The synergistic effect of lithium bis(fluorosulfonyl)imide and lithium nitrate for high-performance lithium metal anode

Commercialization of the LMBs is subject to two formidable technical challenges, the instability of Li metal against all the organic solvents, and the short circuit caused by the dendritic lithium deposits. Lithium Bis(fluorosulfonyl)imide salt has exhibited an impressive performance for lithium-den...

Full description

Saved in:
Bibliographic Details
Published inJournal of electroanalytical chemistry (Lausanne, Switzerland) Vol. 874; p. 114484
Main Authors Jin, Han, Liu, Huayun, Cheng, Hao, Zhang, Peng, Wang, Miao
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN1572-6657
1873-2569
DOI10.1016/j.jelechem.2020.114484

Cover

Abstract Commercialization of the LMBs is subject to two formidable technical challenges, the instability of Li metal against all the organic solvents, and the short circuit caused by the dendritic lithium deposits. Lithium Bis(fluorosulfonyl)imide salt has exhibited an impressive performance for lithium-dendrite suppression and cycling efficiency improving at low current densities. Here, we use LiNO3 as the film-forming additive for further passivation of the Li metal anodes. Following the addition of LiNO3, the cycling performance of the cells with 2.5 M LiFSI-0.75 M LiNO3/DOL as electrolyte at high currents is improved obviously. The symmetrical lithium–metal cells can be cycled for 1000 cycles with more than 1000 h at 5 mA cm−2 with a stripping/plating capacity of 2 mAh cm−2. Moreover, the Li/Cu cell could be cycled for 400 cycles with a stable and high average Coulombic efficiency (CE) of 98.8% at 3 mA cm−2 with a capacity of 2 mAh cm−2. Besides, the electrolyte contains an well adaptability to the electrode of LiFePO4 and improves the cycling stability of the lithium metal. Consequently, LiNO3 demonstrates an excellent performance as a film-forming additive in the LiFSI/DOL electrolyte for further passivation of the Li metal anodes.
AbstractList Commercialization of the LMBs is subject to two formidable technical challenges, the instability of Li metal against all the organic solvents, and the short circuit caused by the dendritic lithium deposits. Lithium Bis(fluorosulfonyl)imide salt has exhibited an impressive performance for lithium-dendrite suppression and cycling efficiency improving at low current densities. Here, we use LiNO3 as the film-forming additive for further passivation of the Li metal anodes. Following the addition of LiNO3, the cycling performance of the cells with 2.5 M LiFSI-0.75 M LiNO3/DOL as electrolyte at high currents is improved obviously. The symmetrical lithium–metal cells can be cycled for 1000 cycles with more than 1000 h at 5 mA cm−2 with a stripping/plating capacity of 2 mAh cm−2. Moreover, the Li/Cu cell could be cycled for 400 cycles with a stable and high average Coulombic efficiency (CE) of 98.8% at 3 mA cm−2 with a capacity of 2 mAh cm−2. Besides, the electrolyte contains an well adaptability to the electrode of LiFePO4 and improves the cycling stability of the lithium metal. Consequently, LiNO3 demonstrates an excellent performance as a film-forming additive in the LiFSI/DOL electrolyte for further passivation of the Li metal anodes.
ArticleNumber 114484
Author Cheng, Hao
Zhang, Peng
Wang, Miao
Liu, Huayun
Jin, Han
Author_xml – sequence: 1
  givenname: Han
  surname: Jin
  fullname: Jin, Han
– sequence: 2
  givenname: Huayun
  surname: Liu
  fullname: Liu, Huayun
– sequence: 3
  givenname: Hao
  surname: Cheng
  fullname: Cheng, Hao
– sequence: 4
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
– sequence: 5
  givenname: Miao
  surname: Wang
  fullname: Wang, Miao
  email: miaowang@zju.edu.cn
BookMark eNqFkc1q3DAURkVJIT_tKwRDN83CU0mWJRuyaAhtWgh0k66FRr6Kr7GliSQnzNtXYZossslKF_GdK76jU3LkgwdCzhndMMrkt2kzwQx2hGXDKS-XTIhOfCAnrFNNzVvZH5W5VbyWslXH5DSliVLedYyfkKe7Eaq09xDvMWW0FTgHNlfBVTPmEdel2mL66uY1xJDW2QW_ny9wwQEq44fXkMccTYbKhViNeD_WO4hlXoy38BpaIJu5YGGAT-SjM3OCz__PM_L354-761_17Z-b39dXt7VtBM01qIa2vWhKzy0HY6Fjfc97ECA6KwfBlOPUUOmUElvW2t5K1kvViUH2XHasOSNfDnt3MTyskLKewhp9eVJzoRRXtGgoqctDypaSKYLTFrPJGHxphbNmVD-r1pN-Ua2fVeuD6oLLN_gu4mLi_n3w-wGEouARIepkEYqyAWP5BT0EfG_FP-Dln-4
CitedBy_id crossref_primary_10_1016_j_jpowsour_2021_229504
crossref_primary_10_1016_j_powera_2022_100088
crossref_primary_10_1002_eem2_12686
crossref_primary_10_1016_j_apsusc_2022_156140
crossref_primary_10_1016_j_esci_2021_12_006
crossref_primary_10_1088_2752_5724_acac68
crossref_primary_10_1016_j_electacta_2022_140266
Cites_doi 10.1016/0013-4686(94)80094-4
10.1039/C9CC06504K
10.1039/C9TA10929C
10.1038/ncomms11794
10.1002/adma.201700007
10.1039/C9TA90038A
10.1016/j.elecom.2014.12.008
10.1149/1.3148721
10.1103/PhysRevA.42.7355
10.1016/j.elecom.2017.12.012
10.1016/j.electacta.2006.02.004
10.1016/0013-4686(90)87055-7
10.1016/0032-3861(87)90394-6
10.1002/adma.201801328
10.1016/j.electacta.2012.07.118
10.1021/ja502133j
10.1021/acs.chemrev.7b00115
10.1016/j.jpowsour.2014.08.011
10.1002/aenm.201500265
10.1021/nl403922u
10.1038/nenergy.2016.114
10.1016/j.nanoen.2017.07.002
10.1002/adfm.201605989
10.1039/C6EE01674J
10.1149/1.1393349
10.1021/acsenergylett.9b01441
10.1002/adfm.201905940
10.1002/celc.201500113
10.1039/C8TA11449H
10.1038/s41560-019-0405-3
10.1038/s41560-018-0312-z
10.1016/j.joule.2018.06.021
10.1021/acssuschemeng.9b00143
10.1063/1.89283
10.1038/srep03815
10.1149/1.2128859
10.1016/j.electacta.2018.05.002
10.1002/adfm.201606422
10.1016/j.jpowsour.2013.12.099
10.1016/j.nanoen.2016.09.002
10.1016/S0167-2738(02)00080-2
10.1039/C4CP05865H
10.1038/ncomms7362
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Oct 1, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Oct 1, 2020
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.jelechem.2020.114484
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-2569
ExternalDocumentID 10_1016_j_jelechem_2020_114484
S1572665720307116
GroupedDBID --K
--M
-~X
.~1
1B1
1RT
1~.
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M23
M2Z
M41
MO0
N9A
NQ-
O-L
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
RPZ
SCB
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
YQT
~02
186
29K
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
ROL
SCH
SEW
WUQ
~HD
7SR
8BQ
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JG9
SSH
ID FETCH-LOGICAL-c340t-e7305943016b2eace819929e4e48c6d417f20a06f774b15c9c6196784d6926813
IEDL.DBID .~1
ISSN 1572-6657
IngestDate Fri Jul 25 07:16:09 EDT 2025
Thu Apr 24 23:03:50 EDT 2025
Wed Oct 01 00:33:55 EDT 2025
Fri Feb 23 02:47:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium battery
LiNO3
Electrolyte
Lithium dendrite
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-e7305943016b2eace819929e4e48c6d417f20a06f774b15c9c6196784d6926813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2477270812
PQPubID 2047557
ParticipantIDs proquest_journals_2477270812
crossref_citationtrail_10_1016_j_jelechem_2020_114484
crossref_primary_10_1016_j_jelechem_2020_114484
elsevier_sciencedirect_doi_10_1016_j_jelechem_2020_114484
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of electroanalytical chemistry (Lausanne, Switzerland)
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Li, Zhang, Dou, Wong, Ng (bb0085) 2019; 7
Xiong, Xie, Diao, Hong (bb0110) 2012; 83
Liu, Zhu, Cui (bb0170) 2019; 4
Wang, Matsui, Kuwata, Sonoki, Matsuda, Shang, Takeda, Yamamoto, Imanishi (bb0195) 2017; 8
Rodrigo, Ruth, Ryan, Ho-Hyun, Adam, Buddie (bb0215) 2020; 8
Alpen, Rabenau, Talat (bb0155) 1977; 30
Bai, Li, Brushett, Bazant (bb0160) 2016; 9
Guo, Li, Zhai (bb0025) 2017
Guo, Wen, Wu, Jin, Liu (bb0120) 2015; 51
Rosso, Brissot, Teyssot, Dolle, Sannier, Tarascon, Bouchetc, Lascaud (bb0140) 2006; 51
Han, Westover, Yue, Fan, Wang, Chi, Leonard, Dudney, Wang, Wang (bb0205) 2019; 4
Zhang, Zhao, Zhang, Li, Chu, Guo, Di, Wang, Li (bb0075) 2016; 28
Tikekar, Choudhury, Tu, Archer (bb0190) 2016; 1
Qian, Henderson, Xu, Bhattacharya, Engelhard, Borodin, Zhang (bb0045) 2015; 6
Wang, Sunahiro, Matsui, Zhang, Takeda, Yamamoto, Imanishi (bb0150) 2015; 2
Aurbach, Pollak, Elazari, Salitra, Kelley, Affinito (bb0210) 2019; 156
Li, Huang, Liaw, Metzler, Zhang (bb0030) 2014; 254
Zhang, Jin, Wang, Wang (bb0050) 2018; 277
Khurana, Schaefer, Archer, Coates (bb0070) 2014; 136
Aetukuri, Kitajima, Jung, Thompson, Virwani, Reich, Kunze, Schneider, Schmidbauer, Wilcke, Bethune, Scott, Miller, Kim (bb0100) 2015
Zhang, Zhu, Wang, Imanishi, Yamamoto (bb0065) 2018; 87
Li, Zhu, Lu (bb0175) 2017
Chazalviel (bb0135) 1990; 42
Qu, Chen, Yang, Zhang, Li, Zhang (bb0105) 2017; 39
Park, Ma, Lee, Im, Doo, Yamamoto (bb0185) 2014; 4
Zheng, Engelhard, Mei, Jiao, Polzin, Zhang, Xu (bb0060) 2017
Rosso, Chazalviel, Fleury, Chassaing (bb0145) 1994; 39
Wang, Wang, Ren, Guan, Wang, Dong, Zhang, Li, Luo (bb0225) 2019; 29
Cheng, Zhang, Zhao, Zhang (bb0020) 2017; 117
Aurbach, Zinigrad, Teller, Dan (bb0005) 2000; 147
Shen, Zhang, Han, Wang, Peng, Chen (bb0090) 2018; 2
Evans, Vincent, Bruce (bb0130) 1987; 28
Ming, Cao, Wu, Wahyudi, Wang, Guo, Cavallo, Hwang, Shamim, Li, Sun, Alshareef (bb0035) 2019; 4
Peled (bb0015) 1979; 126
Duangdangchote, Krittayavathananon, Phattharasupakun, Joraleechanchai, Sawangphruk (bb0115) 2019; 55
Song, Wu, Tang, Deng, Yao, Liu, Hu, Alamusi, Wen, Lu, Hu (bb0095) 2019; 7
Zhang, Liu, Li, Zhang, Liu, Luo (bb0220) 2018; 30
Miao, Yang, Feng, Jia, Wang, Nuli (bb0180) 2014; 271
Zeng, Liang, Liao, Xin, Chu, Zheng (bb0040) 2014; 14
Aurbach, Youngman, Gofer, Meitav (bb0125) 1990
Basile, Bhatt, O'Mullane (bb0055) 2016; 7
Bieker, Winter, Bieker (bb0165) 2015; 17
Aurbach, Zinigrad, Cohen, Teller (bb0010) 2002; 148
Li, Zhang, Dou, Wong, Ng (bb0080) 2019; 7
Zhang, Cheng, Chen, Yan, Zhang (bb0200) 2017
Xiong (10.1016/j.jelechem.2020.114484_bb0110) 2012; 83
Liu (10.1016/j.jelechem.2020.114484_bb0170) 2019; 4
Peled (10.1016/j.jelechem.2020.114484_bb0015) 1979; 126
Guo (10.1016/j.jelechem.2020.114484_bb0120) 2015; 51
Evans (10.1016/j.jelechem.2020.114484_bb0130) 1987; 28
Zeng (10.1016/j.jelechem.2020.114484_bb0040) 2014; 14
Han (10.1016/j.jelechem.2020.114484_bb0205) 2019; 4
Cheng (10.1016/j.jelechem.2020.114484_bb0020) 2017; 117
Aurbach (10.1016/j.jelechem.2020.114484_bb0125) 1990; 35
Park (10.1016/j.jelechem.2020.114484_bb0185) 2014; 4
Wang (10.1016/j.jelechem.2020.114484_bb0195) 2017; 8
Aetukuri (10.1016/j.jelechem.2020.114484_bb0100) 2015; 5
Qu (10.1016/j.jelechem.2020.114484_bb0105) 2017; 39
Khurana (10.1016/j.jelechem.2020.114484_bb0070) 2014; 136
Wang (10.1016/j.jelechem.2020.114484_bb0225) 2019; 29
Chazalviel (10.1016/j.jelechem.2020.114484_bb0135) 1990; 42
Alpen (10.1016/j.jelechem.2020.114484_bb0155) 1977; 30
Aurbach (10.1016/j.jelechem.2020.114484_bb0010) 2002; 148
Bieker (10.1016/j.jelechem.2020.114484_bb0165) 2015; 17
Tikekar (10.1016/j.jelechem.2020.114484_bb0190) 2016; 1
Zhang (10.1016/j.jelechem.2020.114484_bb0220) 2018; 30
Li (10.1016/j.jelechem.2020.114484_bb0175) 2017; 27
Zhang (10.1016/j.jelechem.2020.114484_bb0200) 2017; 27
Aurbach (10.1016/j.jelechem.2020.114484_bb0210) 2019; 156
Qian (10.1016/j.jelechem.2020.114484_bb0045) 2015; 6
Miao (10.1016/j.jelechem.2020.114484_bb0180) 2014; 271
Guo (10.1016/j.jelechem.2020.114484_bb0025) 2017; 29
Zheng (10.1016/j.jelechem.2020.114484_bb0060) 2017
Zhang (10.1016/j.jelechem.2020.114484_bb0075) 2016; 28
Basile (10.1016/j.jelechem.2020.114484_bb0055) 2016; 7
Wang (10.1016/j.jelechem.2020.114484_bb0150) 2015; 2
Duangdangchote (10.1016/j.jelechem.2020.114484_bb0115) 2019; 55
Rosso (10.1016/j.jelechem.2020.114484_bb0140) 2006; 51
Rosso (10.1016/j.jelechem.2020.114484_bb0145) 1994; 39
Ming (10.1016/j.jelechem.2020.114484_bb0035) 2019; 4
Zhang (10.1016/j.jelechem.2020.114484_bb0050) 2018; 277
Song (10.1016/j.jelechem.2020.114484_bb0095) 2019; 7
Li (10.1016/j.jelechem.2020.114484_bb0085) 2019; 7
Rodrigo (10.1016/j.jelechem.2020.114484_bb0215) 2020; 8
Bai (10.1016/j.jelechem.2020.114484_bb0160) 2016; 9
Aurbach (10.1016/j.jelechem.2020.114484_bb0005) 2000; 147
Li (10.1016/j.jelechem.2020.114484_bb0080) 2019; 7
Li (10.1016/j.jelechem.2020.114484_bb0030) 2014; 254
Zhang (10.1016/j.jelechem.2020.114484_bb0065) 2018; 87
Shen (10.1016/j.jelechem.2020.114484_bb0090) 2018; 2
References_xml – volume: 277
  start-page: 116
  year: 2018
  end-page: 126
  ident: bb0050
  article-title: Insight into the effect of lithium-dendrite suppression by lithium bis(fluorosulfony) imide/1,2-dimethoxyethane electrolytes
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 5334
  year: 2006
  end-page: 5340
  ident: bb0140
  article-title: Dendrite short-circuit and fuse effect on Li/polymer/Li cells
  publication-title: Electrochim. Acta
– volume: 126
  start-page: 2047
  year: 1979
  end-page: 2051
  ident: bb0015
  article-title: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems - the solid electrolyte interphase model
  publication-title: J. Electrochem. Soc.
– volume: 271
  start-page: 291
  year: 2014
  end-page: 297
  ident: bb0180
  article-title: Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility
  publication-title: Power Sources
– volume: 8
  year: 2017
  ident: bb0195
  article-title: A reversible dendrite-free high-areal-capacity lithium metal electrode
  publication-title: Nat. Commun.
– year: 2017
  ident: bb0175
  article-title: 3D porous cu current collector/Li-metal composite anode for stable lithium-metal batteries
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 187
  year: 2019
  end-page: 196
  ident: bb0205
  article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
  publication-title: Nat. Energy
– volume: 148
  start-page: 405
  year: 2002
  end-page: 416
  ident: bb0010
  article-title: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
  publication-title: Solid State Ionics
– volume: 8
  start-page: 3999
  year: 2020
  ident: bb0215
  article-title: Separator-free and concentrated LiNO
  publication-title: Chem. A
– volume: 156
  start-page: A694
  year: 2019
  end-page: A702
  ident: bb0210
  article-title: On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries
  publication-title: J. Electrochem. Soc.
– volume: 87
  start-page: 27
  year: 2018
  end-page: 30
  ident: bb0065
  article-title: Lithium dendrite suppression and cycling efficiency of lithium anode
  publication-title: Electrochem. Commun.
– volume: 7
  start-page: 3391
  year: 2019
  end-page: 3398
  ident: bb0080
  article-title: Li
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 540
  year: 2019
  end-page: 550
  ident: bb0170
  article-title: Challenges and opportunities towards fast-charging battery materials
  publication-title: Nat. Energy
– start-page: 625
  year: 1990
  end-page: 638
  ident: bb0125
  article-title: The electrochemical behaviour of 1,3-dioxolane-LiClO
  publication-title: Electrochim. Acta
– year: 2017
  ident: bb0200
  article-title: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries
  publication-title: Adv. Funct. Mater.
– volume: 42
  start-page: 7355
  year: 1990
  end-page: 7367
  ident: bb0135
  article-title: Electrochemical aspects of the generation of ramified metallic electrodeposits
  publication-title: Phys. Rev. A
– volume: 9
  start-page: 3221
  year: 2016
  end-page: 3229
  ident: bb0160
  article-title: Transition of lithium growth mechanisms in liquid electrolytes
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 7
  ident: bb0190
  article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries
  publication-title: Energy
– volume: 147
  start-page: 1274
  year: 2000
  end-page: 1279
  ident: bb0005
  article-title: Factors which limit the cycle life of rechargeable lithium (metal) batteries
  publication-title: J. Electrochem. Soc.
– volume: 55
  start-page: 13951
  year: 2019
  end-page: 13954
  ident: bb0115
  article-title: Insight into the effect of additives widely used in lithium-sulfur batteries
  publication-title: Chem. Commun.
– volume: 7
  year: 2016
  ident: bb0055
  article-title: Stabilizing lithium metal using ionic liquids for long-lived batteries
  publication-title: Nat. Commun.
– volume: 4
  year: 2014
  ident: bb0185
  article-title: A highly reversible lithium metal anode
  publication-title: Sci. Rep.
– volume: 4
  start-page: 2613
  year: 2019
  end-page: 2622
  ident: bb0035
  article-title: New insight on the role of electrolyte additives in rechargeable lithium ion batteries
  publication-title: Acs Energy Lett.
– volume: 30
  start-page: 621
  year: 1977
  end-page: 623
  ident: bb0155
  article-title: Ionic conductivity in Li
  publication-title: Appl. Phys. Lett.
– volume: 6
  year: 2015
  ident: bb0045
  article-title: High rate and stable cycling of lithium metal anode
  publication-title: Nat. Commun.
– volume: 7
  start-page: 7163
  year: 2019
  end-page: 7170
  ident: bb0095
  article-title: Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide)
  publication-title: ACS Sustain. Chem. Eng.
– volume: 30
  start-page: 1801328
  year: 2018
  ident: bb0220
  article-title: Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes
  publication-title: Adv. Mater.
– start-page: 2(3)
  year: 2017
  ident: bb0060
  article-title: Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
  publication-title: Energy
– year: 2015
  ident: bb0100
  article-title: Flexible ion-conducting composite membranes for lithium batteries
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1674
  year: 2018
  end-page: 1689
  ident: bb0090
  article-title: Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes
  publication-title: Joule
– volume: 28
  start-page: 2324
  year: 1987
  end-page: 2328
  ident: bb0130
  article-title: Electrochemical measurement of transference numbers in polymer electrolytes
  publication-title: Polymer
– volume: 83
  start-page: 78
  year: 2012
  end-page: 86
  ident: bb0110
  article-title: Properties of surface film on lithium anode with LiNO
  publication-title: Acta
– volume: 2
  start-page: 1144
  year: 2015
  end-page: 1151
  ident: bb0150
  article-title: A solvate ionic liquid as the anolyte for aqueous rechargeable Li-O
  publication-title: Chemelectrochem
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  ident: bb0020
  article-title: Toward safe lithium metal anode in rechargeable batteries: a review
  publication-title: Chem. Rev.
– year: 2017
  ident: bb0025
  article-title: Reviving lithium-metal anodes for next-generation high-energy batteries
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1905940
  year: 2019
  ident: bb0225
  article-title: Controlling Li ion flux through materials innovation for dendrite-free lithium metal anodes
  publication-title: Adv. Funct. Mater.
– volume: 254
  start-page: 168
  year: 2014
  end-page: 182
  ident: bb0030
  article-title: A review of lithium deposition in lithium-ion and lithium metal secondary batteries
  publication-title: Power Sources
– volume: 28
  start-page: 447
  year: 2016
  end-page: 454
  ident: bb0075
  article-title: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide
  publication-title: Nano Energy
– volume: 51
  start-page: 59
  year: 2015
  end-page: 63
  ident: bb0120
  article-title: Vinylene carbonate-LiNO
  publication-title: Electrochem. Commun.
– volume: 17
  start-page: 8670
  year: 2015
  end-page: 8679
  ident: bb0165
  article-title: Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
  publication-title: Phys. Chem. Chem. Phys.
– volume: 39
  start-page: 262
  year: 2017
  end-page: 272
  ident: bb0105
  article-title: LiNO
  publication-title: Nano Energy
– volume: 136
  start-page: 7395
  year: 2014
  end-page: 7402
  ident: bb0070
  article-title: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1745
  year: 2014
  end-page: 1750
  ident: bb0040
  article-title: Visualization of electrode-electrolyte interfaces in LiPF
  publication-title: Nano Lett.
– volume: 39
  start-page: 507
  year: 1994
  end-page: 515
  ident: bb0145
  article-title: Experimental evidence for gravity induced motion in the vicinity of ramified electrodeposits
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 4190
  year: 2019
  ident: bb0085
  article-title: Correction: Li
  publication-title: J. Mater. Chem. A
– volume: 39
  start-page: 507
  issue: 4
  year: 1994
  ident: 10.1016/j.jelechem.2020.114484_bb0145
  article-title: Experimental evidence for gravity induced motion in the vicinity of ramified electrodeposits
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(94)80094-4
– volume: 55
  start-page: 13951
  issue: 93
  year: 2019
  ident: 10.1016/j.jelechem.2020.114484_bb0115
  article-title: Insight into the effect of additives widely used in lithium-sulfur batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06504K
– volume: 8
  start-page: 3999
  year: 2020
  ident: 10.1016/j.jelechem.2020.114484_bb0215
  article-title: Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10929C
– volume: 7
  year: 2016
  ident: 10.1016/j.jelechem.2020.114484_bb0055
  article-title: Stabilizing lithium metal using ionic liquids for long-lived batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11794
– volume: 29
  issue: 29
  year: 2017
  ident: 10.1016/j.jelechem.2020.114484_bb0025
  article-title: Reviving lithium-metal anodes for next-generation high-energy batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700007
– volume: 7
  start-page: 4190
  issue: 8
  year: 2019
  ident: 10.1016/j.jelechem.2020.114484_bb0085
  article-title: Correction: Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA90038A
– volume: 51
  start-page: 59
  year: 2015
  ident: 10.1016/j.jelechem.2020.114484_bb0120
  article-title: Vinylene carbonate-LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.12.008
– volume: 156
  start-page: A694
  issue: 8
  year: 2019
  ident: 10.1016/j.jelechem.2020.114484_bb0210
  article-title: On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3148721
– volume: 42
  start-page: 7355
  issue: 12
  year: 1990
  ident: 10.1016/j.jelechem.2020.114484_bb0135
  article-title: Electrochemical aspects of the generation of ramified metallic electrodeposits
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.42.7355
– volume: 87
  start-page: 27
  year: 2018
  ident: 10.1016/j.jelechem.2020.114484_bb0065
  article-title: Lithium dendrite suppression and cycling efficiency of lithium anode
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.12.012
– volume: 51
  start-page: 5334
  issue: 25
  year: 2006
  ident: 10.1016/j.jelechem.2020.114484_bb0140
  article-title: Dendrite short-circuit and fuse effect on Li/polymer/Li cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.02.004
– volume: 35
  start-page: 625
  issue: 3
  year: 1990
  ident: 10.1016/j.jelechem.2020.114484_bb0125
  article-title: The electrochemical behaviour of 1,3-dioxolane-LiClO4 solutions-I. Uncontaminated solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(90)87055-7
– volume: 28
  start-page: 2324
  issue: 13
  year: 1987
  ident: 10.1016/j.jelechem.2020.114484_bb0130
  article-title: Electrochemical measurement of transference numbers in polymer electrolytes
  publication-title: Polymer
  doi: 10.1016/0032-3861(87)90394-6
– volume: 8
  year: 2017
  ident: 10.1016/j.jelechem.2020.114484_bb0195
  article-title: A reversible dendrite-free high-areal-capacity lithium metal electrode
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1801328
  year: 2018
  ident: 10.1016/j.jelechem.2020.114484_bb0220
  article-title: Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801328
– start-page: 2(3)
  year: 2017
  ident: 10.1016/j.jelechem.2020.114484_bb0060
  article-title: Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
  publication-title: Nat. Energy
– volume: 83
  start-page: 78
  year: 2012
  ident: 10.1016/j.jelechem.2020.114484_bb0110
  article-title: Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.07.118
– volume: 136
  start-page: 7395
  issue: 20
  year: 2014
  ident: 10.1016/j.jelechem.2020.114484_bb0070
  article-title: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502133j
– volume: 117
  start-page: 10403
  issue: 15
  year: 2017
  ident: 10.1016/j.jelechem.2020.114484_bb0020
  article-title: Toward safe lithium metal anode in rechargeable batteries: a review
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 271
  start-page: 291
  year: 2014
  ident: 10.1016/j.jelechem.2020.114484_bb0180
  article-title: Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.08.011
– volume: 5
  issue: 14
  year: 2015
  ident: 10.1016/j.jelechem.2020.114484_bb0100
  article-title: Flexible ion-conducting composite membranes for lithium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500265
– volume: 14
  start-page: 1745
  issue: 4
  year: 2014
  ident: 10.1016/j.jelechem.2020.114484_bb0040
  article-title: Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM
  publication-title: Nano Lett.
  doi: 10.1021/nl403922u
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.jelechem.2020.114484_bb0190
  article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.114
– volume: 39
  start-page: 262
  year: 2017
  ident: 10.1016/j.jelechem.2020.114484_bb0105
  article-title: LiNO3-free electrolyte for Li-S battery: a solvent of choice with low K-sp of polysulfide and low dendrite of lithium
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.002
– volume: 27
  issue: 10
  year: 2017
  ident: 10.1016/j.jelechem.2020.114484_bb0200
  article-title: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605989
– volume: 9
  start-page: 3221
  issue: 10
  year: 2016
  ident: 10.1016/j.jelechem.2020.114484_bb0160
  article-title: Transition of lithium growth mechanisms in liquid electrolytes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01674J
– volume: 147
  start-page: 1274
  issue: 4
  year: 2000
  ident: 10.1016/j.jelechem.2020.114484_bb0005
  article-title: Factors which limit the cycle life of rechargeable lithium (metal) batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393349
– volume: 4
  start-page: 2613
  issue: 11
  year: 2019
  ident: 10.1016/j.jelechem.2020.114484_bb0035
  article-title: New insight on the role of electrolyte additives in rechargeable lithium ion batteries
  publication-title: Acs Energy Lett.
  doi: 10.1021/acsenergylett.9b01441
– volume: 29
  start-page: 1905940
  year: 2019
  ident: 10.1016/j.jelechem.2020.114484_bb0225
  article-title: Controlling Li ion flux through materials innovation for dendrite-free lithium metal anodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905940
– volume: 2
  start-page: 1144
  issue: 8
  year: 2015
  ident: 10.1016/j.jelechem.2020.114484_bb0150
  article-title: A solvate ionic liquid as the anolyte for aqueous rechargeable Li-O2 batteries
  publication-title: Chemelectrochem
  doi: 10.1002/celc.201500113
– volume: 7
  start-page: 3391
  issue: 7
  year: 2019
  ident: 10.1016/j.jelechem.2020.114484_bb0080
  article-title: Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11449H
– volume: 4
  start-page: 540
  issue: 7
  year: 2019
  ident: 10.1016/j.jelechem.2020.114484_bb0170
  article-title: Challenges and opportunities towards fast-charging battery materials
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0405-3
– volume: 4
  start-page: 187
  issue: 3
  year: 2019
  ident: 10.1016/j.jelechem.2020.114484_bb0205
  article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0312-z
– volume: 2
  start-page: 1674
  issue: 9
  year: 2018
  ident: 10.1016/j.jelechem.2020.114484_bb0090
  article-title: Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.021
– volume: 7
  start-page: 7163
  issue: 7
  year: 2019
  ident: 10.1016/j.jelechem.2020.114484_bb0095
  article-title: Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide)
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00143
– volume: 30
  start-page: 621
  issue: 12
  year: 1977
  ident: 10.1016/j.jelechem.2020.114484_bb0155
  article-title: Ionic conductivity in Li3N single crystals
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.89283
– volume: 4
  year: 2014
  ident: 10.1016/j.jelechem.2020.114484_bb0185
  article-title: A highly reversible lithium metal anode
  publication-title: Sci. Rep.
  doi: 10.1038/srep03815
– volume: 126
  start-page: 2047
  issue: 12
  year: 1979
  ident: 10.1016/j.jelechem.2020.114484_bb0015
  article-title: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems - the solid electrolyte interphase model
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2128859
– volume: 277
  start-page: 116
  year: 2018
  ident: 10.1016/j.jelechem.2020.114484_bb0050
  article-title: Insight into the effect of lithium-dendrite suppression by lithium bis(fluorosulfony) imide/1,2-dimethoxyethane electrolytes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.05.002
– volume: 27
  issue: 18
  year: 2017
  ident: 10.1016/j.jelechem.2020.114484_bb0175
  article-title: 3D porous cu current collector/Li-metal composite anode for stable lithium-metal batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606422
– volume: 254
  start-page: 168
  year: 2014
  ident: 10.1016/j.jelechem.2020.114484_bb0030
  article-title: A review of lithium deposition in lithium-ion and lithium metal secondary batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.099
– volume: 28
  start-page: 447
  year: 2016
  ident: 10.1016/j.jelechem.2020.114484_bb0075
  article-title: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.002
– volume: 148
  start-page: 405
  issue: 3–4
  year: 2002
  ident: 10.1016/j.jelechem.2020.114484_bb0010
  article-title: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00080-2
– volume: 17
  start-page: 8670
  issue: 14
  year: 2015
  ident: 10.1016/j.jelechem.2020.114484_bb0165
  article-title: Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05865H
– volume: 6
  year: 2015
  ident: 10.1016/j.jelechem.2020.114484_bb0045
  article-title: High rate and stable cycling of lithium metal anode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7362
SSID ssj0028812
Score 2.3931072
Snippet Commercialization of the LMBs is subject to two formidable technical challenges, the instability of Li metal against all the organic solvents, and the short...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114484
SubjectTerms Anodes
Commercialization
Cycles
Dendritic structure
Electrolyte
Electrolytes
Electrolytic cells
LiNO3
Lithium
Lithium battery
Lithium dendrite
Low currents
Passivity
Short circuits
Synergistic effect
Title The synergistic effect of lithium bis(fluorosulfonyl)imide and lithium nitrate for high-performance lithium metal anode
URI https://dx.doi.org/10.1016/j.jelechem.2020.114484
https://www.proquest.com/docview/2477270812
Volume 874
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2569
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028812
  issn: 1572-6657
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2569
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028812
  issn: 1572-6657
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2569
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028812
  issn: 1572-6657
  databaseCode: ACRLP
  dateStart: 19950103
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2569
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028812
  issn: 1572-6657
  databaseCode: AIKHN
  dateStart: 19950103
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2569
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028812
  issn: 1572-6657
  databaseCode: AKRWK
  dateStart: 19930115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QPOjF-Iwokj140EOBbrft9kiIBCVyUIncNmx3G0p4RSDGi7_dmb58JIaDp6bNTNvsPDc78w0hV6HPlRZ6ZBnla4uPImapMAJz16BexvWUk8w6fOh73QG_H7rDEmnnvTBYVpn5_tSnJ946e9LIVrOxjOPGk-36DM8NGOqpbSPsNqJ_gU7XP4oyDyZEeuIJdBZSf-sSntQnOGtmbLAjnSWwuVzwvwLUL1edxJ_OAdnPEkfaSv_tkJTM_IjstvN5bcfkDSROV-_Yy5eAL9O0VIMuIgqp9jjezKiKV9fRdLOAD2-mEdak38SzWBs6muuCCGwc4SMoZLMUwYyt5VdvQUE0M5C0A9tCmxMy6Nw-t7tWNlbBCh3eXFsGjNpF1HXbUwz8rhFYghoYbrgIPc1tP2LNUdOLIDNUthsGIWyyIKZx7QXME7ZzSsrzxdycEeooIxDwXjUjDZmNK3wjXK19BzY6SmmvQtx8LWWYYY7j6IupzIvLJjKXgUQZyFQGFdIo-JYp6sZWjiAXlfyhPxJCw1beai5bmVnwSjIO-w4fEiZ2_o9XX5A9vEur_6qkvH7dmEvIYtaqlqhpjey07nrdPl57jy-9T-On9Ms
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BO5QF8RRvPDDAENo4tuOOqKIqFLrQSmxWHTtqqr5EWyH-Pec8ykNCHVgTXxLlXp_lu-8ArqKQaSNN37M6NB7rx9TTUYzubtC8LBc6SGcdPndEq8ceX_nrBjSKXhhXVpnH_iymp9E6v1LN_2Z1liTVF5-H1J0bUGenvi82ocw4xuQSlO8e2q3Oat8lZXboiUs9J_CtUXh4O3TjZgbWNaXTlDmXSfZXjvoVrdMU1NyB7Rw7krvs83Zhw072oNIoRrbtwzsqncw_XDtfyr9MsmoNMo0Jou1BshwTncyv49Fyii9ejmJXln6TjBNjSX9iVovQzR2DBEFASxyfsTf7ai9YLRpbxO0oNjX2AHrN-26j5eWTFbwoYLWFZ9GvuSNe94WmGHqtdFWodcssk5EwzA9jWuvXRIzgUPs8qke4z8K0xoyoUyH94BBKk-nEHgEJtJWO817XYoPghsvQSm5MGOBeR2sjjoEX_1JFOe24m34xUkV92VAVOlBOByrTwTFUV3KzjHhjrUS9UJX6YUIKs8Na2bNCtyp34rmiDLceIWImevKPR19CpdV9flJPD532KWy5O1kx4BmUFm9Le46gZqEvcqP9BIif9dM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+synergistic+effect+of+lithium+bis%28fluorosulfonyl%29imide+and+lithium+nitrate+for+high-performance+lithium+metal+anode&rft.jtitle=Journal+of+electroanalytical+chemistry+%28Lausanne%2C+Switzerland%29&rft.au=Jin%2C+Han&rft.au=Liu%2C+Huayun&rft.au=Cheng%2C+Hao&rft.au=Zhang%2C+Peng&rft.date=2020-10-01&rft.issn=1572-6657&rft.volume=874&rft.spage=114484&rft_id=info:doi/10.1016%2Fj.jelechem.2020.114484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jelechem_2020_114484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-6657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-6657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-6657&client=summon