Dynamic demand estimation on large scale networks using Principal Component Analysis: The case of non-existent or irrelevant historical estimates
Calibrating DTA models is complex due to the involved indeterminacy, non-linearity, and dimensionality, restricting the application of conventional calibration approaches, especially for larger networks. For this, Principal Component Analysis (PCA) is slowly establishing itself as the new state of t...
Saved in:
| Published in | Transportation research. Part C, Emerging technologies Vol. 136; p. 103504 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0968-090X 1879-2359 1879-2359 |
| DOI | 10.1016/j.trc.2021.103504 |
Cover
| Abstract | Calibrating DTA models is complex due to the involved indeterminacy, non-linearity, and dimensionality, restricting the application of conventional calibration approaches, especially for larger networks. For this, Principal Component Analysis (PCA) is slowly establishing itself as the new state of the art because it can greatly tackle two well known challenges—i.e. problem dimensionality and non-linearity. PCA application limits the optimization search space in a lower dimension space, defined by orthogonal Principal Components, evaluated upon a set of historical estimates. In this paper, we solve practical implementation problems for PCA-based calibration techniques. Specifically, we formulate a data-assimilation framework to propose multiple OD historical data-set generation methods which allows the use of PC-based algorithms in case the historical data is irrelevant or unavailable, often the case for large-scale DTA models. Furthermore, we propose a simplified problem formulation that leverages properties of the novel data-set generation framework and helps for faster and more efficient calibration. The methodology is implemented using the PC-SPSA algorithm, which combines PCA with the popular Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, commonly used to calibrate smaller networks. The approach is tested on a large-scale case study of the Munich metropolitan urban network, with encouraging calibration results. The proposed data-assimilation framework can account for spatial, temporal, and day-to-day variations in the demand. Different methods and combinations are tested and compared. The results suggest that all these correlations should be used in order to avoid over-fitting issues. Furthermore, the implementation properties of PCA and PC-SPSA are also explored using different sensitivity analyses to assess the toll and benefits of using PCA i.e., ease in SPSA hyper-parameter, role of historical data-set generation parameters and the algorithm’s performance against different target demand fluctuations. The analysis shows encouraging results for PC-SPSA robustness and helps establishing simplified guidelines for implementing such PCA-methods practically on large-scale DTA models. |
|---|---|
| AbstractList | Calibrating DTA models is complex due to the involved indeterminacy, non-linearity, and dimensionality, restricting the application of conventional calibration approaches, especially for larger networks. For this, Principal Component Analysis (PCA) is slowly establishing itself as the new state of the art because it can greatly tackle two well known challenges—i.e. problem dimensionality and non-linearity. PCA application limits the optimization search space in a lower dimension space, defined by orthogonal Principal Components, evaluated upon a set of historical estimates. In this paper, we solve practical implementation problems for PCA-based calibration techniques. Specifically, we formulate a data-assimilation framework to propose multiple OD historical data-set generation methods which allows the use of PC-based algorithms in case the historical data is irrelevant or unavailable, often the case for large-scale DTA models. Furthermore, we propose a simplified problem formulation that leverages properties of the novel data-set generation framework and helps for faster and more efficient calibration. The methodology is implemented using the PC-SPSA algorithm, which combines PCA with the popular Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, commonly used to calibrate smaller networks. The approach is tested on a large-scale case study of the Munich metropolitan urban network, with encouraging calibration results. The proposed data-assimilation framework can account for spatial, temporal, and day-to-day variations in the demand. Different methods and combinations are tested and compared. The results suggest that all these correlations should be used in order to avoid over-fitting issues. Furthermore, the implementation properties of PCA and PC-SPSA are also explored using different sensitivity analyses to assess the toll and benefits of using PCA i.e., ease in SPSA hyper-parameter, role of historical data-set generation parameters and the algorithm’s performance against different target demand fluctuations. The analysis shows encouraging results for PC-SPSA robustness and helps establishing simplified guidelines for implementing such PCA-methods practically on large-scale DTA models. |
| ArticleNumber | 103504 |
| Author | Antoniou, Constantinos Qurashi, Moeid Lu, Qing-Long Cantelmo, Guido |
| Author_xml | – sequence: 1 givenname: Moeid orcidid: 0000-0002-0135-6450 surname: Qurashi fullname: Qurashi, Moeid email: moeid.qurashi@tum.de organization: Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany – sequence: 2 givenname: Qing-Long orcidid: 0000-0002-6087-8670 surname: Lu fullname: Lu, Qing-Long email: qinglong.lu@tum.de organization: Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany – sequence: 3 givenname: Guido orcidid: 0000-0001-5218-2609 surname: Cantelmo fullname: Cantelmo, Guido email: guica@dtu.dk organization: Technical University of Denmark, Bygningstorvet 116, 2800 Kgs. Lyngby, Denmark – sequence: 4 givenname: Constantinos orcidid: 0000-0003-0203-9542 surname: Antoniou fullname: Antoniou, Constantinos email: c.antoniou@tum.de organization: Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany |
| BookMark | eNqNkMtOQyEQhompia36AO54gVOBc0VXpl4TE11o4o5wOHNaKoUGaLWP4RtLrW5cGBOSyRC-mZ9vhAbWWUDohJIxJbQ6nY-jV2NGGE19XpJiDw1pU_OM5SUfoCHhVZMRTl4O0CiEOSGE8rIeoo_LjZULrXAHC2k7DCHqhYzaWZyOkX4KOChpAFuIb86_BrwK2k7xo9dW6aU0eOIWyxTGRnxhpdkEHc7w0wywkgGw63FKmsG7DnH7xHmsvQcDa5m6Wbp1Xqf5P4shHKH9XpoAx9_1ED1fXz1NbrP7h5u7ycV9pvKCxKyvoZalIuljZVG3PTBOUu0q2rbAWCvrsm9IzgtQVVN2vALSNy3ra14xyos8P0RsN3dll3LzJo0RS58i-I2gRGylirlIUsVWqthJTRDdQcq7EDz0_2LqX4zS8Utx9FKbP8nzHQnJw1qDF0FpsAo67UFF0Tn9B_0JHs-nJQ |
| CitedBy_id | crossref_primary_10_1016_j_ress_2024_110095 crossref_primary_10_1287_trsc_2023_0485 crossref_primary_10_1016_j_eng_2024_04_020 crossref_primary_10_1080_21680566_2025_2459928 crossref_primary_10_3390_app132011257 crossref_primary_10_1109_TITS_2023_3234615 crossref_primary_10_1016_j_tra_2023_103754 crossref_primary_10_1016_j_trc_2023_104460 crossref_primary_10_1080_23249935_2025_2470994 |
| Cites_doi | 10.1109/TITS.2007.908569 10.1016/j.trc.2014.11.006 10.3141/2667-10 10.1016/j.trc.2018.09.021 10.3141/2669-08 10.1109/7.705889 10.1016/j.simpat.2018.04.006 10.3141/2090-01 10.1016/j.trc.2015.08.009 10.1016/j.trc.2015.01.016 10.3141/2466-14 10.1016/j.procs.2018.04.012 10.1287/trsc.34.1.21.12282 10.1109/TITS.2012.2226211 10.3141/2003-07 10.3182/20090902-3-US-2007.0056 10.1016/j.trb.2019.05.010 10.3141/2263-03 10.1023/A:1012883811652 10.1016/j.trc.2008.09.001 10.1016/j.trb.2019.01.005 10.1177/0361198118791360 10.3141/1999-21 10.3141/2175-03 10.3141/2283-09 10.1016/j.trb.2013.06.007 10.1109/TITS.2014.2299734 10.1016/j.trc.2010.05.013 10.1287/trsc.35.2.134.10138 10.1023/A:1012831808926 10.1109/TITS.2019.2915273 10.1016/j.trc.2015.04.030 10.1109/9.119632 10.1016/j.trb.2016.12.005 10.1016/j.trb.2007.02.004 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors |
| Copyright_xml | – notice: 2022 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.trc.2021.103504 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-2359 |
| ExternalDocumentID | 10.1016/j.trc.2021.103504 10_1016_j_trc_2021_103504 S0968090X21004903 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c340t-f7e7a5c0096547bfe29047bd61bbe22ba75f80394ec685d96e0f8b2f796219433 |
| IEDL.DBID | .~1 |
| ISSN | 0968-090X 1879-2359 |
| IngestDate | Sun Oct 26 04:09:42 EDT 2025 Sat Oct 25 05:19:38 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Fri Feb 23 02:38:36 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dimension reduction DTA model calibration Demand estimation Large networks OD estimation Principal Component Analysis SPSA |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c340t-f7e7a5c0096547bfe29047bd61bbe22ba75f80394ec685d96e0f8b2f796219433 |
| ORCID | 0000-0002-6087-8670 0000-0002-0135-6450 0000-0001-5218-2609 0000-0003-0203-9542 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0968090X21004903 |
| ParticipantIDs | unpaywall_primary_10_1016_j_trc_2021_103504 crossref_primary_10_1016_j_trc_2021_103504 crossref_citationtrail_10_1016_j_trc_2021_103504 elsevier_sciencedirect_doi_10_1016_j_trc_2021_103504 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Transportation research. Part C, Emerging technologies |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Balakrishna, Koutsopoulos, Ben-Akiva (b10) 2005 Cantelmo, Viti, Tampère, Cipriani, Nigro (b16) 2014; 2466 Antoniou, Azevedo, Lu, Pereira, Ben-Akiva (b1) 2015; 59 Mahmassani (b25) 2001; 1 Cascetta, Postorino (b18) 2001; 35 Lopez, Behrisch, Bieker-Walz, Erdmann, Flötteröd, Hilbrich, Lücken, Rummel, Wagner, Wießner (b23) 2018 Prakash, Seshadri, Antoniou, Pereira, Ben-Akiva (b30) 2018; 2672 Antoniou, Barceló, Breen, Bullejos, Casas, Cipriani, Ciuffo, Djukic, Hoogendoorn, Marzano, Montero, Nigro, Perarnau, Punzo, Toledo, van Lint (b3) 2016; 66 Prakash, Seshadri, Antoniou, Pereira, Ben-Akiva (b29) 2017; 2667 Cantelmo, Viti, Cipriani, Nigro (b15) 2018; 114 Zockaie, A., Chen, Y., Mahmassani, H.S., 2014. Adaptive Drivers and Time-Dependent Origin-Destination Demand Estimation: Methodology and Application to Large-Scale Network. Technical Report. Balakrishna, Antoniou, Ben-Akiva, Koutsopoulos, Wen (b8) 2007; 1999 Tympakianaki, Koutsopoulos, Jenelius (b40) 2018; 130 Spall (b36) 1992; 37 Tampere, Viti, Immers (b37) 2010 Tympakianaki, Koutsopoulos, Jenelius (b39) 2015; 55 McNally (b27) 2007 Ashok (b5) 1996 Cantelmo, Cipriani, Gemma, Nigro (b13) 2014; 15 Zhou, Mahmassani (b44) 2007; 41 Shafiei, Gu, Saberi (b33) 2018; 86 Barceló, Montero, Marqués, Carmona (b11) 2010; 2175 Zhang, Osorio, Flötteröd (b43) 2017; 97 Toledo, Kolechkina (b38) 2012; 14 Balakrishna (b7) 2006 Qurashi, Ma, Chaniotakis, Antoniou (b31) 2019; 21 Wu, Guo, Xian, Zhou (b42) 2018; 96 Antoniou, Ben-Akiva, Koutsopoulos (b4) 2007; 8 Spall (b35) 1998; 34 Balakrishna, Ben-Akiva, Koutsopoulos (b9) 2007; 2003 Ashok, Ben-Akiva (b6) 2000; 34 Djukic, Van Lint, Hoogendoorn (b20) 2012; 2283 Lu, Xu, Antoniou, Ben-Akiva (b24) 2015; 51 Ros-Roca, Montero, Barceló (b32) 2021; 17 Cantelmo, Qurashi, Prakash, Antoniou, Viti (b14) 2020; 132 Frederix, Viti, Corthout, Tampère (b21) 2011; 2263 Vaze, Antoniou, Wen, Ben-Akiva (b41) 2009; 2090 Marzano, Papola, Simonelli (b26) 2009; 17 Shafiei, Saberi, Zockaie, Sarvi (b34) 2017; 2669 Ben-Akiva, Bierlaire, Burton, Koutsopoulos, Mishalani (b12) 2001; 1 Cascetta, Papola, Marzano, Simonelli, Vitiello (b17) 2013; 55 Cipriani, Florian, Mahut, Nigro (b19) 2011; 19 Osorio (b28) 2019; 124 Krishnakumari, van Lint, Djukic, Cats (b22) 2019 Antoniou, Balakrishna, Koutsopoulos, Ben-Akiva (b2) 2009; 42 Balakrishna (10.1016/j.trc.2021.103504_b10) 2005 Vaze (10.1016/j.trc.2021.103504_b41) 2009; 2090 Ros-Roca (10.1016/j.trc.2021.103504_b32) 2021; 17 Prakash (10.1016/j.trc.2021.103504_b29) 2017; 2667 Shafiei (10.1016/j.trc.2021.103504_b34) 2017; 2669 Lopez (10.1016/j.trc.2021.103504_b23) 2018 Tympakianaki (10.1016/j.trc.2021.103504_b39) 2015; 55 Cascetta (10.1016/j.trc.2021.103504_b17) 2013; 55 Balakrishna (10.1016/j.trc.2021.103504_b8) 2007; 1999 Prakash (10.1016/j.trc.2021.103504_b30) 2018; 2672 Balakrishna (10.1016/j.trc.2021.103504_b9) 2007; 2003 Cipriani (10.1016/j.trc.2021.103504_b19) 2011; 19 Frederix (10.1016/j.trc.2021.103504_b21) 2011; 2263 Cantelmo (10.1016/j.trc.2021.103504_b13) 2014; 15 Qurashi (10.1016/j.trc.2021.103504_b31) 2019; 21 Ashok (10.1016/j.trc.2021.103504_b5) 1996 Tampere (10.1016/j.trc.2021.103504_b37) 2010 Shafiei (10.1016/j.trc.2021.103504_b33) 2018; 86 Antoniou (10.1016/j.trc.2021.103504_b3) 2016; 66 Balakrishna (10.1016/j.trc.2021.103504_b7) 2006 Antoniou (10.1016/j.trc.2021.103504_b1) 2015; 59 Tympakianaki (10.1016/j.trc.2021.103504_b40) 2018; 130 Barceló (10.1016/j.trc.2021.103504_b11) 2010; 2175 Spall (10.1016/j.trc.2021.103504_b35) 1998; 34 Lu (10.1016/j.trc.2021.103504_b24) 2015; 51 Ashok (10.1016/j.trc.2021.103504_b6) 2000; 34 Ben-Akiva (10.1016/j.trc.2021.103504_b12) 2001; 1 Cantelmo (10.1016/j.trc.2021.103504_b15) 2018; 114 Antoniou (10.1016/j.trc.2021.103504_b2) 2009; 42 Marzano (10.1016/j.trc.2021.103504_b26) 2009; 17 Zhou (10.1016/j.trc.2021.103504_b44) 2007; 41 Cantelmo (10.1016/j.trc.2021.103504_b16) 2014; 2466 Cantelmo (10.1016/j.trc.2021.103504_b14) 2020; 132 Djukic (10.1016/j.trc.2021.103504_b20) 2012; 2283 McNally (10.1016/j.trc.2021.103504_b27) 2007 Spall (10.1016/j.trc.2021.103504_b36) 1992; 37 Toledo (10.1016/j.trc.2021.103504_b38) 2012; 14 Zhang (10.1016/j.trc.2021.103504_b43) 2017; 97 10.1016/j.trc.2021.103504_b45 Antoniou (10.1016/j.trc.2021.103504_b4) 2007; 8 Krishnakumari (10.1016/j.trc.2021.103504_b22) 2019 Osorio (10.1016/j.trc.2021.103504_b28) 2019; 124 Cascetta (10.1016/j.trc.2021.103504_b18) 2001; 35 Wu (10.1016/j.trc.2021.103504_b42) 2018; 96 Mahmassani (10.1016/j.trc.2021.103504_b25) 2001; 1 |
| References_xml | – volume: 34 start-page: 817 year: 1998 end-page: 823 ident: b35 article-title: Implementation of the simultaneous perturbation algorithm for stochastic optimization publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 2090 start-page: 1 year: 2009 end-page: 9 ident: b41 article-title: Calibration of dynamic traffic assignment models with point-to-point traffic surveillance publication-title: Transp. Res. Rec. – volume: 55 start-page: 231 year: 2015 end-page: 245 ident: b39 article-title: c-SPSA: Cluster-wise simultaneous perturbation stochastic approximation algorithm and its application to dynamic origin–destination matrix estimation publication-title: Transp. Res. C – volume: 114 start-page: 303 year: 2018 end-page: 320 ident: b15 article-title: A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration publication-title: Transp. Res. A – volume: 17 start-page: 120 year: 2009 end-page: 132 ident: b26 article-title: Limits and perspectives of effective O–D matrix correction using traffic counts publication-title: Transp. Res. C – volume: 37 start-page: 332 year: 1992 end-page: 341 ident: b36 article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation publication-title: IEEE Trans. Automat. Control – volume: 2175 start-page: 19 year: 2010 end-page: 27 ident: b11 article-title: Travel time forecasting and dynamic origin-destination estimation for freeways based on bluetooth traffic monitoring publication-title: Transp. Res. Rec. – volume: 97 start-page: 214 year: 2017 end-page: 239 ident: b43 article-title: Efficient calibration techniques for large-scale traffic simulators publication-title: Transp. Res. B – volume: 42 start-page: 104 year: 2009 end-page: 111 ident: b2 article-title: Off-line and on-line calibration of dynamic traffic assignment systems publication-title: IFAC Proc. Vol. – volume: 21 start-page: 1635 year: 2019 end-page: 1645 ident: b31 article-title: PC-SPSA: Employing dimensionality reduction to limit SPSA search noise in DTA model calibration publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 17 start-page: 235 year: 2021 end-page: 257 ident: b32 article-title: Investigating the quality of spiess-like and SPSA approaches for dynamic OD matrix estimation publication-title: Transp. A – year: 2006 ident: b7 article-title: Off-line calibration of dynamic traffic assignment models – volume: 2669 start-page: 72 year: 2017 end-page: 79 ident: b34 article-title: Sensitivity-based linear approximation method to estimate time-dependent origin–destination demand in congested networks publication-title: Transp. Res. Rec. – volume: 132 start-page: 171 year: 2020 end-page: 187 ident: b14 article-title: Incorporating trip chaining within online demand estimation publication-title: Transp. Res. B – volume: 55 start-page: 171 year: 2013 end-page: 187 ident: b17 article-title: Quasi-dynamic estimation of o–d flows from traffic counts: Formulation, statistical validation and performance analysis on real data publication-title: Transp. Res. B – volume: 1999 start-page: 198 year: 2007 end-page: 207 ident: b8 article-title: Calibration of microscopic traffic simulation models: Methods and application publication-title: Transp. Res. Rec. – volume: 34 start-page: 21 year: 2000 end-page: 36 ident: b6 article-title: Alternative approaches for real-time estimation and prediction of time-dependent origin–destination flows publication-title: Transp. Sci. – volume: 19 start-page: 270 year: 2011 end-page: 282 ident: b19 article-title: A gradient approximation approach for adjusting temporal origin–destination matrices publication-title: Transp. Res. C – volume: 1 start-page: 293 year: 2001 end-page: 318 ident: b12 article-title: Network state estimation and prediction for real-time traffic management publication-title: Netw. Spat. Econ. – year: 2010 ident: b37 article-title: New Developments in Transport Planning – volume: 2263 start-page: 19 year: 2011 end-page: 25 ident: b21 article-title: New gradient approximation method for dynamic origin–destination matrix estimation on congested networks publication-title: Transp. Res. Rec. – volume: 130 start-page: 57 year: 2018 end-page: 64 ident: b40 article-title: Robust SPSA algorithms for dynamic OD matrix estimation publication-title: Procedia Comput. Sci. – volume: 2003 start-page: 50 year: 2007 end-page: 58 ident: b9 article-title: Offline calibration of dynamic traffic assignment: simultaneous demand-and-supply estimation publication-title: Transp. Res. Rec. – volume: 51 start-page: 149 year: 2015 end-page: 166 ident: b24 article-title: An enhanced SPSA algorithm for the calibration of dynamic traffic assignment models publication-title: Transp. Res. C – volume: 1 start-page: 267 year: 2001 end-page: 292 ident: b25 article-title: Dynamic network traffic assignment and simulation methodology for advanced system management applications publication-title: Netw. Spat. Econ. – year: 2005 ident: b10 article-title: Calibration and validation of dynamic traffic assignment systems publication-title: Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic Theory – volume: 2667 start-page: 96 year: 2017 end-page: 107 ident: b29 article-title: Reducing the dimension of online calibration in dynamic traffic assignment systems publication-title: Transp. Res. Rec. – volume: 59 start-page: 129 year: 2015 end-page: 146 ident: b1 article-title: W-SPSA in practice: Approximation of weight matrices and calibration of traffic simulation models publication-title: Transp. Res. C – year: 1996 ident: b5 article-title: Estimation and prediction of time-dependent origin-destination flows – volume: 2283 start-page: 81 year: 2012 end-page: 89 ident: b20 article-title: Application of principal component analysis to predict dynamic origin–destination matrices publication-title: Transp. Res. Rec. – volume: 8 start-page: 661 year: 2007 end-page: 670 ident: b4 article-title: Nonlinear Kalman filtering algorithms for on-line calibration of dynamic traffic assignment models publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 96 start-page: 321 year: 2018 end-page: 346 ident: b42 article-title: Hierarchical travel demand estimation using multiple data sources: A forward and backward propagation algorithmic framework on a layered computational graph publication-title: Transp. Res. C – volume: 86 start-page: 169 year: 2018 end-page: 186 ident: b33 article-title: Calibration and validation of a simulation-based dynamic traffic assignment model for a large-scale congested network publication-title: Simul. Model. Pract. Theory – volume: 66 start-page: 79 year: 2016 end-page: 98 ident: b3 article-title: Towards a generic benchmarking platform for origin-destination flows estimation/updating algorithms: Design, demonstration and validation publication-title: Transp. Res. C – volume: 2672 start-page: 79 year: 2018 end-page: 92 ident: b30 article-title: Improving scalability of generic online calibration for real-time dynamic traffic assignment systems publication-title: Transp. Res. Rec. – volume: 14 start-page: 618 year: 2012 end-page: 626 ident: b38 article-title: Estimation of dynamic origin–destination matrices using linear assignment matrix approximations publication-title: IEEE Trans. Intell. Transp. Syst. – year: 2018 ident: b23 article-title: Microscopic traffic simulation using SUMO publication-title: The 21st IEEE International Conference on Intelligent Transportation Systems – year: 2019 ident: b22 article-title: A data driven method for OD matrix estimation publication-title: Transp. Res. C – volume: 15 start-page: 1348 year: 2014 end-page: 1361 ident: b13 article-title: An adaptive bi-level gradient procedure for the estimation of dynamic traffic demand publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 2466 start-page: 125 year: 2014 end-page: 133 ident: b16 article-title: Two-step approach for correction of seed matrix in dynamic demand estimation publication-title: Transp. Res. Rec. – volume: 41 start-page: 823 year: 2007 end-page: 840 ident: b44 article-title: A structural state space model for real-time traffic origin–destination demand estimation and prediction in a day-to-day learning framework publication-title: Transp. Res. B – year: 2007 ident: b27 article-title: The Four-Step Model – volume: 35 start-page: 134 year: 2001 end-page: 147 ident: b18 article-title: Fixed point approaches to the estimation of O/D matrices using traffic counts on congested networks publication-title: Transp. Sci. – reference: Zockaie, A., Chen, Y., Mahmassani, H.S., 2014. Adaptive Drivers and Time-Dependent Origin-Destination Demand Estimation: Methodology and Application to Large-Scale Network. Technical Report. – volume: 124 start-page: 18 year: 2019 end-page: 43 ident: b28 article-title: High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks publication-title: Transp. Res. B – volume: 8 start-page: 661 issue: 4 year: 2007 ident: 10.1016/j.trc.2021.103504_b4 article-title: Nonlinear Kalman filtering algorithms for on-line calibration of dynamic traffic assignment models publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2007.908569 – volume: 51 start-page: 149 year: 2015 ident: 10.1016/j.trc.2021.103504_b24 article-title: An enhanced SPSA algorithm for the calibration of dynamic traffic assignment models publication-title: Transp. Res. C doi: 10.1016/j.trc.2014.11.006 – volume: 2667 start-page: 96 issue: 1 year: 2017 ident: 10.1016/j.trc.2021.103504_b29 article-title: Reducing the dimension of online calibration in dynamic traffic assignment systems publication-title: Transp. Res. Rec. doi: 10.3141/2667-10 – volume: 96 start-page: 321 year: 2018 ident: 10.1016/j.trc.2021.103504_b42 article-title: Hierarchical travel demand estimation using multiple data sources: A forward and backward propagation algorithmic framework on a layered computational graph publication-title: Transp. Res. C doi: 10.1016/j.trc.2018.09.021 – year: 2006 ident: 10.1016/j.trc.2021.103504_b7 – year: 2019 ident: 10.1016/j.trc.2021.103504_b22 article-title: A data driven method for OD matrix estimation publication-title: Transp. Res. C – volume: 2669 start-page: 72 issue: 1 year: 2017 ident: 10.1016/j.trc.2021.103504_b34 article-title: Sensitivity-based linear approximation method to estimate time-dependent origin–destination demand in congested networks publication-title: Transp. Res. Rec. doi: 10.3141/2669-08 – volume: 34 start-page: 817 issue: 3 year: 1998 ident: 10.1016/j.trc.2021.103504_b35 article-title: Implementation of the simultaneous perturbation algorithm for stochastic optimization publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.705889 – volume: 86 start-page: 169 year: 2018 ident: 10.1016/j.trc.2021.103504_b33 article-title: Calibration and validation of a simulation-based dynamic traffic assignment model for a large-scale congested network publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2018.04.006 – volume: 2090 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.trc.2021.103504_b41 article-title: Calibration of dynamic traffic assignment models with point-to-point traffic surveillance publication-title: Transp. Res. Rec. doi: 10.3141/2090-01 – year: 2018 ident: 10.1016/j.trc.2021.103504_b23 article-title: Microscopic traffic simulation using SUMO – volume: 66 start-page: 79 year: 2016 ident: 10.1016/j.trc.2021.103504_b3 article-title: Towards a generic benchmarking platform for origin-destination flows estimation/updating algorithms: Design, demonstration and validation publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.08.009 – volume: 17 start-page: 235 issue: 3 year: 2021 ident: 10.1016/j.trc.2021.103504_b32 article-title: Investigating the quality of spiess-like and SPSA approaches for dynamic OD matrix estimation publication-title: Transp. A – volume: 55 start-page: 231 year: 2015 ident: 10.1016/j.trc.2021.103504_b39 article-title: c-SPSA: Cluster-wise simultaneous perturbation stochastic approximation algorithm and its application to dynamic origin–destination matrix estimation publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.01.016 – volume: 2466 start-page: 125 issue: 1 year: 2014 ident: 10.1016/j.trc.2021.103504_b16 article-title: Two-step approach for correction of seed matrix in dynamic demand estimation publication-title: Transp. Res. Rec. doi: 10.3141/2466-14 – year: 2007 ident: 10.1016/j.trc.2021.103504_b27 – volume: 130 start-page: 57 year: 2018 ident: 10.1016/j.trc.2021.103504_b40 article-title: Robust SPSA algorithms for dynamic OD matrix estimation publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.04.012 – volume: 34 start-page: 21 issue: 1 year: 2000 ident: 10.1016/j.trc.2021.103504_b6 article-title: Alternative approaches for real-time estimation and prediction of time-dependent origin–destination flows publication-title: Transp. Sci. doi: 10.1287/trsc.34.1.21.12282 – year: 1996 ident: 10.1016/j.trc.2021.103504_b5 – volume: 14 start-page: 618 issue: 2 year: 2012 ident: 10.1016/j.trc.2021.103504_b38 article-title: Estimation of dynamic origin–destination matrices using linear assignment matrix approximations publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2226211 – volume: 2003 start-page: 50 issue: 1 year: 2007 ident: 10.1016/j.trc.2021.103504_b9 article-title: Offline calibration of dynamic traffic assignment: simultaneous demand-and-supply estimation publication-title: Transp. Res. Rec. doi: 10.3141/2003-07 – volume: 42 start-page: 104 issue: 15 year: 2009 ident: 10.1016/j.trc.2021.103504_b2 article-title: Off-line and on-line calibration of dynamic traffic assignment systems publication-title: IFAC Proc. Vol. doi: 10.3182/20090902-3-US-2007.0056 – volume: 132 start-page: 171 year: 2020 ident: 10.1016/j.trc.2021.103504_b14 article-title: Incorporating trip chaining within online demand estimation publication-title: Transp. Res. B doi: 10.1016/j.trb.2019.05.010 – volume: 2263 start-page: 19 issue: 1 year: 2011 ident: 10.1016/j.trc.2021.103504_b21 article-title: New gradient approximation method for dynamic origin–destination matrix estimation on congested networks publication-title: Transp. Res. Rec. doi: 10.3141/2263-03 – volume: 1 start-page: 293 issue: 3–4 year: 2001 ident: 10.1016/j.trc.2021.103504_b12 article-title: Network state estimation and prediction for real-time traffic management publication-title: Netw. Spat. Econ. doi: 10.1023/A:1012883811652 – volume: 17 start-page: 120 issue: 2 year: 2009 ident: 10.1016/j.trc.2021.103504_b26 article-title: Limits and perspectives of effective O–D matrix correction using traffic counts publication-title: Transp. Res. C doi: 10.1016/j.trc.2008.09.001 – volume: 124 start-page: 18 year: 2019 ident: 10.1016/j.trc.2021.103504_b28 article-title: High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks publication-title: Transp. Res. B doi: 10.1016/j.trb.2019.01.005 – year: 2005 ident: 10.1016/j.trc.2021.103504_b10 article-title: Calibration and validation of dynamic traffic assignment systems – volume: 2672 start-page: 79 issue: 48 year: 2018 ident: 10.1016/j.trc.2021.103504_b30 article-title: Improving scalability of generic online calibration for real-time dynamic traffic assignment systems publication-title: Transp. Res. Rec. doi: 10.1177/0361198118791360 – year: 2010 ident: 10.1016/j.trc.2021.103504_b37 – volume: 1999 start-page: 198 issue: 1 year: 2007 ident: 10.1016/j.trc.2021.103504_b8 article-title: Calibration of microscopic traffic simulation models: Methods and application publication-title: Transp. Res. Rec. doi: 10.3141/1999-21 – volume: 2175 start-page: 19 issue: 1 year: 2010 ident: 10.1016/j.trc.2021.103504_b11 article-title: Travel time forecasting and dynamic origin-destination estimation for freeways based on bluetooth traffic monitoring publication-title: Transp. Res. Rec. doi: 10.3141/2175-03 – volume: 2283 start-page: 81 issue: 1 year: 2012 ident: 10.1016/j.trc.2021.103504_b20 article-title: Application of principal component analysis to predict dynamic origin–destination matrices publication-title: Transp. Res. Rec. doi: 10.3141/2283-09 – volume: 55 start-page: 171 year: 2013 ident: 10.1016/j.trc.2021.103504_b17 article-title: Quasi-dynamic estimation of o–d flows from traffic counts: Formulation, statistical validation and performance analysis on real data publication-title: Transp. Res. B doi: 10.1016/j.trb.2013.06.007 – ident: 10.1016/j.trc.2021.103504_b45 – volume: 15 start-page: 1348 issue: 3 year: 2014 ident: 10.1016/j.trc.2021.103504_b13 article-title: An adaptive bi-level gradient procedure for the estimation of dynamic traffic demand publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2299734 – volume: 19 start-page: 270 issue: 2 year: 2011 ident: 10.1016/j.trc.2021.103504_b19 article-title: A gradient approximation approach for adjusting temporal origin–destination matrices publication-title: Transp. Res. C doi: 10.1016/j.trc.2010.05.013 – volume: 114 start-page: 303 year: 2018 ident: 10.1016/j.trc.2021.103504_b15 article-title: A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration publication-title: Transp. Res. A – volume: 35 start-page: 134 issue: 2 year: 2001 ident: 10.1016/j.trc.2021.103504_b18 article-title: Fixed point approaches to the estimation of O/D matrices using traffic counts on congested networks publication-title: Transp. Sci. doi: 10.1287/trsc.35.2.134.10138 – volume: 1 start-page: 267 issue: 3–4 year: 2001 ident: 10.1016/j.trc.2021.103504_b25 article-title: Dynamic network traffic assignment and simulation methodology for advanced system management applications publication-title: Netw. Spat. Econ. doi: 10.1023/A:1012831808926 – volume: 21 start-page: 1635 issue: 4 year: 2019 ident: 10.1016/j.trc.2021.103504_b31 article-title: PC-SPSA: Employing dimensionality reduction to limit SPSA search noise in DTA model calibration publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2915273 – volume: 59 start-page: 129 year: 2015 ident: 10.1016/j.trc.2021.103504_b1 article-title: W-SPSA in practice: Approximation of weight matrices and calibration of traffic simulation models publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.04.030 – volume: 37 start-page: 332 issue: 3 year: 1992 ident: 10.1016/j.trc.2021.103504_b36 article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.119632 – volume: 97 start-page: 214 year: 2017 ident: 10.1016/j.trc.2021.103504_b43 article-title: Efficient calibration techniques for large-scale traffic simulators publication-title: Transp. Res. B doi: 10.1016/j.trb.2016.12.005 – volume: 41 start-page: 823 issue: 8 year: 2007 ident: 10.1016/j.trc.2021.103504_b44 article-title: A structural state space model for real-time traffic origin–destination demand estimation and prediction in a day-to-day learning framework publication-title: Transp. Res. B doi: 10.1016/j.trb.2007.02.004 |
| SSID | ssj0001957 |
| Score | 2.4376564 |
| Snippet | Calibrating DTA models is complex due to the involved indeterminacy, non-linearity, and dimensionality, restricting the application of conventional calibration... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 103504 |
| SubjectTerms | Demand estimation Dimension reduction DTA model calibration Large networks OD estimation Principal Component Analysis SPSA |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yHsSDb1FRycGTUum2Sdp4Ex-IoHhwYT2VJE18rV3ZdhH9F_5jZzbtouITCr0kTUmmmW-ab74hZEs7JyOTcAhLchYw-JwCxRwPJFeA5Vxq8gSzkc_OxUmHnXZ5txaLxlyYD-f3Ix5WNUClwaiN6eEclT8nBQfY3SKTnfOL_auRlp7AI_ywi8FVmsggirlsTjC_esZ3PmhqWDyq5yfV673zMceznp1VjqQJkVpyvzus9K55-STc-KfXnyMzNdKk-9405smELRbIVJOIXC6Q6XdahIvk9dDXpqe5fVBFTlF9w6c1Urh6SBinJSyopYVnjpcUOfPX9ML_roehcG_pF-DFaCN1skfBDKkBT0n7jhb9IkDlzQqb9Af0doAVWwDKV_RmrFbSDGzLJdI5Pro8OAnqeg2BiVlYBS6xieIGoyLOEu1sJEO456KttY0irRLu0jCWzBqR8lwKG7pURy6RAvZNFsfLpAVvYlcI5UwYCExtbCBisqmEfScWqdZKqraTNl8lYbOCmanFzLGmRi9rWGt3Gcx8hjOf-ZlfJdvjLo9eyeOnxqwxi6yGIh5iZLDCP3XbGZvQ74Os_av1OmlVg6HdAAxU6c3a-t8ASn0DJQ priority: 102 providerName: Unpaywall |
| Title | Dynamic demand estimation on large scale networks using Principal Component Analysis: The case of non-existent or irrelevant historical estimates |
| URI | https://dx.doi.org/10.1016/j.trc.2021.103504 https://doi.org/10.1016/j.trc.2021.103504 |
| UnpaywallVersion | publishedVersion |
| Volume | 136 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fixMxEA6lPtR7EO15XD0tefDJY-3-SHY3vpVqqYqloIXe05Jkk7tK3ZZ2y-GL_4P_sTOb3VpBKggLgSVhlkx2ZpJ88w0hL5W1ItQJh21JzjwGv5MnmeWe4BJiOZvqPMFs5E_TeDJnHxZ80SKjJhcGYZW17Xc2vbLW9ZtBPZuDzXI5-AzBd-oLfxEG1fUVMn4ylmAVg9c_fsM8AuHYPqEznkksmpvNCuNVbpHFMAww9ZzXtdr-4ps6-2Ijv9_L1erI94wfk0d10EiH7ruekJYpuqTT5BTvuuTsiFbwnPx868rM09x8k0VOkUjDZShSeFaI_aY70I2hhQOB7yjC32_pzJ28gyg0E-sCHBJtWEveUFhRVIPTo2tLi3XhIYlmiV3WW7rcYvEViMpLencgHmkEm91TMh-_-zKaeHXpBU9HzC89m5hEco0bHM4SZU0ofGjzOFDKhKGSCbepHwlmdJzyXMTGt6kKbSJiMIEsii5IG77EXBLKWaxhj2kiDZsfkwowIVGcKiWFDKwweY_4zaRnuuYlx_IYq6wBoH3NQE8Z6ilzeuqRV4chG0fKcaozazSZ_bGyMnAap4ZdH7T-byHP_k_IFXkYYjpFhWl7Ttrldm9eQJBTqn61ivvkwfD9x8kU2vl0Nrz5Bf5t_lo |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V9rBwQLSAWqCtD5xAYRPHTmJuVWm1hbZCopX2FtmODVst2dVuKsSF_8A_ZiZOllaqioQUKVJky5bHmQ_7zRuA18Z7xW0uMSypRCTwd4q08DJSUqMv5wtb5ZSNfHaejS7Fx7Ecr8FhnwtDsMpO9wed3mrr7suwW83hfDIZfkHnu4hVPOZJe32VPoANIXlOEdi7X39xHokKdJ_Ymg4lxv3VZgvyahZEY8gTyj2XXbG2O4zT4Lqe658_9HR6w_gcP4HHndfIDsLENmHN1Vsw6JOKl1vw6Aav4FP4_SHUmWeV-67rihGTRkhRZPhMCfzNligcx-qAAl8ywr9_ZZ_D0TsORXpiVqNFYj1tyXuGW4pZtHps5lk9qyNi0WyoyWzBJguqvoJuecO-rZhH-oHd8hlcHh9dHI6irvZCZFMRN5HPXa6lpQhHitx4x1WM7ypLjHGcG51LX8SpEs5mhaxU5mJfGO5zlaEOFGn6HNZxJm4bmBSZxSDTpRajH1co1CFpVhijlU68ctUOxP2il7YjJqf6GNOyR6BdlSinkuRUBjntwJtVl3lg5bivseglWd7aWiVajfu6vV1J_d-DvPi_QfZhMLo4Oy1PT84_vYSHnHIrWoDbK1hvFtduFz2exuy1O_oP4gH-Pw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yHsSDb1FRycGTUum2Sdp4Ex-IoHhwYT2VJE18rV3ZdhH9F_5jZzbtouITCr0kTUmmmW-ab74hZEs7JyOTcAhLchYw-JwCxRwPJFeA5Vxq8gSzkc_OxUmHnXZ5txaLxlyYD-f3Ix5WNUClwaiN6eEclT8nBQfY3SKTnfOL_auRlp7AI_ywi8FVmsggirlsTjC_esZ3PmhqWDyq5yfV673zMceznp1VjqQJkVpyvzus9K55-STc-KfXnyMzNdKk-9405smELRbIVJOIXC6Q6XdahIvk9dDXpqe5fVBFTlF9w6c1Urh6SBinJSyopYVnjpcUOfPX9ML_roehcG_pF-DFaCN1skfBDKkBT0n7jhb9IkDlzQqb9Af0doAVWwDKV_RmrFbSDGzLJdI5Pro8OAnqeg2BiVlYBS6xieIGoyLOEu1sJEO456KttY0irRLu0jCWzBqR8lwKG7pURy6RAvZNFsfLpAVvYlcI5UwYCExtbCBisqmEfScWqdZKqraTNl8lYbOCmanFzLGmRi9rWGt3Gcx8hjOf-ZlfJdvjLo9eyeOnxqwxi6yGIh5iZLDCP3XbGZvQ74Os_av1OmlVg6HdAAxU6c3a-t8ASn0DJQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+demand+estimation+on+large+scale+networks+using+Principal+Component+Analysis%3A+The+case+of+non-existent+or+irrelevant+historical+estimates&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Qurashi%2C+Moeid&rft.au=Lu%2C+Qing-Long&rft.au=Cantelmo%2C+Guido&rft.au=Antoniou%2C+Constantinos&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=136&rft_id=info:doi/10.1016%2Fj.trc.2021.103504&rft.externalDocID=S0968090X21004903 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |