Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach
•We propose a multi-task multi-graph model to predict multi-ride-hailing demands.•Two methods, namely RCT and MLR, share knowledge for different prediction tasks.•We study the Manhattan dataset that contains both solo and shared rides.•The proposed model outperforms the state-of-art algorithms in pr...
Saved in:
Published in | Transportation research. Part C, Emerging technologies Vol. 127; p. 103063 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0968-090X 1879-2359 |
DOI | 10.1016/j.trc.2021.103063 |
Cover
Abstract | •We propose a multi-task multi-graph model to predict multi-ride-hailing demands.•Two methods, namely RCT and MLR, share knowledge for different prediction tasks.•We study the Manhattan dataset that contains both solo and shared rides.•The proposed model outperforms the state-of-art algorithms in prediction accuracy.
Ride-hailing platforms generally provide various service options to customers, such as solo ride services, shared ride services, etc. It is generally expected that demands for different service modes are correlated, and the prediction of demand for one service mode can benefit from historical observations of demands for other service modes. Moreover, an accurate joint prediction of demands for multiple service modes can help the platforms better allocate and dispatch vehicle resources. Although there is a large stream of literature on ride-hailing demand predictions for one specific service mode, few efforts have been paid towards joint predictions of ride-hailing demands for multiple service modes. To address this issue, we propose a deep multi-task multi-graph learning approach, which combines two components: (1) multiple multi-graph convolutional (MGC) networks for predicting demands for different service modes, and (2) multi-task learning modules that enable knowledge sharing across multiple MGC networks. More specifically, two multi-task learning structures are established. The first one is the regularized cross-task learning, which builds cross-task connections among the inputs and outputs of multiple MGC networks. The second one is the multi-linear relationship learning, which imposes a prior tensor normal distribution on the weights of various MGC networks. Although there are no concrete bridges between different MGC networks, the weights of these networks are constrained by each other and subject to a common prior distribution. Evaluated with the for-hire-vehicle datasets in Manhattan, we show that our proposed approach outperforms the benchmark algorithms in prediction accuracy for different ride-hailing modes. |
---|---|
AbstractList | •We propose a multi-task multi-graph model to predict multi-ride-hailing demands.•Two methods, namely RCT and MLR, share knowledge for different prediction tasks.•We study the Manhattan dataset that contains both solo and shared rides.•The proposed model outperforms the state-of-art algorithms in prediction accuracy.
Ride-hailing platforms generally provide various service options to customers, such as solo ride services, shared ride services, etc. It is generally expected that demands for different service modes are correlated, and the prediction of demand for one service mode can benefit from historical observations of demands for other service modes. Moreover, an accurate joint prediction of demands for multiple service modes can help the platforms better allocate and dispatch vehicle resources. Although there is a large stream of literature on ride-hailing demand predictions for one specific service mode, few efforts have been paid towards joint predictions of ride-hailing demands for multiple service modes. To address this issue, we propose a deep multi-task multi-graph learning approach, which combines two components: (1) multiple multi-graph convolutional (MGC) networks for predicting demands for different service modes, and (2) multi-task learning modules that enable knowledge sharing across multiple MGC networks. More specifically, two multi-task learning structures are established. The first one is the regularized cross-task learning, which builds cross-task connections among the inputs and outputs of multiple MGC networks. The second one is the multi-linear relationship learning, which imposes a prior tensor normal distribution on the weights of various MGC networks. Although there are no concrete bridges between different MGC networks, the weights of these networks are constrained by each other and subject to a common prior distribution. Evaluated with the for-hire-vehicle datasets in Manhattan, we show that our proposed approach outperforms the benchmark algorithms in prediction accuracy for different ride-hailing modes. |
ArticleNumber | 103063 |
Author | Ke, Jintao Feng, Siyuan Ye, Jieping Yang, Hai Zhu, Zheng |
Author_xml | – sequence: 1 givenname: Jintao surname: Ke fullname: Ke, Jintao organization: Department of Logistic and Maritime Studies, Hong Kong Polytechnic University, Kowloon, Hong Kong, China – sequence: 2 givenname: Siyuan surname: Feng fullname: Feng, Siyuan organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China – sequence: 3 givenname: Zheng surname: Zhu fullname: Zhu, Zheng email: zhuzheng@ust.hk organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China – sequence: 4 givenname: Hai surname: Yang fullname: Yang, Hai organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China – sequence: 5 givenname: Jieping surname: Ye fullname: Ye, Jieping organization: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States |
BookMark | eNp9kE1LAzEQhoNUsFV_gLf9A1uz2Y80eirFTwpeFLyF2clsm7pfJFHw35vSnjz0NDPwPgPvM2OTfuiJsZuMzzOeVbe7eXA4F1xk8c55lZ-xabaQKhV5qSZsylW1SLninxds5v2Oc56pUk5Z-zrYPiSjI2Mx2KH3ydAk3XcbbNoNBtrEWUPpFmxr-01iqIPe-LtkGVcaj8EA_uu4bhyM26QlcH3MpzV4MgmMoxsAt1fsvIHW0_VxXrKPx4f31XO6fnt6WS3XKeYFDynWUJSKFlSJqsiLoiqBlBRSARoJShhDApFqEFxiA4QyDl5jiUJyky_ySyYPf9EN3jtqNNoA-3bBxSI643ovTe90lKb30vRBWiSzf-TobAfu9yRzf2AoVvqx5LRHSz1Go44waDPYE_Qfgu-JkQ |
CitedBy_id | crossref_primary_10_1016_j_physa_2024_129632 crossref_primary_10_1109_ACCESS_2022_3222561 crossref_primary_10_1016_j_trc_2022_103611 crossref_primary_10_3390_su14074083 crossref_primary_10_48130_DTS_2023_0002 crossref_primary_10_1007_s42421_023_00075_w crossref_primary_10_1016_j_trc_2023_104428 crossref_primary_10_1109_TITS_2023_3297948 crossref_primary_10_1016_j_ins_2024_121095 crossref_primary_10_1016_j_compenvurbsys_2022_101914 crossref_primary_10_1016_j_trc_2023_104220 crossref_primary_10_1109_TITS_2023_3325936 crossref_primary_10_1016_j_commtr_2022_100075 crossref_primary_10_1016_j_tre_2024_103822 crossref_primary_10_1109_ACCESS_2022_3172341 crossref_primary_10_1145_3565578 crossref_primary_10_1016_j_trc_2022_103731 crossref_primary_10_1109_OJITS_2022_3163180 crossref_primary_10_1016_j_multra_2022_100038 crossref_primary_10_1093_tse_tdad026 crossref_primary_10_1016_j_ins_2022_11_138 crossref_primary_10_1080_13658816_2023_2203218 crossref_primary_10_1016_j_trc_2022_103908 crossref_primary_10_1109_TITS_2023_3257759 crossref_primary_10_1155_2023_4427638 crossref_primary_10_1109_TITS_2022_3172420 crossref_primary_10_3390_electronics11060861 crossref_primary_10_1016_j_trc_2023_104331 crossref_primary_10_3390_electronics10202480 crossref_primary_10_1140_epjs_s11734_022_00551_4 crossref_primary_10_1109_TITS_2023_3312224 crossref_primary_10_1109_TITS_2024_3364759 crossref_primary_10_1109_TITS_2022_3221370 crossref_primary_10_1016_j_physa_2022_127550 crossref_primary_10_1016_j_inffus_2024_102576 crossref_primary_10_1109_TITS_2023_3345174 crossref_primary_10_1007_s10489_021_03047_1 crossref_primary_10_1016_j_tre_2024_103566 crossref_primary_10_1109_TSP_2023_3259144 crossref_primary_10_1016_j_aei_2024_102533 crossref_primary_10_1109_TITS_2024_3443341 crossref_primary_10_1109_ACCESS_2024_3355034 crossref_primary_10_1016_j_commtr_2022_100058 crossref_primary_10_3390_su16052065 crossref_primary_10_1016_j_ins_2023_119144 crossref_primary_10_1016_j_inffus_2024_102606 crossref_primary_10_1016_j_trc_2021_103352 crossref_primary_10_1109_TITS_2023_3235805 crossref_primary_10_1007_s00521_022_07977_w crossref_primary_10_3390_ijgi12030100 crossref_primary_10_1016_j_trc_2024_104895 crossref_primary_10_1016_j_multra_2024_100166 crossref_primary_10_1109_TITS_2023_3308903 crossref_primary_10_1016_j_trc_2022_103960 crossref_primary_10_1109_MITS_2023_3315329 crossref_primary_10_1109_TITS_2024_3373565 crossref_primary_10_1080_01441647_2023_2171151 |
Cites_doi | 10.1016/j.trc.2019.08.019 10.1016/j.artint.2018.03.002 10.1016/j.trc.2019.05.037 10.1016/S0968-090X(01)00004-3 10.1109/TITS.2016.2611644 10.3141/1617-23 10.1061/(ASCE)0733-947X(2006)132:2(114) 10.1109/TITS.2006.869623 10.1016/j.trc.2020.102626 10.1016/j.jmva.2011.05.015 10.3390/s17071501 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TITS.2017.2755684 10.1061/(ASCE)0733-947X(1995)121:3(249) 10.1109/ICSMC.2006.385244 10.1371/journal.pone.0119044 10.1016/0191-2615(84)90002-X 10.1061/9780784413616.231 10.3390/rs11111265 10.1080/15472450.2013.836929 10.1109/TITS.2004.837813 10.1145/3159652.3159682 10.1016/j.trc.2017.10.016 10.1016/j.trc.2014.03.016 10.1145/2996913.2997016 10.1002/atr.1392 10.1016/j.trc.2009.11.001 10.1023/A:1010933404324 10.1214/aos/1013203451 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.trc.2021.103063 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2359 |
ExternalDocumentID | 10_1016_j_trc_2021_103063 S0968090X21000905 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c340t-cba459e8e626434465ae97279acd7a92dde2cceba207cfaec77cf0bc5c270d383 |
IEDL.DBID | .~1 |
ISSN | 0968-090X |
IngestDate | Tue Jul 01 01:45:13 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Fri Feb 23 02:45:34 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ride-hailing Deep multi-task learning Demand prediction Multi-graph convolutional network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-cba459e8e626434465ae97279acd7a92dde2cceba207cfaec77cf0bc5c270d383 |
OpenAccessLink | http://hdl.handle.net/10397/94209 |
ParticipantIDs | crossref_citationtrail_10_1016_j_trc_2021_103063 crossref_primary_10_1016_j_trc_2021_103063 elsevier_sciencedirect_doi_10_1016_j_trc_2021_103063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Transportation research. Part C, Emerging technologies |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yao, Wu, Ke, Tang, Jia, Lu, Gong, Ye, Li (b0180) 2018 Yao, Tang, Wei, Zheng, Li (b0175) 2019 Okutani, Stephanedes (b0135) 1984; 18 Zhang, Y., Yang, Q., 2017. A survey on multi-task learning. arXiv preprint arXiv:1707.08114. Tak, S., Kim, S., Jang, K., Yeo, H., 2014. Real-time travel time prediction using multi-level k-nearest neighbor algorithm and data fusion method. In: Computing in Civil and Building Engineering (2014), pp. 1861–1868. Geng, Li, Wang, Zhang, Yang, Ye, Liu (b0040) 2019 Kamarianakis, Gao, Prastacos (b0060) 2010; 18 Lavieri, Bhat (b0085) 2019; 105 Park, D., Rilett, L.R., 1998. Forecasting multiple-period freeway link travel times using modular neural networks. Transp. Res. Rec. 1617(1), 163–170. Zheng, W., Lee, D.-H., Shi, Q., 2006. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transp. Eng. 132(2), 114–121. Wu, C.-H., Ho, J.-M., Lee, D.-T., 2004. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281. Battifarano, Qian (b0010) 2019; 107 Mao, Liu, Shen (b0120) 2020; 115 Ni, M., He, Q., Gao, J., 2016. Forecasting the subway passenger flow under event occurrences with social media. IEEE Trans. Intell. Transp. Syst. 18(6), 1623–1632. Levin, M., Tsao, Y.-D., 1980. On forecasting freeway occupancies and volumes (abridgment). Transp. Res. Rec. (773). Zhou, X., Shen, Y., Zhu, Y., Huang, L., 2018. Predicting multi-step citywide passenger demands using attention-based neural networks. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, pp. 736–744. Ke, Yang, Zheng, Chen, Jia, Gong, Ye (b0065) 2018 Lin, Zhao, Xu, Zhou (b0095) 2018 Long, M., Cao, Z., Wang, J., Philip, S.Y., 2017. Learning multiple tasks with multilinear relationship networks. In: Advances in neural information processing systems, pp. 1594–1603. Zhu, Z., Peng, B., Xiong, C., Zhang, L., 2016. Short-term traffic flow prediction with linear conditional gaussian bayesian network. J. Adv. Transp. 50(6), 1111–1123. Lu, Zhou (b0110) 2014; 18 Ohlson, Ahmad, Von Rosen (b0130) 2013; 113 Wu, Y., Tan, H., 2016. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022. Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in neural information processing systems, pp. 3844–3852. Sun, S., Zhang, C., Yu, G., 2006. A bayesian network approach to traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 7(1), 124–132. Zhang, Liu, Zheng (b0205) 2019 Chen, Guestrin (b0025) 2016 Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. Liu, Qiu, Li, Wang, Ouyang, Lin (b0100) 2019 Ma, Yu, Wang, Wang (b0115) 2015; 10 Ahmed, M.S., Cook, A.R., 1979. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Number 722. Billings, D., Yang, J.-S., 2006. Application of the arima models to urban roadway travel time prediction-a case study. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, vol. 3. IEEE, pp. 2529–2534. Yu, H., Wu, Z., Wang, S., Wang, Y., Ma, X., 2017. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors 17(7), 1501. Kuang, L., Yan, X., Tan, X., Li, S., Yang, X., 2019. Predicting taxi demand based on 3d convolutional neural network and multi-task learning. Remote Sens. 11 (11), 1265. Xu, Rahmatizadeh, Bölöni, Turgut (b0170) 2017; 19 Zhang, Zheng, Qi, Li, Yi, Li (b0200) 2018; 259 Zhu, Tang, Xiong, Chen, Zhang (b0235) 2019; 7 Ke, Zheng, Yang, Chen (b0070) 2017; 85 Tibshirani (b0155) 1996; 58 Hamed, Al-Masaeid, Said (b0050) 1995; 121 Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., 2016. Dnn-based prediction model for spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, pp. 92. Geng, X., Wu, X., Zhang, L., Yang, Q., Liu, Y., Ye, J., 2019b. Multi-modal graph interaction for multi-graph convolution network in urban spatiotemporal forecasting. arXiv preprint arXiv:1905.11395. Yin, Wong, Xu, Wong (b0185) 2002; 10 Zhu, Sun, Chen, Yang (b0230) 2021; 124 Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232. Breiman (b0020) 2001; 45 Jiang, Zhang, Chen (b0055) 2014; 44 Jiang (10.1016/j.trc.2021.103063_b0055) 2014; 44 10.1016/j.trc.2021.103063_b0105 Zhang (10.1016/j.trc.2021.103063_b0200) 2018; 259 10.1016/j.trc.2021.103063_b0005 10.1016/j.trc.2021.103063_b0225 10.1016/j.trc.2021.103063_b0125 Zhang (10.1016/j.trc.2021.103063_b0205) 2019 Zhu (10.1016/j.trc.2021.103063_b0235) 2019; 7 Chen (10.1016/j.trc.2021.103063_b0025) 2016 Lin (10.1016/j.trc.2021.103063_b0095) 2018 Lu (10.1016/j.trc.2021.103063_b0110) 2014; 18 10.1016/j.trc.2021.103063_b0140 10.1016/j.trc.2021.103063_b0145 10.1016/j.trc.2021.103063_b0045 10.1016/j.trc.2021.103063_b0165 10.1016/j.trc.2021.103063_b0220 Hamed (10.1016/j.trc.2021.103063_b0050) 1995; 121 10.1016/j.trc.2021.103063_b0090 Battifarano (10.1016/j.trc.2021.103063_b0010) 2019; 107 Kamarianakis (10.1016/j.trc.2021.103063_b0060) 2010; 18 Zhu (10.1016/j.trc.2021.103063_b0230) 2021; 124 10.1016/j.trc.2021.103063_b0190 Xu (10.1016/j.trc.2021.103063_b0170) 2017; 19 10.1016/j.trc.2021.103063_b0215 Yao (10.1016/j.trc.2021.103063_b0180) 2018 10.1016/j.trc.2021.103063_b0015 Okutani (10.1016/j.trc.2021.103063_b0135) 1984; 18 Ma (10.1016/j.trc.2021.103063_b0115) 2015; 10 Geng (10.1016/j.trc.2021.103063_b0040) 2019 10.1016/j.trc.2021.103063_b0075 10.1016/j.trc.2021.103063_b0030 10.1016/j.trc.2021.103063_b0195 10.1016/j.trc.2021.103063_b0150 Breiman (10.1016/j.trc.2021.103063_b0020) 2001; 45 10.1016/j.trc.2021.103063_b0035 Lavieri (10.1016/j.trc.2021.103063_b0085) 2019; 105 10.1016/j.trc.2021.103063_b0210 Tibshirani (10.1016/j.trc.2021.103063_b0155) 1996; 58 Liu (10.1016/j.trc.2021.103063_b0100) 2019 10.1016/j.trc.2021.103063_b0160 10.1016/j.trc.2021.103063_b0080 Yao (10.1016/j.trc.2021.103063_b0175) 2019 Ohlson (10.1016/j.trc.2021.103063_b0130) 2013; 113 Yin (10.1016/j.trc.2021.103063_b0185) 2002; 10 Mao (10.1016/j.trc.2021.103063_b0120) 2020; 115 Ke (10.1016/j.trc.2021.103063_b0065) 2018 Ke (10.1016/j.trc.2021.103063_b0070) 2017; 85 |
References_xml | – reference: Park, D., Rilett, L.R., 1998. Forecasting multiple-period freeway link travel times using modular neural networks. Transp. Res. Rec. 1617(1), 163–170. – reference: Billings, D., Yang, J.-S., 2006. Application of the arima models to urban roadway travel time prediction-a case study. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, vol. 3. IEEE, pp. 2529–2534. – start-page: 785 year: 2016 end-page: 794 ident: b0025 article-title: Xgboost: A scalable tree boosting system publication-title: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining – start-page: 1774 year: 2018 end-page: 1783 ident: b0095 article-title: Efficient large-scale fleet management via multi-agent deep reinforcement learning publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – reference: Long, M., Cao, Z., Wang, J., Philip, S.Y., 2017. Learning multiple tasks with multilinear relationship networks. In: Advances in neural information processing systems, pp. 1594–1603. – reference: Yu, H., Wu, Z., Wang, S., Wang, Y., Ma, X., 2017. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors 17(7), 1501. – volume: 19 start-page: 2572 year: 2017 end-page: 2581 ident: b0170 article-title: Real-time prediction of taxi demand using recurrent neural networks publication-title: IEEE Trans. Intell. Transp. Syst. – reference: Geng, X., Wu, X., Zhang, L., Yang, Q., Liu, Y., Ye, J., 2019b. Multi-modal graph interaction for multi-graph convolution network in urban spatiotemporal forecasting. arXiv preprint arXiv:1905.11395. – year: 2018 ident: b0065 article-title: Hexagon-based convolutional neural network for supply-demand forecasting of ride-sourcing services publication-title: IEEE Trans. Intell. Transp. Syst. – reference: Ni, M., He, Q., Gao, J., 2016. Forecasting the subway passenger flow under event occurrences with social media. IEEE Trans. Intell. Transp. Syst. 18(6), 1623–1632. – reference: Levin, M., Tsao, Y.-D., 1980. On forecasting freeway occupancies and volumes (abridgment). Transp. Res. Rec. (773). – volume: 18 start-page: 309 year: 2014 end-page: 322 ident: b0110 article-title: Short-term highway traffic state prediction using structural state space models publication-title: J. Intell. Transp. Syst. – reference: Wu, C.-H., Ho, J.-M., Lee, D.-T., 2004. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281. – reference: Zhu, Z., Peng, B., Xiong, C., Zhang, L., 2016. Short-term traffic flow prediction with linear conditional gaussian bayesian network. J. Adv. Transp. 50(6), 1111–1123. – reference: Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232. – volume: 105 start-page: 100 year: 2019 end-page: 125 ident: b0085 article-title: Investigating objective and subjective factors influencing the adoption, frequency, and characteristics of ride-hailing trips publication-title: Transp. Res. Part C: Emerg. Technol. – reference: Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in neural information processing systems, pp. 3844–3852. – volume: 259 start-page: 147 year: 2018 end-page: 166 ident: b0200 article-title: Predicting citywide crowd flows using deep spatio-temporal residual networks publication-title: Artif. Intell. – reference: Wu, Y., Tan, H., 2016. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022. – volume: 121 start-page: 249 year: 1995 end-page: 254 ident: b0050 article-title: Short-term prediction of traffic volume in urban arterials publication-title: J. Transp. Eng. – reference: Sun, S., Zhang, C., Yu, G., 2006. A bayesian network approach to traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 7(1), 124–132. – volume: 18 start-page: 821 year: 2010 end-page: 840 ident: b0060 article-title: Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions publication-title: Transp. Res. Part C: Emerg. Technol. – reference: Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. – reference: Ahmed, M.S., Cook, A.R., 1979. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Number 722. – volume: 124 year: 2021 ident: b0230 article-title: Integrating probabilistic tensor factorization with bayesian supervised learning for dynamic ridesharing pattern analysis publication-title: Transp. Res. Part C: Emerg. Technol. – reference: Zhou, X., Shen, Y., Zhu, Y., Huang, L., 2018. Predicting multi-step citywide passenger demands using attention-based neural networks. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, pp. 736–744. – volume: 10 year: 2015 ident: b0115 article-title: Large-scale transportation network congestion evolution prediction using deep learning theory publication-title: PloS One – volume: 107 start-page: 444 year: 2019 end-page: 462 ident: b0010 article-title: Predicting real-time surge pricing of ride-sourcing companies publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 18 start-page: 1 year: 1984 end-page: 11 ident: b0135 article-title: Dynamic prediction of traffic volume through kalman filtering theory publication-title: Transp. Res. Part B: Methodol. – volume: 10 start-page: 85 year: 2002 end-page: 98 ident: b0185 article-title: Urban traffic flow prediction using a fuzzy-neural approach publication-title: Transp. Res. Part C: Emerg. Technol. – reference: Zhang, Y., Yang, Q., 2017. A survey on multi-task learning. arXiv preprint arXiv:1707.08114. – year: 2019 ident: b0100 article-title: Contextualized spatial-temporal network for taxi origin-destination demand prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 44 start-page: 110 year: 2014 end-page: 127 ident: b0055 article-title: Short-term forecasting of high-speed rail demand: A hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China publication-title: Transp. Res. Part C Emerg. Technol. – volume: 7 start-page: 684 year: 2019 end-page: 706 ident: b0235 article-title: The conditional probability of travel speed and its application to short-term prediction publication-title: Transp. B: Transp. Dyn. – reference: Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., 2016. Dnn-based prediction model for spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, pp. 92. – reference: Zheng, W., Lee, D.-H., Shi, Q., 2006. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transp. Eng. 132(2), 114–121. – reference: Kuang, L., Yan, X., Tan, X., Li, S., Yang, X., 2019. Predicting taxi demand based on 3d convolutional neural network and multi-task learning. Remote Sens. 11 (11), 1265. – volume: 115 year: 2020 ident: b0120 article-title: Dispatch of autonomous vehicles for taxi services: A deep reinforcement learning approach publication-title: Transp. Res. Part C: Emerg. Technol. – reference: Tak, S., Kim, S., Jang, K., Yeo, H., 2014. Real-time travel time prediction using multi-level k-nearest neighbor algorithm and data fusion method. In: Computing in Civil and Building Engineering (2014), pp. 1861–1868. – year: 2019 ident: b0175 article-title: Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction publication-title: AAAI Conference on Artificial Intelligence – year: 2019 ident: b0040 article-title: Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting publication-title: 2019 AAAI Conference on Artificial Intelligence (AAAI’19) – volume: 113 start-page: 37 year: 2013 end-page: 47 ident: b0130 article-title: The multilinear normal distribution: Introduction and some basic properties publication-title: J. Multivariate Anal. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b0155 article-title: Regression shrinkage and selection via the lasso publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.) – year: 2018 ident: b0180 article-title: Deep multi-view spatial-temporal network for taxi demand prediction publication-title: Thirty-Second AAAI Conference on Artificial Intelligence – volume: 85 start-page: 591 year: 2017 end-page: 608 ident: b0070 article-title: Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach publication-title: Transp. Res. Part C: Emerg. Technol. – year: 2019 ident: b0205 article-title: Short-term prediction of passenger demand in multi-zone level: Temporal convolutional neural network with multi-task learning publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0020 article-title: Random forests publication-title: Mach. Learn. – volume: 107 start-page: 444 year: 2019 ident: 10.1016/j.trc.2021.103063_b0010 article-title: Predicting real-time surge pricing of ride-sourcing companies publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2019.08.019 – volume: 259 start-page: 147 year: 2018 ident: 10.1016/j.trc.2021.103063_b0200 article-title: Predicting citywide crowd flows using deep spatio-temporal residual networks publication-title: Artif. Intell. doi: 10.1016/j.artint.2018.03.002 – ident: 10.1016/j.trc.2021.103063_b0105 – year: 2019 ident: 10.1016/j.trc.2021.103063_b0040 article-title: Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting – volume: 105 start-page: 100 year: 2019 ident: 10.1016/j.trc.2021.103063_b0085 article-title: Investigating objective and subjective factors influencing the adoption, frequency, and characteristics of ride-hailing trips publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2019.05.037 – ident: 10.1016/j.trc.2021.103063_b0075 – volume: 10 start-page: 85 issue: 2 year: 2002 ident: 10.1016/j.trc.2021.103063_b0185 article-title: Urban traffic flow prediction using a fuzzy-neural approach publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/S0968-090X(01)00004-3 – ident: 10.1016/j.trc.2021.103063_b0125 doi: 10.1109/TITS.2016.2611644 – ident: 10.1016/j.trc.2021.103063_b0140 doi: 10.3141/1617-23 – ident: 10.1016/j.trc.2021.103063_b0090 – ident: 10.1016/j.trc.2021.103063_b0215 doi: 10.1061/(ASCE)0733-947X(2006)132:2(114) – ident: 10.1016/j.trc.2021.103063_b0030 – ident: 10.1016/j.trc.2021.103063_b0145 doi: 10.1109/TITS.2006.869623 – volume: 115 year: 2020 ident: 10.1016/j.trc.2021.103063_b0120 article-title: Dispatch of autonomous vehicles for taxi services: A deep reinforcement learning approach publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2020.102626 – volume: 113 start-page: 37 year: 2013 ident: 10.1016/j.trc.2021.103063_b0130 article-title: The multilinear normal distribution: Introduction and some basic properties publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2011.05.015 – ident: 10.1016/j.trc.2021.103063_b0190 doi: 10.3390/s17071501 – volume: 124 issue: 102916 year: 2021 ident: 10.1016/j.trc.2021.103063_b0230 article-title: Integrating probabilistic tensor factorization with bayesian supervised learning for dynamic ridesharing pattern analysis publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.trc.2021.103063_b0155 article-title: Regression shrinkage and selection via the lasso publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 19 start-page: 2572 issue: 8 year: 2017 ident: 10.1016/j.trc.2021.103063_b0170 article-title: Real-time prediction of taxi demand using recurrent neural networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2755684 – volume: 121 start-page: 249 issue: 3 year: 1995 ident: 10.1016/j.trc.2021.103063_b0050 article-title: Short-term prediction of traffic volume in urban arterials publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)0733-947X(1995)121:3(249) – ident: 10.1016/j.trc.2021.103063_b0210 – ident: 10.1016/j.trc.2021.103063_b0015 doi: 10.1109/ICSMC.2006.385244 – volume: 10 issue: 3 year: 2015 ident: 10.1016/j.trc.2021.103063_b0115 article-title: Large-scale transportation network congestion evolution prediction using deep learning theory publication-title: PloS One doi: 10.1371/journal.pone.0119044 – volume: 18 start-page: 1 issue: 1 year: 1984 ident: 10.1016/j.trc.2021.103063_b0135 article-title: Dynamic prediction of traffic volume through kalman filtering theory publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/0191-2615(84)90002-X – ident: 10.1016/j.trc.2021.103063_b0150 doi: 10.1061/9780784413616.231 – ident: 10.1016/j.trc.2021.103063_b0045 – year: 2018 ident: 10.1016/j.trc.2021.103063_b0065 article-title: Hexagon-based convolutional neural network for supply-demand forecasting of ride-sourcing services – ident: 10.1016/j.trc.2021.103063_b0080 doi: 10.3390/rs11111265 – year: 2019 ident: 10.1016/j.trc.2021.103063_b0100 article-title: Contextualized spatial-temporal network for taxi origin-destination demand prediction – volume: 18 start-page: 309 issue: 3 year: 2014 ident: 10.1016/j.trc.2021.103063_b0110 article-title: Short-term highway traffic state prediction using structural state space models publication-title: J. Intell. Transp. Syst. doi: 10.1080/15472450.2013.836929 – ident: 10.1016/j.trc.2021.103063_b0160 doi: 10.1109/TITS.2004.837813 – ident: 10.1016/j.trc.2021.103063_b0220 doi: 10.1145/3159652.3159682 – volume: 85 start-page: 591 year: 2017 ident: 10.1016/j.trc.2021.103063_b0070 article-title: Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2017.10.016 – start-page: 1774 year: 2018 ident: 10.1016/j.trc.2021.103063_b0095 article-title: Efficient large-scale fleet management via multi-agent deep reinforcement learning – volume: 44 start-page: 110 year: 2014 ident: 10.1016/j.trc.2021.103063_b0055 article-title: Short-term forecasting of high-speed rail demand: A hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2014.03.016 – ident: 10.1016/j.trc.2021.103063_b0195 doi: 10.1145/2996913.2997016 – year: 2018 ident: 10.1016/j.trc.2021.103063_b0180 article-title: Deep multi-view spatial-temporal network for taxi demand prediction – ident: 10.1016/j.trc.2021.103063_b0165 – ident: 10.1016/j.trc.2021.103063_b0225 doi: 10.1002/atr.1392 – volume: 18 start-page: 821 issue: 5 year: 2010 ident: 10.1016/j.trc.2021.103063_b0060 article-title: Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2009.11.001 – ident: 10.1016/j.trc.2021.103063_b0005 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.trc.2021.103063_b0020 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: 10.1016/j.trc.2021.103063_b0035 doi: 10.1214/aos/1013203451 – volume: 7 start-page: 684 issue: 1 year: 2019 ident: 10.1016/j.trc.2021.103063_b0235 article-title: The conditional probability of travel speed and its application to short-term prediction publication-title: Transp. B: Transp. Dyn. – start-page: 785 year: 2016 ident: 10.1016/j.trc.2021.103063_b0025 article-title: Xgboost: A scalable tree boosting system – year: 2019 ident: 10.1016/j.trc.2021.103063_b0175 article-title: Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction – year: 2019 ident: 10.1016/j.trc.2021.103063_b0205 article-title: Short-term prediction of passenger demand in multi-zone level: Temporal convolutional neural network with multi-task learning |
SSID | ssj0001957 |
Score | 2.5866208 |
Snippet | •We propose a multi-task multi-graph model to predict multi-ride-hailing demands.•Two methods, namely RCT and MLR, share knowledge for different prediction... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103063 |
SubjectTerms | Deep multi-task learning Demand prediction Multi-graph convolutional network Ride-hailing |
Title | Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach |
URI | https://dx.doi.org/10.1016/j.trc.2021.103063 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Sciencedirect - Freedom Collection customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIABQQFRHpUHJiRTx3mzVRVVKaILVMoW-RUItEmUhpXfjp04UCRgYIoT3UXR5XQP391nAC4sHni2JLrI6kukQmqBlJezkMCJSwWzhcf07PD9zJvMnWnkRh0wamdhdFulsf2NTa-ttXkyMNIcFGk6eFDBd4BDHBG9RR3WOKYa_Uvp9NX7V5uHFTZon4pY70lEbWWz7vGqSo1iSCw9eo49-2fftOZvxntg1wSKcNh8yz7oyKwLtto54lUX7KxBCR6AxTRPswoWpS681LoE8wTW7YJomQv1pjIVEj3TVM-fQyGXesb3Gg7VUhaGsKKrV7OsgayhOVPiCWlnJ2ALQH4I5uObx9EEmZMUELcdXCHOqOOGMpAqfXFsLSUqQxW5hJQLn4ZE2TjCuWSUYJ8nVHJfXTDjLic-FiqJPQIbWZ7JYwDtIGEqSSMcO74jsM84kzZLqOtzW1BMegC3Moy5gRnXp10s4raf7CVWYo-12ONG7D1w-clSNBgbfxE77Y-JvylKrHzA72wn_2M7Bdv6rukNOwMbVfkmz1UUUrF-rWZ9sDm8vZvMPgCJOt1Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QOKAHo6gRn3vwZLJh2b6oN0IkyOsiJNyafVWrvAL1_7vbbgkm6sFTN-1M00wn89iZ-RbgvilavqOoKbIGCuuQWmLt5ZpYkthjkjvS52Z2eDT2e1O3P_NmJegUszCmrdLa_tymZ9ba3mlYaTbWSdJ40cF3i4RkRs0WdWhwTCuup21yGSrt50FvvDPIzTAH_NT0ZltiVhQ3szavdGOADGnTTJ8T3_nZPe25nO4xHNlYEbXzzzmBklrWoFqMEm9rcLiHJngK8_4qWaZovTG1l0yd0CpGWccgXqykftMmkQq_scSMoCOpFmbM9xG19VKtLWHKth92mWFZI3usxCs2_k6iAoP8DKbdp0mnh-1hClg4Lkmx4Mz1QtVSOoNxHQOTxlSog5eQCRmwkGozR4VQnFESiJgpEegL4cITNCBS57HnUF6uluoCkNOKuc7TqCBu4EoScMGVw2PmBcKRjNA6kEKGkbBI4-bAi3lUtJS9R1rskRF7lIu9Dg87lnUOs_EXsVv8mOibrkTaDfzOdvk_tjuo9iajYTR8Hg-u4MA8yVvFrqGcbj7VjQ5KUn5rle4LGGbf-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+predictions+of+multi-modal+ride-hailing+demands%3A+A+deep+multi-task+multi-graph+learning-based+approach&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Ke%2C+Jintao&rft.au=Feng%2C+Siyuan&rft.au=Zhu%2C+Zheng&rft.au=Yang%2C+Hai&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=127&rft_id=info:doi/10.1016%2Fj.trc.2021.103063&rft.externalDocID=S0968090X21000905 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |