A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space
In this paper a novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of the solutions in the search space is introduced, known as extended Deep Statistical Comparison. This approach is an extension of the recently proposed Deep Stat...
Saved in:
| Published in | Information sciences Vol. 489; pp. 255 - 273 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.07.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0020-0255 1872-6291 1872-6291 |
| DOI | 10.1016/j.ins.2019.03.049 |
Cover
| Abstract | In this paper a novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of the solutions in the search space is introduced, known as extended Deep Statistical Comparison. This approach is an extension of the recently proposed Deep Statistical Comparison approach used for comparing meta-heuristic stochastic optimization algorithms according to the solutions values. Its main contribution is that the algorithms are compared not only according to obtained solutions values, but also according to the distribution of the obtained solutions in the search space. The information it provides can additionally help to identify exploitation and exploration powers of the compared algorithms. This is important when dealing with a multimodal search space, where there are a lot of local optima with similar values. The benchmark results show that our proposed approach gives promising results and can be used for a statistical comparison of meta-heuristic stochastic optimization algorithms according to solutions values and their distribution in the search space. |
|---|---|
| AbstractList | In this paper a novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of the solutions in the search space is introduced, known as extended Deep Statistical Comparison. This approach is an extension of the recently proposed Deep Statistical Comparison approach used for comparing meta-heuristic stochastic optimization algorithms according to the solutions values. Its main contribution is that the algorithms are compared not only according to obtained solutions values, but also according to the distribution of the obtained solutions in the search space. The information it provides can additionally help to identify exploitation and exploration powers of the compared algorithms. This is important when dealing with a multimodal search space, where there are a lot of local optima with similar values. The benchmark results show that our proposed approach gives promising results and can be used for a statistical comparison of meta-heuristic stochastic optimization algorithms according to solutions values and their distribution in the search space. |
| Author | Korošec, Peter Eftimov, Tome |
| Author_xml | – sequence: 1 givenname: Tome orcidid: 0000-0001-7330-1902 surname: Eftimov fullname: Eftimov, Tome email: tome.eftimov@ijs.si organization: Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia – sequence: 2 givenname: Peter surname: Korošec fullname: Korošec, Peter email: peter.korosec@ijs.si organization: Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia |
| BookMark | eNqNkM1O3DAUha0KpA7QB-jOL5D02vnxRF0hRAsSUjewtu44N8SjxI5sDxV9lb5sPRlWLFBX9yzOd670XbAz5x0x9lVAKUC03_aldbGUILoSqhLq7hPbiK2SRSs7ccY2ABIKkE3zmV3EuAeAWrXthv295s6_0MRjwmRjsgYnjssSPJqRDz5w4-cFg3XPfKaExUiHsPYy4c2Ia_RLsrP9kxe84zg9-2DTOEeOxvjQH9nkeRqJ9xkNdndYi37g0U9rjty6tRAJQ34cFzR0xc4HnCJ9ebuX7OnH7ePNXfHw6-f9zfVDYaoaUjGgUiBMQ0oQiTbb6NpWym7AvsFGtkMORnVbMP12aHqUu2bX1Vulaqp2dYXVJZOn3YNb8PU3TpNegp0xvGoB-qhX73XWq496NVQ6682QOkEm-BgDDdrYtApIAe30ISnekf_z7fuJoezhxVLQ0VhyhnobyCTde_sB_Q_HPqz7 |
| CitedBy_id | crossref_primary_10_3390_app11020627 crossref_primary_10_1016_j_socl_2021_100013 crossref_primary_10_1016_j_ins_2023_03_081 crossref_primary_10_1109_TEVC_2021_3081167 crossref_primary_10_7717_peerj_cs_951 crossref_primary_10_1016_j_eswa_2021_116468 crossref_primary_10_1371_journal_pone_0310080 crossref_primary_10_1016_j_asoc_2019_105977 crossref_primary_10_1016_j_swevo_2020_100665 crossref_primary_10_1109_ACCESS_2022_3225435 crossref_primary_10_1109_ACCESS_2024_3354714 crossref_primary_10_1016_j_engappai_2022_105521 crossref_primary_10_1016_j_ins_2021_11_073 crossref_primary_10_1016_j_engappai_2022_104952 crossref_primary_10_3390_electronics9101677 crossref_primary_10_3390_math11061505 crossref_primary_10_1007_s11517_022_02513_3 crossref_primary_10_1016_j_asoc_2021_107957 crossref_primary_10_1016_j_swevo_2020_100837 crossref_primary_10_1016_j_eswa_2021_114788 crossref_primary_10_35143_jkt_v7i2_5143 crossref_primary_10_1016_j_future_2020_03_055 crossref_primary_10_3390_math8091474 crossref_primary_10_1007_s10489_020_01707_2 crossref_primary_10_1016_j_solener_2022_10_029 crossref_primary_10_1016_j_asoc_2021_108334 crossref_primary_10_1063_5_0243619 |
| Cites_doi | 10.1214/ss/1177011137 10.1007/BF00940812 10.1093/imanum/22.3.329 10.1016/j.ins.2008.03.007 10.1016/j.ins.2015.05.001 10.1016/j.ins.2017.07.015 10.1016/j.ins.2009.12.010 10.1007/s10732-008-9080-4 10.1016/j.dsp.2016.07.013 10.1016/j.ins.2014.12.062 10.1016/j.swevo.2011.02.002 10.1016/j.ins.2016.11.013 10.1017/S0962492904000236 10.1007/s00500-010-0639-2 10.1109/TEVC.2010.2069567 10.1016/j.ins.2014.09.031 10.1080/01621459.1986.10478337 10.1016/j.ins.2014.02.154 10.1016/j.ins.2014.06.009 10.1016/j.jmva.2009.01.008 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors |
| Copyright_xml | – notice: 2019 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.ins.2019.03.049 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 273 |
| ExternalDocumentID | 10.1016/j.ins.2019.03.049 10_1016_j_ins_2019_03_049 S0020025519302610 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c340t-fa7701c5e71ee16016966229fad5a526ffadc7980cd8f5da2b5b948774e3b43a3 |
| IEDL.DBID | .~1 |
| ISSN | 0020-0255 1872-6291 |
| IngestDate | Tue Aug 19 22:32:24 EDT 2025 Wed Oct 01 05:13:46 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 Fri Feb 23 02:33:58 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Benchmarking Exploitation power Statistical comparison Exploration power Single objective problems |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c340t-fa7701c5e71ee16016966229fad5a526ffadc7980cd8f5da2b5b948774e3b43a3 |
| ORCID | 0000-0001-7330-1902 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0020025519302610 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ins_2019_03_049 crossref_citationtrail_10_1016_j_ins_2019_03_049 crossref_primary_10_1016_j_ins_2019_03_049 elsevier_sciencedirect_doi_10_1016_j_ins_2019_03_049 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2019 2019-07-00 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Dantzig, Cottle (bib0007) 1963 Derrac, García, Hui, Suganthan, Herrera (bib0009) 2014; 289 Veček, Mernik, Črepinšek (bib0042) 2014; 277 Omidvar, Li, Tang (bib0035) 2015; 316 Higham (bib0026) 2002; 22 LaTorre, Muelas, Peña (bib0029) 2015; 316 Edelman, Rao (bib0011) 2005; 14 R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015. Carrano, Wanner, Takahashi (bib0005) 2011; 15 Mersmann, Preuss, Trautmann (bib0034) 2010 Bartz-Beielstein (bib0001) 2015 D. Bates, M. Maechler, Matrix: Sparse and Dense Matrix Classes and Methods, 2017. R package version 1.2–8. Eftimov, Korošec, Koroušić Seljak (bib0013) 2017; 1 Yang (bib0043) 2009 Calvo, Santafe (bib0004) 2015; 15 Leucht, Neumann (bib0030) 2009; 100 Engmann, Cousineau (bib0014) 2011; 6 Lozano, Molina, Herrera (bib0032) 2011; 15 Černỳ (bib0006) 1985; 45 García, Fernández, Luengo, Herrera (bib0017) 2010; 180 M.L. Rizzo, G.J. Szekely, Energy: E-Statistics: Multivariate Inference via the Energy of Data, 2016. R package version 1.7-0. Hansen, Auger, Ros, Finck, Pošík (bib0023) 2010 Derrac, García, Molina, Herrera (bib0010) 2011; 1 Székely, Rizzo (bib0041) 2004; 5 Gontscharuk (bib0021) 2010 Jolliffe (bib0028) 2002 N. Hansen, A. Auger, O. Mersmann, T. Tusar, D. Brockhoff, Coco: a platform for comparing continuous optimizers in a black-box setting, arXiv Das (bib0008) 2013; vol. I Eftimov, Korošec, Seljak (bib0012) 2017; 417 Hansen, Finck, Ros, Auger (bib0024) 2009 Hu, He, Chen, Zhang (bib0027) 2017; 381 Schilling (bib0038) 1986; 81 C.J. Geyer, Markov Chain Monte Carlo Maximum Likelihood(1991). F. Scholz, A. Zhu, kSamples: K-Sample Rank Tests and their Combinations, 2016. R package version 1.2–4. Martino, Elvira, Luengo, Corander, Louzada (bib0033) 2016; 58 (2016). Li, Tang, Suganthan, Yang (bib0031) 2015; 316 Henze (bib0025) 1988 Shilane, Martikainen, Dudoit, Ovaska (bib0040) 2008; 178 Franklin (bib0016) 2012 J.L. Gastwirth, Y.R. Gel, W.L. Wallace Hui, V. Lyubchich, W. Miao, K. Noguchi, lawstat: Tools for Biostatistics, Public Policy, and Law, 2015. R package version 3.0. Bartz-Beielstein, Preuss, Zaefferer (bib0002) 2012 Fodor (bib0015) 2002 García, Molina, Lozano, Herrera (bib0018) 2009; 15 Carrano (10.1016/j.ins.2019.03.049_bib0005) 2011; 15 Omidvar (10.1016/j.ins.2019.03.049_bib0035) 2015; 316 Derrac (10.1016/j.ins.2019.03.049_bib0009) 2014; 289 Edelman (10.1016/j.ins.2019.03.049_bib0011) 2005; 14 Shilane (10.1016/j.ins.2019.03.049_bib0040) 2008; 178 Derrac (10.1016/j.ins.2019.03.049_bib0010) 2011; 1 Bartz-Beielstein (10.1016/j.ins.2019.03.049_bib0002) 2012 Calvo (10.1016/j.ins.2019.03.049_bib0004) 2015; 15 Li (10.1016/j.ins.2019.03.049_bib0031) 2015; 316 10.1016/j.ins.2019.03.049_bib0020 Bartz-Beielstein (10.1016/j.ins.2019.03.049_bib0001) 2015 10.1016/j.ins.2019.03.049_bib0022 10.1016/j.ins.2019.03.049_bib0003 Schilling (10.1016/j.ins.2019.03.049_bib0038) 1986; 81 Hu (10.1016/j.ins.2019.03.049_bib0027) 2017; 381 Eftimov (10.1016/j.ins.2019.03.049_bib0012) 2017; 417 Hansen (10.1016/j.ins.2019.03.049_bib0024) 2009 Gontscharuk (10.1016/j.ins.2019.03.049_bib0021) 2010 Higham (10.1016/j.ins.2019.03.049_bib0026) 2002; 22 Fodor (10.1016/j.ins.2019.03.049_bib0015) 2002 Henze (10.1016/j.ins.2019.03.049_bib0025) 1988 Martino (10.1016/j.ins.2019.03.049_bib0033) 2016; 58 Veček (10.1016/j.ins.2019.03.049_bib0042) 2014; 277 Hansen (10.1016/j.ins.2019.03.049_bib0023) 2010 LaTorre (10.1016/j.ins.2019.03.049_bib0029) 2015; 316 Engmann (10.1016/j.ins.2019.03.049_bib0014) 2011; 6 10.1016/j.ins.2019.03.049_bib0036 Yang (10.1016/j.ins.2019.03.049_bib0043) 2009 Leucht (10.1016/j.ins.2019.03.049_bib0030) 2009; 100 10.1016/j.ins.2019.03.049_bib0037 Székely (10.1016/j.ins.2019.03.049_bib0041) 2004; 5 10.1016/j.ins.2019.03.049_bib0039 Das (10.1016/j.ins.2019.03.049_bib0008) 2013; vol. I Černỳ (10.1016/j.ins.2019.03.049_bib0006) 1985; 45 Dantzig (10.1016/j.ins.2019.03.049_bib0007) 1963 10.1016/j.ins.2019.03.049_bib0019 Mersmann (10.1016/j.ins.2019.03.049_bib0034) 2010 Eftimov (10.1016/j.ins.2019.03.049_bib0013) 2017; 1 Lozano (10.1016/j.ins.2019.03.049_bib0032) 2011; 15 Franklin (10.1016/j.ins.2019.03.049_bib0016) 2012 García (10.1016/j.ins.2019.03.049_bib0018) 2009; 15 García (10.1016/j.ins.2019.03.049_bib0017) 2010; 180 Jolliffe (10.1016/j.ins.2019.03.049_bib0028) 2002 |
| References_xml | – volume: 178 start-page: 2870 year: 2008 end-page: 2879 ident: bib0040 article-title: A general framework for statistical performance comparison of evolutionary computation algorithms publication-title: Inf. Sci. – volume: 45 start-page: 41 year: 1985 end-page: 51 ident: bib0006 article-title: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm publication-title: J. Optim. Theory Appl. – reference: N. Hansen, A. Auger, O. Mersmann, T. Tusar, D. Brockhoff, Coco: a platform for comparing continuous optimizers in a black-box setting, arXiv: – volume: vol. I start-page: 297 year: 2013 end-page: 333 ident: bib0008 article-title: Evaluating the evolutionary algorithms - classical perspectives and recent trends publication-title: Computational Intelligence – volume: 15 start-page: 848 year: 2011 end-page: 870 ident: bib0005 article-title: A multicriteria statistical based comparison methodology for evaluating evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 15 start-page: 617 year: 2009 end-page: 644 ident: bib0018 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the cec2005 special session on real parameter optimization publication-title: J. Heuristics – reference: (2016). – volume: 180 start-page: 2044 year: 2010 end-page: 2064 ident: bib0017 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power publication-title: Inf. Sci. – reference: M.L. Rizzo, G.J. Szekely, Energy: E-Statistics: Multivariate Inference via the Energy of Data, 2016. R package version 1.7-0. – reference: F. Scholz, A. Zhu, kSamples: K-Sample Rank Tests and their Combinations, 2016. R package version 1.2–4. – volume: 15 start-page: 848 year: 2015 end-page: 870 ident: bib0004 article-title: Scmamp: statistical comparison of multiple algorithms in multiple problems publication-title: R. J. – volume: 15 start-page: 2085 year: 2011 end-page: 2087 ident: bib0032 article-title: Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems publication-title: Soft Comput. – volume: 1 start-page: 73 year: 2017 end-page: 82 ident: bib0013 article-title: The behavior of deep statistical comparison approach for different criteria of comparing distributions publication-title: Proceedings of the 9th International Conference on Computational Intelligence, (IJCCI 2017) – start-page: 772 year: 1988 end-page: 783 ident: bib0025 article-title: A multivariate two-sample test based on the number of nearest neighbor type coincidences publication-title: Ann. Stat. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0010 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm. Evol. Comput. – volume: 100 start-page: 1622 year: 2009 end-page: 1633 ident: bib0030 article-title: Consistency of general bootstrap methods for degenerate u-type and v-type statistics publication-title: J. Multivar. Anal. – volume: 316 start-page: 517 year: 2015 end-page: 549 ident: bib0029 article-title: A comprehensive comparison of large scale global optimizers publication-title: Inf. Sci. – start-page: 1127 year: 2015 end-page: 1142 ident: bib0001 article-title: How to create generalizable results publication-title: Springer Handbook of Computational Intelligence – year: 2009 ident: bib0024 publication-title: Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions – volume: 316 start-page: 419 year: 2015 end-page: 436 ident: bib0035 article-title: Designing benchmark problems for large-scale continuous optimization publication-title: Inf. Sci. – year: 1963 ident: bib0007 article-title: Positive (semi-) Definite Matrices and Mathematical Programming publication-title: Technical Report – reference: C.J. Geyer, Markov Chain Monte Carlo Maximum Likelihood(1991). – start-page: 1689 year: 2010 end-page: 1696 ident: bib0023 article-title: Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009 publication-title: Proceedings of the 12th annual conference companion on Genetic and evolutionary computation – start-page: 1259 year: 2012 end-page: 1286 ident: bib0002 article-title: Statistical analysis of optimization algorithms with R publication-title: Proceedings of the 14th annual conference companion on Genetic and evolutionary computation – year: 2002 ident: bib0015 article-title: A survey of dimension reduction techniques – volume: 277 start-page: 656 year: 2014 end-page: 679 ident: bib0042 article-title: A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms publication-title: Inf. Sci. – volume: 22 start-page: 329 year: 2002 end-page: 343 ident: bib0026 article-title: Computing the nearest correlation matrix—a problem from finance publication-title: IMA J. Numer. Anal. – volume: 316 start-page: 437 year: 2015 end-page: 439 ident: bib0031 article-title: Editorial for the special issue of information sciences journal (isj) on nature-inspired algorithms for large scale global optimization publication-title: Inf. Sci. – volume: 417 start-page: 186 year: 2017 end-page: 215 ident: bib0012 article-title: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics publication-title: Inf. Sci. – volume: 58 start-page: 64 year: 2016 end-page: 84 ident: bib0033 article-title: Orthogonal parallel MCMC methods for sampling and optimization publication-title: Digit. Signal Process. – volume: 14 start-page: 233 year: 2005 end-page: 297 ident: bib0011 article-title: Random matrix theory publication-title: Acta Numerica – volume: 381 start-page: 142 year: 2017 end-page: 160 ident: bib0027 article-title: Cooperation coevolution with fast interdependency identification for large scale optimization publication-title: Inf. Sci. – volume: 81 start-page: 799 year: 1986 end-page: 806 ident: bib0038 article-title: Multivariate two-sample tests based on nearest neighbors publication-title: J. Am. Stat. Assoc. – reference: D. Bates, M. Maechler, Matrix: Sparse and Dense Matrix Classes and Methods, 2017. R package version 1.2–8. – volume: 5 start-page: 1 year: 2004 end-page: 6 ident: bib0041 article-title: Testing for equal distributions in high dimension publication-title: InterStat – year: 2002 ident: bib0028 article-title: Principal Component Analysis – start-page: 169 year: 2009 end-page: 178 ident: bib0043 article-title: Firefly algorithms for multimodal optimization publication-title: International symposium on stochastic algorithms – volume: 6 start-page: 1 year: 2011 end-page: 17 ident: bib0014 article-title: Comparing distributions: the two-sample anderson-darling test as an alternative to the Kolmogorov–Smirnoff test publication-title: J. Appl. Quantit. Methods – reference: J.L. Gastwirth, Y.R. Gel, W.L. Wallace Hui, V. Lyubchich, W. Miao, K. Noguchi, lawstat: Tools for Biostatistics, Public Policy, and Law, 2015. R package version 3.0. – volume: 289 start-page: 41 year: 2014 end-page: 58 ident: bib0009 article-title: Analyzing convergence performance of evolutionary algorithms: a statistical approach publication-title: Inf. Sci. – year: 2010 ident: bib0021 publication-title: Asymptotic and Exact Results on FWER and FDR in Multiple Hypotheses Testing – year: 2012 ident: bib0016 article-title: Matrix Theory – reference: R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015. – start-page: 73 year: 2010 end-page: 82 ident: bib0034 article-title: Benchmarking evolutionary algorithms: Towards exploratory landscape analysis publication-title: International Conference on Parallel Problem Solving from Nature – ident: 10.1016/j.ins.2019.03.049_bib0020 doi: 10.1214/ss/1177011137 – start-page: 1689 year: 2010 ident: 10.1016/j.ins.2019.03.049_bib0023 article-title: Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009 – volume: 45 start-page: 41 issue: 1 year: 1985 ident: 10.1016/j.ins.2019.03.049_bib0006 article-title: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940812 – volume: 5 start-page: 1 year: 2004 ident: 10.1016/j.ins.2019.03.049_bib0041 article-title: Testing for equal distributions in high dimension publication-title: InterStat – ident: 10.1016/j.ins.2019.03.049_bib0019 – volume: 22 start-page: 329 issue: 3 year: 2002 ident: 10.1016/j.ins.2019.03.049_bib0026 article-title: Computing the nearest correlation matrix—a problem from finance publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/22.3.329 – volume: 178 start-page: 2870 issue: 14 year: 2008 ident: 10.1016/j.ins.2019.03.049_bib0040 article-title: A general framework for statistical performance comparison of evolutionary computation algorithms publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.03.007 – start-page: 169 year: 2009 ident: 10.1016/j.ins.2019.03.049_bib0043 article-title: Firefly algorithms for multimodal optimization – start-page: 1127 year: 2015 ident: 10.1016/j.ins.2019.03.049_bib0001 article-title: How to create generalizable results – start-page: 1259 year: 2012 ident: 10.1016/j.ins.2019.03.049_bib0002 article-title: Statistical analysis of optimization algorithms with R – volume: 316 start-page: 437 issue: C year: 2015 ident: 10.1016/j.ins.2019.03.049_bib0031 article-title: Editorial for the special issue of information sciences journal (isj) on nature-inspired algorithms for large scale global optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.05.001 – year: 2002 ident: 10.1016/j.ins.2019.03.049_bib0015 – volume: 417 start-page: 186 year: 2017 ident: 10.1016/j.ins.2019.03.049_bib0012 article-title: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.07.015 – volume: 180 start-page: 2044 issue: 10 year: 2010 ident: 10.1016/j.ins.2019.03.049_bib0017 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.12.010 – volume: 15 start-page: 617 issue: 6 year: 2009 ident: 10.1016/j.ins.2019.03.049_bib0018 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the cec2005 special session on real parameter optimization publication-title: J. Heuristics doi: 10.1007/s10732-008-9080-4 – volume: 58 start-page: 64 year: 2016 ident: 10.1016/j.ins.2019.03.049_bib0033 article-title: Orthogonal parallel MCMC methods for sampling and optimization publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2016.07.013 – volume: 316 start-page: 419 year: 2015 ident: 10.1016/j.ins.2019.03.049_bib0035 article-title: Designing benchmark problems for large-scale continuous optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.12.062 – ident: 10.1016/j.ins.2019.03.049_bib0037 – ident: 10.1016/j.ins.2019.03.049_bib0039 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.ins.2019.03.049_bib0010 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm. Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – year: 2012 ident: 10.1016/j.ins.2019.03.049_bib0016 – volume: 381 start-page: 142 year: 2017 ident: 10.1016/j.ins.2019.03.049_bib0027 article-title: Cooperation coevolution with fast interdependency identification for large scale optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.11.013 – volume: 6 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.ins.2019.03.049_bib0014 article-title: Comparing distributions: the two-sample anderson-darling test as an alternative to the Kolmogorov–Smirnoff test publication-title: J. Appl. Quantit. Methods – volume: 1 start-page: 73 year: 2017 ident: 10.1016/j.ins.2019.03.049_bib0013 article-title: The behavior of deep statistical comparison approach for different criteria of comparing distributions – year: 2002 ident: 10.1016/j.ins.2019.03.049_bib0028 – ident: 10.1016/j.ins.2019.03.049_bib0022 – volume: 14 start-page: 233 year: 2005 ident: 10.1016/j.ins.2019.03.049_bib0011 article-title: Random matrix theory publication-title: Acta Numerica doi: 10.1017/S0962492904000236 – start-page: 73 year: 2010 ident: 10.1016/j.ins.2019.03.049_bib0034 article-title: Benchmarking evolutionary algorithms: Towards exploratory landscape analysis – volume: 15 start-page: 2085 issue: 11 year: 2011 ident: 10.1016/j.ins.2019.03.049_bib0032 article-title: Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems publication-title: Soft Comput. doi: 10.1007/s00500-010-0639-2 – volume: 15 start-page: 848 issue: 6 year: 2011 ident: 10.1016/j.ins.2019.03.049_bib0005 article-title: A multicriteria statistical based comparison methodology for evaluating evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2069567 – year: 1963 ident: 10.1016/j.ins.2019.03.049_bib0007 article-title: Positive (semi-) Definite Matrices and Mathematical Programming – year: 2010 ident: 10.1016/j.ins.2019.03.049_bib0021 – volume: 316 start-page: 517 year: 2015 ident: 10.1016/j.ins.2019.03.049_bib0029 article-title: A comprehensive comparison of large scale global optimizers publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.09.031 – volume: vol. I start-page: 297 year: 2013 ident: 10.1016/j.ins.2019.03.049_bib0008 article-title: Evaluating the evolutionary algorithms - classical perspectives and recent trends – volume: 81 start-page: 799 issue: 395 year: 1986 ident: 10.1016/j.ins.2019.03.049_bib0038 article-title: Multivariate two-sample tests based on nearest neighbors publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1986.10478337 – ident: 10.1016/j.ins.2019.03.049_bib0003 – start-page: 772 year: 1988 ident: 10.1016/j.ins.2019.03.049_bib0025 article-title: A multivariate two-sample test based on the number of nearest neighbor type coincidences publication-title: Ann. Stat. – ident: 10.1016/j.ins.2019.03.049_bib0036 – volume: 277 start-page: 656 year: 2014 ident: 10.1016/j.ins.2019.03.049_bib0042 article-title: A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.154 – volume: 289 start-page: 41 year: 2014 ident: 10.1016/j.ins.2019.03.049_bib0009 article-title: Analyzing convergence performance of evolutionary algorithms: a statistical approach publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.06.009 – volume: 15 start-page: 848 issue: 6 year: 2015 ident: 10.1016/j.ins.2019.03.049_bib0004 article-title: Scmamp: statistical comparison of multiple algorithms in multiple problems publication-title: R. J. – year: 2009 ident: 10.1016/j.ins.2019.03.049_bib0024 – volume: 100 start-page: 1622 issue: 8 year: 2009 ident: 10.1016/j.ins.2019.03.049_bib0030 article-title: Consistency of general bootstrap methods for degenerate u-type and v-type statistics publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2009.01.008 |
| SSID | ssj0004766 |
| Score | 2.4659095 |
| Snippet | In this paper a novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of the solutions in... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 255 |
| SubjectTerms | Benchmarking Exploitation power Exploration power Single objective problems Statistical comparison |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NT9wwEIatshwqDpRSEKCC5lBxAHmVDydxjqsKtKoE6qErLafIdhx2IZsgyLaCv8Kf7Th2VguiQG8-eJxI47FfyzOPCfmWM6b8UIU0wfOPecJMUi5FTHNhaHE8kkULcT07j4cj9mMcjR0s2tTCPLm_b_OwppWhavuWRcrSFbIaRyi7e2R1dP5zcGFTODxqtLE5XPEkoHGQ-t0N5ktj_GsP-jivbsT9H1GWS3vM6SebnXXXoglNasl1f97Ivnp4Bm581-9vkHWnNGFgp8Zn8kFXm2RtiT-4SfZd1QIcgitLMm4CF-9fyOMAqvq3LsGUHbVEZxywo5ADGoBNYcfBYKYbQSd6bsnPaFGriWibNa5KM1fuCaK8rG-nzWR2B0KZk6-xbWpAHQq5gfi697egLmARFjCt2g42LAEXQaW3yOj05Nf3IXWvOVAVMq-hhUgSz1eRTnyt_ZYCE8dBkBYij0QUxAU2VJJyT-W8iHIRyEimeJxKmA4lC0W4TXpVXekdAihBuMwLGWjJGeohyQs_1JIx6Usee2yXeJ1_M-VQ5-bFjTLrctquMvRLZvySeWGGftklRwuTG8v5eK0z6yZN5oSKFSAZ-v81s-PFBHv7I3v_1fsr6TW3c72PCqmRBy42_gJLXxAR priority: 102 providerName: Unpaywall |
| Title | A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space |
| URI | https://dx.doi.org/10.1016/j.ins.2019.03.049 https://doi.org/10.1016/j.ins.2019.03.049 |
| UnpaywallVersion | publishedVersion |
| Volume | 489 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 1872-6291 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 1872-6291 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 1872-6291 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 1872-6291 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 1872-6291 databaseCode: AKRWK dateStart: 19681201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHNoeKgpFpXTRHCoORYE8nMceVyvQtlVXHLoSnCLbcbpB2WQFWVAv_SP9s8zYzhakiko9xYk8duQZj2fkmW8Y-1hwroJIRV6K_g-VMJNeJkXiFYLQ4rJYlgbE9ds0mcz4l8v4coON-1wYCqt0ut_qdKOt3ZdTt5qny6qiHN_QWMRogpAjQX475ylVMTj59SfMg6f2vpLcJOrd32yaGK-qIcTuwOKcEpzm38-mF6tmKX7ei7p-dPacb7PXzmiEkf2vN2xDNzvs1SMowR02cAkIcAQuw4hWHNzW3WW_R9C0d7oGyiAy4Mw4YA8oDkgANhodB4OF7oQ31ysL4owUrZoL02xRwSxc5iaI-kd7U3XzxS0IRU4s0XYtoEkJBeHxulJa0JawlnCoGtPB7jBAfab0WzY7P_s-nniuMIOnIu53XinS1A9UrNNA68AAuiRJGA5LUcQiDpMSGyodZr4qsjIuRChjOUTPKOU6kjwS0R7bbNpGv2OA1kQmi1KGWmYcTRuZlUGkJecykFni833m9yzJlUMtp-IZdd6Hp13nyMWcuJj7UY5c3Gef1iRLC9nxXGfe8zl_Inc5HinPkR2vZeLfk7z_v0kO2Et6s8HBH9hmd7PSAzSBOnloZPyQbY0-f51M8TmbXoyuHgC2aQsf |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPQAH1EIRC6WdQ8WhVSAP57FHhIq2LXACiZtlOw4blE1WkKXqpX-kf7YztrOlUkWl3qzEY1ue8XhGnvmGsfcl5zpKdBLk6P9QCTMVFEpmQSkJLa5IVWVBXC8us8k1_3KT3qyw0yEXhsIqve53Ot1qa__l2O_m8byuKcc3thYxmiDkSKDf_oKncU4e2NGP33EePHcPluQnUffhadMGedUtQXZHDuiU8DT_fjmtLdq5_P5NNs2Ty-fsJdv0ViOcuIW9Yium3WIbT7AEt9iBz0CAQ_ApRrTl4M_uNvt5Am33aBqgFCKLzowDDojigATgwtFxMJiZXgZTs3AozkjR6am0zQ41zMynboJsbrv7up_OHkBq8mKJtu8AbUooCZDX19KCroKliEPd2g7uiAEqNG1es-uzT1enk8BXZgh0wsM-qGSeh5FOTR4ZE1lElyyL43Ely1SmcVZhQ-fjItRlUaWljFWqxuga5dwkiicy2WGrbdeaXQZoThSqrFRsVMHRtlFFFSVGca4iVWQhH7FwYInQHracqmc0YohPuxPIRUFcFGEikIsj9mFJMneYHc915gOfxR-CJ_BOeY7s41Im_j3J3v9N8o6tTa4uzsX558uv-2yd_rhI4Tdstb9fmAO0h3r11sr7L2zACwQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NT9wwEIatshwqDpRSEKCC5lBxAHmVDydxjqsKtKoE6qErLafIdhx2IZsgyLaCv8Kf7Th2VguiQG8-eJxI47FfyzOPCfmWM6b8UIU0wfOPecJMUi5FTHNhaHE8kkULcT07j4cj9mMcjR0s2tTCPLm_b_OwppWhavuWRcrSFbIaRyi7e2R1dP5zcGFTODxqtLE5XPEkoHGQ-t0N5ktj_GsP-jivbsT9H1GWS3vM6SebnXXXoglNasl1f97Ivnp4Bm581-9vkHWnNGFgp8Zn8kFXm2RtiT-4SfZd1QIcgitLMm4CF-9fyOMAqvq3LsGUHbVEZxywo5ADGoBNYcfBYKYbQSd6bsnPaFGriWibNa5KM1fuCaK8rG-nzWR2B0KZk6-xbWpAHQq5gfi697egLmARFjCt2g42LAEXQaW3yOj05Nf3IXWvOVAVMq-hhUgSz1eRTnyt_ZYCE8dBkBYij0QUxAU2VJJyT-W8iHIRyEimeJxKmA4lC0W4TXpVXekdAihBuMwLGWjJGeohyQs_1JIx6Usee2yXeJ1_M-VQ5-bFjTLrctquMvRLZvySeWGGftklRwuTG8v5eK0z6yZN5oSKFSAZ-v81s-PFBHv7I3v_1fsr6TW3c72PCqmRBy42_gJLXxAR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+statistical+approach+for+comparing+meta-heuristic+stochastic+optimization+algorithms+according+to+the+distribution+of+solutions+in+the+search+space&rft.jtitle=Information+sciences&rft.au=Eftimov%2C+Tome&rft.au=Koro%C5%A1ec%2C+Peter&rft.date=2019-07-01&rft.issn=0020-0255&rft.volume=489&rft.spage=255&rft.epage=273&rft_id=info:doi/10.1016%2Fj.ins.2019.03.049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2019_03_049 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |