-x
10.1093/cvr/cvm029
10.1016/j.mito.2019.05.003
10.1016/j.ejcb.2007.04.002
10.7554/eLife.03558
10.1212/01.wnl.0000240068.21499.f5
10.1111/febs.16766
10.3389/fphys.2019.00517
10.1038/nprot.2006.4
10.1038/cr.2009.6
10.1038/s41467-022-29945-7
10.15252/embr.202255191
10.15252/embr.201643827
10.1016/j.celrep.2024.114896
10.1016/j.xpro.2023.102107
10.1074/jbc.RA118.003852
10.1158/1541-7786.MCR-13-0061
10.1016/j.cell.2012.02.035
10.1016/S0301-472X(03)00260-1
10.1126/science.ade2574
10.1016/S0960-9822(00)00287-6
10.1016/j.devcel.2018.02.001
10.1016/j.bbrc.2015.07.111
10.1038/s41467-025-57038-8
10.1083/jcb.201912144
10.1046/j.1471-4159.2003.01875.x
10.1016/j.bbadis.2017.02.016
10.1002/1873-3468.14809
10.1038/nrn2417
10.1093/brain/awl126
10.1016/j.str.2004.10.007
10.1093/brain/awq082
10.1007/s00415-015-7884-3
10.1242/jcs.228007
10.1016/j.pep.2021.105856
10.1083/jcb.201602069
10.1073/pnas.1107402108
10.1093/hmg/ddi270
10.1083/jcb.200211046
10.1083/jcb.201007013
10.1016/j.neuroscience.2024.04.014
10.1096/fj.13-230037
10.1038/sj.emboj.7601360
10.15252/embj.201694914
10.1194/jlr.M002345
10.15252/embr.201745241
10.1016/j.freeradbiomed.2024.05.031
10.7554/eLife.01958
10.1016/j.celrep.2015.08.001
10.1161/CIRCRESAHA.107.157644
10.1016/j.bbamcr.2016.09.008
10.1038/s41392-023-01547-9
10.1016/j.ceb.2020.02.010
10.1002/advs.202307749
10.1073/pnas.2311887121
10.1038/ncb1161
10.1038/s41467-018-05722-3
10.1111/j.1365-2818.2012.03675.x
10.1093/oxfordjournals.jbchem.a021280
10.1016/j.devcel.2023.01.007
10.1091/mbc.e12-08-0607
10.1073/pnas.0913485107
10.1093/hmg/ddac297
10.1016/j.molcel.2013.04.023
10.2337/db13-0340
10.1038/ng1341
10.1016/j.tins.2022.12.001
10.1126/science.1099793
10.15252/embr.202152445
10.1016/j.bbamcr.2016.09.022
10.1016/j.mito.2023.101825
10.1126/science.adh9351
10.1016/j.yexcr.2023.113668
10.1016/j.devcel.2020.05.014
10.1111/boc.202100098
10.1146/annurev-physiol-020518-114358
10.1242/jcs.120162
10.1083/jcb.200809125
10.1182/blood-2007-01-068148
10.1523/JNEUROSCI.4474-04.2005
10.1126/science.1207385
10.1016/j.molcel.2023.02.012
10.1152/ajpendo.00457.2019
10.1242/jcs.253443
10.1016/j.lfs.2024.123130
10.1016/j.chemphyslip.2014.04.001
10.1016/j.cub.2006.06.054
10.1016/j.expneurol.2009.05.003
10.1091/mbc.e04-04-0274
10.1126/science.1219855
10.1111/brv.12378
10.1111/j.1365-2818.2006.01706.x
10.1038/nature20156
10.1080/15548627.2024.2440843
10.1038/ncb2220
10.7554/eLife.32866
10.3390/cells10092177
10.1074/jbc.RA119.009147
10.1016/j.jns.2015.05.033
10.1016/j.cub.2008.04.017
10.1083/jcb.201611194
10.1038/s41419-017-0023-6
10.1016/j.molcel.2017.08.020
10.1126/science.1231031
10.1242/jcs.257808
10.1073/pnas.0307459101
10.1111/cas.16151
10.1371/journal.pone.0010054
10.1038/nmeth.2521
10.1016/j.molcel.2012.05.041
10.1074/jbc.M113.477406
10.1016/j.celrep.2023.112229
10.1080/15548627.2022.2052460
10.1038/ncb2507
10.1038/nmeth.2089
10.1126/science.aao1785
10.1093/hmg/ddq419
10.1074/jbc.M702657200
10.1016/j.yjmcc.2020.04.016
10.1371/journal.pone.0001487
10.1038/nmeth.2019
10.1038/s41574-023-00845-0
10.1111/jmi.12891
10.1074/jbc.M610793200
ContentType Journal Article
Copyright 2025. Published by The Company of Biologists.
2025. Published by The Company of Biologists 2025
Copyright_xml – notice: 2025. Published by The Company of Biologists.
– notice: 2025. Published by The Company of Biologists 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1242/jcs.263830
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9137
ExternalDocumentID PMC12211564
40444323
10_1242_jcs_263830
Genre Journal Article
GrantInformation_xml – fundername: Scheme for Transformational and Advanced Research in Sciences
  grantid: STARS/APR2019/BS/708/FS
– fundername: Department of Biotechnology
  grantid: BT/PR21325/BRB/10/1554/2016
– fundername: Department of Science and Technology
– fundername: Science and Engineering Research Board
  grantid: IPA/2020/000070
– fundername: Indian Institute of Science Education and Research Thiruvananthapuram
– fundername: Science and Engineering Research Board
  grantid: EMR/2016/008048
– fundername: STARS
  grantid: STARS/APR2019/BS/708/FS
– fundername: ;
– fundername: ;
  grantid: EMR/2016/008048; IPA/2020/000070
– fundername: ;
  grantid: STARS/APR2019/BS/708/FS
– fundername: ;
  grantid: BT/PR21325/BRB/10/1554/2016
GroupedDBID ---
-DZ
-~X
0R~
18M
34G
39C
4.4
5GY
5RE
85S
AAYXX
ABDNZ
ABJNI
ABPPZ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADVGF
AEILP
AENEX
AFFNX
AFRAH
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
F5P
F9R
GX1
H13
HZ~
IH2
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
RNS
SJN
TN5
TR2
UPT
W2D
WH7
WOQ
YQT
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c340t-fe42e4ab0f0c5aa9a1259da85066d6fd03dc49099d2da86ec4f8b792fee4bb313
ISSN 0021-9533
1477-9137
IngestDate Thu Aug 21 18:33:05 EDT 2025
Fri Sep 05 15:57:40 EDT 2025
Fri Jul 04 01:54:49 EDT 2025
Thu Jul 03 08:43:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Mitofusin 2
E3 ubiquitin ligase
RFFL
Mitochondrial morphology
Ubiquitylation
Endosomes
Language English
License http://creativecommons.org/licenses/by/4.0
2025. Published by The Company of Biologists.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-fe42e4ab0f0c5aa9a1259da85066d6fd03dc49099d2da86ec4f8b792fee4bb313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Handling Editor: Ana García-Saéz
The authors declare no competing or financial interests.
Competing interests
ORCID 0000-0002-3863-918X
0000-0002-5641-3571
0000-0002-2536-843X
0000-0003-4804-6916
0000-0002-6962-0844
0000-0002-5093-9652
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC12211564
PMID 40444323
PQID 3214306401
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12211564
proquest_miscellaneous_3214306401
pubmed_primary_40444323
crossref_primary_10_1242_jcs_263830
PublicationCentury 2000
PublicationDate 2025-Jun-15
PublicationDateYYYYMMDD 2025-06-15
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-Jun-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of cell science
PublicationTitleAlternate J Cell Sci
PublicationYear 2025
Publisher The Company of Biologists
Publisher_xml – name: The Company of Biologists
References Lim (2025062510173400700_JCS263830C58) 2005; 25
Kirisako (2025062510173400700_JCS263830C48) 2006; 25
Cosentino (2025062510173400700_JCS263830C17) 2014; 181
Franco (2025062510173400700_JCS263830C32) 2016; 540
Shen (2025062510173400700_JCS263830C103) 2007; 282
Roder (2025062510173400700_JCS263830C90) 2019; 294
Huang (2025062510173400700_JCS263830C46) 2007; 86
Tang (2025062510173400700_JCS263830C109) 2015; 12
Cartoni (2025062510173400700_JCS263830C6) 2010; 133
Yun (2025062510173400700_JCS263830C120) 2014; 3
Guo (2025062510173400700_JCS263830C41) 2007; 101
Chen (2025062510173400700_JCS263830C12) 2003; 160
Collier (2025062510173400700_JCS263830C16) 2023; 46
Parra (2025062510173400700_JCS263830C81) 2013; 63
Sharma (2025062510173400700_JCS263830C100) 2024; 43
Gan (2025062510173400700_JCS263830C36) 2012; 14
Peng (2025062510173400700_JCS263830C82) 2025; 16
Stuppia (2025062510173400700_JCS263830C105) 2015; 356
Freemont (2025062510173400700_JCS263830C33) 2000; 10
Filadi (2025062510173400700_JCS263830C31) 2018; 9
Meggouh (2025062510173400700_JCS263830C69) 2006; 67
Ng (2025062510173400700_JCS263830C76) 2016; 263
Zhao (2025062510173400700_JCS263830C122) 2017; 1863
Di Rita (2025062510173400700_JCS263830C23) 2018; 9
Quintana-Cabrera (2025062510173400700_JCS263830C85) 2023; 83
Sandoval (2025062510173400700_JCS263830C92) 2014; 3
Okiyoneda (2025062510173400700_JCS263830C78) 2018; 44
Yang (2025062510173400700_JCS263830C118) 2007; 282
Youle (2025062510173400700_JCS263830C119) 2012; 337
Charman (2025062510173400700_JCS263830C8) 2010; 51
Harper (2025062510173400700_JCS263830C44) 2020; 65
Rocha (2025062510173400700_JCS263830C89) 2018; 360
Sidarala (2025062510173400700_JCS263830C104) 2022; 13
Cai (2025062510173400700_JCS263830C4) 2024; 115
Tanaka (2025062510173400700_JCS263830C108) 2010; 191
Sharma (2025062510173400700_JCS263830C99) 2023; 290
Zadoorian (2025062510173400700_JCS263830C121) 2023; 19
Kim (2025062510173400700_JCS263830C47) 2015; 464
Lin (2025062510173400700_JCS263830C59) 2022; 23
Schägger (2025062510173400700_JCS263830C94) 2006; 1
Tsubuki (2025062510173400700_JCS263830C114) 1996; 119
Cartoni (2025062510173400700_JCS263830C5) 2009; 218
Dorn (2025062510173400700_JCS263830C25) 2019; 81
Gegg (2025062510173400700_JCS263830C38) 2010; 19
Lin (2025062510173400700_JCS263830C60) 2023; 379
Koshiba (2025062510173400700_JCS263830C52) 2004; 305
Mahdaviani (2025062510173400700_JCS263830C63) 2017; 18
Sakai (2025062510173400700_JCS263830C91) 2019; 132
Michel (2025062510173400700_JCS263830C70) 2017; 68
Kumar (2025062510173400700_JCS263830C53) 2024; 358
Shcherbakova (2025062510173400700_JCS263830C101) 2013; 10
Hu (2025062510173400700_JCS263830C45) 2024; 11
Rambold (2025062510173400700_JCS263830C86) 2011; 108
Leboucher (2025062510173400700_JCS263830C55) 2012; 47
Ren (2025062510173400700_JCS263830C88) 2009; 19
Li (2025062510173400700_JCS263830C56) 2008; 3
Ponomareva (2025062510173400700_JCS263830C83) 2016; 11
Shankar (2025062510173400700_JCS263830C98) 2013; 126
El Fissi (2025062510173400700_JCS263830C27) 2018; 19
Fu (2025062510173400700_JCS263830C35) 2013; 24
Chen (2025062510173400700_JCS263830C14) 2014; 28
Enkler (2025062510173400700_JCS263830C28) 2024; 598
Züchner (2025062510173400700_JCS263830C124) 2004; 36
Araki (2025062510173400700_JCS263830C1) 2003; 86
Dong (2025062510173400700_JCS263830C24) 2013; 11
Kirshner (2025062510173400700_JCS263830C49) 2013; 249
Mukherjee (2025062510173400700_JCS263830C71) 2016; 1863
Yamano (2025062510173400700_JCS263830C117) 2020; 219
Das (2025062510173400700_JCS263830C20) 2022; 114
Nunnari (2025062510173400700_JCS263830C77) 2012; 148
Parra (2025062510173400700_JCS263830C80) 2008; 77
Chen (2025062510173400700_JCS263830C15) 2023; 8
Lupo (2025062510173400700_JCS263830C61) 2024; 121
Verhoeven (2025062510173400700_JCS263830C115) 2006; 129
Nara (2025062510173400700_JCS263830C74) 2023; 429
Schneider (2025062510173400700_JCS263830C96) 2012; 9
Mattie (2025062510173400700_JCS263830C65) 2017; 217
Boutant (2025062510173400700_JCS263830C3) 2017; 36
Maddi (2025062510173400700_JCS263830C62) 2021; 183
Kitamura (2025062510173400700_JCS263830C50) 2003; 31
Das (2025062510173400700_JCS263830C21) 2022; 135
McBride (2025062510173400700_JCS263830C66) 2006; 16
Mallick (2025062510173400700_JCS263830C64) 2024; 549
Das (2025062510173400700_JCS263830C19) 2016; 214
Han (2025062510173400700_JCS263830C43) 2021; 134
Das (2025062510173400700_JCS263830C22) 2024; 74
Müntjes (2025062510173400700_JCS263830C72) 2021; 22
Dorn (2025062510173400700_JCS263830C26) 2020; 142
McDonald (2025062510173400700_JCS263830C67) 2004; 101
Todkar (2025062510173400700_JCS263830C112) 2019; 49
Hamdi (2025062510173400700_JCS263830C42) 2016; 1863
Triolo (2025062510173400700_JCS263830C113) 2023; 4
Coumailleau (2025062510173400700_JCS263830C18) 2004; 15
Ouyang (2025062510173400700_JCS263830C79) 2023; 58
Knott (2025062510173400700_JCS263830C51) 2008; 9
Tang (2025062510173400700_JCS263830C110) 2023; 32
Bolte (2025062510173400700_JCS263830C2) 2006; 224
Su (2025062510173400700_JCS263830C106) 2024; 221
Lam (2025062510173400700_JCS263830C54) 2021; 10
Sha (2025062510173400700_JCS263830C97) 2019; 294
Chen (2025062510173400700_JCS263830C13) 2004; 6
Escobar-Henriques (2025062510173400700_JCS263830C29) 2019; 10
Friedman (2025062510173400700_JCS263830C34) 2011; 334
Faitg (2025062510173400700_JCS263830C30) 2020; 278
Tibbetts (2025062510173400700_JCS263830C111) 2004; 12
Wang (2025062510173400700_JCS263830C116) 2020; 53
Poole (2025062510173400700_JCS263830C84) 2010; 5
Gan (2025062510173400700_JCS263830C37) 2013; 288
Narendra (2025062510173400700_JCS263830C75) 2008; 183
Ravindran (2025062510173400700_JCS263830C87) 2022; 18
Sheftel (2025062510173400700_JCS263830C102) 2007; 110
McLelland (2025062510173400700_JCS263830C68) 2018; 7
Sugiura (2025062510173400700_JCS263830C107) 2013; 51
Chandhok (2025062510173400700_JCS263830C7) 2018; 93
Chen (2025062510173400700_JCS263830C10) 2005; 14
Satoh (2025062510173400700_JCS263830C93) 2023; 42
Chaudhry (2025062510173400700_JCS263830C9) 2020; 318
Gordaliza-Alaguero (2025062510173400700_JCS263830C40) 2025; 21
Schindelin (2025062510173400700_JCS263830C95) 2012; 9
Gomes (2025062510173400700_JCS263830C39) 2011; 13
Liao (2025062510173400700_JCS263830C57) 2008; 18
Naón (2025062510173400700_JCS263830C73) 2023; 380
Chen (2025062510173400700_JCS263830C11) 2013; 340
Ziviani (2025062510173400700_JCS263830C123) 2010; 107
References_xml – volume: 11
  start-page: 2
  year: 2016
  ident: 2025062510173400700_JCS263830C83
  article-title: Charcot-Marie-tooth 2b associated Rab7 mutations cause axon growth and guidance defects during vertebrate sensory neuron development
  publication-title: Neural Dev.
  doi: 10.1186/s13064-016-0058-x
– volume: 77
  start-page: 387
  year: 2008
  ident: 2025062510173400700_JCS263830C80
  article-title: Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvm029
– volume: 49
  start-page: 284
  year: 2019
  ident: 2025062510173400700_JCS263830C112
  article-title: Mitochondrial interaction with the endosomal compartment in endocytosis and mitochondrial transfer
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2019.05.003
– volume: 86
  start-page: 289
  year: 2007
  ident: 2025062510173400700_JCS263830C46
  article-title: Mitochondrial clustering induced by overexpression of the mitochondrial fusion protein Mfn2 causes mitochondrial dysfunction and cell death
  publication-title: Eur. J. Cell Biol.
  doi: 10.1016/j.ejcb.2007.04.002
– volume: 3
  start-page: e03558
  year: 2014
  ident: 2025062510173400700_JCS263830C92
  article-title: Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production
  publication-title: eLife
  doi: 10.7554/eLife.03558
– volume: 67
  start-page: 1476
  year: 2006
  ident: 2025062510173400700_JCS263830C69
  article-title: Charcot-Marie-Tooth disease due to a de novo mutation of the RAB7 gene
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000240068.21499.f5
– volume: 290
  start-page: 3580
  year: 2023
  ident: 2025062510173400700_JCS263830C99
  article-title: CARPs regulate STUB1 and its pathogenic mutants aggregation kinetics by mono-ubiquitination
  publication-title: FEBS J.
  doi: 10.1111/febs.16766
– volume: 10
  start-page: 517
  year: 2019
  ident: 2025062510173400700_JCS263830C29
  article-title: Mitofusins: disease gatekeepers and hubs in mitochondrial quality control by E3 ligases
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00517
– volume: 1
  start-page: 16
  year: 2006
  ident: 2025062510173400700_JCS263830C94
  article-title: Tricine–SDS-PAGE
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.4
– volume: 19
  start-page: 271
  year: 2009
  ident: 2025062510173400700_JCS263830C88
  article-title: DOG 1.0: illustrator of protein domain structures
  publication-title: Cell Res.
  doi: 10.1038/cr.2009.6
– volume: 13
  start-page: 2340
  year: 2022
  ident: 2025062510173400700_JCS263830C104
  article-title: Mitofusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29945-7
– volume: 23
  start-page: e55191
  year: 2022
  ident: 2025062510173400700_JCS263830C59
  article-title: Parkin coordinates mitochondrial lipid remodeling to execute mitophagy
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202255191
– volume: 18
  start-page: 1123
  year: 2017
  ident: 2025062510173400700_JCS263830C63
  article-title: Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201643827
– volume: 43
  start-page: 114896
  year: 2024
  ident: 2025062510173400700_JCS263830C100
  article-title: EGF-mediated Golgi dynamics and cell migration require CARP2
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2024.114896
– volume: 4
  start-page: 102107
  year: 2023
  ident: 2025062510173400700_JCS263830C113
  article-title: Evaluating mitochondrial length, volume, and cristae ultrastructure in rare mouse adult stem cell populations
  publication-title: STAR Protoc.
  doi: 10.1016/j.xpro.2023.102107
– volume: 294
  start-page: 351
  year: 2019
  ident: 2025062510173400700_JCS263830C90
  article-title: Trafficking of the human ether-a-go-go-related gene (hERG) potassium channel is regulated by the ubiquitin ligase rififylin (RFFL)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.003852
– volume: 11
  start-page: 1051
  year: 2013
  ident: 2025062510173400700_JCS263830C24
  article-title: Tumor suppressor functions of miR-133a in colorectal cancer
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-13-0061
– volume: 148
  start-page: 1145
  year: 2012
  ident: 2025062510173400700_JCS263830C77
  article-title: Mitochondria: in sickness and in health
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.035
– volume: 31
  start-page: 1007
  year: 2003
  ident: 2025062510173400700_JCS263830C50
  article-title: Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics
  publication-title: Exp. Hematol.
  doi: 10.1016/S0301-472X(03)00260-1
– volume: 379
  start-page: 1123
  year: 2023
  ident: 2025062510173400700_JCS263830C60
  article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model
  publication-title: Science
  doi: 10.1126/science.ade2574
– volume: 10
  start-page: R84
  year: 2000
  ident: 2025062510173400700_JCS263830C33
  article-title: Ubiquitination: RING for destruction?
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00287-6
– volume: 44
  start-page: 694
  year: 2018
  ident: 2025062510173400700_JCS263830C78
  article-title: Chaperone-independent peripheral quality control of CFTR by RFFL E3 ligase
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2018.02.001
– volume: 464
  start-page: 1235
  year: 2015
  ident: 2025062510173400700_JCS263830C47
  article-title: HDAC6 maintains mitochondrial connectivity under hypoxic stress by suppressing MARCH5/MITOL dependent MFN2 degradation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.07.111
– volume: 16
  start-page: 1917
  year: 2025
  ident: 2025062510173400700_JCS263830C82
  article-title: Endosomal trafficking participates in lipid droplet catabolism to maintain lipid homeostasis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-025-57038-8
– volume: 219
  start-page: e201912144
  year: 2020
  ident: 2025062510173400700_JCS263830C117
  article-title: Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201912144
– volume: 86
  start-page: 749
  year: 2003
  ident: 2025062510173400700_JCS263830C1
  article-title: A palmitoylated RING finger ubiquitin ligase and its homologue in the brain membranes
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2003.01875.x
– volume: 1863
  start-page: 1359
  year: 2017
  ident: 2025062510173400700_JCS263830C122
  article-title: Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: implications for idiopathic Parkinson's disease
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2017.02.016
– volume: 598
  start-page: 1235
  year: 2024
  ident: 2025062510173400700_JCS263830C28
  article-title: Functional interplay of lipid droplets and mitochondria
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.14809
– volume: 9
  start-page: 505
  year: 2008
  ident: 2025062510173400700_JCS263830C51
  article-title: Mitochondrial fragmentation in neurodegeneration
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2417
– volume: 129
  start-page: 2093
  year: 2006
  ident: 2025062510173400700_JCS263830C115
  article-title: MFN2 mutation distribution and genotype/phenotype correlation in Charcot–Marie–Tooth type 2
  publication-title: Brain
  doi: 10.1093/brain/awl126
– volume: 12
  start-page: 2257
  year: 2004
  ident: 2025062510173400700_JCS263830C111
  article-title: Crystal structure of a FYVE-type zinc finger domain from the caspase regulator CARP2
  publication-title: Structure
  doi: 10.1016/j.str.2004.10.007
– volume: 133
  start-page: 1460
  year: 2010
  ident: 2025062510173400700_JCS263830C6
  article-title: Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot-Marie-Tooth neuropathy type 2A
  publication-title: Brain J. Neurol.
  doi: 10.1093/brain/awq082
– volume: 263
  start-page: 179
  year: 2016
  ident: 2025062510173400700_JCS263830C76
  article-title: Mitochondrial disease: genetics and management
  publication-title: J. Neurol.
  doi: 10.1007/s00415-015-7884-3
– volume: 132
  start-page: jcs228007
  year: 2019
  ident: 2025062510173400700_JCS263830C91
  article-title: The integral function of the endocytic recycling compartment is regulated by RFFL-mediated ubiquitylation of Rab11 effectors
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.228007
– volume: 183
  start-page: 105856
  year: 2021
  ident: 2025062510173400700_JCS263830C62
  article-title: Optimization strategies for expression and purification of soluble N-terminal domain of human centriolar protein SAS-6 in Escherichia coli
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2021.105856
– volume: 214
  start-page: 831
  year: 2016
  ident: 2025062510173400700_JCS263830C19
  article-title: Endosome–mitochondria interactions are modulated by iron release from transferrin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201602069
– volume: 108
  start-page: 10190
  year: 2011
  ident: 2025062510173400700_JCS263830C86
  article-title: Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1107402108
– volume: 14
  start-page: R283
  year: 2005
  ident: 2025062510173400700_JCS263830C10
  article-title: Emerging functions of mammalian mitochondrial fusion and fission
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddi270
– volume: 160
  start-page: 189
  year: 2003
  ident: 2025062510173400700_JCS263830C12
  article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200211046
– volume: 191
  start-page: 1367
  year: 2010
  ident: 2025062510173400700_JCS263830C108
  article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201007013
– volume: 549
  start-page: 13
  year: 2024
  ident: 2025062510173400700_JCS263830C64
  article-title: Lipid droplets and neurodegeneration
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2024.04.014
– volume: 28
  start-page: 382
  year: 2014
  ident: 2025062510173400700_JCS263830C14
  article-title: Role of mitofusin 2 (Mfn2) in controlling cellular proliferation
  publication-title: FASEB J.
  doi: 10.1096/fj.13-230037
– volume: 25
  start-page: 4877
  year: 2006
  ident: 2025062510173400700_JCS263830C48
  article-title: A ubiquitin ligase complex assembles linear polyubiquitin chains
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601360
– volume: 36
  start-page: 1543
  year: 2017
  ident: 2025062510173400700_JCS263830C3
  article-title: Mfn2 is critical for brown adipose tissue thermogenic function
  publication-title: EMBO J.
  doi: 10.15252/embj.201694914
– volume: 51
  start-page: 1023
  year: 2010
  ident: 2025062510173400700_JCS263830C8
  article-title: MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M002345
– volume: 19
  start-page: e45241
  year: 2018
  ident: 2025062510173400700_JCS263830C27
  article-title: Mitofusin gain and loss of function drive pathogenesis in Drosophila models of CMT2A neuropathy
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201745241
– volume: 221
  start-page: 136
  year: 2024
  ident: 2025062510173400700_JCS263830C106
  article-title: E3 ubiquitin ligase RBCK1 confers ferroptosis resistance in pancreatic cancer by facilitating MFN2 degradation
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2024.05.031
– volume: 3
  start-page: e01958
  year: 2014
  ident: 2025062510173400700_JCS263830C120
  article-title: MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin
  publication-title: eLife
  doi: 10.7554/eLife.01958
– volume: 12
  start-page: 1631
  year: 2015
  ident: 2025062510173400700_JCS263830C109
  article-title: VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.08.001
– volume: 101
  start-page: 1113
  year: 2007
  ident: 2025062510173400700_JCS263830C41
  article-title: Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.107.157644
– volume: 1863
  start-page: 2859
  year: 2016
  ident: 2025062510173400700_JCS263830C42
  article-title: Erythroid cell mitochondria receive endosomal iron by a “kiss-and-run” mechanism
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2016.09.008
– volume: 8
  start-page: 333
  year: 2023
  ident: 2025062510173400700_JCS263830C15
  article-title: Mitochondrial dynamics in health and disease: mechanisms and potential targets
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-023-01547-9
– volume: 65
  start-page: 58
  year: 2020
  ident: 2025062510173400700_JCS263830C44
  article-title: The multifunctional nature of mitochondrial contact site proteins
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2020.02.010
– volume: 11
  start-page: 2307749
  year: 2024
  ident: 2025062510173400700_JCS263830C45
  article-title: Mfn2/Hsc70 complex mediates the formation of mitochondria-lipid droplets membrane contact and regulates myocardial lipid metabolism
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202307749
– volume: 121
  start-page: e2311887121
  year: 2024
  ident: 2025062510173400700_JCS263830C61
  article-title: Pairing interacting protein sequences using masked language modeling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2311887121
– volume: 6
  start-page: 872
  year: 2004
  ident: 2025062510173400700_JCS263830C13
  article-title: Dysregulation of HSG triggers vascular proliferative disorders
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1161
– volume: 9
  start-page: 3755
  year: 2018
  ident: 2025062510173400700_JCS263830C23
  article-title: HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05722-3
– volume: 249
  start-page: 13
  year: 2013
  ident: 2025062510173400700_JCS263830C49
  article-title: 3-D PSF fitting for fluorescence microscopy: implementation and localization application
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2012.03675.x
– volume: 119
  start-page: 572
  year: 1996
  ident: 2025062510173400700_JCS263830C114
  article-title: Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine
  publication-title: J. Biochem. (Tokyo)
  doi: 10.1093/oxfordjournals.jbchem.a021280
– volume: 58
  start-page: 289
  year: 2023
  ident: 2025062510173400700_JCS263830C79
  article-title: Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2023.01.007
– volume: 24
  start-page: 1153
  year: 2013
  ident: 2025062510173400700_JCS263830C35
  article-title: Regulation of mitophagy by the Gp78 E3 ubiquitin ligase
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e12-08-0607
– volume: 107
  start-page: 5018
  year: 2010
  ident: 2025062510173400700_JCS263830C123
  article-title: Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913485107
– volume: 32
  start-page: 1466
  year: 2023
  ident: 2025062510173400700_JCS263830C110
  article-title: Parkin regulates neuronal lipid homeostasis through SREBP2-lipoprotein lipase pathway—implications for Parkinson's disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddac297
– volume: 51
  start-page: 20
  year: 2013
  ident: 2025062510173400700_JCS263830C107
  article-title: MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.04.023
– volume: 63
  start-page: 75
  year: 2013
  ident: 2025062510173400700_JCS263830C81
  article-title: Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 signaling pathway
  publication-title: Diabetes
  doi: 10.2337/db13-0340
– volume: 36
  start-page: 449
  year: 2004
  ident: 2025062510173400700_JCS263830C124
  article-title: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A
  publication-title: Nat. Genet.
  doi: 10.1038/ng1341
– volume: 46
  start-page: 137
  year: 2023
  ident: 2025062510173400700_JCS263830C16
  article-title: Mitochondrial signalling and homeostasis: from cell biology to neurological disease
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2022.12.001
– volume: 305
  start-page: 858
  year: 2004
  ident: 2025062510173400700_JCS263830C52
  article-title: Structural basis of mitochondrial tethering by mitofusin complexes
  publication-title: Science
  doi: 10.1126/science.1099793
– volume: 22
  start-page: e52445
  year: 2021
  ident: 2025062510173400700_JCS263830C72
  article-title: Linking transport and translation of mRNAs with endosomes and mitochondria
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202152445
– volume: 1863
  start-page: 3065
  year: 2016
  ident: 2025062510173400700_JCS263830C71
  article-title: Regulation of Mitofusin1 by Mahogunin ring finger-1 and the proteasome modulates mitochondrial fusion
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2016.09.022
– volume: 74
  start-page: 101825
  year: 2024
  ident: 2025062510173400700_JCS263830C22
  article-title: CMT2A-linked MFN2 mutation, T206I promotes mitochondrial hyperfusion and predisposes cells towards mitophagy
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2023.101825
– volume: 380
  start-page: eadh9351
  year: 2023
  ident: 2025062510173400700_JCS263830C73
  article-title: Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria
  publication-title: Science
  doi: 10.1126/science.adh9351
– volume: 429
  start-page: 113668
  year: 2023
  ident: 2025062510173400700_JCS263830C74
  article-title: The ultrastructural function of MLN64 in the late endosome–mitochondria membrane contact sites in placental cells
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2023.113668
– volume: 53
  start-page: 627
  year: 2020
  ident: 2025062510173400700_JCS263830C116
  article-title: Endolysosomal targeting of mitochondria is integral to BAX-mediated mitochondrial permeabilization during apoptosis signaling
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.05.014
– volume: 114
  start-page: 309
  year: 2022
  ident: 2025062510173400700_JCS263830C20
  article-title: CMT2A-linked mitochondrial hyperfusion-driving mutant MFN2 perturbs ER-mitochondrial associations and Ca2+ homeostasis
  publication-title: Biol. Cell
  doi: 10.1111/boc.202100098
– volume: 81
  start-page: 1
  year: 2019
  ident: 2025062510173400700_JCS263830C25
  article-title: Evolving concepts of mitochondrial dynamics
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-020518-114358
– volume: 126
  start-page: 3295
  year: 2013
  ident: 2025062510173400700_JCS263830C98
  article-title: Raft endocytosis of AMF regulates mitochondrial dynamics through Rac1 signaling and the Gp78 ubiquitin ligase
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.120162
– volume: 183
  start-page: 795
  year: 2008
  ident: 2025062510173400700_JCS263830C75
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200809125
– volume: 110
  start-page: 125
  year: 2007
  ident: 2025062510173400700_JCS263830C102
  article-title: Direct interorganellar transfer of iron from endosome to mitochondrion
  publication-title: Blood
  doi: 10.1182/blood-2007-01-068148
– volume: 25
  start-page: 2002
  year: 2005
  ident: 2025062510173400700_JCS263830C58
  article-title: Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4474-04.2005
– volume: 334
  start-page: 358
  year: 2011
  ident: 2025062510173400700_JCS263830C34
  article-title: ER tubules mark sites of mitochondrial division
  publication-title: Science
  doi: 10.1126/science.1207385
– volume: 83
  start-page: 857
  year: 2023
  ident: 2025062510173400700_JCS263830C85
  article-title: Determinants and outcomes of mitochondrial dynamics
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2023.02.012
– volume: 318
  start-page: E87
  year: 2020
  ident: 2025062510173400700_JCS263830C9
  article-title: A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00457.2019
– volume: 134
  start-page: jcs253443
  year: 2021
  ident: 2025062510173400700_JCS263830C43
  article-title: The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.253443
– volume: 358
  start-page: 123130
  year: 2024
  ident: 2025062510173400700_JCS263830C53
  article-title: TRPV4 modulation affects mitochondrial parameters in adipocytes and its inhibition upregulates lipid accumulation
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2024.123130
– volume: 181
  start-page: 62
  year: 2014
  ident: 2025062510173400700_JCS263830C17
  article-title: Mitochondrial alterations in apoptosis
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2014.04.001
– volume: 16
  start-page: R551
  year: 2006
  ident: 2025062510173400700_JCS263830C66
  article-title: Mitochondria: more than just a powerhouse
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.06.054
– volume: 218
  start-page: 268
  year: 2009
  ident: 2025062510173400700_JCS263830C5
  article-title: Role of mitofusin 2 mutations in the physiopathology of Charcot–Marie–Tooth disease type 2A
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2009.05.003
– volume: 15
  start-page: 4444
  year: 2004
  ident: 2025062510173400700_JCS263830C18
  article-title: Over-expression of Rififylin, a new RING finger and FYVE-like domain-containing protein, inhibits recycling from the endocytic recycling compartment
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-04-0274
– volume: 337
  start-page: 1062
  year: 2012
  ident: 2025062510173400700_JCS263830C119
  article-title: Mitochondrial fission, fusion, and stress
  publication-title: Science
  doi: 10.1126/science.1219855
– volume: 93
  start-page: 933
  year: 2018
  ident: 2025062510173400700_JCS263830C7
  article-title: Structure, function, and regulation of mitofusin–2 in health and disease
  publication-title: Biol. Rev. Camb. Philos. Soc.
  doi: 10.1111/brv.12378
– volume: 224
  start-page: 213
  year: 2006
  ident: 2025062510173400700_JCS263830C2
  article-title: A guided tour into subcellular colocalization analysis in light microscopy
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2006.01706.x
– volume: 540
  start-page: 74
  year: 2016
  ident: 2025062510173400700_JCS263830C32
  article-title: Correcting mitochondrial fusion by manipulating mitofusin conformations
  publication-title: Nature
  doi: 10.1038/nature20156
– volume: 21
  start-page: 957
  year: 2025
  ident: 2025062510173400700_JCS263830C40
  article-title: Endogenous interactomes of MFN1 and MFN2 provide novel insights into interorganelle communication and autophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2024.2440843
– volume: 13
  start-page: 589
  year: 2011
  ident: 2025062510173400700_JCS263830C39
  article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2220
– volume: 7
  start-page: e32866
  year: 2018
  ident: 2025062510173400700_JCS263830C68
  article-title: Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy
  publication-title: eLife
  doi: 10.7554/eLife.32866
– volume: 10
  start-page: 2177
  year: 2021
  ident: 2025062510173400700_JCS263830C54
  article-title: A universal approach to analyzing transmission electron microscopy with ImageJ
  publication-title: Cells
  doi: 10.3390/cells10092177
– volume: 294
  start-page: 15218
  year: 2019
  ident: 2025062510173400700_JCS263830C97
  article-title: Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.009147
– volume: 356
  start-page: 7
  year: 2015
  ident: 2025062510173400700_JCS263830C105
  article-title: MFN2-related neuropathies: clinical features, molecular pathogenesis and therapeutic perspectives
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2015.05.033
– volume: 18
  start-page: 641
  year: 2008
  ident: 2025062510173400700_JCS263830C57
  article-title: CARP-2 is an endosome-associated ubiquitin protein ligase for RIP and regulates TNF-induced NF-κB activation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.04.017
– volume: 217
  start-page: 507
  year: 2017
  ident: 2025062510173400700_JCS263830C65
  article-title: A new mitofusin topology places the redox-regulated C terminus in the mitochondrial intermembrane space
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201611194
– volume: 9
  start-page: 1
  year: 2018
  ident: 2025062510173400700_JCS263830C31
  article-title: Mitofusin 2: from functions to disease
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-017-0023-6
– volume: 68
  start-page: 233
  year: 2017
  ident: 2025062510173400700_JCS263830C70
  article-title: Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.08.020
– volume: 340
  start-page: 471
  year: 2013
  ident: 2025062510173400700_JCS263830C11
  article-title: PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria
  publication-title: Science
  doi: 10.1126/science.1231031
– volume: 135
  start-page: jcs257808
  year: 2022
  ident: 2025062510173400700_JCS263830C21
  article-title: MITOL-mediated DRP1 ubiquitylation and degradation promotes mitochondrial hyperfusion in a CMT2A-linked MFN2 mutant
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.257808
– volume: 101
  start-page: 6170
  year: 2004
  ident: 2025062510173400700_JCS263830C67
  article-title: Suppression of caspase-8- and -10-associated RING proteins results in sensitization to death ligands and inhibition of tumor cell growth
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0307459101
– volume: 115
  start-page: 1791
  year: 2024
  ident: 2025062510173400700_JCS263830C4
  article-title: MFN2 suppresses the accumulation of lipid droplets and the progression of clear cell renal cell carcinoma
  publication-title: Cancer Sci.
  doi: 10.1111/cas.16151
– volume: 5
  start-page: e10054
  year: 2010
  ident: 2025062510173400700_JCS263830C84
  article-title: The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/Parkin pathway
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010054
– volume: 10
  start-page: 751
  year: 2013
  ident: 2025062510173400700_JCS263830C101
  article-title: Near-infrared fluorescent proteins for multicolor in vivo imaging
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2521
– volume: 47
  start-page: 547
  year: 2012
  ident: 2025062510173400700_JCS263830C55
  article-title: Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.041
– volume: 288
  start-page: 33978
  year: 2013
  ident: 2025062510173400700_JCS263830C37
  article-title: Different Raf protein kinases mediate different signaling pathways to stimulate E3 ligase RFFL gene expression in cell migration regulation*
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.477406
– volume: 42
  start-page: 112229
  year: 2023
  ident: 2025062510173400700_JCS263830C93
  article-title: Interaction between PI3K and the VDAC2 channel tethers Ras-PI3K-positive endosomes to mitochondria and promotes endosome maturation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2023.112229
– volume: 18
  start-page: 2851
  year: 2022
  ident: 2025062510173400700_JCS263830C87
  article-title: Endosomal-associated RFFL facilitates mitochondrial clearance by enhancing PRKN/parkin recruitment to mitochondria
  publication-title: Autophagy
  doi: 10.1080/15548627.2022.2052460
– volume: 14
  start-page: 686
  year: 2012
  ident: 2025062510173400700_JCS263830C36
  article-title: PRR5L degradation promotes MTORC2-mediated PKCδ phosphorylation and cell migration downstream of Gα12
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2507
– volume: 9
  start-page: 671
  year: 2012
  ident: 2025062510173400700_JCS263830C96
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 360
  start-page: 336
  year: 2018
  ident: 2025062510173400700_JCS263830C89
  article-title: MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A
  publication-title: Science
  doi: 10.1126/science.aao1785
– volume: 19
  start-page: 4861
  year: 2010
  ident: 2025062510173400700_JCS263830C38
  article-title: Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq419
– volume: 282
  start-page: 23354
  year: 2007
  ident: 2025062510173400700_JCS263830C103
  article-title: Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis *
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702657200
– volume: 142
  start-page: 146
  year: 2020
  ident: 2025062510173400700_JCS263830C26
  article-title: Mitofusins as mitochondrial anchors and tethers
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2020.04.016
– volume: 3
  start-page: e1487
  year: 2008
  ident: 2025062510173400700_JCS263830C56
  article-title: Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial e3 that regulates the Organelle's dynamics and signaling
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0001487
– volume: 9
  start-page: 676
  year: 2012
  ident: 2025062510173400700_JCS263830C95
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 19
  start-page: 443
  year: 2023
  ident: 2025062510173400700_JCS263830C121
  article-title: Lipid droplet biogenesis and functions in health and disease
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/s41574-023-00845-0
– volume: 278
  start-page: 89
  year: 2020
  ident: 2025062510173400700_JCS263830C30
  article-title: Mitochondrial morphology and function: two for the price of one!
  publication-title: J. Microsc.
  doi: 10.1111/jmi.12891
– volume: 282
  start-page: 3273
  year: 2007
  ident: 2025062510173400700_JCS263830C118
  article-title: CARPs are ubiquitin ligases that promote MDM2-independent p53 and phospho-p53ser20 degradation*
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M610793200
SSID ssj0007297
Score 2.4941428
Snippet Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER),...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Animals
Endosomes - enzymology
Endosomes - metabolism
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
HEK293 Cells
HeLa Cells
Humans
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - ultrastructure
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Title Endosomal RFFL ubiquitin ligase regulates mitochondrial morphology by targeting mitofusin 2
URI https://www.ncbi.nlm.nih.gov/pubmed/40444323
https://www.proquest.com/docview/3214306401
https://pubmed.ncbi.nlm.nih.gov/PMC12211564
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEGgviG_Kl4zgLUppbSdtH1G1apoYGmKTJvEQ2bFNItZ0tAnS-Dv4g7mLEyeFIcFeospxY-vuZ_vufB-EvJE8mgjL49CCrB8KqUQoY5uGIlZcpZFV0mDs8NGH-OBUHJ5FZzs7P3teS1WphumPK-NKrsNVaAO-YpTsf3DWfxQa4DfwF57AYXj-E4_3C73arJaYH3-xeB9UKv9W5WVeBOf5FzidgrUrNG82wRIWLmx0ha6LdCxXQF2XfAmlz9oZHE0G2MuiJ3zA_iK0op0_aE5Nb0fGeDK9lhqmX2Pra5afozdSd4f0PccOTST_JstLb4Q-lC6JwbFcdy6K80xWOpPuhv9TBh-UfesEi9CLysVnDtv4ttZ3ASbp6msCfvuGyNpJJHLpMIbGbcMCL5bHLh2M36f5tA9IduUBABIHHgDpZshgZ3FXPj0kXCxrKAjMkscZ7w5B75p4fDQfM9CKo1jcIDfZBCQyvOr_2OWgB3WkKQTs5t0kvYWR33bj7pHb7SDbEs8faszv3rg98ebkLrnTsJi-cyC7R3ZMcZ_ccpS8fEA-e6hRhBr1UKMOatRDjW5BjXZQo-qSeqhRDzXKHpLTxf7J_CBs6nKEKRejMrRGMAPLemRHaSTlTIKQPNMScx_GOrZ6xHUqZqB6aAatsUmFnarJjFljhFJ8zB-R3WJVmCeEcisxfD9OoykXaayUZMB1zoFwkdBsNiCvW9olFy79SoJqKxA7AWInjtgD8qolawK7Iy4FWZhVtUmwDBfq2KPxgDx2ZPbfafkzINMtBvgOmHl9-02RZ3UG9hYhT6__12dkr1svz8luua7MC5BvS_Wyhtsvj2atdA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endosomal+RFFL+ubiquitin+ligase+regulates+mitochondrial+morphology+by+targeting+mitofusin+2&rft.jtitle=Journal+of+cell+science&rft.au=Narendradev%2C+Nikhil+Dev&rft.au=Ravindran%2C+Rishith&rft.au=Jain%2C+Parul&rft.au=Chaudhary%2C+Shikha&rft.date=2025-06-15&rft.pub=The+Company+of+Biologists&rft.issn=0021-9533&rft.eissn=1477-9137&rft.volume=138&rft.issue=12&rft_id=info:doi/10.1242%2Fjcs.263830&rft_id=info%3Apmid%2F40444323&rft.externalDocID=PMC12211564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon