The synergistic effect of lithium bis(fluorosulfonyl)imide and lithium nitrate for high-performance lithium metal anode
Commercialization of the LMBs is subject to two formidable technical challenges, the instability of Li metal against all the organic solvents, and the short circuit caused by the dendritic lithium deposits. Lithium Bis(fluorosulfonyl)imide salt has exhibited an impressive performance for lithium-den...
Saved in:
Published in | Journal of electroanalytical chemistry (Lausanne, Switzerland) Vol. 874; p. 114484 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1572-6657 1873-2569 |
DOI | 10.1016/j.jelechem.2020.114484 |
Cover
Abstract | Commercialization of the LMBs is subject to two formidable technical challenges, the instability of Li metal against all the organic solvents, and the short circuit caused by the dendritic lithium deposits. Lithium Bis(fluorosulfonyl)imide salt has exhibited an impressive performance for lithium-dendrite suppression and cycling efficiency improving at low current densities. Here, we use LiNO3 as the film-forming additive for further passivation of the Li metal anodes. Following the addition of LiNO3, the cycling performance of the cells with 2.5 M LiFSI-0.75 M LiNO3/DOL as electrolyte at high currents is improved obviously. The symmetrical lithium–metal cells can be cycled for 1000 cycles with more than 1000 h at 5 mA cm−2 with a stripping/plating capacity of 2 mAh cm−2. Moreover, the Li/Cu cell could be cycled for 400 cycles with a stable and high average Coulombic efficiency (CE) of 98.8% at 3 mA cm−2 with a capacity of 2 mAh cm−2. Besides, the electrolyte contains an well adaptability to the electrode of LiFePO4 and improves the cycling stability of the lithium metal. Consequently, LiNO3 demonstrates an excellent performance as a film-forming additive in the LiFSI/DOL electrolyte for further passivation of the Li metal anodes. |
---|---|
AbstractList | Commercialization of the LMBs is subject to two formidable technical challenges, the instability of Li metal against all the organic solvents, and the short circuit caused by the dendritic lithium deposits. Lithium Bis(fluorosulfonyl)imide salt has exhibited an impressive performance for lithium-dendrite suppression and cycling efficiency improving at low current densities. Here, we use LiNO3 as the film-forming additive for further passivation of the Li metal anodes. Following the addition of LiNO3, the cycling performance of the cells with 2.5 M LiFSI-0.75 M LiNO3/DOL as electrolyte at high currents is improved obviously. The symmetrical lithium–metal cells can be cycled for 1000 cycles with more than 1000 h at 5 mA cm−2 with a stripping/plating capacity of 2 mAh cm−2. Moreover, the Li/Cu cell could be cycled for 400 cycles with a stable and high average Coulombic efficiency (CE) of 98.8% at 3 mA cm−2 with a capacity of 2 mAh cm−2. Besides, the electrolyte contains an well adaptability to the electrode of LiFePO4 and improves the cycling stability of the lithium metal. Consequently, LiNO3 demonstrates an excellent performance as a film-forming additive in the LiFSI/DOL electrolyte for further passivation of the Li metal anodes. |
ArticleNumber | 114484 |
Author | Cheng, Hao Zhang, Peng Wang, Miao Liu, Huayun Jin, Han |
Author_xml | – sequence: 1 givenname: Han surname: Jin fullname: Jin, Han – sequence: 2 givenname: Huayun surname: Liu fullname: Liu, Huayun – sequence: 3 givenname: Hao surname: Cheng fullname: Cheng, Hao – sequence: 4 givenname: Peng surname: Zhang fullname: Zhang, Peng – sequence: 5 givenname: Miao surname: Wang fullname: Wang, Miao email: miaowang@zju.edu.cn |
BookMark | eNqFkc1q3DAURkVJIT_tKwRDN83CU0mWJRuyaAhtWgh0k66FRr6Kr7GliSQnzNtXYZossslKF_GdK76jU3LkgwdCzhndMMrkt2kzwQx2hGXDKS-XTIhOfCAnrFNNzVvZH5W5VbyWslXH5DSliVLedYyfkKe7Eaq09xDvMWW0FTgHNlfBVTPmEdel2mL66uY1xJDW2QW_ny9wwQEq44fXkMccTYbKhViNeD_WO4hlXoy38BpaIJu5YGGAT-SjM3OCz__PM_L354-761_17Z-b39dXt7VtBM01qIa2vWhKzy0HY6Fjfc97ECA6KwfBlOPUUOmUElvW2t5K1kvViUH2XHasOSNfDnt3MTyskLKewhp9eVJzoRRXtGgoqctDypaSKYLTFrPJGHxphbNmVD-r1pN-Ua2fVeuD6oLLN_gu4mLi_n3w-wGEouARIepkEYqyAWP5BT0EfG_FP-Dln-4 |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2021_229504 crossref_primary_10_1016_j_powera_2022_100088 crossref_primary_10_1002_eem2_12686 crossref_primary_10_1016_j_apsusc_2022_156140 crossref_primary_10_1016_j_esci_2021_12_006 crossref_primary_10_1088_2752_5724_acac68 crossref_primary_10_1016_j_electacta_2022_140266 |
Cites_doi | 10.1016/0013-4686(94)80094-4 10.1039/C9CC06504K 10.1039/C9TA10929C 10.1038/ncomms11794 10.1002/adma.201700007 10.1039/C9TA90038A 10.1016/j.elecom.2014.12.008 10.1149/1.3148721 10.1103/PhysRevA.42.7355 10.1016/j.elecom.2017.12.012 10.1016/j.electacta.2006.02.004 10.1016/0013-4686(90)87055-7 10.1016/0032-3861(87)90394-6 10.1002/adma.201801328 10.1016/j.electacta.2012.07.118 10.1021/ja502133j 10.1021/acs.chemrev.7b00115 10.1016/j.jpowsour.2014.08.011 10.1002/aenm.201500265 10.1021/nl403922u 10.1038/nenergy.2016.114 10.1016/j.nanoen.2017.07.002 10.1002/adfm.201605989 10.1039/C6EE01674J 10.1149/1.1393349 10.1021/acsenergylett.9b01441 10.1002/adfm.201905940 10.1002/celc.201500113 10.1039/C8TA11449H 10.1038/s41560-019-0405-3 10.1038/s41560-018-0312-z 10.1016/j.joule.2018.06.021 10.1021/acssuschemeng.9b00143 10.1063/1.89283 10.1038/srep03815 10.1149/1.2128859 10.1016/j.electacta.2018.05.002 10.1002/adfm.201606422 10.1016/j.jpowsour.2013.12.099 10.1016/j.nanoen.2016.09.002 10.1016/S0167-2738(02)00080-2 10.1039/C4CP05865H 10.1038/ncomms7362 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Oct 1, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Oct 1, 2020 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.jelechem.2020.114484 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-2569 |
ExternalDocumentID | 10_1016_j_jelechem_2020_114484 S1572665720307116 |
GroupedDBID | --K --M -~X .~1 1B1 1RT 1~. 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M23 M2Z M41 MO0 N9A NQ- O-L OAUVE OZT P-8 P-9 P2P PC. Q38 RNS RPZ SCB SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT YQT ~02 186 29K AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EJD FEDTE FGOYB HMU HVGLF HZ~ R2- ROL SCH SEW WUQ ~HD 7SR 8BQ 8FD AFXIZ AGCQF AGRNS BNPGV JG9 SSH |
ID | FETCH-LOGICAL-c340t-e7305943016b2eace819929e4e48c6d417f20a06f774b15c9c6196784d6926813 |
IEDL.DBID | .~1 |
ISSN | 1572-6657 |
IngestDate | Fri Jul 25 07:16:09 EDT 2025 Thu Apr 24 23:03:50 EDT 2025 Wed Oct 01 00:33:55 EDT 2025 Fri Feb 23 02:47:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium battery LiNO3 Electrolyte Lithium dendrite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-e7305943016b2eace819929e4e48c6d417f20a06f774b15c9c6196784d6926813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2477270812 |
PQPubID | 2047557 |
ParticipantIDs | proquest_journals_2477270812 crossref_citationtrail_10_1016_j_jelechem_2020_114484 crossref_primary_10_1016_j_jelechem_2020_114484 elsevier_sciencedirect_doi_10_1016_j_jelechem_2020_114484 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of electroanalytical chemistry (Lausanne, Switzerland) |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Li, Zhang, Dou, Wong, Ng (bb0085) 2019; 7 Xiong, Xie, Diao, Hong (bb0110) 2012; 83 Liu, Zhu, Cui (bb0170) 2019; 4 Wang, Matsui, Kuwata, Sonoki, Matsuda, Shang, Takeda, Yamamoto, Imanishi (bb0195) 2017; 8 Rodrigo, Ruth, Ryan, Ho-Hyun, Adam, Buddie (bb0215) 2020; 8 Alpen, Rabenau, Talat (bb0155) 1977; 30 Bai, Li, Brushett, Bazant (bb0160) 2016; 9 Guo, Li, Zhai (bb0025) 2017 Guo, Wen, Wu, Jin, Liu (bb0120) 2015; 51 Rosso, Brissot, Teyssot, Dolle, Sannier, Tarascon, Bouchetc, Lascaud (bb0140) 2006; 51 Han, Westover, Yue, Fan, Wang, Chi, Leonard, Dudney, Wang, Wang (bb0205) 2019; 4 Zhang, Zhao, Zhang, Li, Chu, Guo, Di, Wang, Li (bb0075) 2016; 28 Tikekar, Choudhury, Tu, Archer (bb0190) 2016; 1 Qian, Henderson, Xu, Bhattacharya, Engelhard, Borodin, Zhang (bb0045) 2015; 6 Wang, Sunahiro, Matsui, Zhang, Takeda, Yamamoto, Imanishi (bb0150) 2015; 2 Aurbach, Pollak, Elazari, Salitra, Kelley, Affinito (bb0210) 2019; 156 Li, Huang, Liaw, Metzler, Zhang (bb0030) 2014; 254 Zhang, Jin, Wang, Wang (bb0050) 2018; 277 Khurana, Schaefer, Archer, Coates (bb0070) 2014; 136 Aetukuri, Kitajima, Jung, Thompson, Virwani, Reich, Kunze, Schneider, Schmidbauer, Wilcke, Bethune, Scott, Miller, Kim (bb0100) 2015 Zhang, Zhu, Wang, Imanishi, Yamamoto (bb0065) 2018; 87 Li, Zhu, Lu (bb0175) 2017 Chazalviel (bb0135) 1990; 42 Qu, Chen, Yang, Zhang, Li, Zhang (bb0105) 2017; 39 Park, Ma, Lee, Im, Doo, Yamamoto (bb0185) 2014; 4 Zheng, Engelhard, Mei, Jiao, Polzin, Zhang, Xu (bb0060) 2017 Rosso, Chazalviel, Fleury, Chassaing (bb0145) 1994; 39 Wang, Wang, Ren, Guan, Wang, Dong, Zhang, Li, Luo (bb0225) 2019; 29 Cheng, Zhang, Zhao, Zhang (bb0020) 2017; 117 Aurbach, Zinigrad, Teller, Dan (bb0005) 2000; 147 Shen, Zhang, Han, Wang, Peng, Chen (bb0090) 2018; 2 Evans, Vincent, Bruce (bb0130) 1987; 28 Ming, Cao, Wu, Wahyudi, Wang, Guo, Cavallo, Hwang, Shamim, Li, Sun, Alshareef (bb0035) 2019; 4 Peled (bb0015) 1979; 126 Duangdangchote, Krittayavathananon, Phattharasupakun, Joraleechanchai, Sawangphruk (bb0115) 2019; 55 Song, Wu, Tang, Deng, Yao, Liu, Hu, Alamusi, Wen, Lu, Hu (bb0095) 2019; 7 Zhang, Liu, Li, Zhang, Liu, Luo (bb0220) 2018; 30 Miao, Yang, Feng, Jia, Wang, Nuli (bb0180) 2014; 271 Zeng, Liang, Liao, Xin, Chu, Zheng (bb0040) 2014; 14 Aurbach, Youngman, Gofer, Meitav (bb0125) 1990 Basile, Bhatt, O'Mullane (bb0055) 2016; 7 Bieker, Winter, Bieker (bb0165) 2015; 17 Aurbach, Zinigrad, Cohen, Teller (bb0010) 2002; 148 Li, Zhang, Dou, Wong, Ng (bb0080) 2019; 7 Zhang, Cheng, Chen, Yan, Zhang (bb0200) 2017 Xiong (10.1016/j.jelechem.2020.114484_bb0110) 2012; 83 Liu (10.1016/j.jelechem.2020.114484_bb0170) 2019; 4 Peled (10.1016/j.jelechem.2020.114484_bb0015) 1979; 126 Guo (10.1016/j.jelechem.2020.114484_bb0120) 2015; 51 Evans (10.1016/j.jelechem.2020.114484_bb0130) 1987; 28 Zeng (10.1016/j.jelechem.2020.114484_bb0040) 2014; 14 Han (10.1016/j.jelechem.2020.114484_bb0205) 2019; 4 Cheng (10.1016/j.jelechem.2020.114484_bb0020) 2017; 117 Aurbach (10.1016/j.jelechem.2020.114484_bb0125) 1990; 35 Park (10.1016/j.jelechem.2020.114484_bb0185) 2014; 4 Wang (10.1016/j.jelechem.2020.114484_bb0195) 2017; 8 Aetukuri (10.1016/j.jelechem.2020.114484_bb0100) 2015; 5 Qu (10.1016/j.jelechem.2020.114484_bb0105) 2017; 39 Khurana (10.1016/j.jelechem.2020.114484_bb0070) 2014; 136 Wang (10.1016/j.jelechem.2020.114484_bb0225) 2019; 29 Chazalviel (10.1016/j.jelechem.2020.114484_bb0135) 1990; 42 Alpen (10.1016/j.jelechem.2020.114484_bb0155) 1977; 30 Aurbach (10.1016/j.jelechem.2020.114484_bb0010) 2002; 148 Bieker (10.1016/j.jelechem.2020.114484_bb0165) 2015; 17 Tikekar (10.1016/j.jelechem.2020.114484_bb0190) 2016; 1 Zhang (10.1016/j.jelechem.2020.114484_bb0220) 2018; 30 Li (10.1016/j.jelechem.2020.114484_bb0175) 2017; 27 Zhang (10.1016/j.jelechem.2020.114484_bb0200) 2017; 27 Aurbach (10.1016/j.jelechem.2020.114484_bb0210) 2019; 156 Qian (10.1016/j.jelechem.2020.114484_bb0045) 2015; 6 Miao (10.1016/j.jelechem.2020.114484_bb0180) 2014; 271 Guo (10.1016/j.jelechem.2020.114484_bb0025) 2017; 29 Zheng (10.1016/j.jelechem.2020.114484_bb0060) 2017 Zhang (10.1016/j.jelechem.2020.114484_bb0075) 2016; 28 Basile (10.1016/j.jelechem.2020.114484_bb0055) 2016; 7 Wang (10.1016/j.jelechem.2020.114484_bb0150) 2015; 2 Duangdangchote (10.1016/j.jelechem.2020.114484_bb0115) 2019; 55 Rosso (10.1016/j.jelechem.2020.114484_bb0140) 2006; 51 Rosso (10.1016/j.jelechem.2020.114484_bb0145) 1994; 39 Ming (10.1016/j.jelechem.2020.114484_bb0035) 2019; 4 Zhang (10.1016/j.jelechem.2020.114484_bb0050) 2018; 277 Song (10.1016/j.jelechem.2020.114484_bb0095) 2019; 7 Li (10.1016/j.jelechem.2020.114484_bb0085) 2019; 7 Rodrigo (10.1016/j.jelechem.2020.114484_bb0215) 2020; 8 Bai (10.1016/j.jelechem.2020.114484_bb0160) 2016; 9 Aurbach (10.1016/j.jelechem.2020.114484_bb0005) 2000; 147 Li (10.1016/j.jelechem.2020.114484_bb0080) 2019; 7 Li (10.1016/j.jelechem.2020.114484_bb0030) 2014; 254 Zhang (10.1016/j.jelechem.2020.114484_bb0065) 2018; 87 Shen (10.1016/j.jelechem.2020.114484_bb0090) 2018; 2 |
References_xml | – volume: 277 start-page: 116 year: 2018 end-page: 126 ident: bb0050 article-title: Insight into the effect of lithium-dendrite suppression by lithium bis(fluorosulfony) imide/1,2-dimethoxyethane electrolytes publication-title: Electrochim. Acta – volume: 51 start-page: 5334 year: 2006 end-page: 5340 ident: bb0140 article-title: Dendrite short-circuit and fuse effect on Li/polymer/Li cells publication-title: Electrochim. Acta – volume: 126 start-page: 2047 year: 1979 end-page: 2051 ident: bb0015 article-title: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems - the solid electrolyte interphase model publication-title: J. Electrochem. Soc. – volume: 271 start-page: 291 year: 2014 end-page: 297 ident: bb0180 article-title: Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility publication-title: Power Sources – volume: 8 year: 2017 ident: bb0195 article-title: A reversible dendrite-free high-areal-capacity lithium metal electrode publication-title: Nat. Commun. – year: 2017 ident: bb0175 article-title: 3D porous cu current collector/Li-metal composite anode for stable lithium-metal batteries publication-title: Adv. Funct. Mater. – volume: 4 start-page: 187 year: 2019 end-page: 196 ident: bb0205 article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes publication-title: Nat. Energy – volume: 148 start-page: 405 year: 2002 end-page: 416 ident: bb0010 article-title: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions publication-title: Solid State Ionics – volume: 8 start-page: 3999 year: 2020 ident: bb0215 article-title: Separator-free and concentrated LiNO publication-title: Chem. A – volume: 156 start-page: A694 year: 2019 end-page: A702 ident: bb0210 article-title: On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries publication-title: J. Electrochem. Soc. – volume: 87 start-page: 27 year: 2018 end-page: 30 ident: bb0065 article-title: Lithium dendrite suppression and cycling efficiency of lithium anode publication-title: Electrochem. Commun. – volume: 7 start-page: 3391 year: 2019 end-page: 3398 ident: bb0080 article-title: Li publication-title: J. Mater. Chem. A – volume: 4 start-page: 540 year: 2019 end-page: 550 ident: bb0170 article-title: Challenges and opportunities towards fast-charging battery materials publication-title: Nat. Energy – start-page: 625 year: 1990 end-page: 638 ident: bb0125 article-title: The electrochemical behaviour of 1,3-dioxolane-LiClO publication-title: Electrochim. Acta – year: 2017 ident: bb0200 article-title: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries publication-title: Adv. Funct. Mater. – volume: 42 start-page: 7355 year: 1990 end-page: 7367 ident: bb0135 article-title: Electrochemical aspects of the generation of ramified metallic electrodeposits publication-title: Phys. Rev. A – volume: 9 start-page: 3221 year: 2016 end-page: 3229 ident: bb0160 article-title: Transition of lithium growth mechanisms in liquid electrolytes publication-title: Energy Environ. Sci. – volume: 1 start-page: 1 year: 2016 end-page: 7 ident: bb0190 article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries publication-title: Energy – volume: 147 start-page: 1274 year: 2000 end-page: 1279 ident: bb0005 article-title: Factors which limit the cycle life of rechargeable lithium (metal) batteries publication-title: J. Electrochem. Soc. – volume: 55 start-page: 13951 year: 2019 end-page: 13954 ident: bb0115 article-title: Insight into the effect of additives widely used in lithium-sulfur batteries publication-title: Chem. Commun. – volume: 7 year: 2016 ident: bb0055 article-title: Stabilizing lithium metal using ionic liquids for long-lived batteries publication-title: Nat. Commun. – volume: 4 year: 2014 ident: bb0185 article-title: A highly reversible lithium metal anode publication-title: Sci. Rep. – volume: 4 start-page: 2613 year: 2019 end-page: 2622 ident: bb0035 article-title: New insight on the role of electrolyte additives in rechargeable lithium ion batteries publication-title: Acs Energy Lett. – volume: 30 start-page: 621 year: 1977 end-page: 623 ident: bb0155 article-title: Ionic conductivity in Li publication-title: Appl. Phys. Lett. – volume: 6 year: 2015 ident: bb0045 article-title: High rate and stable cycling of lithium metal anode publication-title: Nat. Commun. – volume: 7 start-page: 7163 year: 2019 end-page: 7170 ident: bb0095 article-title: Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide) publication-title: ACS Sustain. Chem. Eng. – volume: 30 start-page: 1801328 year: 2018 ident: bb0220 article-title: Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes publication-title: Adv. Mater. – start-page: 2(3) year: 2017 ident: bb0060 article-title: Electrolyte additive enabled fast charging and stable cycling lithium metal batteries publication-title: Energy – year: 2015 ident: bb0100 article-title: Flexible ion-conducting composite membranes for lithium batteries publication-title: Adv. Energy Mater. – volume: 2 start-page: 1674 year: 2018 end-page: 1689 ident: bb0090 article-title: Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes publication-title: Joule – volume: 28 start-page: 2324 year: 1987 end-page: 2328 ident: bb0130 article-title: Electrochemical measurement of transference numbers in polymer electrolytes publication-title: Polymer – volume: 83 start-page: 78 year: 2012 end-page: 86 ident: bb0110 article-title: Properties of surface film on lithium anode with LiNO publication-title: Acta – volume: 2 start-page: 1144 year: 2015 end-page: 1151 ident: bb0150 article-title: A solvate ionic liquid as the anolyte for aqueous rechargeable Li-O publication-title: Chemelectrochem – volume: 117 start-page: 10403 year: 2017 end-page: 10473 ident: bb0020 article-title: Toward safe lithium metal anode in rechargeable batteries: a review publication-title: Chem. Rev. – year: 2017 ident: bb0025 article-title: Reviving lithium-metal anodes for next-generation high-energy batteries publication-title: Adv. Mater. – volume: 29 start-page: 1905940 year: 2019 ident: bb0225 article-title: Controlling Li ion flux through materials innovation for dendrite-free lithium metal anodes publication-title: Adv. Funct. Mater. – volume: 254 start-page: 168 year: 2014 end-page: 182 ident: bb0030 article-title: A review of lithium deposition in lithium-ion and lithium metal secondary batteries publication-title: Power Sources – volume: 28 start-page: 447 year: 2016 end-page: 454 ident: bb0075 article-title: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide publication-title: Nano Energy – volume: 51 start-page: 59 year: 2015 end-page: 63 ident: bb0120 article-title: Vinylene carbonate-LiNO publication-title: Electrochem. Commun. – volume: 17 start-page: 8670 year: 2015 end-page: 8679 ident: bb0165 article-title: Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode publication-title: Phys. Chem. Chem. Phys. – volume: 39 start-page: 262 year: 2017 end-page: 272 ident: bb0105 article-title: LiNO publication-title: Nano Energy – volume: 136 start-page: 7395 year: 2014 end-page: 7402 ident: bb0070 article-title: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1745 year: 2014 end-page: 1750 ident: bb0040 article-title: Visualization of electrode-electrolyte interfaces in LiPF publication-title: Nano Lett. – volume: 39 start-page: 507 year: 1994 end-page: 515 ident: bb0145 article-title: Experimental evidence for gravity induced motion in the vicinity of ramified electrodeposits publication-title: Electrochim. Acta – volume: 7 start-page: 4190 year: 2019 ident: bb0085 article-title: Correction: Li publication-title: J. Mater. Chem. A – volume: 39 start-page: 507 issue: 4 year: 1994 ident: 10.1016/j.jelechem.2020.114484_bb0145 article-title: Experimental evidence for gravity induced motion in the vicinity of ramified electrodeposits publication-title: Electrochim. Acta doi: 10.1016/0013-4686(94)80094-4 – volume: 55 start-page: 13951 issue: 93 year: 2019 ident: 10.1016/j.jelechem.2020.114484_bb0115 article-title: Insight into the effect of additives widely used in lithium-sulfur batteries publication-title: Chem. Commun. doi: 10.1039/C9CC06504K – volume: 8 start-page: 3999 year: 2020 ident: 10.1016/j.jelechem.2020.114484_bb0215 article-title: Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10929C – volume: 7 year: 2016 ident: 10.1016/j.jelechem.2020.114484_bb0055 article-title: Stabilizing lithium metal using ionic liquids for long-lived batteries publication-title: Nat. Commun. doi: 10.1038/ncomms11794 – volume: 29 issue: 29 year: 2017 ident: 10.1016/j.jelechem.2020.114484_bb0025 article-title: Reviving lithium-metal anodes for next-generation high-energy batteries publication-title: Adv. Mater. doi: 10.1002/adma.201700007 – volume: 7 start-page: 4190 issue: 8 year: 2019 ident: 10.1016/j.jelechem.2020.114484_bb0085 article-title: Correction: Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA90038A – volume: 51 start-page: 59 year: 2015 ident: 10.1016/j.jelechem.2020.114484_bb0120 article-title: Vinylene carbonate-LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.12.008 – volume: 156 start-page: A694 issue: 8 year: 2019 ident: 10.1016/j.jelechem.2020.114484_bb0210 article-title: On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.3148721 – volume: 42 start-page: 7355 issue: 12 year: 1990 ident: 10.1016/j.jelechem.2020.114484_bb0135 article-title: Electrochemical aspects of the generation of ramified metallic electrodeposits publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.42.7355 – volume: 87 start-page: 27 year: 2018 ident: 10.1016/j.jelechem.2020.114484_bb0065 article-title: Lithium dendrite suppression and cycling efficiency of lithium anode publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.12.012 – volume: 51 start-page: 5334 issue: 25 year: 2006 ident: 10.1016/j.jelechem.2020.114484_bb0140 article-title: Dendrite short-circuit and fuse effect on Li/polymer/Li cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.02.004 – volume: 35 start-page: 625 issue: 3 year: 1990 ident: 10.1016/j.jelechem.2020.114484_bb0125 article-title: The electrochemical behaviour of 1,3-dioxolane-LiClO4 solutions-I. Uncontaminated solutions publication-title: Electrochim. Acta doi: 10.1016/0013-4686(90)87055-7 – volume: 28 start-page: 2324 issue: 13 year: 1987 ident: 10.1016/j.jelechem.2020.114484_bb0130 article-title: Electrochemical measurement of transference numbers in polymer electrolytes publication-title: Polymer doi: 10.1016/0032-3861(87)90394-6 – volume: 8 year: 2017 ident: 10.1016/j.jelechem.2020.114484_bb0195 article-title: A reversible dendrite-free high-areal-capacity lithium metal electrode publication-title: Nat. Commun. – volume: 30 start-page: 1801328 year: 2018 ident: 10.1016/j.jelechem.2020.114484_bb0220 article-title: Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes publication-title: Adv. Mater. doi: 10.1002/adma.201801328 – start-page: 2(3) year: 2017 ident: 10.1016/j.jelechem.2020.114484_bb0060 article-title: Electrolyte additive enabled fast charging and stable cycling lithium metal batteries publication-title: Nat. Energy – volume: 83 start-page: 78 year: 2012 ident: 10.1016/j.jelechem.2020.114484_bb0110 article-title: Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.07.118 – volume: 136 start-page: 7395 issue: 20 year: 2014 ident: 10.1016/j.jelechem.2020.114484_bb0070 article-title: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502133j – volume: 117 start-page: 10403 issue: 15 year: 2017 ident: 10.1016/j.jelechem.2020.114484_bb0020 article-title: Toward safe lithium metal anode in rechargeable batteries: a review publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 271 start-page: 291 year: 2014 ident: 10.1016/j.jelechem.2020.114484_bb0180 article-title: Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.08.011 – volume: 5 issue: 14 year: 2015 ident: 10.1016/j.jelechem.2020.114484_bb0100 article-title: Flexible ion-conducting composite membranes for lithium batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500265 – volume: 14 start-page: 1745 issue: 4 year: 2014 ident: 10.1016/j.jelechem.2020.114484_bb0040 article-title: Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM publication-title: Nano Lett. doi: 10.1021/nl403922u – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.jelechem.2020.114484_bb0190 article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2016.114 – volume: 39 start-page: 262 year: 2017 ident: 10.1016/j.jelechem.2020.114484_bb0105 article-title: LiNO3-free electrolyte for Li-S battery: a solvent of choice with low K-sp of polysulfide and low dendrite of lithium publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.002 – volume: 27 issue: 10 year: 2017 ident: 10.1016/j.jelechem.2020.114484_bb0200 article-title: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605989 – volume: 9 start-page: 3221 issue: 10 year: 2016 ident: 10.1016/j.jelechem.2020.114484_bb0160 article-title: Transition of lithium growth mechanisms in liquid electrolytes publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01674J – volume: 147 start-page: 1274 issue: 4 year: 2000 ident: 10.1016/j.jelechem.2020.114484_bb0005 article-title: Factors which limit the cycle life of rechargeable lithium (metal) batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393349 – volume: 4 start-page: 2613 issue: 11 year: 2019 ident: 10.1016/j.jelechem.2020.114484_bb0035 article-title: New insight on the role of electrolyte additives in rechargeable lithium ion batteries publication-title: Acs Energy Lett. doi: 10.1021/acsenergylett.9b01441 – volume: 29 start-page: 1905940 year: 2019 ident: 10.1016/j.jelechem.2020.114484_bb0225 article-title: Controlling Li ion flux through materials innovation for dendrite-free lithium metal anodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905940 – volume: 2 start-page: 1144 issue: 8 year: 2015 ident: 10.1016/j.jelechem.2020.114484_bb0150 article-title: A solvate ionic liquid as the anolyte for aqueous rechargeable Li-O2 batteries publication-title: Chemelectrochem doi: 10.1002/celc.201500113 – volume: 7 start-page: 3391 issue: 7 year: 2019 ident: 10.1016/j.jelechem.2020.114484_bb0080 article-title: Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11449H – volume: 4 start-page: 540 issue: 7 year: 2019 ident: 10.1016/j.jelechem.2020.114484_bb0170 article-title: Challenges and opportunities towards fast-charging battery materials publication-title: Nat. Energy doi: 10.1038/s41560-019-0405-3 – volume: 4 start-page: 187 issue: 3 year: 2019 ident: 10.1016/j.jelechem.2020.114484_bb0205 article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes publication-title: Nat. Energy doi: 10.1038/s41560-018-0312-z – volume: 2 start-page: 1674 issue: 9 year: 2018 ident: 10.1016/j.jelechem.2020.114484_bb0090 article-title: Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes publication-title: Joule doi: 10.1016/j.joule.2018.06.021 – volume: 7 start-page: 7163 issue: 7 year: 2019 ident: 10.1016/j.jelechem.2020.114484_bb0095 article-title: Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide) publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00143 – volume: 30 start-page: 621 issue: 12 year: 1977 ident: 10.1016/j.jelechem.2020.114484_bb0155 article-title: Ionic conductivity in Li3N single crystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.89283 – volume: 4 year: 2014 ident: 10.1016/j.jelechem.2020.114484_bb0185 article-title: A highly reversible lithium metal anode publication-title: Sci. Rep. doi: 10.1038/srep03815 – volume: 126 start-page: 2047 issue: 12 year: 1979 ident: 10.1016/j.jelechem.2020.114484_bb0015 article-title: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems - the solid electrolyte interphase model publication-title: J. Electrochem. Soc. doi: 10.1149/1.2128859 – volume: 277 start-page: 116 year: 2018 ident: 10.1016/j.jelechem.2020.114484_bb0050 article-title: Insight into the effect of lithium-dendrite suppression by lithium bis(fluorosulfony) imide/1,2-dimethoxyethane electrolytes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.05.002 – volume: 27 issue: 18 year: 2017 ident: 10.1016/j.jelechem.2020.114484_bb0175 article-title: 3D porous cu current collector/Li-metal composite anode for stable lithium-metal batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606422 – volume: 254 start-page: 168 year: 2014 ident: 10.1016/j.jelechem.2020.114484_bb0030 article-title: A review of lithium deposition in lithium-ion and lithium metal secondary batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.099 – volume: 28 start-page: 447 year: 2016 ident: 10.1016/j.jelechem.2020.114484_bb0075 article-title: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.002 – volume: 148 start-page: 405 issue: 3–4 year: 2002 ident: 10.1016/j.jelechem.2020.114484_bb0010 article-title: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00080-2 – volume: 17 start-page: 8670 issue: 14 year: 2015 ident: 10.1016/j.jelechem.2020.114484_bb0165 article-title: Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05865H – volume: 6 year: 2015 ident: 10.1016/j.jelechem.2020.114484_bb0045 article-title: High rate and stable cycling of lithium metal anode publication-title: Nat. Commun. doi: 10.1038/ncomms7362 |
SSID | ssj0028812 |
Score | 2.3931072 |
Snippet | Commercialization of the LMBs is subject to two formidable technical challenges, the instability of Li metal against all the organic solvents, and the short... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114484 |
SubjectTerms | Anodes Commercialization Cycles Dendritic structure Electrolyte Electrolytes Electrolytic cells LiNO3 Lithium Lithium battery Lithium dendrite Low currents Passivity Short circuits Synergistic effect |
Title | The synergistic effect of lithium bis(fluorosulfonyl)imide and lithium nitrate for high-performance lithium metal anode |
URI | https://dx.doi.org/10.1016/j.jelechem.2020.114484 https://www.proquest.com/docview/2477270812 |
Volume | 874 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2569 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028812 issn: 1572-6657 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2569 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028812 issn: 1572-6657 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-2569 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028812 issn: 1572-6657 databaseCode: ACRLP dateStart: 19950103 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2569 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028812 issn: 1572-6657 databaseCode: AIKHN dateStart: 19950103 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2569 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028812 issn: 1572-6657 databaseCode: AKRWK dateStart: 19930115 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QPOjF-Iwokj140EOBbrft9kiIBCVyUIncNmx3G0p4RSDGi7_dmb58JIaDp6bNTNvsPDc78w0hV6HPlRZ6ZBnla4uPImapMAJz16BexvWUk8w6fOh73QG_H7rDEmnnvTBYVpn5_tSnJ946e9LIVrOxjOPGk-36DM8NGOqpbSPsNqJ_gU7XP4oyDyZEeuIJdBZSf-sSntQnOGtmbLAjnSWwuVzwvwLUL1edxJ_OAdnPEkfaSv_tkJTM_IjstvN5bcfkDSROV-_Yy5eAL9O0VIMuIgqp9jjezKiKV9fRdLOAD2-mEdak38SzWBs6muuCCGwc4SMoZLMUwYyt5VdvQUE0M5C0A9tCmxMy6Nw-t7tWNlbBCh3eXFsGjNpF1HXbUwz8rhFYghoYbrgIPc1tP2LNUdOLIDNUthsGIWyyIKZx7QXME7ZzSsrzxdycEeooIxDwXjUjDZmNK3wjXK19BzY6SmmvQtx8LWWYYY7j6IupzIvLJjKXgUQZyFQGFdIo-JYp6sZWjiAXlfyhPxJCw1beai5bmVnwSjIO-w4fEiZ2_o9XX5A9vEur_6qkvH7dmEvIYtaqlqhpjey07nrdPl57jy-9T-On9Ms |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BO5QF8RRvPDDAENo4tuOOqKIqFLrQSmxWHTtqqr5EWyH-Pec8ykNCHVgTXxLlXp_lu-8ArqKQaSNN37M6NB7rx9TTUYzubtC8LBc6SGcdPndEq8ceX_nrBjSKXhhXVpnH_iymp9E6v1LN_2Z1liTVF5-H1J0bUGenvi82ocw4xuQSlO8e2q3Oat8lZXboiUs9J_CtUXh4O3TjZgbWNaXTlDmXSfZXjvoVrdMU1NyB7Rw7krvs83Zhw072oNIoRrbtwzsqncw_XDtfyr9MsmoNMo0Jou1BshwTncyv49Fyii9ejmJXln6TjBNjSX9iVovQzR2DBEFASxyfsTf7ai9YLRpbxO0oNjX2AHrN-26j5eWTFbwoYLWFZ9GvuSNe94WmGHqtdFWodcssk5EwzA9jWuvXRIzgUPs8qke4z8K0xoyoUyH94BBKk-nEHgEJtJWO817XYoPghsvQSm5MGOBeR2sjjoEX_1JFOe24m34xUkV92VAVOlBOByrTwTFUV3KzjHhjrUS9UJX6YUIKs8Na2bNCtyp34rmiDLceIWImevKPR19CpdV9flJPD532KWy5O1kx4BmUFm9Le46gZqEvcqP9BIif9dM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+synergistic+effect+of+lithium+bis%28fluorosulfonyl%29imide+and+lithium+nitrate+for+high-performance+lithium+metal+anode&rft.jtitle=Journal+of+electroanalytical+chemistry+%28Lausanne%2C+Switzerland%29&rft.au=Jin%2C+Han&rft.au=Liu%2C+Huayun&rft.au=Cheng%2C+Hao&rft.au=Zhang%2C+Peng&rft.date=2020-10-01&rft.issn=1572-6657&rft.volume=874&rft.spage=114484&rft_id=info:doi/10.1016%2Fj.jelechem.2020.114484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jelechem_2020_114484 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-6657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-6657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-6657&client=summon |