Dynamic demand estimation on large scale networks using Principal Component Analysis: The case of non-existent or irrelevant historical estimates

Calibrating DTA models is complex due to the involved indeterminacy, non-linearity, and dimensionality, restricting the application of conventional calibration approaches, especially for larger networks. For this, Principal Component Analysis (PCA) is slowly establishing itself as the new state of t...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 136; p. 103504
Main Authors Qurashi, Moeid, Lu, Qing-Long, Cantelmo, Guido, Antoniou, Constantinos
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2022
Subjects
Online AccessGet full text
ISSN0968-090X
1879-2359
1879-2359
DOI10.1016/j.trc.2021.103504

Cover

Abstract Calibrating DTA models is complex due to the involved indeterminacy, non-linearity, and dimensionality, restricting the application of conventional calibration approaches, especially for larger networks. For this, Principal Component Analysis (PCA) is slowly establishing itself as the new state of the art because it can greatly tackle two well known challenges—i.e. problem dimensionality and non-linearity. PCA application limits the optimization search space in a lower dimension space, defined by orthogonal Principal Components, evaluated upon a set of historical estimates. In this paper, we solve practical implementation problems for PCA-based calibration techniques. Specifically, we formulate a data-assimilation framework to propose multiple OD historical data-set generation methods which allows the use of PC-based algorithms in case the historical data is irrelevant or unavailable, often the case for large-scale DTA models. Furthermore, we propose a simplified problem formulation that leverages properties of the novel data-set generation framework and helps for faster and more efficient calibration. The methodology is implemented using the PC-SPSA algorithm, which combines PCA with the popular Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, commonly used to calibrate smaller networks. The approach is tested on a large-scale case study of the Munich metropolitan urban network, with encouraging calibration results. The proposed data-assimilation framework can account for spatial, temporal, and day-to-day variations in the demand. Different methods and combinations are tested and compared. The results suggest that all these correlations should be used in order to avoid over-fitting issues. Furthermore, the implementation properties of PCA and PC-SPSA are also explored using different sensitivity analyses to assess the toll and benefits of using PCA i.e., ease in SPSA hyper-parameter, role of historical data-set generation parameters and the algorithm’s performance against different target demand fluctuations. The analysis shows encouraging results for PC-SPSA robustness and helps establishing simplified guidelines for implementing such PCA-methods practically on large-scale DTA models.
AbstractList Calibrating DTA models is complex due to the involved indeterminacy, non-linearity, and dimensionality, restricting the application of conventional calibration approaches, especially for larger networks. For this, Principal Component Analysis (PCA) is slowly establishing itself as the new state of the art because it can greatly tackle two well known challenges—i.e. problem dimensionality and non-linearity. PCA application limits the optimization search space in a lower dimension space, defined by orthogonal Principal Components, evaluated upon a set of historical estimates. In this paper, we solve practical implementation problems for PCA-based calibration techniques. Specifically, we formulate a data-assimilation framework to propose multiple OD historical data-set generation methods which allows the use of PC-based algorithms in case the historical data is irrelevant or unavailable, often the case for large-scale DTA models. Furthermore, we propose a simplified problem formulation that leverages properties of the novel data-set generation framework and helps for faster and more efficient calibration. The methodology is implemented using the PC-SPSA algorithm, which combines PCA with the popular Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, commonly used to calibrate smaller networks. The approach is tested on a large-scale case study of the Munich metropolitan urban network, with encouraging calibration results. The proposed data-assimilation framework can account for spatial, temporal, and day-to-day variations in the demand. Different methods and combinations are tested and compared. The results suggest that all these correlations should be used in order to avoid over-fitting issues. Furthermore, the implementation properties of PCA and PC-SPSA are also explored using different sensitivity analyses to assess the toll and benefits of using PCA i.e., ease in SPSA hyper-parameter, role of historical data-set generation parameters and the algorithm’s performance against different target demand fluctuations. The analysis shows encouraging results for PC-SPSA robustness and helps establishing simplified guidelines for implementing such PCA-methods practically on large-scale DTA models.
ArticleNumber 103504
Author Antoniou, Constantinos
Qurashi, Moeid
Lu, Qing-Long
Cantelmo, Guido
Author_xml – sequence: 1
  givenname: Moeid
  orcidid: 0000-0002-0135-6450
  surname: Qurashi
  fullname: Qurashi, Moeid
  email: moeid.qurashi@tum.de
  organization: Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany
– sequence: 2
  givenname: Qing-Long
  orcidid: 0000-0002-6087-8670
  surname: Lu
  fullname: Lu, Qing-Long
  email: qinglong.lu@tum.de
  organization: Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany
– sequence: 3
  givenname: Guido
  orcidid: 0000-0001-5218-2609
  surname: Cantelmo
  fullname: Cantelmo, Guido
  email: guica@dtu.dk
  organization: Technical University of Denmark, Bygningstorvet 116, 2800 Kgs. Lyngby, Denmark
– sequence: 4
  givenname: Constantinos
  orcidid: 0000-0003-0203-9542
  surname: Antoniou
  fullname: Antoniou, Constantinos
  email: c.antoniou@tum.de
  organization: Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany
BookMark eNqNkMtOQyEQhompia36AO54gVOBc0VXpl4TE11o4o5wOHNaKoUGaLWP4RtLrW5cGBOSyRC-mZ9vhAbWWUDohJIxJbQ6nY-jV2NGGE19XpJiDw1pU_OM5SUfoCHhVZMRTl4O0CiEOSGE8rIeoo_LjZULrXAHC2k7DCHqhYzaWZyOkX4KOChpAFuIb86_BrwK2k7xo9dW6aU0eOIWyxTGRnxhpdkEHc7w0wywkgGw63FKmsG7DnH7xHmsvQcDa5m6Wbp1Xqf5P4shHKH9XpoAx9_1ED1fXz1NbrP7h5u7ycV9pvKCxKyvoZalIuljZVG3PTBOUu0q2rbAWCvrsm9IzgtQVVN2vALSNy3ra14xyos8P0RsN3dll3LzJo0RS58i-I2gRGylirlIUsVWqthJTRDdQcq7EDz0_2LqX4zS8Utx9FKbP8nzHQnJw1qDF0FpsAo67UFF0Tn9B_0JHs-nJQ
CitedBy_id crossref_primary_10_1016_j_ress_2024_110095
crossref_primary_10_1287_trsc_2023_0485
crossref_primary_10_1016_j_eng_2024_04_020
crossref_primary_10_1080_21680566_2025_2459928
crossref_primary_10_3390_app132011257
crossref_primary_10_1109_TITS_2023_3234615
crossref_primary_10_1016_j_tra_2023_103754
crossref_primary_10_1016_j_trc_2023_104460
crossref_primary_10_1080_23249935_2025_2470994
Cites_doi 10.1109/TITS.2007.908569
10.1016/j.trc.2014.11.006
10.3141/2667-10
10.1016/j.trc.2018.09.021
10.3141/2669-08
10.1109/7.705889
10.1016/j.simpat.2018.04.006
10.3141/2090-01
10.1016/j.trc.2015.08.009
10.1016/j.trc.2015.01.016
10.3141/2466-14
10.1016/j.procs.2018.04.012
10.1287/trsc.34.1.21.12282
10.1109/TITS.2012.2226211
10.3141/2003-07
10.3182/20090902-3-US-2007.0056
10.1016/j.trb.2019.05.010
10.3141/2263-03
10.1023/A:1012883811652
10.1016/j.trc.2008.09.001
10.1016/j.trb.2019.01.005
10.1177/0361198118791360
10.3141/1999-21
10.3141/2175-03
10.3141/2283-09
10.1016/j.trb.2013.06.007
10.1109/TITS.2014.2299734
10.1016/j.trc.2010.05.013
10.1287/trsc.35.2.134.10138
10.1023/A:1012831808926
10.1109/TITS.2019.2915273
10.1016/j.trc.2015.04.030
10.1109/9.119632
10.1016/j.trb.2016.12.005
10.1016/j.trb.2007.02.004
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.trc.2021.103504
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
ExternalDocumentID 10.1016/j.trc.2021.103504
10_1016_j_trc_2021_103504
S0968090X21004903
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c340t-f7e7a5c0096547bfe29047bd61bbe22ba75f80394ec685d96e0f8b2f796219433
IEDL.DBID .~1
ISSN 0968-090X
1879-2359
IngestDate Sun Oct 26 04:09:42 EDT 2025
Sat Oct 25 05:19:38 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Fri Feb 23 02:38:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dimension reduction
DTA model calibration
Demand estimation
Large networks
OD estimation
Principal Component Analysis
SPSA
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-f7e7a5c0096547bfe29047bd61bbe22ba75f80394ec685d96e0f8b2f796219433
ORCID 0000-0002-6087-8670
0000-0002-0135-6450
0000-0001-5218-2609
0000-0003-0203-9542
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0968090X21004903
ParticipantIDs unpaywall_primary_10_1016_j_trc_2021_103504
crossref_primary_10_1016_j_trc_2021_103504
crossref_citationtrail_10_1016_j_trc_2021_103504
elsevier_sciencedirect_doi_10_1016_j_trc_2021_103504
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Balakrishna, Koutsopoulos, Ben-Akiva (b10) 2005
Cantelmo, Viti, Tampère, Cipriani, Nigro (b16) 2014; 2466
Antoniou, Azevedo, Lu, Pereira, Ben-Akiva (b1) 2015; 59
Mahmassani (b25) 2001; 1
Cascetta, Postorino (b18) 2001; 35
Lopez, Behrisch, Bieker-Walz, Erdmann, Flötteröd, Hilbrich, Lücken, Rummel, Wagner, Wießner (b23) 2018
Prakash, Seshadri, Antoniou, Pereira, Ben-Akiva (b30) 2018; 2672
Antoniou, Barceló, Breen, Bullejos, Casas, Cipriani, Ciuffo, Djukic, Hoogendoorn, Marzano, Montero, Nigro, Perarnau, Punzo, Toledo, van Lint (b3) 2016; 66
Prakash, Seshadri, Antoniou, Pereira, Ben-Akiva (b29) 2017; 2667
Cantelmo, Viti, Cipriani, Nigro (b15) 2018; 114
Zockaie, A., Chen, Y., Mahmassani, H.S., 2014. Adaptive Drivers and Time-Dependent Origin-Destination Demand Estimation: Methodology and Application to Large-Scale Network. Technical Report.
Balakrishna, Antoniou, Ben-Akiva, Koutsopoulos, Wen (b8) 2007; 1999
Tympakianaki, Koutsopoulos, Jenelius (b40) 2018; 130
Spall (b36) 1992; 37
Tampere, Viti, Immers (b37) 2010
Tympakianaki, Koutsopoulos, Jenelius (b39) 2015; 55
McNally (b27) 2007
Ashok (b5) 1996
Cantelmo, Cipriani, Gemma, Nigro (b13) 2014; 15
Zhou, Mahmassani (b44) 2007; 41
Shafiei, Gu, Saberi (b33) 2018; 86
Barceló, Montero, Marqués, Carmona (b11) 2010; 2175
Zhang, Osorio, Flötteröd (b43) 2017; 97
Toledo, Kolechkina (b38) 2012; 14
Balakrishna (b7) 2006
Qurashi, Ma, Chaniotakis, Antoniou (b31) 2019; 21
Wu, Guo, Xian, Zhou (b42) 2018; 96
Antoniou, Ben-Akiva, Koutsopoulos (b4) 2007; 8
Spall (b35) 1998; 34
Balakrishna, Ben-Akiva, Koutsopoulos (b9) 2007; 2003
Ashok, Ben-Akiva (b6) 2000; 34
Djukic, Van Lint, Hoogendoorn (b20) 2012; 2283
Lu, Xu, Antoniou, Ben-Akiva (b24) 2015; 51
Ros-Roca, Montero, Barceló (b32) 2021; 17
Cantelmo, Qurashi, Prakash, Antoniou, Viti (b14) 2020; 132
Frederix, Viti, Corthout, Tampère (b21) 2011; 2263
Vaze, Antoniou, Wen, Ben-Akiva (b41) 2009; 2090
Marzano, Papola, Simonelli (b26) 2009; 17
Shafiei, Saberi, Zockaie, Sarvi (b34) 2017; 2669
Ben-Akiva, Bierlaire, Burton, Koutsopoulos, Mishalani (b12) 2001; 1
Cascetta, Papola, Marzano, Simonelli, Vitiello (b17) 2013; 55
Cipriani, Florian, Mahut, Nigro (b19) 2011; 19
Osorio (b28) 2019; 124
Krishnakumari, van Lint, Djukic, Cats (b22) 2019
Antoniou, Balakrishna, Koutsopoulos, Ben-Akiva (b2) 2009; 42
Balakrishna (10.1016/j.trc.2021.103504_b10) 2005
Vaze (10.1016/j.trc.2021.103504_b41) 2009; 2090
Ros-Roca (10.1016/j.trc.2021.103504_b32) 2021; 17
Prakash (10.1016/j.trc.2021.103504_b29) 2017; 2667
Shafiei (10.1016/j.trc.2021.103504_b34) 2017; 2669
Lopez (10.1016/j.trc.2021.103504_b23) 2018
Tympakianaki (10.1016/j.trc.2021.103504_b39) 2015; 55
Cascetta (10.1016/j.trc.2021.103504_b17) 2013; 55
Balakrishna (10.1016/j.trc.2021.103504_b8) 2007; 1999
Prakash (10.1016/j.trc.2021.103504_b30) 2018; 2672
Balakrishna (10.1016/j.trc.2021.103504_b9) 2007; 2003
Cipriani (10.1016/j.trc.2021.103504_b19) 2011; 19
Frederix (10.1016/j.trc.2021.103504_b21) 2011; 2263
Cantelmo (10.1016/j.trc.2021.103504_b13) 2014; 15
Qurashi (10.1016/j.trc.2021.103504_b31) 2019; 21
Ashok (10.1016/j.trc.2021.103504_b5) 1996
Tampere (10.1016/j.trc.2021.103504_b37) 2010
Shafiei (10.1016/j.trc.2021.103504_b33) 2018; 86
Antoniou (10.1016/j.trc.2021.103504_b3) 2016; 66
Balakrishna (10.1016/j.trc.2021.103504_b7) 2006
Antoniou (10.1016/j.trc.2021.103504_b1) 2015; 59
Tympakianaki (10.1016/j.trc.2021.103504_b40) 2018; 130
Barceló (10.1016/j.trc.2021.103504_b11) 2010; 2175
Spall (10.1016/j.trc.2021.103504_b35) 1998; 34
Lu (10.1016/j.trc.2021.103504_b24) 2015; 51
Ashok (10.1016/j.trc.2021.103504_b6) 2000; 34
Ben-Akiva (10.1016/j.trc.2021.103504_b12) 2001; 1
Cantelmo (10.1016/j.trc.2021.103504_b15) 2018; 114
Antoniou (10.1016/j.trc.2021.103504_b2) 2009; 42
Marzano (10.1016/j.trc.2021.103504_b26) 2009; 17
Zhou (10.1016/j.trc.2021.103504_b44) 2007; 41
Cantelmo (10.1016/j.trc.2021.103504_b16) 2014; 2466
Cantelmo (10.1016/j.trc.2021.103504_b14) 2020; 132
Djukic (10.1016/j.trc.2021.103504_b20) 2012; 2283
McNally (10.1016/j.trc.2021.103504_b27) 2007
Spall (10.1016/j.trc.2021.103504_b36) 1992; 37
Toledo (10.1016/j.trc.2021.103504_b38) 2012; 14
Zhang (10.1016/j.trc.2021.103504_b43) 2017; 97
10.1016/j.trc.2021.103504_b45
Antoniou (10.1016/j.trc.2021.103504_b4) 2007; 8
Krishnakumari (10.1016/j.trc.2021.103504_b22) 2019
Osorio (10.1016/j.trc.2021.103504_b28) 2019; 124
Cascetta (10.1016/j.trc.2021.103504_b18) 2001; 35
Wu (10.1016/j.trc.2021.103504_b42) 2018; 96
Mahmassani (10.1016/j.trc.2021.103504_b25) 2001; 1
References_xml – volume: 34
  start-page: 817
  year: 1998
  end-page: 823
  ident: b35
  article-title: Implementation of the simultaneous perturbation algorithm for stochastic optimization
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 2090
  start-page: 1
  year: 2009
  end-page: 9
  ident: b41
  article-title: Calibration of dynamic traffic assignment models with point-to-point traffic surveillance
  publication-title: Transp. Res. Rec.
– volume: 55
  start-page: 231
  year: 2015
  end-page: 245
  ident: b39
  article-title: c-SPSA: Cluster-wise simultaneous perturbation stochastic approximation algorithm and its application to dynamic origin–destination matrix estimation
  publication-title: Transp. Res. C
– volume: 114
  start-page: 303
  year: 2018
  end-page: 320
  ident: b15
  article-title: A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration
  publication-title: Transp. Res. A
– volume: 17
  start-page: 120
  year: 2009
  end-page: 132
  ident: b26
  article-title: Limits and perspectives of effective O–D matrix correction using traffic counts
  publication-title: Transp. Res. C
– volume: 37
  start-page: 332
  year: 1992
  end-page: 341
  ident: b36
  article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
  publication-title: IEEE Trans. Automat. Control
– volume: 2175
  start-page: 19
  year: 2010
  end-page: 27
  ident: b11
  article-title: Travel time forecasting and dynamic origin-destination estimation for freeways based on bluetooth traffic monitoring
  publication-title: Transp. Res. Rec.
– volume: 97
  start-page: 214
  year: 2017
  end-page: 239
  ident: b43
  article-title: Efficient calibration techniques for large-scale traffic simulators
  publication-title: Transp. Res. B
– volume: 42
  start-page: 104
  year: 2009
  end-page: 111
  ident: b2
  article-title: Off-line and on-line calibration of dynamic traffic assignment systems
  publication-title: IFAC Proc. Vol.
– volume: 21
  start-page: 1635
  year: 2019
  end-page: 1645
  ident: b31
  article-title: PC-SPSA: Employing dimensionality reduction to limit SPSA search noise in DTA model calibration
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 17
  start-page: 235
  year: 2021
  end-page: 257
  ident: b32
  article-title: Investigating the quality of spiess-like and SPSA approaches for dynamic OD matrix estimation
  publication-title: Transp. A
– year: 2006
  ident: b7
  article-title: Off-line calibration of dynamic traffic assignment models
– volume: 2669
  start-page: 72
  year: 2017
  end-page: 79
  ident: b34
  article-title: Sensitivity-based linear approximation method to estimate time-dependent origin–destination demand in congested networks
  publication-title: Transp. Res. Rec.
– volume: 132
  start-page: 171
  year: 2020
  end-page: 187
  ident: b14
  article-title: Incorporating trip chaining within online demand estimation
  publication-title: Transp. Res. B
– volume: 55
  start-page: 171
  year: 2013
  end-page: 187
  ident: b17
  article-title: Quasi-dynamic estimation of o–d flows from traffic counts: Formulation, statistical validation and performance analysis on real data
  publication-title: Transp. Res. B
– volume: 1999
  start-page: 198
  year: 2007
  end-page: 207
  ident: b8
  article-title: Calibration of microscopic traffic simulation models: Methods and application
  publication-title: Transp. Res. Rec.
– volume: 34
  start-page: 21
  year: 2000
  end-page: 36
  ident: b6
  article-title: Alternative approaches for real-time estimation and prediction of time-dependent origin–destination flows
  publication-title: Transp. Sci.
– volume: 19
  start-page: 270
  year: 2011
  end-page: 282
  ident: b19
  article-title: A gradient approximation approach for adjusting temporal origin–destination matrices
  publication-title: Transp. Res. C
– volume: 1
  start-page: 293
  year: 2001
  end-page: 318
  ident: b12
  article-title: Network state estimation and prediction for real-time traffic management
  publication-title: Netw. Spat. Econ.
– year: 2010
  ident: b37
  article-title: New Developments in Transport Planning
– volume: 2263
  start-page: 19
  year: 2011
  end-page: 25
  ident: b21
  article-title: New gradient approximation method for dynamic origin–destination matrix estimation on congested networks
  publication-title: Transp. Res. Rec.
– volume: 130
  start-page: 57
  year: 2018
  end-page: 64
  ident: b40
  article-title: Robust SPSA algorithms for dynamic OD matrix estimation
  publication-title: Procedia Comput. Sci.
– volume: 2003
  start-page: 50
  year: 2007
  end-page: 58
  ident: b9
  article-title: Offline calibration of dynamic traffic assignment: simultaneous demand-and-supply estimation
  publication-title: Transp. Res. Rec.
– volume: 51
  start-page: 149
  year: 2015
  end-page: 166
  ident: b24
  article-title: An enhanced SPSA algorithm for the calibration of dynamic traffic assignment models
  publication-title: Transp. Res. C
– volume: 1
  start-page: 267
  year: 2001
  end-page: 292
  ident: b25
  article-title: Dynamic network traffic assignment and simulation methodology for advanced system management applications
  publication-title: Netw. Spat. Econ.
– year: 2005
  ident: b10
  article-title: Calibration and validation of dynamic traffic assignment systems
  publication-title: Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic Theory
– volume: 2667
  start-page: 96
  year: 2017
  end-page: 107
  ident: b29
  article-title: Reducing the dimension of online calibration in dynamic traffic assignment systems
  publication-title: Transp. Res. Rec.
– volume: 59
  start-page: 129
  year: 2015
  end-page: 146
  ident: b1
  article-title: W-SPSA in practice: Approximation of weight matrices and calibration of traffic simulation models
  publication-title: Transp. Res. C
– year: 1996
  ident: b5
  article-title: Estimation and prediction of time-dependent origin-destination flows
– volume: 2283
  start-page: 81
  year: 2012
  end-page: 89
  ident: b20
  article-title: Application of principal component analysis to predict dynamic origin–destination matrices
  publication-title: Transp. Res. Rec.
– volume: 8
  start-page: 661
  year: 2007
  end-page: 670
  ident: b4
  article-title: Nonlinear Kalman filtering algorithms for on-line calibration of dynamic traffic assignment models
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 96
  start-page: 321
  year: 2018
  end-page: 346
  ident: b42
  article-title: Hierarchical travel demand estimation using multiple data sources: A forward and backward propagation algorithmic framework on a layered computational graph
  publication-title: Transp. Res. C
– volume: 86
  start-page: 169
  year: 2018
  end-page: 186
  ident: b33
  article-title: Calibration and validation of a simulation-based dynamic traffic assignment model for a large-scale congested network
  publication-title: Simul. Model. Pract. Theory
– volume: 66
  start-page: 79
  year: 2016
  end-page: 98
  ident: b3
  article-title: Towards a generic benchmarking platform for origin-destination flows estimation/updating algorithms: Design, demonstration and validation
  publication-title: Transp. Res. C
– volume: 2672
  start-page: 79
  year: 2018
  end-page: 92
  ident: b30
  article-title: Improving scalability of generic online calibration for real-time dynamic traffic assignment systems
  publication-title: Transp. Res. Rec.
– volume: 14
  start-page: 618
  year: 2012
  end-page: 626
  ident: b38
  article-title: Estimation of dynamic origin–destination matrices using linear assignment matrix approximations
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2018
  ident: b23
  article-title: Microscopic traffic simulation using SUMO
  publication-title: The 21st IEEE International Conference on Intelligent Transportation Systems
– year: 2019
  ident: b22
  article-title: A data driven method for OD matrix estimation
  publication-title: Transp. Res. C
– volume: 15
  start-page: 1348
  year: 2014
  end-page: 1361
  ident: b13
  article-title: An adaptive bi-level gradient procedure for the estimation of dynamic traffic demand
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 2466
  start-page: 125
  year: 2014
  end-page: 133
  ident: b16
  article-title: Two-step approach for correction of seed matrix in dynamic demand estimation
  publication-title: Transp. Res. Rec.
– volume: 41
  start-page: 823
  year: 2007
  end-page: 840
  ident: b44
  article-title: A structural state space model for real-time traffic origin–destination demand estimation and prediction in a day-to-day learning framework
  publication-title: Transp. Res. B
– year: 2007
  ident: b27
  article-title: The Four-Step Model
– volume: 35
  start-page: 134
  year: 2001
  end-page: 147
  ident: b18
  article-title: Fixed point approaches to the estimation of O/D matrices using traffic counts on congested networks
  publication-title: Transp. Sci.
– reference: Zockaie, A., Chen, Y., Mahmassani, H.S., 2014. Adaptive Drivers and Time-Dependent Origin-Destination Demand Estimation: Methodology and Application to Large-Scale Network. Technical Report.
– volume: 124
  start-page: 18
  year: 2019
  end-page: 43
  ident: b28
  article-title: High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks
  publication-title: Transp. Res. B
– volume: 8
  start-page: 661
  issue: 4
  year: 2007
  ident: 10.1016/j.trc.2021.103504_b4
  article-title: Nonlinear Kalman filtering algorithms for on-line calibration of dynamic traffic assignment models
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2007.908569
– volume: 51
  start-page: 149
  year: 2015
  ident: 10.1016/j.trc.2021.103504_b24
  article-title: An enhanced SPSA algorithm for the calibration of dynamic traffic assignment models
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2014.11.006
– volume: 2667
  start-page: 96
  issue: 1
  year: 2017
  ident: 10.1016/j.trc.2021.103504_b29
  article-title: Reducing the dimension of online calibration in dynamic traffic assignment systems
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2667-10
– volume: 96
  start-page: 321
  year: 2018
  ident: 10.1016/j.trc.2021.103504_b42
  article-title: Hierarchical travel demand estimation using multiple data sources: A forward and backward propagation algorithmic framework on a layered computational graph
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2018.09.021
– year: 2006
  ident: 10.1016/j.trc.2021.103504_b7
– year: 2019
  ident: 10.1016/j.trc.2021.103504_b22
  article-title: A data driven method for OD matrix estimation
  publication-title: Transp. Res. C
– volume: 2669
  start-page: 72
  issue: 1
  year: 2017
  ident: 10.1016/j.trc.2021.103504_b34
  article-title: Sensitivity-based linear approximation method to estimate time-dependent origin–destination demand in congested networks
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2669-08
– volume: 34
  start-page: 817
  issue: 3
  year: 1998
  ident: 10.1016/j.trc.2021.103504_b35
  article-title: Implementation of the simultaneous perturbation algorithm for stochastic optimization
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.705889
– volume: 86
  start-page: 169
  year: 2018
  ident: 10.1016/j.trc.2021.103504_b33
  article-title: Calibration and validation of a simulation-based dynamic traffic assignment model for a large-scale congested network
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2018.04.006
– volume: 2090
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.trc.2021.103504_b41
  article-title: Calibration of dynamic traffic assignment models with point-to-point traffic surveillance
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2090-01
– year: 2018
  ident: 10.1016/j.trc.2021.103504_b23
  article-title: Microscopic traffic simulation using SUMO
– volume: 66
  start-page: 79
  year: 2016
  ident: 10.1016/j.trc.2021.103504_b3
  article-title: Towards a generic benchmarking platform for origin-destination flows estimation/updating algorithms: Design, demonstration and validation
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2015.08.009
– volume: 17
  start-page: 235
  issue: 3
  year: 2021
  ident: 10.1016/j.trc.2021.103504_b32
  article-title: Investigating the quality of spiess-like and SPSA approaches for dynamic OD matrix estimation
  publication-title: Transp. A
– volume: 55
  start-page: 231
  year: 2015
  ident: 10.1016/j.trc.2021.103504_b39
  article-title: c-SPSA: Cluster-wise simultaneous perturbation stochastic approximation algorithm and its application to dynamic origin–destination matrix estimation
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2015.01.016
– volume: 2466
  start-page: 125
  issue: 1
  year: 2014
  ident: 10.1016/j.trc.2021.103504_b16
  article-title: Two-step approach for correction of seed matrix in dynamic demand estimation
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2466-14
– year: 2007
  ident: 10.1016/j.trc.2021.103504_b27
– volume: 130
  start-page: 57
  year: 2018
  ident: 10.1016/j.trc.2021.103504_b40
  article-title: Robust SPSA algorithms for dynamic OD matrix estimation
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.04.012
– volume: 34
  start-page: 21
  issue: 1
  year: 2000
  ident: 10.1016/j.trc.2021.103504_b6
  article-title: Alternative approaches for real-time estimation and prediction of time-dependent origin–destination flows
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.34.1.21.12282
– year: 1996
  ident: 10.1016/j.trc.2021.103504_b5
– volume: 14
  start-page: 618
  issue: 2
  year: 2012
  ident: 10.1016/j.trc.2021.103504_b38
  article-title: Estimation of dynamic origin–destination matrices using linear assignment matrix approximations
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2226211
– volume: 2003
  start-page: 50
  issue: 1
  year: 2007
  ident: 10.1016/j.trc.2021.103504_b9
  article-title: Offline calibration of dynamic traffic assignment: simultaneous demand-and-supply estimation
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2003-07
– volume: 42
  start-page: 104
  issue: 15
  year: 2009
  ident: 10.1016/j.trc.2021.103504_b2
  article-title: Off-line and on-line calibration of dynamic traffic assignment systems
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20090902-3-US-2007.0056
– volume: 132
  start-page: 171
  year: 2020
  ident: 10.1016/j.trc.2021.103504_b14
  article-title: Incorporating trip chaining within online demand estimation
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2019.05.010
– volume: 2263
  start-page: 19
  issue: 1
  year: 2011
  ident: 10.1016/j.trc.2021.103504_b21
  article-title: New gradient approximation method for dynamic origin–destination matrix estimation on congested networks
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2263-03
– volume: 1
  start-page: 293
  issue: 3–4
  year: 2001
  ident: 10.1016/j.trc.2021.103504_b12
  article-title: Network state estimation and prediction for real-time traffic management
  publication-title: Netw. Spat. Econ.
  doi: 10.1023/A:1012883811652
– volume: 17
  start-page: 120
  issue: 2
  year: 2009
  ident: 10.1016/j.trc.2021.103504_b26
  article-title: Limits and perspectives of effective O–D matrix correction using traffic counts
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2008.09.001
– volume: 124
  start-page: 18
  year: 2019
  ident: 10.1016/j.trc.2021.103504_b28
  article-title: High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2019.01.005
– year: 2005
  ident: 10.1016/j.trc.2021.103504_b10
  article-title: Calibration and validation of dynamic traffic assignment systems
– volume: 2672
  start-page: 79
  issue: 48
  year: 2018
  ident: 10.1016/j.trc.2021.103504_b30
  article-title: Improving scalability of generic online calibration for real-time dynamic traffic assignment systems
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198118791360
– year: 2010
  ident: 10.1016/j.trc.2021.103504_b37
– volume: 1999
  start-page: 198
  issue: 1
  year: 2007
  ident: 10.1016/j.trc.2021.103504_b8
  article-title: Calibration of microscopic traffic simulation models: Methods and application
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1999-21
– volume: 2175
  start-page: 19
  issue: 1
  year: 2010
  ident: 10.1016/j.trc.2021.103504_b11
  article-title: Travel time forecasting and dynamic origin-destination estimation for freeways based on bluetooth traffic monitoring
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2175-03
– volume: 2283
  start-page: 81
  issue: 1
  year: 2012
  ident: 10.1016/j.trc.2021.103504_b20
  article-title: Application of principal component analysis to predict dynamic origin–destination matrices
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2283-09
– volume: 55
  start-page: 171
  year: 2013
  ident: 10.1016/j.trc.2021.103504_b17
  article-title: Quasi-dynamic estimation of o–d flows from traffic counts: Formulation, statistical validation and performance analysis on real data
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2013.06.007
– ident: 10.1016/j.trc.2021.103504_b45
– volume: 15
  start-page: 1348
  issue: 3
  year: 2014
  ident: 10.1016/j.trc.2021.103504_b13
  article-title: An adaptive bi-level gradient procedure for the estimation of dynamic traffic demand
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2299734
– volume: 19
  start-page: 270
  issue: 2
  year: 2011
  ident: 10.1016/j.trc.2021.103504_b19
  article-title: A gradient approximation approach for adjusting temporal origin–destination matrices
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2010.05.013
– volume: 114
  start-page: 303
  year: 2018
  ident: 10.1016/j.trc.2021.103504_b15
  article-title: A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration
  publication-title: Transp. Res. A
– volume: 35
  start-page: 134
  issue: 2
  year: 2001
  ident: 10.1016/j.trc.2021.103504_b18
  article-title: Fixed point approaches to the estimation of O/D matrices using traffic counts on congested networks
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.35.2.134.10138
– volume: 1
  start-page: 267
  issue: 3–4
  year: 2001
  ident: 10.1016/j.trc.2021.103504_b25
  article-title: Dynamic network traffic assignment and simulation methodology for advanced system management applications
  publication-title: Netw. Spat. Econ.
  doi: 10.1023/A:1012831808926
– volume: 21
  start-page: 1635
  issue: 4
  year: 2019
  ident: 10.1016/j.trc.2021.103504_b31
  article-title: PC-SPSA: Employing dimensionality reduction to limit SPSA search noise in DTA model calibration
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2915273
– volume: 59
  start-page: 129
  year: 2015
  ident: 10.1016/j.trc.2021.103504_b1
  article-title: W-SPSA in practice: Approximation of weight matrices and calibration of traffic simulation models
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2015.04.030
– volume: 37
  start-page: 332
  issue: 3
  year: 1992
  ident: 10.1016/j.trc.2021.103504_b36
  article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.119632
– volume: 97
  start-page: 214
  year: 2017
  ident: 10.1016/j.trc.2021.103504_b43
  article-title: Efficient calibration techniques for large-scale traffic simulators
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2016.12.005
– volume: 41
  start-page: 823
  issue: 8
  year: 2007
  ident: 10.1016/j.trc.2021.103504_b44
  article-title: A structural state space model for real-time traffic origin–destination demand estimation and prediction in a day-to-day learning framework
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2007.02.004
SSID ssj0001957
Score 2.4376564
Snippet Calibrating DTA models is complex due to the involved indeterminacy, non-linearity, and dimensionality, restricting the application of conventional calibration...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103504
SubjectTerms Demand estimation
Dimension reduction
DTA model calibration
Large networks
OD estimation
Principal Component Analysis
SPSA
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yHsSDb1FRycGTUum2Sdp4Ex-IoHhwYT2VJE18rV3ZdhH9F_5jZzbtouITCr0kTUmmmW-ab74hZEs7JyOTcAhLchYw-JwCxRwPJFeA5Vxq8gSzkc_OxUmHnXZ5txaLxlyYD-f3Ix5WNUClwaiN6eEclT8nBQfY3SKTnfOL_auRlp7AI_ywi8FVmsggirlsTjC_esZ3PmhqWDyq5yfV673zMceznp1VjqQJkVpyvzus9K55-STc-KfXnyMzNdKk-9405smELRbIVJOIXC6Q6XdahIvk9dDXpqe5fVBFTlF9w6c1Urh6SBinJSyopYVnjpcUOfPX9ML_roehcG_pF-DFaCN1skfBDKkBT0n7jhb9IkDlzQqb9Af0doAVWwDKV_RmrFbSDGzLJdI5Pro8OAnqeg2BiVlYBS6xieIGoyLOEu1sJEO456KttY0irRLu0jCWzBqR8lwKG7pURy6RAvZNFsfLpAVvYlcI5UwYCExtbCBisqmEfScWqdZKqraTNl8lYbOCmanFzLGmRi9rWGt3Gcx8hjOf-ZlfJdvjLo9eyeOnxqwxi6yGIh5iZLDCP3XbGZvQ74Os_av1OmlVg6HdAAxU6c3a-t8ASn0DJQ
  priority: 102
  providerName: Unpaywall
Title Dynamic demand estimation on large scale networks using Principal Component Analysis: The case of non-existent or irrelevant historical estimates
URI https://dx.doi.org/10.1016/j.trc.2021.103504
https://doi.org/10.1016/j.trc.2021.103504
UnpaywallVersion publishedVersion
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fixMxEA6lPtR7EO15XD0tefDJY-3-SHY3vpVqqYqloIXe05Jkk7tK3ZZ2y-GL_4P_sTOb3VpBKggLgSVhlkx2ZpJ88w0hL5W1ItQJh21JzjwGv5MnmeWe4BJiOZvqPMFs5E_TeDJnHxZ80SKjJhcGYZW17Xc2vbLW9ZtBPZuDzXI5-AzBd-oLfxEG1fUVMn4ylmAVg9c_fsM8AuHYPqEznkksmpvNCuNVbpHFMAww9ZzXtdr-4ps6-2Ijv9_L1erI94wfk0d10EiH7ruekJYpuqTT5BTvuuTsiFbwnPx868rM09x8k0VOkUjDZShSeFaI_aY70I2hhQOB7yjC32_pzJ28gyg0E-sCHBJtWEveUFhRVIPTo2tLi3XhIYlmiV3WW7rcYvEViMpLencgHmkEm91TMh-_-zKaeHXpBU9HzC89m5hEco0bHM4SZU0ofGjzOFDKhKGSCbepHwlmdJzyXMTGt6kKbSJiMIEsii5IG77EXBLKWaxhj2kiDZsfkwowIVGcKiWFDKwweY_4zaRnuuYlx_IYq6wBoH3NQE8Z6ilzeuqRV4chG0fKcaozazSZ_bGyMnAap4ZdH7T-byHP_k_IFXkYYjpFhWl7Ttrldm9eQJBTqn61ivvkwfD9x8kU2vl0Nrz5Bf5t_lo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V9rBwQLSAWqCtD5xAYRPHTmJuVWm1hbZCopX2FtmODVst2dVuKsSF_8A_ZiZOllaqioQUKVJky5bHmQ_7zRuA18Z7xW0uMSypRCTwd4q08DJSUqMv5wtb5ZSNfHaejS7Fx7Ecr8FhnwtDsMpO9wed3mrr7suwW83hfDIZfkHnu4hVPOZJe32VPoANIXlOEdi7X39xHokKdJ_Ymg4lxv3VZgvyahZEY8gTyj2XXbG2O4zT4Lqe658_9HR6w_gcP4HHndfIDsLENmHN1Vsw6JOKl1vw6Aav4FP4_SHUmWeV-67rihGTRkhRZPhMCfzNligcx-qAAl8ywr9_ZZ_D0TsORXpiVqNFYj1tyXuGW4pZtHps5lk9qyNi0WyoyWzBJguqvoJuecO-rZhH-oHd8hlcHh9dHI6irvZCZFMRN5HPXa6lpQhHitx4x1WM7ypLjHGcG51LX8SpEs5mhaxU5mJfGO5zlaEOFGn6HNZxJm4bmBSZxSDTpRajH1co1CFpVhijlU68ctUOxP2il7YjJqf6GNOyR6BdlSinkuRUBjntwJtVl3lg5bivseglWd7aWiVajfu6vV1J_d-DvPi_QfZhMLo4Oy1PT84_vYSHnHIrWoDbK1hvFtduFz2exuy1O_oP4gH-Pw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yHsSDb1FRycGTUum2Sdp4Ex-IoHhwYT2VJE18rV3ZdhH9F_5jZzbtouITCr0kTUmmmW-ab74hZEs7JyOTcAhLchYw-JwCxRwPJFeA5Vxq8gSzkc_OxUmHnXZ5txaLxlyYD-f3Ix5WNUClwaiN6eEclT8nBQfY3SKTnfOL_auRlp7AI_ywi8FVmsggirlsTjC_esZ3PmhqWDyq5yfV673zMceznp1VjqQJkVpyvzus9K55-STc-KfXnyMzNdKk-9405smELRbIVJOIXC6Q6XdahIvk9dDXpqe5fVBFTlF9w6c1Urh6SBinJSyopYVnjpcUOfPX9ML_roehcG_pF-DFaCN1skfBDKkBT0n7jhb9IkDlzQqb9Af0doAVWwDKV_RmrFbSDGzLJdI5Pro8OAnqeg2BiVlYBS6xieIGoyLOEu1sJEO456KttY0irRLu0jCWzBqR8lwKG7pURy6RAvZNFsfLpAVvYlcI5UwYCExtbCBisqmEfScWqdZKqraTNl8lYbOCmanFzLGmRi9rWGt3Gcx8hjOf-ZlfJdvjLo9eyeOnxqwxi6yGIh5iZLDCP3XbGZvQ74Os_av1OmlVg6HdAAxU6c3a-t8ASn0DJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+demand+estimation+on+large+scale+networks+using+Principal+Component+Analysis%3A+The+case+of+non-existent+or+irrelevant+historical+estimates&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Qurashi%2C+Moeid&rft.au=Lu%2C+Qing-Long&rft.au=Cantelmo%2C+Guido&rft.au=Antoniou%2C+Constantinos&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=136&rft_id=info:doi/10.1016%2Fj.trc.2021.103504&rft.externalDocID=S0968090X21004903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon