Endosomal RFFL ubiquitin ligase regulates mitochondrial morphology by targeting mitofusin 2
Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes and endosomes. Although it is known that mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal–mitochondrial...
Saved in:
Published in | Journal of cell science Vol. 138; no. 12 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists
15.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9533 1477-9137 1477-9137 |
DOI | 10.1242/jcs.263830 |
Cover
Abstract | Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes and endosomes. Although it is known that mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal–mitochondrial interactions remains unclear. Previously, we have reported that vesicles positive for the endosomal ubiquitin ligase RFFL are associated with damaged mitochondria and prime the organelle for PRKN recruitment. Now, we establish that RFFL is a ubiquitin ligase for mitofusin 2 (MFN2). Using electron microscopy and confocal imaging analyses, we demonstrate that RFFL-knockout cells exhibit enlarged mitochondrial morphology. RFFL interacts at an endogenous level with MFN2 and contributes to its ubiquitylation upon mitochondrial damage. Recombinant RFFL interacts and ubiquitylates MFN2 protein in vitro. Furthermore, exogenous RFFL, in a ligase-dependent manner, specifically reduces the exogenous protein levels of both MFN1 and MFN2, but not that of DRP1, and also perturbs lipid homeostasis. Importantly, we show that the hyperfused mitochondria morphology reported with expression of pathogenic disease mutants of MFN2 (T206I and R364W) of Charcot–Marie–Tooth disease type 2A can be rescued by RFFL co-expression. The study unravels novel mechanisms involving endosomal ubiquitin ligases in mitochondrial networks. |
---|---|
AbstractList | Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes and endosomes. Although it is known that mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal–mitochondrial interactions remains unclear. Previously, we have reported that vesicles positive for the endosomal ubiquitin ligase RFFL are associated with damaged mitochondria and prime the organelle for PRKN recruitment. Now, we establish that RFFL is a ubiquitin ligase for mitofusin 2 (MFN2). Using electron microscopy and confocal imaging analyses, we demonstrate that RFFL-knockout cells exhibit enlarged mitochondrial morphology. RFFL interacts at an endogenous level with MFN2 and contributes to its ubiquitylation upon mitochondrial damage. Recombinant RFFL interacts and ubiquitylates MFN2 protein
in vitro
. Furthermore, exogenous RFFL, in a ligase-dependent manner, specifically reduces the exogenous protein levels of both MFN1 and MFN2, but not that of DRP1, and also perturbs lipid homeostasis. Importantly, we show that the hyperfused mitochondria morphology reported with expression of pathogenic disease mutants of MFN2 (T206I and R364W) of Charcot–Marie–Tooth disease type 2A can be rescued by RFFL co-expression. The study unravels novel mechanisms involving endosomal ubiquitin ligases in mitochondrial networks.
Highlighted Article:
The endosomal ubiquitin ligase RFFL associates with and primes mitochondria for PRKN recruitment, targets mitofusins for degradation and contributes to mitochondrial networks and lipid homeostasis. Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes and endosomes. Although it is known that mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal-mitochondrial interactions remains unclear. Previously, we have reported that vesicles positive for the endosomal ubiquitin ligase RFFL are associated with damaged mitochondria and prime the organelle for PRKN recruitment. Now, we establish that RFFL is a ubiquitin ligase for mitofusin 2 (MFN2). Using electron microscopy and confocal imaging analyses, we demonstrate that RFFL-knockout cells exhibit enlarged mitochondrial morphology. RFFL interacts at an endogenous level with MFN2 and contributes to its ubiquitylation upon mitochondrial damage. Recombinant RFFL interacts and ubiquitylates MFN2 protein in vitro. Furthermore, exogenous RFFL, in a ligase-dependent manner, specifically reduces the exogenous protein levels of both MFN1 and MFN2, but not that of DRP1, and also perturbs lipid homeostasis. Importantly, we show that the hyperfused mitochondria morphology reported with expression of pathogenic disease mutants of MFN2 (T206I and R364W) of Charcot-Marie-Tooth disease type 2A can be rescued by RFFL co-expression. The study unravels novel mechanisms involving endosomal ubiquitin ligases in mitochondrial networks. Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes, and endosomes. While mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal-mitochondrial interactions remains unclear. Previously, we reported that endosomal ubiquitin ligase, RFFL-positive vesicles are associated with damaged mitochondria and prime the organelle for PRKN recruitment. Now, we establish that RFFL is a ubiquitin ligase for MFN2. Using electron microscopy and confocal imaging analyses, we demonstrate that RFFL knockout cells exhibit enlarged mitochondrial morphology. RFFL interacts at an endogenous level with MFN2 and contributes to its ubiquitination upon mitochondrial damage. Recombinant RFFL interacts and ubiquitinates MFN2 protein in vitro. Furthermore, exogenous RFFL in a ligase-dependent manner specifically reduces the exogenous protein levels of both MFN1 and MFN2, but not that of DRP1, and also perturbs lipid homeostasis. Importantly, we show that hyperfused mitochondria morphology reported with expression of pathogenic disease mutants of MFN2 (T206I and R364W) of Charcot-Marie-Tooth disease type 2A can be rescued by RFFL co-expression. The study unravels novel mechanisms involving endosomal ubiquitin ligases in mitochondrial networks.Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER), lysosomes, and endosomes. While mitofusins regulate mitochondrial networks and ER contacts, their role in endosomal-mitochondrial interactions remains unclear. Previously, we reported that endosomal ubiquitin ligase, RFFL-positive vesicles are associated with damaged mitochondria and prime the organelle for PRKN recruitment. Now, we establish that RFFL is a ubiquitin ligase for MFN2. Using electron microscopy and confocal imaging analyses, we demonstrate that RFFL knockout cells exhibit enlarged mitochondrial morphology. RFFL interacts at an endogenous level with MFN2 and contributes to its ubiquitination upon mitochondrial damage. Recombinant RFFL interacts and ubiquitinates MFN2 protein in vitro. Furthermore, exogenous RFFL in a ligase-dependent manner specifically reduces the exogenous protein levels of both MFN1 and MFN2, but not that of DRP1, and also perturbs lipid homeostasis. Importantly, we show that hyperfused mitochondria morphology reported with expression of pathogenic disease mutants of MFN2 (T206I and R364W) of Charcot-Marie-Tooth disease type 2A can be rescued by RFFL co-expression. The study unravels novel mechanisms involving endosomal ubiquitin ligases in mitochondrial networks. |
Author | Sudharman, Abyasree Janardhanan, Adithya Chaudhary, Shikha Narendradev, Nikhil Dev Srinivasula, Srinivasa Murty Velikkakath, Anoop Kumar G. Nag, Tapas Chandra Jain, Parul Yadav, Subhash Chandra Ravindran, Rishith |
AuthorAffiliation | 2 Electron Microscope Facility, Department of Anatomy , All India Institute of Medical Sciences , 110029 New Delhi , India 1 School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram , Thiruvananthapuram 695551 Kerala , India 3 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya University , Deralakatte 575018, Mangalore , India |
AuthorAffiliation_xml | – name: 3 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya University , Deralakatte 575018, Mangalore , India – name: 2 Electron Microscope Facility, Department of Anatomy , All India Institute of Medical Sciences , 110029 New Delhi , India – name: 1 School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram , Thiruvananthapuram 695551 Kerala , India |
Author_xml | – sequence: 1 givenname: Nikhil Dev orcidid: 0000-0002-5641-3571 surname: Narendradev fullname: Narendradev, Nikhil Dev – sequence: 2 givenname: Rishith orcidid: 0000-0002-5093-9652 surname: Ravindran fullname: Ravindran, Rishith – sequence: 3 givenname: Parul surname: Jain fullname: Jain, Parul – sequence: 4 givenname: Shikha surname: Chaudhary fullname: Chaudhary, Shikha – sequence: 5 givenname: Anoop Kumar G. orcidid: 0000-0002-3863-918X surname: Velikkakath fullname: Velikkakath, Anoop Kumar G. – sequence: 6 givenname: Abyasree surname: Sudharman fullname: Sudharman, Abyasree – sequence: 7 givenname: Adithya surname: Janardhanan fullname: Janardhanan, Adithya – sequence: 8 givenname: Tapas Chandra orcidid: 0000-0002-6962-0844 surname: Nag fullname: Nag, Tapas Chandra – sequence: 9 givenname: Subhash Chandra orcidid: 0000-0002-2536-843X surname: Yadav fullname: Yadav, Subhash Chandra – sequence: 10 givenname: Srinivasa Murty orcidid: 0000-0003-4804-6916 surname: Srinivasula fullname: Srinivasula, Srinivasa Murty |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40444323$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkV1LwzAUhoNMdE5v_AHSSxGqJx9tlyuR4VQYCKJXXoQ0Pe0ibbMlrbB_b-em6NWBnCfPC-c9IaPWtUjIOYVrygS7-TDhmqV8yuGAjKnIslhSno3IGIDRWCacH5OTED4AIGMyOyLHAoQQnPExeb9vCxdco-voZT5fRH1u173tbBvVttIBI49VX-sOQ9TYzpmlawtvB7pxfrV0tas2Ub6JOu0rHH5V31TZh0HATslhqeuAZ_s5IW_z-9fZY7x4fnia3S1iwwV0cYmCodA5lGASraWmLJGFniaQpkVaFsALIyRIWbDhNUUjymmeSVYiijznlE_I7c676vMGC4Nt53WtVt422m-U01b937R2qSr3qShjlCapGAyXe4N36x5DpxobDNa1btH1QXFGBYdUwDbs4m_Yb8rPSQfgagcY70LwWP4iFNS2LzX0pXZ98S8-bYqD |
Cites_doi | 10.1186/s13064-016-0058-x 10.1093/cvr/cvm029 10.1016/j.mito.2019.05.003 10.1016/j.ejcb.2007.04.002 10.7554/eLife.03558 10.1212/01.wnl.0000240068.21499.f5 10.1111/febs.16766 10.3389/fphys.2019.00517 10.1038/nprot.2006.4 10.1038/cr.2009.6 10.1038/s41467-022-29945-7 10.15252/embr.202255191 10.15252/embr.201643827 10.1016/j.celrep.2024.114896 10.1016/j.xpro.2023.102107 10.1074/jbc.RA118.003852 10.1158/1541-7786.MCR-13-0061 10.1016/j.cell.2012.02.035 10.1016/S0301-472X(03)00260-1 10.1126/science.ade2574 10.1016/S0960-9822(00)00287-6 10.1016/j.devcel.2018.02.001 10.1016/j.bbrc.2015.07.111 10.1038/s41467-025-57038-8 10.1083/jcb.201912144 10.1046/j.1471-4159.2003.01875.x 10.1016/j.bbadis.2017.02.016 10.1002/1873-3468.14809 10.1038/nrn2417 10.1093/brain/awl126 10.1016/j.str.2004.10.007 10.1093/brain/awq082 10.1007/s00415-015-7884-3 10.1242/jcs.228007 10.1016/j.pep.2021.105856 10.1083/jcb.201602069 10.1073/pnas.1107402108 10.1093/hmg/ddi270 10.1083/jcb.200211046 10.1083/jcb.201007013 10.1016/j.neuroscience.2024.04.014 10.1096/fj.13-230037 10.1038/sj.emboj.7601360 10.15252/embj.201694914 10.1194/jlr.M002345 10.15252/embr.201745241 10.1016/j.freeradbiomed.2024.05.031 10.7554/eLife.01958 10.1016/j.celrep.2015.08.001 10.1161/CIRCRESAHA.107.157644 10.1016/j.bbamcr.2016.09.008 10.1038/s41392-023-01547-9 10.1016/j.ceb.2020.02.010 10.1002/advs.202307749 10.1073/pnas.2311887121 10.1038/ncb1161 10.1038/s41467-018-05722-3 10.1111/j.1365-2818.2012.03675.x 10.1093/oxfordjournals.jbchem.a021280 10.1016/j.devcel.2023.01.007 10.1091/mbc.e12-08-0607 10.1073/pnas.0913485107 10.1093/hmg/ddac297 10.1016/j.molcel.2013.04.023 10.2337/db13-0340 10.1038/ng1341 10.1016/j.tins.2022.12.001 10.1126/science.1099793 10.15252/embr.202152445 10.1016/j.bbamcr.2016.09.022 10.1016/j.mito.2023.101825 10.1126/science.adh9351 10.1016/j.yexcr.2023.113668 10.1016/j.devcel.2020.05.014 10.1111/boc.202100098 10.1146/annurev-physiol-020518-114358 10.1242/jcs.120162 10.1083/jcb.200809125 10.1182/blood-2007-01-068148 10.1523/JNEUROSCI.4474-04.2005 10.1126/science.1207385 10.1016/j.molcel.2023.02.012 10.1152/ajpendo.00457.2019 10.1242/jcs.253443 10.1016/j.lfs.2024.123130 10.1016/j.chemphyslip.2014.04.001 10.1016/j.cub.2006.06.054 10.1016/j.expneurol.2009.05.003 10.1091/mbc.e04-04-0274 10.1126/science.1219855 10.1111/brv.12378 10.1111/j.1365-2818.2006.01706.x 10.1038/nature20156 10.1080/15548627.2024.2440843 10.1038/ncb2220 10.7554/eLife.32866 10.3390/cells10092177 10.1074/jbc.RA119.009147 10.1016/j.jns.2015.05.033 10.1016/j.cub.2008.04.017 10.1083/jcb.201611194 10.1038/s41419-017-0023-6 10.1016/j.molcel.2017.08.020 10.1126/science.1231031 10.1242/jcs.257808 10.1073/pnas.0307459101 10.1111/cas.16151 10.1371/journal.pone.0010054 10.1038/nmeth.2521 10.1016/j.molcel.2012.05.041 10.1074/jbc.M113.477406 10.1016/j.celrep.2023.112229 10.1080/15548627.2022.2052460 10.1038/ncb2507 10.1038/nmeth.2089 10.1126/science.aao1785 10.1093/hmg/ddq419 10.1074/jbc.M702657200 10.1016/j.yjmcc.2020.04.016 10.1371/journal.pone.0001487 10.1038/nmeth.2019 10.1038/s41574-023-00845-0 10.1111/jmi.12891 10.1074/jbc.M610793200 |
ContentType | Journal Article |
Copyright | 2025. Published by The Company of Biologists. 2025. Published by The Company of Biologists 2025 |
Copyright_xml | – notice: 2025. Published by The Company of Biologists. – notice: 2025. Published by The Company of Biologists 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1242/jcs.263830 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9137 |
ExternalDocumentID | PMC12211564 40444323 10_1242_jcs_263830 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Scheme for Transformational and Advanced Research in Sciences grantid: STARS/APR2019/BS/708/FS – fundername: Department of Biotechnology grantid: BT/PR21325/BRB/10/1554/2016 – fundername: Department of Science and Technology – fundername: Science and Engineering Research Board grantid: IPA/2020/000070 – fundername: Indian Institute of Science Education and Research Thiruvananthapuram – fundername: Science and Engineering Research Board grantid: EMR/2016/008048 – fundername: STARS grantid: STARS/APR2019/BS/708/FS – fundername: ; – fundername: ; grantid: EMR/2016/008048; IPA/2020/000070 – fundername: ; grantid: STARS/APR2019/BS/708/FS – fundername: ; grantid: BT/PR21325/BRB/10/1554/2016 |
GroupedDBID | --- -DZ -~X 0R~ 18M 34G 39C 4.4 5GY 5RE 85S AAYXX ABDNZ ABJNI ABPPZ ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADVGF AEILP AENEX AFFNX AFRAH AGGIJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z F5P F9R GX1 H13 HZ~ IH2 INIJC KQ8 O9- OK1 P2P R.V RCB RHI RNS SJN TN5 TR2 UPT W2D WH7 WOQ YQT ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c340t-fe42e4ab0f0c5aa9a1259da85066d6fd03dc49099d2da86ec4f8b792fee4bb313 |
ISSN | 0021-9533 1477-9137 |
IngestDate | Thu Aug 21 18:33:05 EDT 2025 Fri Sep 05 15:57:40 EDT 2025 Fri Jul 04 01:54:49 EDT 2025 Thu Jul 03 08:43:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Mitofusin 2 E3 ubiquitin ligase RFFL Mitochondrial morphology Ubiquitylation Endosomes |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 2025. Published by The Company of Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c340t-fe42e4ab0f0c5aa9a1259da85066d6fd03dc49099d2da86ec4f8b792fee4bb313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Handling Editor: Ana García-Saéz The authors declare no competing or financial interests. Competing interests |
ORCID | 0000-0002-3863-918X 0000-0002-5641-3571 0000-0002-2536-843X 0000-0003-4804-6916 0000-0002-6962-0844 0000-0002-5093-9652 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC12211564 |
PMID | 40444323 |
PQID | 3214306401 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12211564 proquest_miscellaneous_3214306401 pubmed_primary_40444323 crossref_primary_10_1242_jcs_263830 |
PublicationCentury | 2000 |
PublicationDate | 2025-Jun-15 |
PublicationDateYYYYMMDD | 2025-06-15 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-Jun-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of cell science |
PublicationTitleAlternate | J Cell Sci |
PublicationYear | 2025 |
Publisher | The Company of Biologists |
Publisher_xml | – name: The Company of Biologists |
References | Lim (2025062510173400700_JCS263830C58) 2005; 25 Kirisako (2025062510173400700_JCS263830C48) 2006; 25 Cosentino (2025062510173400700_JCS263830C17) 2014; 181 Franco (2025062510173400700_JCS263830C32) 2016; 540 Shen (2025062510173400700_JCS263830C103) 2007; 282 Roder (2025062510173400700_JCS263830C90) 2019; 294 Huang (2025062510173400700_JCS263830C46) 2007; 86 Tang (2025062510173400700_JCS263830C109) 2015; 12 Cartoni (2025062510173400700_JCS263830C6) 2010; 133 Yun (2025062510173400700_JCS263830C120) 2014; 3 Guo (2025062510173400700_JCS263830C41) 2007; 101 Chen (2025062510173400700_JCS263830C12) 2003; 160 Collier (2025062510173400700_JCS263830C16) 2023; 46 Parra (2025062510173400700_JCS263830C81) 2013; 63 Sharma (2025062510173400700_JCS263830C100) 2024; 43 Gan (2025062510173400700_JCS263830C36) 2012; 14 Peng (2025062510173400700_JCS263830C82) 2025; 16 Stuppia (2025062510173400700_JCS263830C105) 2015; 356 Freemont (2025062510173400700_JCS263830C33) 2000; 10 Filadi (2025062510173400700_JCS263830C31) 2018; 9 Meggouh (2025062510173400700_JCS263830C69) 2006; 67 Ng (2025062510173400700_JCS263830C76) 2016; 263 Zhao (2025062510173400700_JCS263830C122) 2017; 1863 Di Rita (2025062510173400700_JCS263830C23) 2018; 9 Quintana-Cabrera (2025062510173400700_JCS263830C85) 2023; 83 Sandoval (2025062510173400700_JCS263830C92) 2014; 3 Okiyoneda (2025062510173400700_JCS263830C78) 2018; 44 Yang (2025062510173400700_JCS263830C118) 2007; 282 Youle (2025062510173400700_JCS263830C119) 2012; 337 Charman (2025062510173400700_JCS263830C8) 2010; 51 Harper (2025062510173400700_JCS263830C44) 2020; 65 Rocha (2025062510173400700_JCS263830C89) 2018; 360 Sidarala (2025062510173400700_JCS263830C104) 2022; 13 Cai (2025062510173400700_JCS263830C4) 2024; 115 Tanaka (2025062510173400700_JCS263830C108) 2010; 191 Sharma (2025062510173400700_JCS263830C99) 2023; 290 Zadoorian (2025062510173400700_JCS263830C121) 2023; 19 Kim (2025062510173400700_JCS263830C47) 2015; 464 Lin (2025062510173400700_JCS263830C59) 2022; 23 Schägger (2025062510173400700_JCS263830C94) 2006; 1 Tsubuki (2025062510173400700_JCS263830C114) 1996; 119 Cartoni (2025062510173400700_JCS263830C5) 2009; 218 Dorn (2025062510173400700_JCS263830C25) 2019; 81 Gegg (2025062510173400700_JCS263830C38) 2010; 19 Lin (2025062510173400700_JCS263830C60) 2023; 379 Koshiba (2025062510173400700_JCS263830C52) 2004; 305 Mahdaviani (2025062510173400700_JCS263830C63) 2017; 18 Sakai (2025062510173400700_JCS263830C91) 2019; 132 Michel (2025062510173400700_JCS263830C70) 2017; 68 Kumar (2025062510173400700_JCS263830C53) 2024; 358 Shcherbakova (2025062510173400700_JCS263830C101) 2013; 10 Hu (2025062510173400700_JCS263830C45) 2024; 11 Rambold (2025062510173400700_JCS263830C86) 2011; 108 Leboucher (2025062510173400700_JCS263830C55) 2012; 47 Ren (2025062510173400700_JCS263830C88) 2009; 19 Li (2025062510173400700_JCS263830C56) 2008; 3 Ponomareva (2025062510173400700_JCS263830C83) 2016; 11 Shankar (2025062510173400700_JCS263830C98) 2013; 126 El Fissi (2025062510173400700_JCS263830C27) 2018; 19 Fu (2025062510173400700_JCS263830C35) 2013; 24 Chen (2025062510173400700_JCS263830C14) 2014; 28 Enkler (2025062510173400700_JCS263830C28) 2024; 598 Züchner (2025062510173400700_JCS263830C124) 2004; 36 Araki (2025062510173400700_JCS263830C1) 2003; 86 Dong (2025062510173400700_JCS263830C24) 2013; 11 Kirshner (2025062510173400700_JCS263830C49) 2013; 249 Mukherjee (2025062510173400700_JCS263830C71) 2016; 1863 Yamano (2025062510173400700_JCS263830C117) 2020; 219 Das (2025062510173400700_JCS263830C20) 2022; 114 Nunnari (2025062510173400700_JCS263830C77) 2012; 148 Parra (2025062510173400700_JCS263830C80) 2008; 77 Chen (2025062510173400700_JCS263830C15) 2023; 8 Lupo (2025062510173400700_JCS263830C61) 2024; 121 Verhoeven (2025062510173400700_JCS263830C115) 2006; 129 Nara (2025062510173400700_JCS263830C74) 2023; 429 Schneider (2025062510173400700_JCS263830C96) 2012; 9 Mattie (2025062510173400700_JCS263830C65) 2017; 217 Boutant (2025062510173400700_JCS263830C3) 2017; 36 Maddi (2025062510173400700_JCS263830C62) 2021; 183 Kitamura (2025062510173400700_JCS263830C50) 2003; 31 Das (2025062510173400700_JCS263830C21) 2022; 135 McBride (2025062510173400700_JCS263830C66) 2006; 16 Mallick (2025062510173400700_JCS263830C64) 2024; 549 Das (2025062510173400700_JCS263830C19) 2016; 214 Han (2025062510173400700_JCS263830C43) 2021; 134 Das (2025062510173400700_JCS263830C22) 2024; 74 Müntjes (2025062510173400700_JCS263830C72) 2021; 22 Dorn (2025062510173400700_JCS263830C26) 2020; 142 McDonald (2025062510173400700_JCS263830C67) 2004; 101 Todkar (2025062510173400700_JCS263830C112) 2019; 49 Hamdi (2025062510173400700_JCS263830C42) 2016; 1863 Triolo (2025062510173400700_JCS263830C113) 2023; 4 Coumailleau (2025062510173400700_JCS263830C18) 2004; 15 Ouyang (2025062510173400700_JCS263830C79) 2023; 58 Knott (2025062510173400700_JCS263830C51) 2008; 9 Tang (2025062510173400700_JCS263830C110) 2023; 32 Bolte (2025062510173400700_JCS263830C2) 2006; 224 Su (2025062510173400700_JCS263830C106) 2024; 221 Lam (2025062510173400700_JCS263830C54) 2021; 10 Sha (2025062510173400700_JCS263830C97) 2019; 294 Chen (2025062510173400700_JCS263830C13) 2004; 6 Escobar-Henriques (2025062510173400700_JCS263830C29) 2019; 10 Friedman (2025062510173400700_JCS263830C34) 2011; 334 Faitg (2025062510173400700_JCS263830C30) 2020; 278 Tibbetts (2025062510173400700_JCS263830C111) 2004; 12 Wang (2025062510173400700_JCS263830C116) 2020; 53 Poole (2025062510173400700_JCS263830C84) 2010; 5 Gan (2025062510173400700_JCS263830C37) 2013; 288 Narendra (2025062510173400700_JCS263830C75) 2008; 183 Ravindran (2025062510173400700_JCS263830C87) 2022; 18 Sheftel (2025062510173400700_JCS263830C102) 2007; 110 McLelland (2025062510173400700_JCS263830C68) 2018; 7 Sugiura (2025062510173400700_JCS263830C107) 2013; 51 Chandhok (2025062510173400700_JCS263830C7) 2018; 93 Chen (2025062510173400700_JCS263830C10) 2005; 14 Satoh (2025062510173400700_JCS263830C93) 2023; 42 Chaudhry (2025062510173400700_JCS263830C9) 2020; 318 Gordaliza-Alaguero (2025062510173400700_JCS263830C40) 2025; 21 Schindelin (2025062510173400700_JCS263830C95) 2012; 9 Gomes (2025062510173400700_JCS263830C39) 2011; 13 Liao (2025062510173400700_JCS263830C57) 2008; 18 Naón (2025062510173400700_JCS263830C73) 2023; 380 Chen (2025062510173400700_JCS263830C11) 2013; 340 Ziviani (2025062510173400700_JCS263830C123) 2010; 107 |
References_xml | – volume: 11 start-page: 2 year: 2016 ident: 2025062510173400700_JCS263830C83 article-title: Charcot-Marie-tooth 2b associated Rab7 mutations cause axon growth and guidance defects during vertebrate sensory neuron development publication-title: Neural Dev. doi: 10.1186/s13064-016-0058-x – volume: 77 start-page: 387 year: 2008 ident: 2025062510173400700_JCS263830C80 article-title: Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvm029 – volume: 49 start-page: 284 year: 2019 ident: 2025062510173400700_JCS263830C112 article-title: Mitochondrial interaction with the endosomal compartment in endocytosis and mitochondrial transfer publication-title: Mitochondrion doi: 10.1016/j.mito.2019.05.003 – volume: 86 start-page: 289 year: 2007 ident: 2025062510173400700_JCS263830C46 article-title: Mitochondrial clustering induced by overexpression of the mitochondrial fusion protein Mfn2 causes mitochondrial dysfunction and cell death publication-title: Eur. J. Cell Biol. doi: 10.1016/j.ejcb.2007.04.002 – volume: 3 start-page: e03558 year: 2014 ident: 2025062510173400700_JCS263830C92 article-title: Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production publication-title: eLife doi: 10.7554/eLife.03558 – volume: 67 start-page: 1476 year: 2006 ident: 2025062510173400700_JCS263830C69 article-title: Charcot-Marie-Tooth disease due to a de novo mutation of the RAB7 gene publication-title: Neurology doi: 10.1212/01.wnl.0000240068.21499.f5 – volume: 290 start-page: 3580 year: 2023 ident: 2025062510173400700_JCS263830C99 article-title: CARPs regulate STUB1 and its pathogenic mutants aggregation kinetics by mono-ubiquitination publication-title: FEBS J. doi: 10.1111/febs.16766 – volume: 10 start-page: 517 year: 2019 ident: 2025062510173400700_JCS263830C29 article-title: Mitofusins: disease gatekeepers and hubs in mitochondrial quality control by E3 ligases publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00517 – volume: 1 start-page: 16 year: 2006 ident: 2025062510173400700_JCS263830C94 article-title: Tricine–SDS-PAGE publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.4 – volume: 19 start-page: 271 year: 2009 ident: 2025062510173400700_JCS263830C88 article-title: DOG 1.0: illustrator of protein domain structures publication-title: Cell Res. doi: 10.1038/cr.2009.6 – volume: 13 start-page: 2340 year: 2022 ident: 2025062510173400700_JCS263830C104 article-title: Mitofusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis publication-title: Nat. Commun. doi: 10.1038/s41467-022-29945-7 – volume: 23 start-page: e55191 year: 2022 ident: 2025062510173400700_JCS263830C59 article-title: Parkin coordinates mitochondrial lipid remodeling to execute mitophagy publication-title: EMBO Rep. doi: 10.15252/embr.202255191 – volume: 18 start-page: 1123 year: 2017 ident: 2025062510173400700_JCS263830C63 article-title: Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis publication-title: EMBO Rep. doi: 10.15252/embr.201643827 – volume: 43 start-page: 114896 year: 2024 ident: 2025062510173400700_JCS263830C100 article-title: EGF-mediated Golgi dynamics and cell migration require CARP2 publication-title: Cell Rep. doi: 10.1016/j.celrep.2024.114896 – volume: 4 start-page: 102107 year: 2023 ident: 2025062510173400700_JCS263830C113 article-title: Evaluating mitochondrial length, volume, and cristae ultrastructure in rare mouse adult stem cell populations publication-title: STAR Protoc. doi: 10.1016/j.xpro.2023.102107 – volume: 294 start-page: 351 year: 2019 ident: 2025062510173400700_JCS263830C90 article-title: Trafficking of the human ether-a-go-go-related gene (hERG) potassium channel is regulated by the ubiquitin ligase rififylin (RFFL) publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.003852 – volume: 11 start-page: 1051 year: 2013 ident: 2025062510173400700_JCS263830C24 article-title: Tumor suppressor functions of miR-133a in colorectal cancer publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-13-0061 – volume: 148 start-page: 1145 year: 2012 ident: 2025062510173400700_JCS263830C77 article-title: Mitochondria: in sickness and in health publication-title: Cell doi: 10.1016/j.cell.2012.02.035 – volume: 31 start-page: 1007 year: 2003 ident: 2025062510173400700_JCS263830C50 article-title: Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics publication-title: Exp. Hematol. doi: 10.1016/S0301-472X(03)00260-1 – volume: 379 start-page: 1123 year: 2023 ident: 2025062510173400700_JCS263830C60 article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model publication-title: Science doi: 10.1126/science.ade2574 – volume: 10 start-page: R84 year: 2000 ident: 2025062510173400700_JCS263830C33 article-title: Ubiquitination: RING for destruction? publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00287-6 – volume: 44 start-page: 694 year: 2018 ident: 2025062510173400700_JCS263830C78 article-title: Chaperone-independent peripheral quality control of CFTR by RFFL E3 ligase publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.02.001 – volume: 464 start-page: 1235 year: 2015 ident: 2025062510173400700_JCS263830C47 article-title: HDAC6 maintains mitochondrial connectivity under hypoxic stress by suppressing MARCH5/MITOL dependent MFN2 degradation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.07.111 – volume: 16 start-page: 1917 year: 2025 ident: 2025062510173400700_JCS263830C82 article-title: Endosomal trafficking participates in lipid droplet catabolism to maintain lipid homeostasis publication-title: Nat. Commun. doi: 10.1038/s41467-025-57038-8 – volume: 219 start-page: e201912144 year: 2020 ident: 2025062510173400700_JCS263830C117 article-title: Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.201912144 – volume: 86 start-page: 749 year: 2003 ident: 2025062510173400700_JCS263830C1 article-title: A palmitoylated RING finger ubiquitin ligase and its homologue in the brain membranes publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2003.01875.x – volume: 1863 start-page: 1359 year: 2017 ident: 2025062510173400700_JCS263830C122 article-title: Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: implications for idiopathic Parkinson's disease publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2017.02.016 – volume: 598 start-page: 1235 year: 2024 ident: 2025062510173400700_JCS263830C28 article-title: Functional interplay of lipid droplets and mitochondria publication-title: FEBS Lett. doi: 10.1002/1873-3468.14809 – volume: 9 start-page: 505 year: 2008 ident: 2025062510173400700_JCS263830C51 article-title: Mitochondrial fragmentation in neurodegeneration publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2417 – volume: 129 start-page: 2093 year: 2006 ident: 2025062510173400700_JCS263830C115 article-title: MFN2 mutation distribution and genotype/phenotype correlation in Charcot–Marie–Tooth type 2 publication-title: Brain doi: 10.1093/brain/awl126 – volume: 12 start-page: 2257 year: 2004 ident: 2025062510173400700_JCS263830C111 article-title: Crystal structure of a FYVE-type zinc finger domain from the caspase regulator CARP2 publication-title: Structure doi: 10.1016/j.str.2004.10.007 – volume: 133 start-page: 1460 year: 2010 ident: 2025062510173400700_JCS263830C6 article-title: Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot-Marie-Tooth neuropathy type 2A publication-title: Brain J. Neurol. doi: 10.1093/brain/awq082 – volume: 263 start-page: 179 year: 2016 ident: 2025062510173400700_JCS263830C76 article-title: Mitochondrial disease: genetics and management publication-title: J. Neurol. doi: 10.1007/s00415-015-7884-3 – volume: 132 start-page: jcs228007 year: 2019 ident: 2025062510173400700_JCS263830C91 article-title: The integral function of the endocytic recycling compartment is regulated by RFFL-mediated ubiquitylation of Rab11 effectors publication-title: J. Cell Sci. doi: 10.1242/jcs.228007 – volume: 183 start-page: 105856 year: 2021 ident: 2025062510173400700_JCS263830C62 article-title: Optimization strategies for expression and purification of soluble N-terminal domain of human centriolar protein SAS-6 in Escherichia coli publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2021.105856 – volume: 214 start-page: 831 year: 2016 ident: 2025062510173400700_JCS263830C19 article-title: Endosome–mitochondria interactions are modulated by iron release from transferrin publication-title: J. Cell Biol. doi: 10.1083/jcb.201602069 – volume: 108 start-page: 10190 year: 2011 ident: 2025062510173400700_JCS263830C86 article-title: Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1107402108 – volume: 14 start-page: R283 year: 2005 ident: 2025062510173400700_JCS263830C10 article-title: Emerging functions of mammalian mitochondrial fusion and fission publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddi270 – volume: 160 start-page: 189 year: 2003 ident: 2025062510173400700_JCS263830C12 article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development publication-title: J. Cell Biol. doi: 10.1083/jcb.200211046 – volume: 191 start-page: 1367 year: 2010 ident: 2025062510173400700_JCS263830C108 article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin publication-title: J. Cell Biol. doi: 10.1083/jcb.201007013 – volume: 549 start-page: 13 year: 2024 ident: 2025062510173400700_JCS263830C64 article-title: Lipid droplets and neurodegeneration publication-title: Neuroscience doi: 10.1016/j.neuroscience.2024.04.014 – volume: 28 start-page: 382 year: 2014 ident: 2025062510173400700_JCS263830C14 article-title: Role of mitofusin 2 (Mfn2) in controlling cellular proliferation publication-title: FASEB J. doi: 10.1096/fj.13-230037 – volume: 25 start-page: 4877 year: 2006 ident: 2025062510173400700_JCS263830C48 article-title: A ubiquitin ligase complex assembles linear polyubiquitin chains publication-title: EMBO J. doi: 10.1038/sj.emboj.7601360 – volume: 36 start-page: 1543 year: 2017 ident: 2025062510173400700_JCS263830C3 article-title: Mfn2 is critical for brown adipose tissue thermogenic function publication-title: EMBO J. doi: 10.15252/embj.201694914 – volume: 51 start-page: 1023 year: 2010 ident: 2025062510173400700_JCS263830C8 article-title: MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein publication-title: J. Lipid Res. doi: 10.1194/jlr.M002345 – volume: 19 start-page: e45241 year: 2018 ident: 2025062510173400700_JCS263830C27 article-title: Mitofusin gain and loss of function drive pathogenesis in Drosophila models of CMT2A neuropathy publication-title: EMBO Rep. doi: 10.15252/embr.201745241 – volume: 221 start-page: 136 year: 2024 ident: 2025062510173400700_JCS263830C106 article-title: E3 ubiquitin ligase RBCK1 confers ferroptosis resistance in pancreatic cancer by facilitating MFN2 degradation publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2024.05.031 – volume: 3 start-page: e01958 year: 2014 ident: 2025062510173400700_JCS263830C120 article-title: MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin publication-title: eLife doi: 10.7554/eLife.01958 – volume: 12 start-page: 1631 year: 2015 ident: 2025062510173400700_JCS263830C109 article-title: VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.08.001 – volume: 101 start-page: 1113 year: 2007 ident: 2025062510173400700_JCS263830C41 article-title: Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.107.157644 – volume: 1863 start-page: 2859 year: 2016 ident: 2025062510173400700_JCS263830C42 article-title: Erythroid cell mitochondria receive endosomal iron by a “kiss-and-run” mechanism publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2016.09.008 – volume: 8 start-page: 333 year: 2023 ident: 2025062510173400700_JCS263830C15 article-title: Mitochondrial dynamics in health and disease: mechanisms and potential targets publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-023-01547-9 – volume: 65 start-page: 58 year: 2020 ident: 2025062510173400700_JCS263830C44 article-title: The multifunctional nature of mitochondrial contact site proteins publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2020.02.010 – volume: 11 start-page: 2307749 year: 2024 ident: 2025062510173400700_JCS263830C45 article-title: Mfn2/Hsc70 complex mediates the formation of mitochondria-lipid droplets membrane contact and regulates myocardial lipid metabolism publication-title: Adv. Sci. doi: 10.1002/advs.202307749 – volume: 121 start-page: e2311887121 year: 2024 ident: 2025062510173400700_JCS263830C61 article-title: Pairing interacting protein sequences using masked language modeling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2311887121 – volume: 6 start-page: 872 year: 2004 ident: 2025062510173400700_JCS263830C13 article-title: Dysregulation of HSG triggers vascular proliferative disorders publication-title: Nat. Cell Biol. doi: 10.1038/ncb1161 – volume: 9 start-page: 3755 year: 2018 ident: 2025062510173400700_JCS263830C23 article-title: HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα publication-title: Nat. Commun. doi: 10.1038/s41467-018-05722-3 – volume: 249 start-page: 13 year: 2013 ident: 2025062510173400700_JCS263830C49 article-title: 3-D PSF fitting for fluorescence microscopy: implementation and localization application publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2012.03675.x – volume: 119 start-page: 572 year: 1996 ident: 2025062510173400700_JCS263830C114 article-title: Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine publication-title: J. Biochem. (Tokyo) doi: 10.1093/oxfordjournals.jbchem.a021280 – volume: 58 start-page: 289 year: 2023 ident: 2025062510173400700_JCS263830C79 article-title: Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle publication-title: Dev. Cell doi: 10.1016/j.devcel.2023.01.007 – volume: 24 start-page: 1153 year: 2013 ident: 2025062510173400700_JCS263830C35 article-title: Regulation of mitophagy by the Gp78 E3 ubiquitin ligase publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e12-08-0607 – volume: 107 start-page: 5018 year: 2010 ident: 2025062510173400700_JCS263830C123 article-title: Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0913485107 – volume: 32 start-page: 1466 year: 2023 ident: 2025062510173400700_JCS263830C110 article-title: Parkin regulates neuronal lipid homeostasis through SREBP2-lipoprotein lipase pathway—implications for Parkinson's disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddac297 – volume: 51 start-page: 20 year: 2013 ident: 2025062510173400700_JCS263830C107 article-title: MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2 publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.04.023 – volume: 63 start-page: 75 year: 2013 ident: 2025062510173400700_JCS263830C81 article-title: Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 signaling pathway publication-title: Diabetes doi: 10.2337/db13-0340 – volume: 36 start-page: 449 year: 2004 ident: 2025062510173400700_JCS263830C124 article-title: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A publication-title: Nat. Genet. doi: 10.1038/ng1341 – volume: 46 start-page: 137 year: 2023 ident: 2025062510173400700_JCS263830C16 article-title: Mitochondrial signalling and homeostasis: from cell biology to neurological disease publication-title: Trends Neurosci. doi: 10.1016/j.tins.2022.12.001 – volume: 305 start-page: 858 year: 2004 ident: 2025062510173400700_JCS263830C52 article-title: Structural basis of mitochondrial tethering by mitofusin complexes publication-title: Science doi: 10.1126/science.1099793 – volume: 22 start-page: e52445 year: 2021 ident: 2025062510173400700_JCS263830C72 article-title: Linking transport and translation of mRNAs with endosomes and mitochondria publication-title: EMBO Rep. doi: 10.15252/embr.202152445 – volume: 1863 start-page: 3065 year: 2016 ident: 2025062510173400700_JCS263830C71 article-title: Regulation of Mitofusin1 by Mahogunin ring finger-1 and the proteasome modulates mitochondrial fusion publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2016.09.022 – volume: 74 start-page: 101825 year: 2024 ident: 2025062510173400700_JCS263830C22 article-title: CMT2A-linked MFN2 mutation, T206I promotes mitochondrial hyperfusion and predisposes cells towards mitophagy publication-title: Mitochondrion doi: 10.1016/j.mito.2023.101825 – volume: 380 start-page: eadh9351 year: 2023 ident: 2025062510173400700_JCS263830C73 article-title: Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria publication-title: Science doi: 10.1126/science.adh9351 – volume: 429 start-page: 113668 year: 2023 ident: 2025062510173400700_JCS263830C74 article-title: The ultrastructural function of MLN64 in the late endosome–mitochondria membrane contact sites in placental cells publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2023.113668 – volume: 53 start-page: 627 year: 2020 ident: 2025062510173400700_JCS263830C116 article-title: Endolysosomal targeting of mitochondria is integral to BAX-mediated mitochondrial permeabilization during apoptosis signaling publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.05.014 – volume: 114 start-page: 309 year: 2022 ident: 2025062510173400700_JCS263830C20 article-title: CMT2A-linked mitochondrial hyperfusion-driving mutant MFN2 perturbs ER-mitochondrial associations and Ca2+ homeostasis publication-title: Biol. Cell doi: 10.1111/boc.202100098 – volume: 81 start-page: 1 year: 2019 ident: 2025062510173400700_JCS263830C25 article-title: Evolving concepts of mitochondrial dynamics publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-020518-114358 – volume: 126 start-page: 3295 year: 2013 ident: 2025062510173400700_JCS263830C98 article-title: Raft endocytosis of AMF regulates mitochondrial dynamics through Rac1 signaling and the Gp78 ubiquitin ligase publication-title: J. Cell Sci. doi: 10.1242/jcs.120162 – volume: 183 start-page: 795 year: 2008 ident: 2025062510173400700_JCS263830C75 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200809125 – volume: 110 start-page: 125 year: 2007 ident: 2025062510173400700_JCS263830C102 article-title: Direct interorganellar transfer of iron from endosome to mitochondrion publication-title: Blood doi: 10.1182/blood-2007-01-068148 – volume: 25 start-page: 2002 year: 2005 ident: 2025062510173400700_JCS263830C58 article-title: Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4474-04.2005 – volume: 334 start-page: 358 year: 2011 ident: 2025062510173400700_JCS263830C34 article-title: ER tubules mark sites of mitochondrial division publication-title: Science doi: 10.1126/science.1207385 – volume: 83 start-page: 857 year: 2023 ident: 2025062510173400700_JCS263830C85 article-title: Determinants and outcomes of mitochondrial dynamics publication-title: Mol. Cell doi: 10.1016/j.molcel.2023.02.012 – volume: 318 start-page: E87 year: 2020 ident: 2025062510173400700_JCS263830C9 article-title: A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00457.2019 – volume: 134 start-page: jcs253443 year: 2021 ident: 2025062510173400700_JCS263830C43 article-title: The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo publication-title: J. Cell Sci. doi: 10.1242/jcs.253443 – volume: 358 start-page: 123130 year: 2024 ident: 2025062510173400700_JCS263830C53 article-title: TRPV4 modulation affects mitochondrial parameters in adipocytes and its inhibition upregulates lipid accumulation publication-title: Life Sci. doi: 10.1016/j.lfs.2024.123130 – volume: 181 start-page: 62 year: 2014 ident: 2025062510173400700_JCS263830C17 article-title: Mitochondrial alterations in apoptosis publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2014.04.001 – volume: 16 start-page: R551 year: 2006 ident: 2025062510173400700_JCS263830C66 article-title: Mitochondria: more than just a powerhouse publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.06.054 – volume: 218 start-page: 268 year: 2009 ident: 2025062510173400700_JCS263830C5 article-title: Role of mitofusin 2 mutations in the physiopathology of Charcot–Marie–Tooth disease type 2A publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2009.05.003 – volume: 15 start-page: 4444 year: 2004 ident: 2025062510173400700_JCS263830C18 article-title: Over-expression of Rififylin, a new RING finger and FYVE-like domain-containing protein, inhibits recycling from the endocytic recycling compartment publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-04-0274 – volume: 337 start-page: 1062 year: 2012 ident: 2025062510173400700_JCS263830C119 article-title: Mitochondrial fission, fusion, and stress publication-title: Science doi: 10.1126/science.1219855 – volume: 93 start-page: 933 year: 2018 ident: 2025062510173400700_JCS263830C7 article-title: Structure, function, and regulation of mitofusin–2 in health and disease publication-title: Biol. Rev. Camb. Philos. Soc. doi: 10.1111/brv.12378 – volume: 224 start-page: 213 year: 2006 ident: 2025062510173400700_JCS263830C2 article-title: A guided tour into subcellular colocalization analysis in light microscopy publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2006.01706.x – volume: 540 start-page: 74 year: 2016 ident: 2025062510173400700_JCS263830C32 article-title: Correcting mitochondrial fusion by manipulating mitofusin conformations publication-title: Nature doi: 10.1038/nature20156 – volume: 21 start-page: 957 year: 2025 ident: 2025062510173400700_JCS263830C40 article-title: Endogenous interactomes of MFN1 and MFN2 provide novel insights into interorganelle communication and autophagy publication-title: Autophagy doi: 10.1080/15548627.2024.2440843 – volume: 13 start-page: 589 year: 2011 ident: 2025062510173400700_JCS263830C39 article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability publication-title: Nat. Cell Biol. doi: 10.1038/ncb2220 – volume: 7 start-page: e32866 year: 2018 ident: 2025062510173400700_JCS263830C68 article-title: Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy publication-title: eLife doi: 10.7554/eLife.32866 – volume: 10 start-page: 2177 year: 2021 ident: 2025062510173400700_JCS263830C54 article-title: A universal approach to analyzing transmission electron microscopy with ImageJ publication-title: Cells doi: 10.3390/cells10092177 – volume: 294 start-page: 15218 year: 2019 ident: 2025062510173400700_JCS263830C97 article-title: Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.009147 – volume: 356 start-page: 7 year: 2015 ident: 2025062510173400700_JCS263830C105 article-title: MFN2-related neuropathies: clinical features, molecular pathogenesis and therapeutic perspectives publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2015.05.033 – volume: 18 start-page: 641 year: 2008 ident: 2025062510173400700_JCS263830C57 article-title: CARP-2 is an endosome-associated ubiquitin protein ligase for RIP and regulates TNF-induced NF-κB activation publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.04.017 – volume: 217 start-page: 507 year: 2017 ident: 2025062510173400700_JCS263830C65 article-title: A new mitofusin topology places the redox-regulated C terminus in the mitochondrial intermembrane space publication-title: J. Cell Biol. doi: 10.1083/jcb.201611194 – volume: 9 start-page: 1 year: 2018 ident: 2025062510173400700_JCS263830C31 article-title: Mitofusin 2: from functions to disease publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0023-6 – volume: 68 start-page: 233 year: 2017 ident: 2025062510173400700_JCS263830C70 article-title: Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.08.020 – volume: 340 start-page: 471 year: 2013 ident: 2025062510173400700_JCS263830C11 article-title: PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria publication-title: Science doi: 10.1126/science.1231031 – volume: 135 start-page: jcs257808 year: 2022 ident: 2025062510173400700_JCS263830C21 article-title: MITOL-mediated DRP1 ubiquitylation and degradation promotes mitochondrial hyperfusion in a CMT2A-linked MFN2 mutant publication-title: J. Cell Sci. doi: 10.1242/jcs.257808 – volume: 101 start-page: 6170 year: 2004 ident: 2025062510173400700_JCS263830C67 article-title: Suppression of caspase-8- and -10-associated RING proteins results in sensitization to death ligands and inhibition of tumor cell growth publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0307459101 – volume: 115 start-page: 1791 year: 2024 ident: 2025062510173400700_JCS263830C4 article-title: MFN2 suppresses the accumulation of lipid droplets and the progression of clear cell renal cell carcinoma publication-title: Cancer Sci. doi: 10.1111/cas.16151 – volume: 5 start-page: e10054 year: 2010 ident: 2025062510173400700_JCS263830C84 article-title: The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/Parkin pathway publication-title: PLoS ONE doi: 10.1371/journal.pone.0010054 – volume: 10 start-page: 751 year: 2013 ident: 2025062510173400700_JCS263830C101 article-title: Near-infrared fluorescent proteins for multicolor in vivo imaging publication-title: Nat. Methods doi: 10.1038/nmeth.2521 – volume: 47 start-page: 547 year: 2012 ident: 2025062510173400700_JCS263830C55 article-title: Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.041 – volume: 288 start-page: 33978 year: 2013 ident: 2025062510173400700_JCS263830C37 article-title: Different Raf protein kinases mediate different signaling pathways to stimulate E3 ligase RFFL gene expression in cell migration regulation* publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.477406 – volume: 42 start-page: 112229 year: 2023 ident: 2025062510173400700_JCS263830C93 article-title: Interaction between PI3K and the VDAC2 channel tethers Ras-PI3K-positive endosomes to mitochondria and promotes endosome maturation publication-title: Cell Rep. doi: 10.1016/j.celrep.2023.112229 – volume: 18 start-page: 2851 year: 2022 ident: 2025062510173400700_JCS263830C87 article-title: Endosomal-associated RFFL facilitates mitochondrial clearance by enhancing PRKN/parkin recruitment to mitochondria publication-title: Autophagy doi: 10.1080/15548627.2022.2052460 – volume: 14 start-page: 686 year: 2012 ident: 2025062510173400700_JCS263830C36 article-title: PRR5L degradation promotes MTORC2-mediated PKCδ phosphorylation and cell migration downstream of Gα12 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2507 – volume: 9 start-page: 671 year: 2012 ident: 2025062510173400700_JCS263830C96 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 360 start-page: 336 year: 2018 ident: 2025062510173400700_JCS263830C89 article-title: MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A publication-title: Science doi: 10.1126/science.aao1785 – volume: 19 start-page: 4861 year: 2010 ident: 2025062510173400700_JCS263830C38 article-title: Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq419 – volume: 282 start-page: 23354 year: 2007 ident: 2025062510173400700_JCS263830C103 article-title: Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis * publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702657200 – volume: 142 start-page: 146 year: 2020 ident: 2025062510173400700_JCS263830C26 article-title: Mitofusins as mitochondrial anchors and tethers publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2020.04.016 – volume: 3 start-page: e1487 year: 2008 ident: 2025062510173400700_JCS263830C56 article-title: Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial e3 that regulates the Organelle's dynamics and signaling publication-title: PLoS ONE doi: 10.1371/journal.pone.0001487 – volume: 9 start-page: 676 year: 2012 ident: 2025062510173400700_JCS263830C95 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 19 start-page: 443 year: 2023 ident: 2025062510173400700_JCS263830C121 article-title: Lipid droplet biogenesis and functions in health and disease publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-023-00845-0 – volume: 278 start-page: 89 year: 2020 ident: 2025062510173400700_JCS263830C30 article-title: Mitochondrial morphology and function: two for the price of one! publication-title: J. Microsc. doi: 10.1111/jmi.12891 – volume: 282 start-page: 3273 year: 2007 ident: 2025062510173400700_JCS263830C118 article-title: CARPs are ubiquitin ligases that promote MDM2-independent p53 and phospho-p53ser20 degradation* publication-title: J. Biol. Chem. doi: 10.1074/jbc.M610793200 |
SSID | ssj0007297 |
Score | 2.4941428 |
Snippet | Mitochondrial homeostasis is ensured through communication between diverse cellular organelles, including mitochondria, the endoplasmic reticulum (ER),... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Animals Endosomes - enzymology Endosomes - metabolism GTP Phosphohydrolases - genetics GTP Phosphohydrolases - metabolism HEK293 Cells HeLa Cells Humans Mitochondria - genetics Mitochondria - metabolism Mitochondria - ultrastructure Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination |
Title | Endosomal RFFL ubiquitin ligase regulates mitochondrial morphology by targeting mitofusin 2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40444323 https://www.proquest.com/docview/3214306401 https://pubmed.ncbi.nlm.nih.gov/PMC12211564 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEGgviG_Kl4zgLUppbSdtH1G1apoYGmKTJvEQ2bFNItZ0tAnS-Dv4g7mLEyeFIcFeospxY-vuZ_vufB-EvJE8mgjL49CCrB8KqUQoY5uGIlZcpZFV0mDs8NGH-OBUHJ5FZzs7P3teS1WphumPK-NKrsNVaAO-YpTsf3DWfxQa4DfwF57AYXj-E4_3C73arJaYH3-xeB9UKv9W5WVeBOf5FzidgrUrNG82wRIWLmx0ha6LdCxXQF2XfAmlz9oZHE0G2MuiJ3zA_iK0op0_aE5Nb0fGeDK9lhqmX2Pra5afozdSd4f0PccOTST_JstLb4Q-lC6JwbFcdy6K80xWOpPuhv9TBh-UfesEi9CLysVnDtv4ttZ3ASbp6msCfvuGyNpJJHLpMIbGbcMCL5bHLh2M36f5tA9IduUBABIHHgDpZshgZ3FXPj0kXCxrKAjMkscZ7w5B75p4fDQfM9CKo1jcIDfZBCQyvOr_2OWgB3WkKQTs5t0kvYWR33bj7pHb7SDbEs8faszv3rg98ebkLrnTsJi-cyC7R3ZMcZ_ccpS8fEA-e6hRhBr1UKMOatRDjW5BjXZQo-qSeqhRDzXKHpLTxf7J_CBs6nKEKRejMrRGMAPLemRHaSTlTIKQPNMScx_GOrZ6xHUqZqB6aAatsUmFnarJjFljhFJ8zB-R3WJVmCeEcisxfD9OoykXaayUZMB1zoFwkdBsNiCvW9olFy79SoJqKxA7AWInjtgD8qolawK7Iy4FWZhVtUmwDBfq2KPxgDx2ZPbfafkzINMtBvgOmHl9-02RZ3UG9hYhT6__12dkr1svz8luua7MC5BvS_Wyhtsvj2atdA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endosomal+RFFL+ubiquitin+ligase+regulates+mitochondrial+morphology+by+targeting+mitofusin+2&rft.jtitle=Journal+of+cell+science&rft.au=Narendradev%2C+Nikhil+Dev&rft.au=Ravindran%2C+Rishith&rft.au=Jain%2C+Parul&rft.au=Chaudhary%2C+Shikha&rft.date=2025-06-15&rft.pub=The+Company+of+Biologists&rft.issn=0021-9533&rft.eissn=1477-9137&rft.volume=138&rft.issue=12&rft_id=info:doi/10.1242%2Fjcs.263830&rft_id=info%3Apmid%2F40444323&rft.externalDocID=PMC12211564 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon |