Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach

•We propose a multi-task multi-graph model to predict multi-ride-hailing demands.•Two methods, namely RCT and MLR, share knowledge for different prediction tasks.•We study the Manhattan dataset that contains both solo and shared rides.•The proposed model outperforms the state-of-art algorithms in pr...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 127; p. 103063
Main Authors Ke, Jintao, Feng, Siyuan, Zhu, Zheng, Yang, Hai, Ye, Jieping
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text
ISSN0968-090X
1879-2359
DOI10.1016/j.trc.2021.103063

Cover

Abstract •We propose a multi-task multi-graph model to predict multi-ride-hailing demands.•Two methods, namely RCT and MLR, share knowledge for different prediction tasks.•We study the Manhattan dataset that contains both solo and shared rides.•The proposed model outperforms the state-of-art algorithms in prediction accuracy. Ride-hailing platforms generally provide various service options to customers, such as solo ride services, shared ride services, etc. It is generally expected that demands for different service modes are correlated, and the prediction of demand for one service mode can benefit from historical observations of demands for other service modes. Moreover, an accurate joint prediction of demands for multiple service modes can help the platforms better allocate and dispatch vehicle resources. Although there is a large stream of literature on ride-hailing demand predictions for one specific service mode, few efforts have been paid towards joint predictions of ride-hailing demands for multiple service modes. To address this issue, we propose a deep multi-task multi-graph learning approach, which combines two components: (1) multiple multi-graph convolutional (MGC) networks for predicting demands for different service modes, and (2) multi-task learning modules that enable knowledge sharing across multiple MGC networks. More specifically, two multi-task learning structures are established. The first one is the regularized cross-task learning, which builds cross-task connections among the inputs and outputs of multiple MGC networks. The second one is the multi-linear relationship learning, which imposes a prior tensor normal distribution on the weights of various MGC networks. Although there are no concrete bridges between different MGC networks, the weights of these networks are constrained by each other and subject to a common prior distribution. Evaluated with the for-hire-vehicle datasets in Manhattan, we show that our proposed approach outperforms the benchmark algorithms in prediction accuracy for different ride-hailing modes.
AbstractList •We propose a multi-task multi-graph model to predict multi-ride-hailing demands.•Two methods, namely RCT and MLR, share knowledge for different prediction tasks.•We study the Manhattan dataset that contains both solo and shared rides.•The proposed model outperforms the state-of-art algorithms in prediction accuracy. Ride-hailing platforms generally provide various service options to customers, such as solo ride services, shared ride services, etc. It is generally expected that demands for different service modes are correlated, and the prediction of demand for one service mode can benefit from historical observations of demands for other service modes. Moreover, an accurate joint prediction of demands for multiple service modes can help the platforms better allocate and dispatch vehicle resources. Although there is a large stream of literature on ride-hailing demand predictions for one specific service mode, few efforts have been paid towards joint predictions of ride-hailing demands for multiple service modes. To address this issue, we propose a deep multi-task multi-graph learning approach, which combines two components: (1) multiple multi-graph convolutional (MGC) networks for predicting demands for different service modes, and (2) multi-task learning modules that enable knowledge sharing across multiple MGC networks. More specifically, two multi-task learning structures are established. The first one is the regularized cross-task learning, which builds cross-task connections among the inputs and outputs of multiple MGC networks. The second one is the multi-linear relationship learning, which imposes a prior tensor normal distribution on the weights of various MGC networks. Although there are no concrete bridges between different MGC networks, the weights of these networks are constrained by each other and subject to a common prior distribution. Evaluated with the for-hire-vehicle datasets in Manhattan, we show that our proposed approach outperforms the benchmark algorithms in prediction accuracy for different ride-hailing modes.
ArticleNumber 103063
Author Ke, Jintao
Feng, Siyuan
Ye, Jieping
Yang, Hai
Zhu, Zheng
Author_xml – sequence: 1
  givenname: Jintao
  surname: Ke
  fullname: Ke, Jintao
  organization: Department of Logistic and Maritime Studies, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
– sequence: 2
  givenname: Siyuan
  surname: Feng
  fullname: Feng, Siyuan
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
– sequence: 3
  givenname: Zheng
  surname: Zhu
  fullname: Zhu, Zheng
  email: zhuzheng@ust.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
– sequence: 4
  givenname: Hai
  surname: Yang
  fullname: Yang, Hai
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
– sequence: 5
  givenname: Jieping
  surname: Ye
  fullname: Ye, Jieping
  organization: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States
BookMark eNp9kE1LAzEQhoNUsFV_gLf9A1uz2Y80eirFTwpeFLyF2clsm7pfJFHw35vSnjz0NDPwPgPvM2OTfuiJsZuMzzOeVbe7eXA4F1xk8c55lZ-xabaQKhV5qSZsylW1SLninxds5v2Oc56pUk5Z-zrYPiSjI2Mx2KH3ydAk3XcbbNoNBtrEWUPpFmxr-01iqIPe-LtkGVcaj8EA_uu4bhyM26QlcH3MpzV4MgmMoxsAt1fsvIHW0_VxXrKPx4f31XO6fnt6WS3XKeYFDynWUJSKFlSJqsiLoiqBlBRSARoJShhDApFqEFxiA4QyDl5jiUJyky_ySyYPf9EN3jtqNNoA-3bBxSI643ovTe90lKb30vRBWiSzf-TobAfu9yRzf2AoVvqx5LRHSz1Go44waDPYE_Qfgu-JkQ
CitedBy_id crossref_primary_10_1016_j_physa_2024_129632
crossref_primary_10_1109_ACCESS_2022_3222561
crossref_primary_10_1016_j_trc_2022_103611
crossref_primary_10_3390_su14074083
crossref_primary_10_48130_DTS_2023_0002
crossref_primary_10_1007_s42421_023_00075_w
crossref_primary_10_1016_j_trc_2023_104428
crossref_primary_10_1109_TITS_2023_3297948
crossref_primary_10_1016_j_ins_2024_121095
crossref_primary_10_1016_j_compenvurbsys_2022_101914
crossref_primary_10_1016_j_trc_2023_104220
crossref_primary_10_1109_TITS_2023_3325936
crossref_primary_10_1016_j_commtr_2022_100075
crossref_primary_10_1016_j_tre_2024_103822
crossref_primary_10_1109_ACCESS_2022_3172341
crossref_primary_10_1145_3565578
crossref_primary_10_1016_j_trc_2022_103731
crossref_primary_10_1109_OJITS_2022_3163180
crossref_primary_10_1016_j_multra_2022_100038
crossref_primary_10_1093_tse_tdad026
crossref_primary_10_1016_j_ins_2022_11_138
crossref_primary_10_1080_13658816_2023_2203218
crossref_primary_10_1016_j_trc_2022_103908
crossref_primary_10_1109_TITS_2023_3257759
crossref_primary_10_1155_2023_4427638
crossref_primary_10_1109_TITS_2022_3172420
crossref_primary_10_3390_electronics11060861
crossref_primary_10_1016_j_trc_2023_104331
crossref_primary_10_3390_electronics10202480
crossref_primary_10_1140_epjs_s11734_022_00551_4
crossref_primary_10_1109_TITS_2023_3312224
crossref_primary_10_1109_TITS_2024_3364759
crossref_primary_10_1109_TITS_2022_3221370
crossref_primary_10_1016_j_physa_2022_127550
crossref_primary_10_1016_j_inffus_2024_102576
crossref_primary_10_1109_TITS_2023_3345174
crossref_primary_10_1007_s10489_021_03047_1
crossref_primary_10_1016_j_tre_2024_103566
crossref_primary_10_1109_TSP_2023_3259144
crossref_primary_10_1016_j_aei_2024_102533
crossref_primary_10_1109_TITS_2024_3443341
crossref_primary_10_1109_ACCESS_2024_3355034
crossref_primary_10_1016_j_commtr_2022_100058
crossref_primary_10_3390_su16052065
crossref_primary_10_1016_j_ins_2023_119144
crossref_primary_10_1016_j_inffus_2024_102606
crossref_primary_10_1016_j_trc_2021_103352
crossref_primary_10_1109_TITS_2023_3235805
crossref_primary_10_1007_s00521_022_07977_w
crossref_primary_10_3390_ijgi12030100
crossref_primary_10_1016_j_trc_2024_104895
crossref_primary_10_1016_j_multra_2024_100166
crossref_primary_10_1109_TITS_2023_3308903
crossref_primary_10_1016_j_trc_2022_103960
crossref_primary_10_1109_MITS_2023_3315329
crossref_primary_10_1109_TITS_2024_3373565
crossref_primary_10_1080_01441647_2023_2171151
Cites_doi 10.1016/j.trc.2019.08.019
10.1016/j.artint.2018.03.002
10.1016/j.trc.2019.05.037
10.1016/S0968-090X(01)00004-3
10.1109/TITS.2016.2611644
10.3141/1617-23
10.1061/(ASCE)0733-947X(2006)132:2(114)
10.1109/TITS.2006.869623
10.1016/j.trc.2020.102626
10.1016/j.jmva.2011.05.015
10.3390/s17071501
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TITS.2017.2755684
10.1061/(ASCE)0733-947X(1995)121:3(249)
10.1109/ICSMC.2006.385244
10.1371/journal.pone.0119044
10.1016/0191-2615(84)90002-X
10.1061/9780784413616.231
10.3390/rs11111265
10.1080/15472450.2013.836929
10.1109/TITS.2004.837813
10.1145/3159652.3159682
10.1016/j.trc.2017.10.016
10.1016/j.trc.2014.03.016
10.1145/2996913.2997016
10.1002/atr.1392
10.1016/j.trc.2009.11.001
10.1023/A:1010933404324
10.1214/aos/1013203451
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trc.2021.103063
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
ExternalDocumentID 10_1016_j_trc_2021_103063
S0968090X21000905
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c340t-cba459e8e626434465ae97279acd7a92dde2cceba207cfaec77cf0bc5c270d383
IEDL.DBID .~1
ISSN 0968-090X
IngestDate Tue Jul 01 01:45:13 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Fri Feb 23 02:45:34 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ride-hailing
Deep multi-task learning
Demand prediction
Multi-graph convolutional network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-cba459e8e626434465ae97279acd7a92dde2cceba207cfaec77cf0bc5c270d383
OpenAccessLink http://hdl.handle.net/10397/94209
ParticipantIDs crossref_citationtrail_10_1016_j_trc_2021_103063
crossref_primary_10_1016_j_trc_2021_103063
elsevier_sciencedirect_doi_10_1016_j_trc_2021_103063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yao, Wu, Ke, Tang, Jia, Lu, Gong, Ye, Li (b0180) 2018
Yao, Tang, Wei, Zheng, Li (b0175) 2019
Okutani, Stephanedes (b0135) 1984; 18
Zhang, Y., Yang, Q., 2017. A survey on multi-task learning. arXiv preprint arXiv:1707.08114.
Tak, S., Kim, S., Jang, K., Yeo, H., 2014. Real-time travel time prediction using multi-level k-nearest neighbor algorithm and data fusion method. In: Computing in Civil and Building Engineering (2014), pp. 1861–1868.
Geng, Li, Wang, Zhang, Yang, Ye, Liu (b0040) 2019
Kamarianakis, Gao, Prastacos (b0060) 2010; 18
Lavieri, Bhat (b0085) 2019; 105
Park, D., Rilett, L.R., 1998. Forecasting multiple-period freeway link travel times using modular neural networks. Transp. Res. Rec. 1617(1), 163–170.
Zheng, W., Lee, D.-H., Shi, Q., 2006. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transp. Eng. 132(2), 114–121.
Wu, C.-H., Ho, J.-M., Lee, D.-T., 2004. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281.
Battifarano, Qian (b0010) 2019; 107
Mao, Liu, Shen (b0120) 2020; 115
Ni, M., He, Q., Gao, J., 2016. Forecasting the subway passenger flow under event occurrences with social media. IEEE Trans. Intell. Transp. Syst. 18(6), 1623–1632.
Levin, M., Tsao, Y.-D., 1980. On forecasting freeway occupancies and volumes (abridgment). Transp. Res. Rec. (773).
Zhou, X., Shen, Y., Zhu, Y., Huang, L., 2018. Predicting multi-step citywide passenger demands using attention-based neural networks. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, pp. 736–744.
Ke, Yang, Zheng, Chen, Jia, Gong, Ye (b0065) 2018
Lin, Zhao, Xu, Zhou (b0095) 2018
Long, M., Cao, Z., Wang, J., Philip, S.Y., 2017. Learning multiple tasks with multilinear relationship networks. In: Advances in neural information processing systems, pp. 1594–1603.
Zhu, Z., Peng, B., Xiong, C., Zhang, L., 2016. Short-term traffic flow prediction with linear conditional gaussian bayesian network. J. Adv. Transp. 50(6), 1111–1123.
Lu, Zhou (b0110) 2014; 18
Ohlson, Ahmad, Von Rosen (b0130) 2013; 113
Wu, Y., Tan, H., 2016. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022.
Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in neural information processing systems, pp. 3844–3852.
Sun, S., Zhang, C., Yu, G., 2006. A bayesian network approach to traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 7(1), 124–132.
Zhang, Liu, Zheng (b0205) 2019
Chen, Guestrin (b0025) 2016
Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
Liu, Qiu, Li, Wang, Ouyang, Lin (b0100) 2019
Ma, Yu, Wang, Wang (b0115) 2015; 10
Ahmed, M.S., Cook, A.R., 1979. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Number 722.
Billings, D., Yang, J.-S., 2006. Application of the arima models to urban roadway travel time prediction-a case study. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, vol. 3. IEEE, pp. 2529–2534.
Yu, H., Wu, Z., Wang, S., Wang, Y., Ma, X., 2017. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors 17(7), 1501.
Kuang, L., Yan, X., Tan, X., Li, S., Yang, X., 2019. Predicting taxi demand based on 3d convolutional neural network and multi-task learning. Remote Sens. 11 (11), 1265.
Xu, Rahmatizadeh, Bölöni, Turgut (b0170) 2017; 19
Zhang, Zheng, Qi, Li, Yi, Li (b0200) 2018; 259
Zhu, Tang, Xiong, Chen, Zhang (b0235) 2019; 7
Ke, Zheng, Yang, Chen (b0070) 2017; 85
Tibshirani (b0155) 1996; 58
Hamed, Al-Masaeid, Said (b0050) 1995; 121
Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., 2016. Dnn-based prediction model for spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, pp. 92.
Geng, X., Wu, X., Zhang, L., Yang, Q., Liu, Y., Ye, J., 2019b. Multi-modal graph interaction for multi-graph convolution network in urban spatiotemporal forecasting. arXiv preprint arXiv:1905.11395.
Yin, Wong, Xu, Wong (b0185) 2002; 10
Zhu, Sun, Chen, Yang (b0230) 2021; 124
Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232.
Breiman (b0020) 2001; 45
Jiang, Zhang, Chen (b0055) 2014; 44
Jiang (10.1016/j.trc.2021.103063_b0055) 2014; 44
10.1016/j.trc.2021.103063_b0105
Zhang (10.1016/j.trc.2021.103063_b0200) 2018; 259
10.1016/j.trc.2021.103063_b0005
10.1016/j.trc.2021.103063_b0225
10.1016/j.trc.2021.103063_b0125
Zhang (10.1016/j.trc.2021.103063_b0205) 2019
Zhu (10.1016/j.trc.2021.103063_b0235) 2019; 7
Chen (10.1016/j.trc.2021.103063_b0025) 2016
Lin (10.1016/j.trc.2021.103063_b0095) 2018
Lu (10.1016/j.trc.2021.103063_b0110) 2014; 18
10.1016/j.trc.2021.103063_b0140
10.1016/j.trc.2021.103063_b0145
10.1016/j.trc.2021.103063_b0045
10.1016/j.trc.2021.103063_b0165
10.1016/j.trc.2021.103063_b0220
Hamed (10.1016/j.trc.2021.103063_b0050) 1995; 121
10.1016/j.trc.2021.103063_b0090
Battifarano (10.1016/j.trc.2021.103063_b0010) 2019; 107
Kamarianakis (10.1016/j.trc.2021.103063_b0060) 2010; 18
Zhu (10.1016/j.trc.2021.103063_b0230) 2021; 124
10.1016/j.trc.2021.103063_b0190
Xu (10.1016/j.trc.2021.103063_b0170) 2017; 19
10.1016/j.trc.2021.103063_b0215
Yao (10.1016/j.trc.2021.103063_b0180) 2018
10.1016/j.trc.2021.103063_b0015
Okutani (10.1016/j.trc.2021.103063_b0135) 1984; 18
Ma (10.1016/j.trc.2021.103063_b0115) 2015; 10
Geng (10.1016/j.trc.2021.103063_b0040) 2019
10.1016/j.trc.2021.103063_b0075
10.1016/j.trc.2021.103063_b0030
10.1016/j.trc.2021.103063_b0195
10.1016/j.trc.2021.103063_b0150
Breiman (10.1016/j.trc.2021.103063_b0020) 2001; 45
10.1016/j.trc.2021.103063_b0035
Lavieri (10.1016/j.trc.2021.103063_b0085) 2019; 105
10.1016/j.trc.2021.103063_b0210
Tibshirani (10.1016/j.trc.2021.103063_b0155) 1996; 58
Liu (10.1016/j.trc.2021.103063_b0100) 2019
10.1016/j.trc.2021.103063_b0160
10.1016/j.trc.2021.103063_b0080
Yao (10.1016/j.trc.2021.103063_b0175) 2019
Ohlson (10.1016/j.trc.2021.103063_b0130) 2013; 113
Yin (10.1016/j.trc.2021.103063_b0185) 2002; 10
Mao (10.1016/j.trc.2021.103063_b0120) 2020; 115
Ke (10.1016/j.trc.2021.103063_b0065) 2018
Ke (10.1016/j.trc.2021.103063_b0070) 2017; 85
References_xml – reference: Park, D., Rilett, L.R., 1998. Forecasting multiple-period freeway link travel times using modular neural networks. Transp. Res. Rec. 1617(1), 163–170.
– reference: Billings, D., Yang, J.-S., 2006. Application of the arima models to urban roadway travel time prediction-a case study. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, vol. 3. IEEE, pp. 2529–2534.
– start-page: 785
  year: 2016
  end-page: 794
  ident: b0025
  article-title: Xgboost: A scalable tree boosting system
  publication-title: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining
– start-page: 1774
  year: 2018
  end-page: 1783
  ident: b0095
  article-title: Efficient large-scale fleet management via multi-agent deep reinforcement learning
  publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– reference: Long, M., Cao, Z., Wang, J., Philip, S.Y., 2017. Learning multiple tasks with multilinear relationship networks. In: Advances in neural information processing systems, pp. 1594–1603.
– reference: Yu, H., Wu, Z., Wang, S., Wang, Y., Ma, X., 2017. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors 17(7), 1501.
– volume: 19
  start-page: 2572
  year: 2017
  end-page: 2581
  ident: b0170
  article-title: Real-time prediction of taxi demand using recurrent neural networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Geng, X., Wu, X., Zhang, L., Yang, Q., Liu, Y., Ye, J., 2019b. Multi-modal graph interaction for multi-graph convolution network in urban spatiotemporal forecasting. arXiv preprint arXiv:1905.11395.
– year: 2018
  ident: b0065
  article-title: Hexagon-based convolutional neural network for supply-demand forecasting of ride-sourcing services
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Ni, M., He, Q., Gao, J., 2016. Forecasting the subway passenger flow under event occurrences with social media. IEEE Trans. Intell. Transp. Syst. 18(6), 1623–1632.
– reference: Levin, M., Tsao, Y.-D., 1980. On forecasting freeway occupancies and volumes (abridgment). Transp. Res. Rec. (773).
– volume: 18
  start-page: 309
  year: 2014
  end-page: 322
  ident: b0110
  article-title: Short-term highway traffic state prediction using structural state space models
  publication-title: J. Intell. Transp. Syst.
– reference: Wu, C.-H., Ho, J.-M., Lee, D.-T., 2004. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281.
– reference: Zhu, Z., Peng, B., Xiong, C., Zhang, L., 2016. Short-term traffic flow prediction with linear conditional gaussian bayesian network. J. Adv. Transp. 50(6), 1111–1123.
– reference: Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232.
– volume: 105
  start-page: 100
  year: 2019
  end-page: 125
  ident: b0085
  article-title: Investigating objective and subjective factors influencing the adoption, frequency, and characteristics of ride-hailing trips
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in neural information processing systems, pp. 3844–3852.
– volume: 259
  start-page: 147
  year: 2018
  end-page: 166
  ident: b0200
  article-title: Predicting citywide crowd flows using deep spatio-temporal residual networks
  publication-title: Artif. Intell.
– reference: Wu, Y., Tan, H., 2016. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022.
– volume: 121
  start-page: 249
  year: 1995
  end-page: 254
  ident: b0050
  article-title: Short-term prediction of traffic volume in urban arterials
  publication-title: J. Transp. Eng.
– reference: Sun, S., Zhang, C., Yu, G., 2006. A bayesian network approach to traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 7(1), 124–132.
– volume: 18
  start-page: 821
  year: 2010
  end-page: 840
  ident: b0060
  article-title: Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
– reference: Ahmed, M.S., Cook, A.R., 1979. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Number 722.
– volume: 124
  year: 2021
  ident: b0230
  article-title: Integrating probabilistic tensor factorization with bayesian supervised learning for dynamic ridesharing pattern analysis
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: Zhou, X., Shen, Y., Zhu, Y., Huang, L., 2018. Predicting multi-step citywide passenger demands using attention-based neural networks. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, pp. 736–744.
– volume: 10
  year: 2015
  ident: b0115
  article-title: Large-scale transportation network congestion evolution prediction using deep learning theory
  publication-title: PloS One
– volume: 107
  start-page: 444
  year: 2019
  end-page: 462
  ident: b0010
  article-title: Predicting real-time surge pricing of ride-sourcing companies
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 18
  start-page: 1
  year: 1984
  end-page: 11
  ident: b0135
  article-title: Dynamic prediction of traffic volume through kalman filtering theory
  publication-title: Transp. Res. Part B: Methodol.
– volume: 10
  start-page: 85
  year: 2002
  end-page: 98
  ident: b0185
  article-title: Urban traffic flow prediction using a fuzzy-neural approach
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: Zhang, Y., Yang, Q., 2017. A survey on multi-task learning. arXiv preprint arXiv:1707.08114.
– year: 2019
  ident: b0100
  article-title: Contextualized spatial-temporal network for taxi origin-destination demand prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 44
  start-page: 110
  year: 2014
  end-page: 127
  ident: b0055
  article-title: Short-term forecasting of high-speed rail demand: A hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 7
  start-page: 684
  year: 2019
  end-page: 706
  ident: b0235
  article-title: The conditional probability of travel speed and its application to short-term prediction
  publication-title: Transp. B: Transp. Dyn.
– reference: Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., 2016. Dnn-based prediction model for spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, pp. 92.
– reference: Zheng, W., Lee, D.-H., Shi, Q., 2006. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transp. Eng. 132(2), 114–121.
– reference: Kuang, L., Yan, X., Tan, X., Li, S., Yang, X., 2019. Predicting taxi demand based on 3d convolutional neural network and multi-task learning. Remote Sens. 11 (11), 1265.
– volume: 115
  year: 2020
  ident: b0120
  article-title: Dispatch of autonomous vehicles for taxi services: A deep reinforcement learning approach
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: Tak, S., Kim, S., Jang, K., Yeo, H., 2014. Real-time travel time prediction using multi-level k-nearest neighbor algorithm and data fusion method. In: Computing in Civil and Building Engineering (2014), pp. 1861–1868.
– year: 2019
  ident: b0175
  article-title: Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction
  publication-title: AAAI Conference on Artificial Intelligence
– year: 2019
  ident: b0040
  article-title: Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting
  publication-title: 2019 AAAI Conference on Artificial Intelligence (AAAI’19)
– volume: 113
  start-page: 37
  year: 2013
  end-page: 47
  ident: b0130
  article-title: The multilinear normal distribution: Introduction and some basic properties
  publication-title: J. Multivariate Anal.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0155
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.)
– year: 2018
  ident: b0180
  article-title: Deep multi-view spatial-temporal network for taxi demand prediction
  publication-title: Thirty-Second AAAI Conference on Artificial Intelligence
– volume: 85
  start-page: 591
  year: 2017
  end-page: 608
  ident: b0070
  article-title: Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach
  publication-title: Transp. Res. Part C: Emerg. Technol.
– year: 2019
  ident: b0205
  article-title: Short-term prediction of passenger demand in multi-zone level: Temporal convolutional neural network with multi-task learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0020
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 107
  start-page: 444
  year: 2019
  ident: 10.1016/j.trc.2021.103063_b0010
  article-title: Predicting real-time surge pricing of ride-sourcing companies
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2019.08.019
– volume: 259
  start-page: 147
  year: 2018
  ident: 10.1016/j.trc.2021.103063_b0200
  article-title: Predicting citywide crowd flows using deep spatio-temporal residual networks
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2018.03.002
– ident: 10.1016/j.trc.2021.103063_b0105
– year: 2019
  ident: 10.1016/j.trc.2021.103063_b0040
  article-title: Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting
– volume: 105
  start-page: 100
  year: 2019
  ident: 10.1016/j.trc.2021.103063_b0085
  article-title: Investigating objective and subjective factors influencing the adoption, frequency, and characteristics of ride-hailing trips
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2019.05.037
– ident: 10.1016/j.trc.2021.103063_b0075
– volume: 10
  start-page: 85
  issue: 2
  year: 2002
  ident: 10.1016/j.trc.2021.103063_b0185
  article-title: Urban traffic flow prediction using a fuzzy-neural approach
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/S0968-090X(01)00004-3
– ident: 10.1016/j.trc.2021.103063_b0125
  doi: 10.1109/TITS.2016.2611644
– ident: 10.1016/j.trc.2021.103063_b0140
  doi: 10.3141/1617-23
– ident: 10.1016/j.trc.2021.103063_b0090
– ident: 10.1016/j.trc.2021.103063_b0215
  doi: 10.1061/(ASCE)0733-947X(2006)132:2(114)
– ident: 10.1016/j.trc.2021.103063_b0030
– ident: 10.1016/j.trc.2021.103063_b0145
  doi: 10.1109/TITS.2006.869623
– volume: 115
  year: 2020
  ident: 10.1016/j.trc.2021.103063_b0120
  article-title: Dispatch of autonomous vehicles for taxi services: A deep reinforcement learning approach
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2020.102626
– volume: 113
  start-page: 37
  year: 2013
  ident: 10.1016/j.trc.2021.103063_b0130
  article-title: The multilinear normal distribution: Introduction and some basic properties
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2011.05.015
– ident: 10.1016/j.trc.2021.103063_b0190
  doi: 10.3390/s17071501
– volume: 124
  issue: 102916
  year: 2021
  ident: 10.1016/j.trc.2021.103063_b0230
  article-title: Integrating probabilistic tensor factorization with bayesian supervised learning for dynamic ridesharing pattern analysis
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.trc.2021.103063_b0155
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 19
  start-page: 2572
  issue: 8
  year: 2017
  ident: 10.1016/j.trc.2021.103063_b0170
  article-title: Real-time prediction of taxi demand using recurrent neural networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2755684
– volume: 121
  start-page: 249
  issue: 3
  year: 1995
  ident: 10.1016/j.trc.2021.103063_b0050
  article-title: Short-term prediction of traffic volume in urban arterials
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
– ident: 10.1016/j.trc.2021.103063_b0210
– ident: 10.1016/j.trc.2021.103063_b0015
  doi: 10.1109/ICSMC.2006.385244
– volume: 10
  issue: 3
  year: 2015
  ident: 10.1016/j.trc.2021.103063_b0115
  article-title: Large-scale transportation network congestion evolution prediction using deep learning theory
  publication-title: PloS One
  doi: 10.1371/journal.pone.0119044
– volume: 18
  start-page: 1
  issue: 1
  year: 1984
  ident: 10.1016/j.trc.2021.103063_b0135
  article-title: Dynamic prediction of traffic volume through kalman filtering theory
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/0191-2615(84)90002-X
– ident: 10.1016/j.trc.2021.103063_b0150
  doi: 10.1061/9780784413616.231
– ident: 10.1016/j.trc.2021.103063_b0045
– year: 2018
  ident: 10.1016/j.trc.2021.103063_b0065
  article-title: Hexagon-based convolutional neural network for supply-demand forecasting of ride-sourcing services
– ident: 10.1016/j.trc.2021.103063_b0080
  doi: 10.3390/rs11111265
– year: 2019
  ident: 10.1016/j.trc.2021.103063_b0100
  article-title: Contextualized spatial-temporal network for taxi origin-destination demand prediction
– volume: 18
  start-page: 309
  issue: 3
  year: 2014
  ident: 10.1016/j.trc.2021.103063_b0110
  article-title: Short-term highway traffic state prediction using structural state space models
  publication-title: J. Intell. Transp. Syst.
  doi: 10.1080/15472450.2013.836929
– ident: 10.1016/j.trc.2021.103063_b0160
  doi: 10.1109/TITS.2004.837813
– ident: 10.1016/j.trc.2021.103063_b0220
  doi: 10.1145/3159652.3159682
– volume: 85
  start-page: 591
  year: 2017
  ident: 10.1016/j.trc.2021.103063_b0070
  article-title: Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2017.10.016
– start-page: 1774
  year: 2018
  ident: 10.1016/j.trc.2021.103063_b0095
  article-title: Efficient large-scale fleet management via multi-agent deep reinforcement learning
– volume: 44
  start-page: 110
  year: 2014
  ident: 10.1016/j.trc.2021.103063_b0055
  article-title: Short-term forecasting of high-speed rail demand: A hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2014.03.016
– ident: 10.1016/j.trc.2021.103063_b0195
  doi: 10.1145/2996913.2997016
– year: 2018
  ident: 10.1016/j.trc.2021.103063_b0180
  article-title: Deep multi-view spatial-temporal network for taxi demand prediction
– ident: 10.1016/j.trc.2021.103063_b0165
– ident: 10.1016/j.trc.2021.103063_b0225
  doi: 10.1002/atr.1392
– volume: 18
  start-page: 821
  issue: 5
  year: 2010
  ident: 10.1016/j.trc.2021.103063_b0060
  article-title: Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2009.11.001
– ident: 10.1016/j.trc.2021.103063_b0005
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.trc.2021.103063_b0020
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: 10.1016/j.trc.2021.103063_b0035
  doi: 10.1214/aos/1013203451
– volume: 7
  start-page: 684
  issue: 1
  year: 2019
  ident: 10.1016/j.trc.2021.103063_b0235
  article-title: The conditional probability of travel speed and its application to short-term prediction
  publication-title: Transp. B: Transp. Dyn.
– start-page: 785
  year: 2016
  ident: 10.1016/j.trc.2021.103063_b0025
  article-title: Xgboost: A scalable tree boosting system
– year: 2019
  ident: 10.1016/j.trc.2021.103063_b0175
  article-title: Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction
– year: 2019
  ident: 10.1016/j.trc.2021.103063_b0205
  article-title: Short-term prediction of passenger demand in multi-zone level: Temporal convolutional neural network with multi-task learning
SSID ssj0001957
Score 2.5866208
Snippet •We propose a multi-task multi-graph model to predict multi-ride-hailing demands.•Two methods, namely RCT and MLR, share knowledge for different prediction...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103063
SubjectTerms Deep multi-task learning
Demand prediction
Multi-graph convolutional network
Ride-hailing
Title Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach
URI https://dx.doi.org/10.1016/j.trc.2021.103063
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Sciencedirect - Freedom Collection
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIABQQFRHpUHJiRTx3mzVRVVKaILVMoW-RUItEmUhpXfjp04UCRgYIoT3UXR5XQP391nAC4sHni2JLrI6kukQmqBlJezkMCJSwWzhcf07PD9zJvMnWnkRh0wamdhdFulsf2NTa-ttXkyMNIcFGk6eFDBd4BDHBG9RR3WOKYa_Uvp9NX7V5uHFTZon4pY70lEbWWz7vGqSo1iSCw9eo49-2fftOZvxntg1wSKcNh8yz7oyKwLtto54lUX7KxBCR6AxTRPswoWpS681LoE8wTW7YJomQv1pjIVEj3TVM-fQyGXesb3Gg7VUhaGsKKrV7OsgayhOVPiCWlnJ2ALQH4I5uObx9EEmZMUELcdXCHOqOOGMpAqfXFsLSUqQxW5hJQLn4ZE2TjCuWSUYJ8nVHJfXTDjLic-FiqJPQIbWZ7JYwDtIGEqSSMcO74jsM84kzZLqOtzW1BMegC3Moy5gRnXp10s4raf7CVWYo-12ONG7D1w-clSNBgbfxE77Y-JvylKrHzA72wn_2M7Bdv6rukNOwMbVfkmz1UUUrF-rWZ9sDm8vZvMPgCJOt1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QOKAHo6gRn3vwZLJh2b6oN0IkyOsiJNyafVWrvAL1_7vbbgkm6sFTN-1M00wn89iZ-RbgvilavqOoKbIGCuuQWmLt5ZpYkthjkjvS52Z2eDT2e1O3P_NmJegUszCmrdLa_tymZ9ba3mlYaTbWSdJ40cF3i4RkRs0WdWhwTCuup21yGSrt50FvvDPIzTAH_NT0ZltiVhQ3szavdGOADGnTTJ8T3_nZPe25nO4xHNlYEbXzzzmBklrWoFqMEm9rcLiHJngK8_4qWaZovTG1l0yd0CpGWccgXqykftMmkQq_scSMoCOpFmbM9xG19VKtLWHKth92mWFZI3usxCs2_k6iAoP8DKbdp0mnh-1hClg4Lkmx4Mz1QtVSOoNxHQOTxlSog5eQCRmwkGozR4VQnFESiJgpEegL4cITNCBS57HnUF6uluoCkNOKuc7TqCBu4EoScMGVw2PmBcKRjNA6kEKGkbBI4-bAi3lUtJS9R1rskRF7lIu9Dg87lnUOs_EXsVv8mOibrkTaDfzOdvk_tjuo9iajYTR8Hg-u4MA8yVvFrqGcbj7VjQ5KUn5rle4LGGbf-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+predictions+of+multi-modal+ride-hailing+demands%3A+A+deep+multi-task+multi-graph+learning-based+approach&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Ke%2C+Jintao&rft.au=Feng%2C+Siyuan&rft.au=Zhu%2C+Zheng&rft.au=Yang%2C+Hai&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=127&rft_id=info:doi/10.1016%2Fj.trc.2021.103063&rft.externalDocID=S0968090X21000905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon