Transfer Learning of Fuzzy Spatio-Temporal Rules in a Brain-Inspired Spiking Neural Network Architecture: A Case Study on Spatio-Temporal Brain Data
The article demonstrates for the first time that a brain-inspired spiking neural network (SNN) architecture can be used not only to learn spatio-temporal data, but also to extract fuzzy spatio-temporal rules from such data and to update these rules incrementally in a transfer learning mode. We propo...
        Saved in:
      
    
          | Published in | IEEE transactions on fuzzy systems Vol. 31; no. 12; pp. 4542 - 4552 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.12.2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1063-6706 1941-0034 1941-0034  | 
| DOI | 10.1109/TFUZZ.2023.3292802 | 
Cover
| Abstract | The article demonstrates for the first time that a brain-inspired spiking neural network (SNN) architecture can be used not only to learn spatio-temporal data, but also to extract fuzzy spatio-temporal rules from such data and to update these rules incrementally in a transfer learning mode. We propose a method, where a SNN model learns incrementally new time-space data related to new classes/tasks/categories, always utilizing some previously learned knowledge, and presents the evolved knowledge as fuzzy spatio-temporal rules. Similarly, to how the brain manifests transfer learning, these SNN models do not need to be restricted in number of layers and neurons in each layer as they adopt self-organizing learning principles. The continuously evolved fuzzy rules from spatio-temporal data are interpretable for a better understanding of the processes that generate the data. The proposed method is based on a brain-inspired SNN architecture NeuCube, which is structured according to a brain three-dimensional structural template. It is illustrated on tasks of incremental and transfer learning and knowledge transfer using spatio-temporal data measuring brain activity, when subjects are performing tasks in space and time. The method is a general one and opens the field to create new types of adaptable and explainable spatio-temporal learning systems across domain areas. | 
    
|---|---|
| AbstractList | The article demonstrates for the first time that a brain-inspired spiking neural network (SNN) architecture can be used not only to learn spatio-temporal data, but also to extract fuzzy spatio-temporal rules from such data and to update these rules incrementally in a transfer learning mode. We propose a method, where a SNN model learns incrementally new time-space data related to new classes/tasks/categories, always utilizing some previously learned knowledge, and presents the evolved knowledge as fuzzy spatio-temporal rules. Similarly, to how the brain manifests transfer learning, these SNN models do not need to be restricted in number of layers and neurons in each layer as they adopt self-organizing learning principles. The continuously evolved fuzzy rules from spatio-temporal data are interpretable for a better understanding of the processes that generate the data. The proposed method is based on a brain-inspired SNN architecture NeuCube, which is structured according to a brain three-dimensional structural template. It is illustrated on tasks of incremental and transfer learning and knowledge transfer using spatio-temporal data measuring brain activity, when subjects are performing tasks in space and time. The method is a general one and opens the field to create new types of adaptable and explainable spatio-temporal learning systems across domain areas. | 
    
| Author | Goh, Wilson Kasabov, Nikola K. Doborjeh, Maryam Tu, Enmei Yang, Jie Tan, Yongyao Lee, Jimmy  | 
    
| Author_xml | – sequence: 1 givenname: Nikola K. orcidid: 0000-0003-4433-7521 surname: Kasabov fullname: Kasabov, Nikola K. email: nkasabov@aut.ac.nz organization: School of Engineering, Computer, and Mathematical Science, Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand – sequence: 2 givenname: Yongyao surname: Tan fullname: Tan, Yongyao email: erica.itk@gmail.com organization: School of Engineering, Computer, and Mathematical Science, Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand – sequence: 3 givenname: Maryam surname: Doborjeh fullname: Doborjeh, Maryam email: maryam.gholami.doborjeh@aut.ac.nz organization: School of Engineering, Computer, and Mathematical Science, Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand – sequence: 4 givenname: Enmei orcidid: 0000-0001-6390-2608 surname: Tu fullname: Tu, Enmei email: hellotem@hotmail.com organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tiong University, Shanghai, China – sequence: 5 givenname: Jie orcidid: 0000-0003-4801-7162 surname: Yang fullname: Yang, Jie email: jieyang@sjtu.edu.cn organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tiong University, Shanghai, China – sequence: 6 givenname: Wilson surname: Goh fullname: Goh, Wilson email: wilsongoh@ntu.edu.sg organization: Nanyang Technological University, Singapore – sequence: 7 givenname: Jimmy orcidid: 0000-0002-7724-7445 surname: Lee fullname: Lee, Jimmy email: jimmy_lee@imh.com.sg organization: Nanyang Technological University, Singapore  | 
    
| BookMark | eNptkc1uEzEUhS1UJNrCCyAWllhP6r_5MbsQCFSKikTTTTfWzeQa3E49g-1RlT4HD1xPUyEUWNmSz3fuuccn5Mj3Hgl5y9mMc6bP1sur6-uZYELOpNCiYeIFOeZa8YIxqY7ynVWyqGpWvSInMd4wxlXJm2Pyex3AR4uBrhCCd_4H7S1djg8PO3o5QHJ9sca7oQ_Q0e9jh5E6T4F-DOB8ce7j4AJus9LdTugFjpPwAtN9H27pPLQ_XcI2jQE_0DldQER6mcbtjvb-H_snT_oJErwmLy10Ed88n6fkavl5vfharL59OV_MV0UrFUuFFWojNgoay1vNLK-0VYLD1lqsdX5hcqtqKK0EWQtlG90A25RK85ZLUVcoT4nc-45-gN09dJ0ZgruDsDOcmalYk2yuwkzFmudiM_V-Tw2h_zViTOamH4PPQY1odMVKXlYqq5q9qg19jAGtaV2aFvYp79n9GfD0c4cDxAF6mOq_0Ls95BDxL4DXZY4kHwEpRqb5 | 
    
| CODEN | IEFSEV | 
    
| CitedBy_id | crossref_primary_10_1186_s12883_024_04001_7 crossref_primary_10_1007_s12530_024_09628_y crossref_primary_10_1016_j_inffus_2025_103021 crossref_primary_10_1109_TNSRE_2023_3346766 crossref_primary_10_3390_bioengineering10121341 crossref_primary_10_1016_j_measurement_2025_116728 crossref_primary_10_15406_mojabb_2024_08_00208  | 
    
| Cites_doi | 10.1038/78829 10.1007/s12559-021-09975-x 10.1162/neco_a_01433 10.1007/978-1-4615-5529-2 10.3389/fnins.2010.00161 10.1016/j.neunet.2012.11.014 10.1007/978-3-642-33212-8_21 10.1001/jamapsychiatry.2018.1668 10.1016/j.trc.2019.02.011 10.1109/IJCNN54540.2023.10191974 10.1109/tnsre.2017.2748388 10.3389/fnins.2021.738268 10.1016/j.knosys.2015.01.010 10.1109/2.53 10.1038/s41598-021-81805-4 10.1109/TNNLS.2016.2536742 10.1016/j.neubiorev.2020.09.008 10.1109/IJCNN54540.2023.10191256 10.1016/j.neunet.2014.01.006 10.1016/j.neunet.2019.08.029 10.1088/1741-2560/8/2/025004 10.1016/S1053-8119(01)91428-4 10.1038/s41467-018-04673-z 10.1162/089976600300014917 10.1126/science.1127761 10.7551/mitpress/3071.001.0001 10.1049/pbce114e_ch5 10.1007/978-3-662-57715-8 10.1038/s42256-022-00452-0 10.1109/TC.2012.142 10.1038/s41537-023-00335-2 10.1109/tkde.2009.191 10.1038/s41598-021-90029-5 10.1109/TCDS.2016.2636291 10.1109/tfuzz.2015.2501438 10.1016/j.cmpb.2019.105076 10.1016/j.neunet.2021.09.013 10.1016/B978-0-444-63934-9.00013-5 10.1016/s1474-4422(19)30321-7 10.1038/s41586-018-0649-2 10.1016/S0140-6736(12)62164-3 10.1016/j.schres.2015.03.007 10.1016/j.jneumeth.2003.10.009 10.3390/s21144900 10.1007/978-1-4615-4831-7_19 10.1016/j.neunet.2018.07.014 10.1109/tpami.2021.3057446 10.1109/TNSRE.2016.2544108 10.1023/A:1007379606734 10.1007/978-0-387-48355-9  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1109/TFUZZ.2023.3292802 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1941-0034 | 
    
| EndPage | 4552 | 
    
| ExternalDocumentID | oai:pure.atira.dk:publications/f1b6a2e0-3774-436d-bd78-e21a5594bf49 10_1109_TFUZZ_2023_3292802 10175605  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Data Science Fund MBIE-Singapore grantid: 2020–2023  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c340t-f24b2b4a8f1c90f169f421adffe79b2b03d47a5f3a3724f898a0b5491c13276e3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1063-6706 1941-0034  | 
    
| IngestDate | Sun Oct 26 04:09:46 EDT 2025 Mon Jun 30 04:51:40 EDT 2025 Wed Oct 01 02:37:32 EDT 2025 Thu Apr 24 23:02:02 EDT 2025 Wed Aug 27 02:12:04 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c340t-f24b2b4a8f1c90f169f421adffe79b2b03d47a5f3a3724f898a0b5491c13276e3 | 
    
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3  | 
    
| ORCID | 0000-0001-6390-2608 0000-0003-4433-7521 0000-0002-7724-7445 0000-0003-4801-7162  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pure.ulster.ac.uk/en/publications/f1b6a2e0-3774-436d-bd78-e21a5594bf49 | 
    
| PQID | 2896051564 | 
    
| PQPubID | 85428 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_primary_10_1109_TFUZZ_2023_3292802 unpaywall_primary_10_1109_tfuzz_2023_3292802 crossref_citationtrail_10_1109_TFUZZ_2023_3292802 ieee_primary_10175605 proquest_journals_2896051564  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-12-01 | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on fuzzy systems | 
    
| PublicationTitleAbbrev | TFUZZ | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 Fard (ref28) ref51 ref50 ref46 Hu (ref14) 2013 ref45 ref48 ref47 ref42 Doborjeh (ref31) 2022; 14 ref41 ref44 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Talairach (ref8) 1988 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29  | 
    
| References_xml | – ident: ref10 doi: 10.1038/78829 – volume: 14 start-page: 2187 year: 2022 ident: ref31 article-title: Personalised spiking neural network models of clinical and environmental factors to predict stroke publication-title: Cogn. Computation doi: 10.1007/s12559-021-09975-x – ident: ref34 doi: 10.1162/neco_a_01433 – start-page: 443 volume-title: Proc. IEEE Int. Conf. Comput. Sci. Comput. Intell. ident: ref28 article-title: Using EEG data and NeuCube for the study of transfer of learning – start-page: 70 volume-title: NeuCube-Rehab: A Pilot Study for EEG Classification in Rehabilitation Practice Based on Spiking Neural Networks year: 2013 ident: ref14 – ident: ref21 doi: 10.1007/978-1-4615-5529-2 – ident: ref19 doi: 10.3389/fnins.2010.00161 – ident: ref13 doi: 10.1016/j.neunet.2012.11.014 – ident: ref37 doi: 10.1007/978-3-642-33212-8_21 – ident: ref44 doi: 10.1001/jamapsychiatry.2018.1668 – ident: ref38 article-title: A BI-SNN development environment – ident: ref40 doi: 10.1016/j.trc.2019.02.011 – ident: ref50 doi: 10.1109/IJCNN54540.2023.10191974 – ident: ref53 doi: 10.1109/tnsre.2017.2748388 – ident: ref54 doi: 10.3389/fnins.2021.738268 – ident: ref24 doi: 10.1016/j.knosys.2015.01.010 – ident: ref41 doi: 10.1109/2.53 – ident: ref5 doi: 10.1038/s41598-021-81805-4 – ident: ref49 doi: 10.1109/TNNLS.2016.2536742 – ident: ref27 doi: 10.1016/j.neubiorev.2020.09.008 – ident: ref48 doi: 10.1109/IJCNN54540.2023.10191256 – ident: ref1 doi: 10.1016/j.neunet.2014.01.006 – ident: ref4 doi: 10.1016/j.neunet.2019.08.029 – ident: ref18 doi: 10.1088/1741-2560/8/2/025004 – ident: ref9 doi: 10.1016/S1053-8119(01)91428-4 – ident: ref17 doi: 10.1038/s41467-018-04673-z – ident: ref11 doi: 10.1162/089976600300014917 – ident: ref29 doi: 10.1126/science.1127761 – ident: ref42 doi: 10.7551/mitpress/3071.001.0001 – ident: ref2 doi: 10.1049/pbce114e_ch5 – ident: ref6 doi: 10.1007/978-3-662-57715-8 – ident: ref33 doi: 10.1038/s42256-022-00452-0 – ident: ref43 doi: 10.1109/TC.2012.142 – ident: ref47 doi: 10.1038/s41537-023-00335-2 – ident: ref23 doi: 10.1109/tkde.2009.191 – ident: ref26 doi: 10.1038/s41598-021-90029-5 – ident: ref7 doi: 10.1109/TCDS.2016.2636291 – ident: ref52 doi: 10.1109/tfuzz.2015.2501438 – ident: ref15 doi: 10.1016/j.cmpb.2019.105076 – ident: ref46 doi: 10.1016/j.neunet.2021.09.013 – ident: ref25 doi: 10.1016/B978-0-444-63934-9.00013-5 – ident: ref35 doi: 10.1016/s1474-4422(19)30321-7 – ident: ref36 doi: 10.1038/s41586-018-0649-2 – ident: ref20 doi: 10.1016/S0140-6736(12)62164-3 – ident: ref45 doi: 10.1016/j.schres.2015.03.007 – ident: ref16 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref32 doi: 10.3390/s21144900 – ident: ref12 doi: 10.1007/978-1-4615-4831-7_19 – ident: ref39 doi: 10.1016/j.neunet.2018.07.014 – volume-title: Co-planar Stereotaxic Atlas of the Human Brain year: 1988 ident: ref8 – ident: ref51 doi: 10.1109/tpami.2021.3057446 – ident: ref3 doi: 10.1109/TNSRE.2016.2544108 – ident: ref22 doi: 10.1023/A:1007379606734 – ident: ref30 doi: 10.1007/978-0-387-48355-9  | 
    
| SSID | ssj0014518 | 
    
| Score | 2.5108285 | 
    
| Snippet | The article demonstrates for the first time that a brain-inspired spiking neural network (SNN) architecture can be used not only to learn spatio-temporal data,... | 
    
| SourceID | unpaywall proquest crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 4542 | 
    
| SubjectTerms | Bio-inspired engineering Brain EEG data Electroencephalography explainable AI fuzzy spatio-temporal rules Knowledge management neucube Neural networks Neurons spatio-temporal learning Spatiotemporal data spiking neural networks Three-dimensional displays Transfer learning  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfYLsBhgzG0wkA-cANnTuw6NreyrRpI9ACtNO0S2Y6NJqJ0YolQ-3fwB-OvVB0TiFukvNiJ3nPe9-8B8IZo7HGznHfCuUJUYIqU85aRwdxIzoU2te93_jxjFwv66XJ8mZrVQy-MMSYUn5nMX4Zcfr3UvQ-VnXjxcRp6vAN2Ss5is9YmZUDHeex7YwSxErOhQwaLk_l0cXWV-UHhGSlEwVMMZdBCYazKHQvzYd_eyNVP2TRbyma6D2bDa8Yak-9Z36lMr_9AcPzv73gC9pLZCSdRTp6CB6Y9APvDSAeYTvgBeLyFT_gM_AqazDqCBMP6DS4tnPbr9Qp-DaXYaB6hrRr4pW_MLbxuoYQf_NgJ9LH1SXxTO8prH4-HHgfEEc5i4TmcbKUw3sMJPHX6FPqyxhVctveWD2vCM9nJQ7CYns9PL1Aa44A0obhDtqCqUFRym2uBbc6EpUUua2tNKdwdTGpayrElkpQFtVxwiZVzW3PtPOWSGfIc7LbL1hwBqJx9RK32XqSlzBSSSlFTxajxppgiI5APbK10wjj3ozaaKvg6WFRBFCovClUShRF4u3nmJiJ8_JP60PNzizKycgSOB_Gp0l_gtnLOLPMzdBgdgXcbkbq3S2cd3-7s8uIvu7wEjzxZLKc5Brvdj968ckZRp16Hw_AbUtkHRg priority: 102 providerName: IEEE  | 
    
| Title | Transfer Learning of Fuzzy Spatio-Temporal Rules in a Brain-Inspired Spiking Neural Network Architecture: A Case Study on Spatio-Temporal Brain Data | 
    
| URI | https://ieeexplore.ieee.org/document/10175605 https://www.proquest.com/docview/2896051564 https://pure.ulster.ac.uk/en/publications/f1b6a2e0-3774-436d-bd78-e21a5594bf49  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 31 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1941-0034 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFH4a3QE4MBhDFMbkAzdwm8SuE3Mrg2ogUSFopbFLZCc2mojSakuE2t_BD-bZSaqMSUhIHKO82IrzYn-f_d77AF6yLHB1s5CdJImmXAacamTL1ASJUUkiM5O7fOdPc3G25B_PJ-d7MO9yYdb1lRnVhVeKapKpTDle93awxjbUQkUGZw9ELpQzkVOdIxUyUagQHnNtubwD-2KC2HwA-8v55-k3f-QpGBWxF9tE4o4cOmC8y6IJ5Liy9XY7cmLiIxbJKGn3WbqVykuv3EChd-tyrTY_VVH0FqTZAax2r-LjUH6M6kqPsu0fVR7_37s-hActdiXTxtkewZ4pD-Gg04Ug7TRxCPd7RQ4fwy-_HFo0aGu5ficrS2Y4Dhvy1cdz00VTH6sgX-rCXJPLkijy1mlX0A-liwQwOVpeuk194oqJoOG8iV4n0945yBsyJae4KBMXG7khq_JW875N8k5V6giWs_eL0zPaakHQjPGgojbiOtJcJTbMZGBDIS3HQcitNbHEOwHLeawmlikWR9wmMlGBRu4bZki3Y2HYExiUq9I8BaIRZHGbOSpquTCR4krmXAtuHJ7TbAhh993TrC2U7vQ6itQTpkCmi9ny4iJ1vpK2vjKEV7tn1k2ZkL9aHzl36lkiiENeOYTjzr_Sdiq5TpERCyfEI_gQXu987lYv3n9v9PLs38yfwz132YTqHMOguqrNCwRclT7xWZEn7b_0G5cAJNc | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED7BeBg8bDA2UdjAD7xBMie5OPHeukHVwdYHaKVpL5Gd2GgiSieWaGp_Bz94tpNUHROIt0g527HunLvz3X0H8D7KqcXNMt5JmkoPOUVPGm_ZUzRVIk15rgpb73w-YeMZfrmIL7pidVcLo5RyyWfKt48ull_M88ZelR1a8TEaOn4MT2JEjNtyrVXQAOOgrXxjkccSyvoaGcoPp6PZ5aVvW4X7UcjDtLtF6fWQa6xyz8bcbKprsbgVZbmmbkbbMOk_tM0y-ek3tfTz5R8Yjv-9k-ew1RmeZNhKygt4pKod2O6bOpDujO_AszWEwpfw2-kybQg6INYfZK7JqFkuF-S7S8b2pi24VUm-NaW6IVcVEeTYNp7wTisbxleFobyyN_LEIoEYwkmbek6Ga0GMIzIkJ0ajEpvYuCDz6sH0bk7ySdRiF2ajz9OTsdc1cvDyCGnt6RBlKFGkOsg51QHjGsNAFFqrhJs3NCowEbGORJSEqFOeCiqN4xrkxldOmIr2YKOaV-oVEGksJNS59SM1MhUKFLxAyVBZY0xGAwh6tmZ5h3Jum22UmfN2KM-cKGRWFLJOFAbwYTXmusX4-Cf1ruXnGmXLygHs9-KTdf-Bm8y4s8x20WE4gI8rkXqwSq0N3-6t8vovq7yDzfH0_Cw7O518fQNP7ZA2uWYfNupfjTowJlIt37qDcQc5vQqT | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFH4a3QE4MBibKAzkAzdwm8SuE3Mrg2ogUSFopbFLZCc2mojSakuE2t_BD-bZSaqMSUhIHKO82IrzYn-f_d77AF6yLHB1s5CdJImmXAacamTL1ASJUUkiM5O7fOdPc3G25B_PJ-d7MO9yYdb1lRnVhVeKapKpTDle93awxjbUQkUGZw9ELpQzkVOdIxUyUagQHnNtubwD-2KC2HwA-8v55-k3f-QpGBWxF9tE4o4cOmC8y6IJ5Liy9XY7cmLiIxbJKGn3WbqVykuv3EChd-tyrTY_VVH0FqTZAax2r-LjUH6M6kqPsu0fVR7_37s-hActdiXTxtkewZ4pD-Gg04Ug7TRxCPd7RQ4fwy-_HFo0aGu5ficrS2Y4Dhvy1cdz00VTH6sgX-rCXJPLkijy1mlX0A-liwQwOVpeuk194oqJoOG8iV4n0945yBsyJae4KBMXG7khq_JW875N8k5V6giWs_eL0zPaakHQjPGgojbiOtJcJTbMZGBDIS3HQcitNbHEOwHLeawmlikWR9wmMlGBRu4bZki3Y2HYMQzKVWmeANEIsrjNHBW1XJhIcSVzrgU3Ds9pNoSw--5p1hZKd3odReoJUyDTxWx5cZE6X0lbXxnCq90z66ZMyF-tj5w79SwRxCGvHMJJ519pO5Vcp8iIhRPiEXwIr3c-d6sX7783enn6b-bP4J67bEJ1TmBQXdXmOQKuSr9o_6Lfv3gj1g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+Learning+of+Fuzzy+Spatio-Temporal+Rules+in+a+Brain-Inspired+Spiking+Neural+Network+Architecture%3A+A+Case+Study+on+Spatio-Temporal+Brain+Data&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Kasabov%2C+Nikola+K.&rft.au=Tan%2C+Yongyao&rft.au=Doborjeh%2C+Maryam&rft.au=Tu%2C+Enmei&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=31&rft.issue=12&rft.spage=4542&rft.epage=4552&rft_id=info:doi/10.1109%2FTFUZZ.2023.3292802&rft.externalDocID=10175605 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |