Transfer Learning of Fuzzy Spatio-Temporal Rules in a Brain-Inspired Spiking Neural Network Architecture: A Case Study on Spatio-Temporal Brain Data

The article demonstrates for the first time that a brain-inspired spiking neural network (SNN) architecture can be used not only to learn spatio-temporal data, but also to extract fuzzy spatio-temporal rules from such data and to update these rules incrementally in a transfer learning mode. We propo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 31; no. 12; pp. 4542 - 4552
Main Authors Kasabov, Nikola K., Tan, Yongyao, Doborjeh, Maryam, Tu, Enmei, Yang, Jie, Goh, Wilson, Lee, Jimmy
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
1941-0034
DOI10.1109/TFUZZ.2023.3292802

Cover

Abstract The article demonstrates for the first time that a brain-inspired spiking neural network (SNN) architecture can be used not only to learn spatio-temporal data, but also to extract fuzzy spatio-temporal rules from such data and to update these rules incrementally in a transfer learning mode. We propose a method, where a SNN model learns incrementally new time-space data related to new classes/tasks/categories, always utilizing some previously learned knowledge, and presents the evolved knowledge as fuzzy spatio-temporal rules. Similarly, to how the brain manifests transfer learning, these SNN models do not need to be restricted in number of layers and neurons in each layer as they adopt self-organizing learning principles. The continuously evolved fuzzy rules from spatio-temporal data are interpretable for a better understanding of the processes that generate the data. The proposed method is based on a brain-inspired SNN architecture NeuCube, which is structured according to a brain three-dimensional structural template. It is illustrated on tasks of incremental and transfer learning and knowledge transfer using spatio-temporal data measuring brain activity, when subjects are performing tasks in space and time. The method is a general one and opens the field to create new types of adaptable and explainable spatio-temporal learning systems across domain areas.
AbstractList The article demonstrates for the first time that a brain-inspired spiking neural network (SNN) architecture can be used not only to learn spatio-temporal data, but also to extract fuzzy spatio-temporal rules from such data and to update these rules incrementally in a transfer learning mode. We propose a method, where a SNN model learns incrementally new time-space data related to new classes/tasks/categories, always utilizing some previously learned knowledge, and presents the evolved knowledge as fuzzy spatio-temporal rules. Similarly, to how the brain manifests transfer learning, these SNN models do not need to be restricted in number of layers and neurons in each layer as they adopt self-organizing learning principles. The continuously evolved fuzzy rules from spatio-temporal data are interpretable for a better understanding of the processes that generate the data. The proposed method is based on a brain-inspired SNN architecture NeuCube, which is structured according to a brain three-dimensional structural template. It is illustrated on tasks of incremental and transfer learning and knowledge transfer using spatio-temporal data measuring brain activity, when subjects are performing tasks in space and time. The method is a general one and opens the field to create new types of adaptable and explainable spatio-temporal learning systems across domain areas.
Author Goh, Wilson
Kasabov, Nikola K.
Doborjeh, Maryam
Tu, Enmei
Yang, Jie
Tan, Yongyao
Lee, Jimmy
Author_xml – sequence: 1
  givenname: Nikola K.
  orcidid: 0000-0003-4433-7521
  surname: Kasabov
  fullname: Kasabov, Nikola K.
  email: nkasabov@aut.ac.nz
  organization: School of Engineering, Computer, and Mathematical Science, Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand
– sequence: 2
  givenname: Yongyao
  surname: Tan
  fullname: Tan, Yongyao
  email: erica.itk@gmail.com
  organization: School of Engineering, Computer, and Mathematical Science, Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand
– sequence: 3
  givenname: Maryam
  surname: Doborjeh
  fullname: Doborjeh, Maryam
  email: maryam.gholami.doborjeh@aut.ac.nz
  organization: School of Engineering, Computer, and Mathematical Science, Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand
– sequence: 4
  givenname: Enmei
  orcidid: 0000-0001-6390-2608
  surname: Tu
  fullname: Tu, Enmei
  email: hellotem@hotmail.com
  organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tiong University, Shanghai, China
– sequence: 5
  givenname: Jie
  orcidid: 0000-0003-4801-7162
  surname: Yang
  fullname: Yang, Jie
  email: jieyang@sjtu.edu.cn
  organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tiong University, Shanghai, China
– sequence: 6
  givenname: Wilson
  surname: Goh
  fullname: Goh, Wilson
  email: wilsongoh@ntu.edu.sg
  organization: Nanyang Technological University, Singapore
– sequence: 7
  givenname: Jimmy
  orcidid: 0000-0002-7724-7445
  surname: Lee
  fullname: Lee, Jimmy
  email: jimmy_lee@imh.com.sg
  organization: Nanyang Technological University, Singapore
BookMark eNptkc1uEzEUhS1UJNrCCyAWllhP6r_5MbsQCFSKikTTTTfWzeQa3E49g-1RlT4HD1xPUyEUWNmSz3fuuccn5Mj3Hgl5y9mMc6bP1sur6-uZYELOpNCiYeIFOeZa8YIxqY7ynVWyqGpWvSInMd4wxlXJm2Pyex3AR4uBrhCCd_4H7S1djg8PO3o5QHJ9sca7oQ_Q0e9jh5E6T4F-DOB8ce7j4AJus9LdTugFjpPwAtN9H27pPLQ_XcI2jQE_0DldQER6mcbtjvb-H_snT_oJErwmLy10Ed88n6fkavl5vfharL59OV_MV0UrFUuFFWojNgoay1vNLK-0VYLD1lqsdX5hcqtqKK0EWQtlG90A25RK85ZLUVcoT4nc-45-gN09dJ0ZgruDsDOcmalYk2yuwkzFmudiM_V-Tw2h_zViTOamH4PPQY1odMVKXlYqq5q9qg19jAGtaV2aFvYp79n9GfD0c4cDxAF6mOq_0Ls95BDxL4DXZY4kHwEpRqb5
CODEN IEFSEV
CitedBy_id crossref_primary_10_1186_s12883_024_04001_7
crossref_primary_10_1007_s12530_024_09628_y
crossref_primary_10_1016_j_inffus_2025_103021
crossref_primary_10_1109_TNSRE_2023_3346766
crossref_primary_10_3390_bioengineering10121341
crossref_primary_10_1016_j_measurement_2025_116728
crossref_primary_10_15406_mojabb_2024_08_00208
Cites_doi 10.1038/78829
10.1007/s12559-021-09975-x
10.1162/neco_a_01433
10.1007/978-1-4615-5529-2
10.3389/fnins.2010.00161
10.1016/j.neunet.2012.11.014
10.1007/978-3-642-33212-8_21
10.1001/jamapsychiatry.2018.1668
10.1016/j.trc.2019.02.011
10.1109/IJCNN54540.2023.10191974
10.1109/tnsre.2017.2748388
10.3389/fnins.2021.738268
10.1016/j.knosys.2015.01.010
10.1109/2.53
10.1038/s41598-021-81805-4
10.1109/TNNLS.2016.2536742
10.1016/j.neubiorev.2020.09.008
10.1109/IJCNN54540.2023.10191256
10.1016/j.neunet.2014.01.006
10.1016/j.neunet.2019.08.029
10.1088/1741-2560/8/2/025004
10.1016/S1053-8119(01)91428-4
10.1038/s41467-018-04673-z
10.1162/089976600300014917
10.1126/science.1127761
10.7551/mitpress/3071.001.0001
10.1049/pbce114e_ch5
10.1007/978-3-662-57715-8
10.1038/s42256-022-00452-0
10.1109/TC.2012.142
10.1038/s41537-023-00335-2
10.1109/tkde.2009.191
10.1038/s41598-021-90029-5
10.1109/TCDS.2016.2636291
10.1109/tfuzz.2015.2501438
10.1016/j.cmpb.2019.105076
10.1016/j.neunet.2021.09.013
10.1016/B978-0-444-63934-9.00013-5
10.1016/s1474-4422(19)30321-7
10.1038/s41586-018-0649-2
10.1016/S0140-6736(12)62164-3
10.1016/j.schres.2015.03.007
10.1016/j.jneumeth.2003.10.009
10.3390/s21144900
10.1007/978-1-4615-4831-7_19
10.1016/j.neunet.2018.07.014
10.1109/tpami.2021.3057446
10.1109/TNSRE.2016.2544108
10.1023/A:1007379606734
10.1007/978-0-387-48355-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1109/TFUZZ.2023.3292802
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 4552
ExternalDocumentID oai:pure.atira.dk:publications/f1b6a2e0-3774-436d-bd78-e21a5594bf49
10_1109_TFUZZ_2023_3292802
10175605
Genre orig-research
GrantInformation_xml – fundername: Data Science Fund MBIE-Singapore
  grantid: 2020–2023
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c340t-f24b2b4a8f1c90f169f421adffe79b2b03d47a5f3a3724f898a0b5491c13276e3
IEDL.DBID UNPAY
ISSN 1063-6706
1941-0034
IngestDate Sun Oct 26 04:09:46 EDT 2025
Mon Jun 30 04:51:40 EDT 2025
Wed Oct 01 02:37:32 EDT 2025
Thu Apr 24 23:02:02 EDT 2025
Wed Aug 27 02:12:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-f24b2b4a8f1c90f169f421adffe79b2b03d47a5f3a3724f898a0b5491c13276e3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0001-6390-2608
0000-0003-4433-7521
0000-0002-7724-7445
0000-0003-4801-7162
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pure.ulster.ac.uk/en/publications/f1b6a2e0-3774-436d-bd78-e21a5594bf49
PQID 2896051564
PQPubID 85428
PageCount 11
ParticipantIDs crossref_primary_10_1109_TFUZZ_2023_3292802
unpaywall_primary_10_1109_tfuzz_2023_3292802
crossref_citationtrail_10_1109_TFUZZ_2023_3292802
ieee_primary_10175605
proquest_journals_2896051564
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
Fard (ref28)
ref51
ref50
ref46
Hu (ref14) 2013
ref45
ref48
ref47
ref42
Doborjeh (ref31) 2022; 14
ref41
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Talairach (ref8) 1988
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
References_xml – ident: ref10
  doi: 10.1038/78829
– volume: 14
  start-page: 2187
  year: 2022
  ident: ref31
  article-title: Personalised spiking neural network models of clinical and environmental factors to predict stroke
  publication-title: Cogn. Computation
  doi: 10.1007/s12559-021-09975-x
– ident: ref34
  doi: 10.1162/neco_a_01433
– start-page: 443
  volume-title: Proc. IEEE Int. Conf. Comput. Sci. Comput. Intell.
  ident: ref28
  article-title: Using EEG data and NeuCube for the study of transfer of learning
– start-page: 70
  volume-title: NeuCube-Rehab: A Pilot Study for EEG Classification in Rehabilitation Practice Based on Spiking Neural Networks
  year: 2013
  ident: ref14
– ident: ref21
  doi: 10.1007/978-1-4615-5529-2
– ident: ref19
  doi: 10.3389/fnins.2010.00161
– ident: ref13
  doi: 10.1016/j.neunet.2012.11.014
– ident: ref37
  doi: 10.1007/978-3-642-33212-8_21
– ident: ref44
  doi: 10.1001/jamapsychiatry.2018.1668
– ident: ref38
  article-title: A BI-SNN development environment
– ident: ref40
  doi: 10.1016/j.trc.2019.02.011
– ident: ref50
  doi: 10.1109/IJCNN54540.2023.10191974
– ident: ref53
  doi: 10.1109/tnsre.2017.2748388
– ident: ref54
  doi: 10.3389/fnins.2021.738268
– ident: ref24
  doi: 10.1016/j.knosys.2015.01.010
– ident: ref41
  doi: 10.1109/2.53
– ident: ref5
  doi: 10.1038/s41598-021-81805-4
– ident: ref49
  doi: 10.1109/TNNLS.2016.2536742
– ident: ref27
  doi: 10.1016/j.neubiorev.2020.09.008
– ident: ref48
  doi: 10.1109/IJCNN54540.2023.10191256
– ident: ref1
  doi: 10.1016/j.neunet.2014.01.006
– ident: ref4
  doi: 10.1016/j.neunet.2019.08.029
– ident: ref18
  doi: 10.1088/1741-2560/8/2/025004
– ident: ref9
  doi: 10.1016/S1053-8119(01)91428-4
– ident: ref17
  doi: 10.1038/s41467-018-04673-z
– ident: ref11
  doi: 10.1162/089976600300014917
– ident: ref29
  doi: 10.1126/science.1127761
– ident: ref42
  doi: 10.7551/mitpress/3071.001.0001
– ident: ref2
  doi: 10.1049/pbce114e_ch5
– ident: ref6
  doi: 10.1007/978-3-662-57715-8
– ident: ref33
  doi: 10.1038/s42256-022-00452-0
– ident: ref43
  doi: 10.1109/TC.2012.142
– ident: ref47
  doi: 10.1038/s41537-023-00335-2
– ident: ref23
  doi: 10.1109/tkde.2009.191
– ident: ref26
  doi: 10.1038/s41598-021-90029-5
– ident: ref7
  doi: 10.1109/TCDS.2016.2636291
– ident: ref52
  doi: 10.1109/tfuzz.2015.2501438
– ident: ref15
  doi: 10.1016/j.cmpb.2019.105076
– ident: ref46
  doi: 10.1016/j.neunet.2021.09.013
– ident: ref25
  doi: 10.1016/B978-0-444-63934-9.00013-5
– ident: ref35
  doi: 10.1016/s1474-4422(19)30321-7
– ident: ref36
  doi: 10.1038/s41586-018-0649-2
– ident: ref20
  doi: 10.1016/S0140-6736(12)62164-3
– ident: ref45
  doi: 10.1016/j.schres.2015.03.007
– ident: ref16
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref32
  doi: 10.3390/s21144900
– ident: ref12
  doi: 10.1007/978-1-4615-4831-7_19
– ident: ref39
  doi: 10.1016/j.neunet.2018.07.014
– volume-title: Co-planar Stereotaxic Atlas of the Human Brain
  year: 1988
  ident: ref8
– ident: ref51
  doi: 10.1109/tpami.2021.3057446
– ident: ref3
  doi: 10.1109/TNSRE.2016.2544108
– ident: ref22
  doi: 10.1023/A:1007379606734
– ident: ref30
  doi: 10.1007/978-0-387-48355-9
SSID ssj0014518
Score 2.5108285
Snippet The article demonstrates for the first time that a brain-inspired spiking neural network (SNN) architecture can be used not only to learn spatio-temporal data,...
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4542
SubjectTerms Bio-inspired engineering
Brain
EEG data
Electroencephalography
explainable AI
fuzzy spatio-temporal rules
Knowledge management
neucube
Neural networks
Neurons
spatio-temporal learning
Spatiotemporal data
spiking neural networks
Three-dimensional displays
Transfer learning
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfYLsBhgzG0wkA-cANnTuw6NreyrRpI9ACtNO0S2Y6NJqJ0YolQ-3fwB-OvVB0TiFukvNiJ3nPe9-8B8IZo7HGznHfCuUJUYIqU85aRwdxIzoU2te93_jxjFwv66XJ8mZrVQy-MMSYUn5nMX4Zcfr3UvQ-VnXjxcRp6vAN2Ss5is9YmZUDHeex7YwSxErOhQwaLk_l0cXWV-UHhGSlEwVMMZdBCYazKHQvzYd_eyNVP2TRbyma6D2bDa8Yak-9Z36lMr_9AcPzv73gC9pLZCSdRTp6CB6Y9APvDSAeYTvgBeLyFT_gM_AqazDqCBMP6DS4tnPbr9Qp-DaXYaB6hrRr4pW_MLbxuoYQf_NgJ9LH1SXxTO8prH4-HHgfEEc5i4TmcbKUw3sMJPHX6FPqyxhVctveWD2vCM9nJQ7CYns9PL1Aa44A0obhDtqCqUFRym2uBbc6EpUUua2tNKdwdTGpayrElkpQFtVxwiZVzW3PtPOWSGfIc7LbL1hwBqJx9RK32XqSlzBSSSlFTxajxppgiI5APbK10wjj3ozaaKvg6WFRBFCovClUShRF4u3nmJiJ8_JP60PNzizKycgSOB_Gp0l_gtnLOLPMzdBgdgXcbkbq3S2cd3-7s8uIvu7wEjzxZLKc5Brvdj968ckZRp16Hw_AbUtkHRg
  priority: 102
  providerName: IEEE
Title Transfer Learning of Fuzzy Spatio-Temporal Rules in a Brain-Inspired Spiking Neural Network Architecture: A Case Study on Spatio-Temporal Brain Data
URI https://ieeexplore.ieee.org/document/10175605
https://www.proquest.com/docview/2896051564
https://pure.ulster.ac.uk/en/publications/f1b6a2e0-3774-436d-bd78-e21a5594bf49
UnpaywallVersion submittedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1941-0034
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFH4a3QE4MBhDFMbkAzdwm8SuE3Mrg2ogUSFopbFLZCc2mojSakuE2t_BD-bZSaqMSUhIHKO82IrzYn-f_d77AF6yLHB1s5CdJImmXAacamTL1ASJUUkiM5O7fOdPc3G25B_PJ-d7MO9yYdb1lRnVhVeKapKpTDle93awxjbUQkUGZw9ELpQzkVOdIxUyUagQHnNtubwD-2KC2HwA-8v55-k3f-QpGBWxF9tE4o4cOmC8y6IJ5Liy9XY7cmLiIxbJKGn3WbqVykuv3EChd-tyrTY_VVH0FqTZAax2r-LjUH6M6kqPsu0fVR7_37s-hActdiXTxtkewZ4pD-Gg04Ug7TRxCPd7RQ4fwy-_HFo0aGu5ficrS2Y4Dhvy1cdz00VTH6sgX-rCXJPLkijy1mlX0A-liwQwOVpeuk194oqJoOG8iV4n0945yBsyJae4KBMXG7khq_JW875N8k5V6giWs_eL0zPaakHQjPGgojbiOtJcJTbMZGBDIS3HQcitNbHEOwHLeawmlikWR9wmMlGBRu4bZki3Y2HYExiUq9I8BaIRZHGbOSpquTCR4krmXAtuHJ7TbAhh993TrC2U7vQ6itQTpkCmi9ny4iJ1vpK2vjKEV7tn1k2ZkL9aHzl36lkiiENeOYTjzr_Sdiq5TpERCyfEI_gQXu987lYv3n9v9PLs38yfwz132YTqHMOguqrNCwRclT7xWZEn7b_0G5cAJNc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED7BeBg8bDA2UdjAD7xBMie5OPHeukHVwdYHaKVpL5Gd2GgiSieWaGp_Bz94tpNUHROIt0g527HunLvz3X0H8D7KqcXNMt5JmkoPOUVPGm_ZUzRVIk15rgpb73w-YeMZfrmIL7pidVcLo5RyyWfKt48ull_M88ZelR1a8TEaOn4MT2JEjNtyrVXQAOOgrXxjkccSyvoaGcoPp6PZ5aVvW4X7UcjDtLtF6fWQa6xyz8bcbKprsbgVZbmmbkbbMOk_tM0y-ek3tfTz5R8Yjv-9k-ew1RmeZNhKygt4pKod2O6bOpDujO_AszWEwpfw2-kybQg6INYfZK7JqFkuF-S7S8b2pi24VUm-NaW6IVcVEeTYNp7wTisbxleFobyyN_LEIoEYwkmbek6Ga0GMIzIkJ0ajEpvYuCDz6sH0bk7ySdRiF2ajz9OTsdc1cvDyCGnt6RBlKFGkOsg51QHjGsNAFFqrhJs3NCowEbGORJSEqFOeCiqN4xrkxldOmIr2YKOaV-oVEGksJNS59SM1MhUKFLxAyVBZY0xGAwh6tmZ5h3Jum22UmfN2KM-cKGRWFLJOFAbwYTXmusX4-Cf1ruXnGmXLygHs9-KTdf-Bm8y4s8x20WE4gI8rkXqwSq0N3-6t8vovq7yDzfH0_Cw7O518fQNP7ZA2uWYfNupfjTowJlIt37qDcQc5vQqT
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFH4a3QE4MBibKAzkAzdwm8SuE3Mrg2ogUSFopbFLZCc2mojSakuE2t_BD-bZSaqMSUhIHKO82IrzYn-f_d77AF6yLHB1s5CdJImmXAacamTL1ASJUUkiM5O7fOdPc3G25B_PJ-d7MO9yYdb1lRnVhVeKapKpTDle93awxjbUQkUGZw9ELpQzkVOdIxUyUagQHnNtubwD-2KC2HwA-8v55-k3f-QpGBWxF9tE4o4cOmC8y6IJ5Liy9XY7cmLiIxbJKGn3WbqVykuv3EChd-tyrTY_VVH0FqTZAax2r-LjUH6M6kqPsu0fVR7_37s-hActdiXTxtkewZ4pD-Gg04Ug7TRxCPd7RQ4fwy-_HFo0aGu5ficrS2Y4Dhvy1cdz00VTH6sgX-rCXJPLkijy1mlX0A-liwQwOVpeuk194oqJoOG8iV4n0945yBsyJae4KBMXG7khq_JW875N8k5V6giWs_eL0zPaakHQjPGgojbiOtJcJTbMZGBDIS3HQcitNbHEOwHLeawmlikWR9wmMlGBRu4bZki3Y2HYMQzKVWmeANEIsrjNHBW1XJhIcSVzrgU3Ds9pNoSw--5p1hZKd3odReoJUyDTxWx5cZE6X0lbXxnCq90z66ZMyF-tj5w79SwRxCGvHMJJ519pO5Vcp8iIhRPiEXwIr3c-d6sX7783enn6b-bP4J67bEJ1TmBQXdXmOQKuSr9o_6Lfv3gj1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+Learning+of+Fuzzy+Spatio-Temporal+Rules+in+a+Brain-Inspired+Spiking+Neural+Network+Architecture%3A+A+Case+Study+on+Spatio-Temporal+Brain+Data&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Kasabov%2C+Nikola+K.&rft.au=Tan%2C+Yongyao&rft.au=Doborjeh%2C+Maryam&rft.au=Tu%2C+Enmei&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=31&rft.issue=12&rft.spage=4542&rft.epage=4552&rft_id=info:doi/10.1109%2FTFUZZ.2023.3292802&rft.externalDocID=10175605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon