A deployable mechanism concept for the collection of small-to-medium-size space debris
Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a miss...
        Saved in:
      
    
          | Published in | Advances in space research Vol. 61; no. 5; pp. 1286 - 1297 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.03.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0273-1177 1879-1948 1879-1948  | 
| DOI | 10.1016/j.asr.2017.12.026 | 
Cover
| Abstract | Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small-to-medium size debris removal mission, albeit finding it to not be economically viable at the present time. | 
    
|---|---|
| AbstractList | Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small-to-medium size debris removal mission, albeit finding it to not be economically viable at the present time. | 
    
| Author | Sharf, Inna St-Onge, David Sagnières, Luc Gosselin, Clément  | 
    
| Author_xml | – sequence: 1 givenname: David surname: St-Onge fullname: St-Onge, David email: david.st-onge.2@ulaval.ca organization: Department of Mechanical Engineering, Laval University, 1065 Médecine Av., Québec G1V 0A6, Qc, Canada – sequence: 2 givenname: Inna surname: Sharf fullname: Sharf, Inna email: inna.sharf@mcgill.ca organization: Department of Mechanical Engineering, McGill University, 3480 University St., Montréal H3A 0E9, Qc, Canada – sequence: 3 givenname: Luc surname: Sagnières fullname: Sagnières, Luc email: luc.sagnieres@mail.mcgill.ca organization: Department of Mechanical Engineering, McGill University, 3480 University St., Montréal H3A 0E9, Qc, Canada – sequence: 4 givenname: Clément surname: Gosselin fullname: Gosselin, Clément email: gosselin@gmc.ulaval.ca organization: Department of Mechanical Engineering, Laval University, 1065 Médecine Av., Québec G1V 0A6, Qc, Canada  | 
    
| BookMark | eNqN0MtKAzEUgOEgFWyrD-AuLzBjLtNJB1eleIOCG3UbcjlDUzKTIZkq9elNqSsXxVU4kP9w-GZo0oceELqlpKSE1ne7UqVYMkJFSVlJWH2BpnQpmoI21XKCpoQJXlAqxBWapbQjhDIhyBR9rLCFwYeD0h5wB2arepc6bEJvYBhxGyIet5Bn78GMLvQ4tDh1yvtiDEUH1u27IrlvwGlQBvI2HV26Rpet8gluft85en98eFs_F5vXp5f1alMYXpGxMIRT0ihR61YT3QKzRFXWLLRlZFkzJtpK2yVQbThnFeWcVAsO-XfTVPXCWj5H7LR33w_q8JWvkkN0nYoHSYk8ysidzDLyKCMpk1kmR_QUmRhSitD-qxF_GuNGdfQYo3L-bHl_KiE7fDqIMhkHWde6mEWlDe5M_QODeZE1 | 
    
| CitedBy_id | crossref_primary_10_1186_s10033_020_00489_5 crossref_primary_10_1109_ACCESS_2020_2979505 crossref_primary_10_3390_su14031794 crossref_primary_10_1177_09544100241272826 crossref_primary_10_1515_astro_2020_0016 crossref_primary_10_1007_s11431_020_1661_7  | 
    
| Cites_doi | 10.1016/j.ijimpeng.2008.07.076 10.1007/978-3-7091-2584-7 10.1080/08929882.2010.493078 10.1163/156855304322758006 10.1109/AERO.2011.5747303 10.1177/0954406212469563 10.1016/j.asr.2011.08.005 10.1016/j.asr.2003.12.008 10.1016/j.asr.2014.07.035 10.1016/j.asr.2013.04.024 10.1115/1.4032101 10.1016/j.asr.2015.04.012 10.1109/AIM.2003.1225145 10.1016/j.actaastro.2011.06.015 10.1109/IHMSC.2012.71 10.1016/S0273-1177(98)00234-8 10.1016/j.actaastro.2011.11.014 10.1016/j.actaastro.2012.11.009 10.1016/j.paerosci.2015.11.001 10.2514/1.57856 10.1002/9781119945147.ch1 10.1016/j.asr.2015.04.009 10.1016/j.asr.2011.05.033 10.1051/swsc/2015001 10.1029/JA083iA06p02637 10.1016/j.asr.2011.02.003 10.1016/j.asr.2016.11.030 10.1016/j.actaastro.2011.04.012 10.1016/j.actaastro.2015.05.032 10.1016/j.ijimpeng.2006.09.052  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 COSPAR | 
    
| Copyright_xml | – notice: 2017 COSPAR | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.asr.2017.12.026 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Astronomy & Astrophysics Physics  | 
    
| EISSN | 1879-1948 | 
    
| EndPage | 1297 | 
    
| ExternalDocumentID | 10.1016/j.asr.2017.12.026 10_1016_j_asr_2017_12_026 S027311771730902X  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNEU ABQEM ABQYD ABYKQ ACDAQ ACFVG ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IMUCA J1W KOM LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG ROL SDF SDG SEP SES SPC SPCBC SSE SSQ SSZ T5K ZMT ~02 ~G- 1B1 AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMA HME HVGLF HX~ HZ~ IHE R2- RPZ SEW SHN T9H UHS VH1 VOH WUQ ZY4 ~HD ADTOC AGCQF UNPAY  | 
    
| ID | FETCH-LOGICAL-c340t-c03109a76bfb0bfe2d0a4dc5bd2086227f4bd8e1bc33241330453e6bf99465dd3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0273-1177 1879-1948  | 
    
| IngestDate | Tue Aug 19 22:01:46 EDT 2025 Thu Oct 09 00:39:19 EDT 2025 Thu Apr 24 23:02:43 EDT 2025 Fri Feb 23 02:46:23 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | Small size Active debris removal Deployable mechanism Space debris Cupola device  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c340t-c03109a76bfb0bfe2d0a4dc5bd2086227f4bd8e1bc33241330453e6bf99465dd3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S027311771730902X | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_asr_2017_12_026 crossref_primary_10_1016_j_asr_2017_12_026 crossref_citationtrail_10_1016_j_asr_2017_12_026 elsevier_sciencedirect_doi_10_1016_j_asr_2017_12_026  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-03-01 | 
    
| PublicationDateYYYYMMDD | 2018-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Advances in space research | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Gates, 2009. Polychain GT Carbon Belt Drive Design Manual. Technical Report. Gates Corporation. Denver. Mandeville, Rival, Alby (b0155) 1999; 23 Boccia, L., Breinbjerg, O., 2012. Antenna basics. In: Space Antenna Handbook. John Wiley & Sons, Ltd, pp. 1–35. Nakamura, Kitazawa, Matsumoto, Okudaira, Hanada, Sakurai, Funakoshi, Yasaka, Hasegawa, Kobayashi (b0165) 2015; 56 Nock, K.T., McRonald, A.D., Maynard Aaron, Maynard, K., 2003. Balloon device for lowering space object orbits. US Patent 6830222B1. Nishida, S., Yoshikawa, T., 2003. Space debris capture by a joint compliance controlled robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, pp. 496–502. Futron Corporation, 2002. Space Transportation Costs: Trends in Price Per Pound to Orbit 1990–2000. Technical Report. Futron Corporation. Sagnières, Sharf (b0205) 2017 Lappas, Adeli, Visagie, Fernandez, Theodorou, Steyn, Perren (b0130) 2011; 48 Bauer, Romberg, Wiedemann, Drolshagen, Vörsmann (b0025) 2014; 54 Schmitz, Fasoulas, Utzmann (b0210) 2015; 115 Levin, Pearson, Carroll (b0135) 2012; 73 Flegel, Gelhaus, Möckel, Wiedemann, Krag, Klinkrad, Vörsmann (b0080) 2011; 69 Nguyen-Huynh, Sharf (b0175) 2013; 36 Zhai, G., Zhang, J.R., 2012. Space tether net system for debris capture and removal. In: 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, pp. 257–261. Liou (b0145) 2011 Bruinsma (b0050) 2015; 5 Williamsen, Schonberg, Evans, Evans (b0245) 2008; 35 Pellegrino, S., 2001. Deployable Structures. Springer Vienna, Vienna. Dunn, M.J., 2014. Space Debris Removal. US Patent 8800933 B2. Biesbroek, R., Soares, T., Hüsing, J., Innocenti, L., 2013. Deorbit CDF study: a design study for the safe removal of a large space debris. In: 64th International Astronautical Congress, Beijing, China. Kessler, Cour-Palais (b0110) 1978; 83 Taylor, R., Gravseth, I., Turse, D., Keller, P., Hulse, M., Richardson, D., 2013. Method for removing orbital objects from orbit using a capture net for momentum transfer. U.S. Patent 13/621,448. Krag, H., Klinkrad, H., Oswald, M., Stabroth, S., Wiedemann, C., 2007. Analysing the risk increase in LEO due to recent major fragmentation events. European Space Agency, (Special Publication) ESA SP. Riedel, Nahme, White, Clegg (b0195) 2006; 33 Liou (b0150) 2011; 47 Christiansen, Hyde, Bernhard (b0060) 2004; 34 Aghili, F., 2012. Active orbital debris removal using space robotics. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), pp. 1–9. last visited on 04/01/2018. St-Onge, Gosselin (b0225) 2016; 8 Kobayashi, M., Miyachi, T., Nakamura, M.H., 2011. Cosmic dust detector capable of measuring hypervelocity speed using piezoelectric PZT. In: 42nd Lunar and Planetary Science Conference, The Woodlands. Vance, Mense (b0240) 2013; 52 ESA,. Hypervelocity impacts and protecting spacecraft. Bonnal, Ruault, Desjean (b0040) 2013; 85 Klinkrad, H., Johnson, N., 2009. Space debris environment remediation concepts. In: International Conference on Orbital Debris Removal, Chantilly, VA. Hirzinger, Landzettel, Brunner, Fischer, Preusche, Reintsema, Albu-Schäffer, Schreiber, Steinmetz (b0100) 2004; 18 Dudziak, Tuttle, Barraclough (b0065) 2015; 56 Li, Yan, Guo, Guo (b0140) 2013; 227 Ryan, Christiansen (b0200) 2011; 69 Mason, Stupl, Marshall, Levit (b0160) 2011; 48 Ganguli, Crabtree, Rudakov, Chappie (b0090) 2011; 473 Honeywell, 2013. Honeywell Spectra ® Fiber Capability Guide. Technical Report. Honeywell. St-Onge, D., Gosselin, C., 2016a. Dynamic modelling of a four-bar free floating mechanism with passive joints and flywheel actuators. In: International Symposium on Multi-body System Dynamics, Montreal, pp. 1–10. Wang (b0235) 2010; 18 Christiansen, E., 2003. Meteoroid/Debris Shielding. Technical Report August. NASA. Houston. Shan, Guo, Gill (b0215) 2016; 80 Barbee, B.W., Alfano, S., Piñon, E., Gold, K., Gaylor, D., 2012. Design of spacecraft missions to remove multiple orbital debris objects. In: 35th Annual AAS Guidance and Control Conference, Breckenridge, pp. 1–19. Anz-Meador, P., Shoots, D., 2016. Recent NOAA-16 Satellite Breakup. Orbital Debris Quarterly News 20. Arianespace, Perez, E., 2011. Ariane 5 User’s Manual. Arianespace SA., 271. Botta, E., Sharf, I., Misra, A., 2016. Evaluation of net capture of space debris in multiple mission scenarios. In: 26th AAS/AIAA Space Flight Mechanics Meeting, Nappa, CA. NASA, 2009. Deep solar minimum. Last Checked 2016-11-29. 10.1016/j.asr.2017.12.026_b0115 10.1016/j.asr.2017.12.026_b0035 Flegel (10.1016/j.asr.2017.12.026_b0080) 2011; 69 Kessler (10.1016/j.asr.2017.12.026_b0110) 1978; 83 Schmitz (10.1016/j.asr.2017.12.026_b0210) 2015; 115 10.1016/j.asr.2017.12.026_b0075 Levin (10.1016/j.asr.2017.12.026_b0135) 2012; 73 10.1016/j.asr.2017.12.026_b0230 10.1016/j.asr.2017.12.026_b0030 Christiansen (10.1016/j.asr.2017.12.026_b0060) 2004; 34 Li (10.1016/j.asr.2017.12.026_b0140) 2013; 227 10.1016/j.asr.2017.12.026_b0105 Bonnal (10.1016/j.asr.2017.12.026_b0040) 2013; 85 10.1016/j.asr.2017.12.026_b0220 10.1016/j.asr.2017.12.026_b0020 10.1016/j.asr.2017.12.026_b0185 Mandeville (10.1016/j.asr.2017.12.026_b0155) 1999; 23 10.1016/j.asr.2017.12.026_b0190 10.1016/j.asr.2017.12.026_b0070 Ganguli (10.1016/j.asr.2017.12.026_b0090) 2011; 473 Liou (10.1016/j.asr.2017.12.026_b0150) 2011; 47 Hirzinger (10.1016/j.asr.2017.12.026_b0100) 2004; 18 Dudziak (10.1016/j.asr.2017.12.026_b0065) 2015; 56 10.1016/j.asr.2017.12.026_b0015 Bruinsma (10.1016/j.asr.2017.12.026_b0050) 2015; 5 Ryan (10.1016/j.asr.2017.12.026_b0200) 2011; 69 Sagnières (10.1016/j.asr.2017.12.026_b0205) 2017 10.1016/j.asr.2017.12.026_b0055 Vance (10.1016/j.asr.2017.12.026_b0240) 2013; 52 Nguyen-Huynh (10.1016/j.asr.2017.12.026_b0175) 2013; 36 10.1016/j.asr.2017.12.026_b0010 10.1016/j.asr.2017.12.026_b0095 10.1016/j.asr.2017.12.026_b0250 10.1016/j.asr.2017.12.026_b0170 St-Onge (10.1016/j.asr.2017.12.026_b0225) 2016; 8 10.1016/j.asr.2017.12.026_b0180 Liou (10.1016/j.asr.2017.12.026_b0145) 2011 Riedel (10.1016/j.asr.2017.12.026_b0195) 2006; 33 Shan (10.1016/j.asr.2017.12.026_b0215) 2016; 80 10.1016/j.asr.2017.12.026_b0125 10.1016/j.asr.2017.12.026_b0005 10.1016/j.asr.2017.12.026_b0045 Lappas (10.1016/j.asr.2017.12.026_b0130) 2011; 48 10.1016/j.asr.2017.12.026_b0120 10.1016/j.asr.2017.12.026_b0085 Mason (10.1016/j.asr.2017.12.026_b0160) 2011; 48 Wang (10.1016/j.asr.2017.12.026_b0235) 2010; 18 Nakamura (10.1016/j.asr.2017.12.026_b0165) 2015; 56 Bauer (10.1016/j.asr.2017.12.026_b0025) 2014; 54 Williamsen (10.1016/j.asr.2017.12.026_b0245) 2008; 35  | 
    
| References_xml | – volume: 69 start-page: 245 year: 2011 end-page: 257 ident: b0200 article-title: A ballistic limit analysis programme for shielding against micrometeoroids and orbital debris publication-title: Acta Astronaut. – reference: Zhai, G., Zhang, J.R., 2012. Space tether net system for debris capture and removal. In: 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, pp. 257–261. – reference: Dunn, M.J., 2014. Space Debris Removal. US Patent 8800933 B2. – volume: 48 start-page: 1643 year: 2011 end-page: 1655 ident: b0160 article-title: Orbital debris-debris collision avoidance publication-title: Adv. Space Res. – volume: 36 start-page: 404 year: 2013 end-page: 414 ident: b0175 article-title: Adaptive reactionless motion and parameter identification in postcapture of space debris publication-title: J. Guid. Control Dyn. – volume: 34 start-page: 1097 year: 2004 end-page: 1103 ident: b0060 article-title: Space Shuttle debris and meteoroid impacts publication-title: Adv. Space Res. – volume: 85 start-page: 51 year: 2013 end-page: 60 ident: b0040 article-title: Active debris removal: recent progress and current trends publication-title: Acta Astronaut. – volume: 23 start-page: 89 year: 1999 end-page: 94 ident: b0155 article-title: Secondary impact generated particles: implications for the orbital debris population publication-title: Adv. Space Res. – reference: Aghili, F., 2012. Active orbital debris removal using space robotics. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), pp. 1–9. – volume: 18 start-page: 139 year: 2004 end-page: 174 ident: b0100 article-title: DLR’s robotics technologies for on-orbit servicing publication-title: Adv. Robot. – reference: ESA,. Hypervelocity impacts and protecting spacecraft. – reference: St-Onge, D., Gosselin, C., 2016a. Dynamic modelling of a four-bar free floating mechanism with passive joints and flywheel actuators. In: International Symposium on Multi-body System Dynamics, Montreal, pp. 1–10. – volume: 73 start-page: 100 year: 2012 end-page: 108 ident: b0135 article-title: Wholesale debris removal from LEO publication-title: Acta Astronaut. – volume: 33 start-page: 670 year: 2006 end-page: 680 ident: b0195 article-title: Hypervelocity impact damage prediction in composites: Part II experimental investigations and simulations publication-title: Int. J. Impact Eng. – volume: 473 start-page: 221 year: 2011 end-page: 225 ident: b0090 article-title: A concept for elimination of small orbital debris publication-title: Nature – volume: 83 start-page: 2637 year: 1978 end-page: 2646 ident: b0110 article-title: Collision frequency of artificial satellites: the creation of a debris belt publication-title: J. Geophys. Res. – reference: Taylor, R., Gravseth, I., Turse, D., Keller, P., Hulse, M., Richardson, D., 2013. Method for removing orbital objects from orbit using a capture net for momentum transfer. U.S. Patent 13/621,448. – reference: Botta, E., Sharf, I., Misra, A., 2016. Evaluation of net capture of space debris in multiple mission scenarios. In: 26th AAS/AIAA Space Flight Mechanics Meeting, Nappa, CA. – volume: 5 start-page: A1 year: 2015 ident: b0050 article-title: The DTM-2013 thermosphere model publication-title: J. Space Weather Space Clim. – volume: 80 start-page: 18 year: 2016 end-page: 32 ident: b0215 article-title: Review and comparison of active space debris capturing and removal methods publication-title: Prog. Aerosp. Sci. – reference: Kobayashi, M., Miyachi, T., Nakamura, M.H., 2011. Cosmic dust detector capable of measuring hypervelocity speed using piezoelectric PZT. In: 42nd Lunar and Planetary Science Conference, The Woodlands. – volume: 56 start-page: 509 year: 2015 end-page: 527 ident: b0065 article-title: Harpoon technology development for the active removal of space debris publication-title: Adv. Space Res. – volume: 18 start-page: 87 year: 2010 end-page: 118 ident: b0235 article-title: Analysis of debris from the collision of the cosmos 2251 and the iridium 33 satellites publication-title: Sci. Glob. Secur. – volume: 8 year: 2016 ident: b0225 article-title: Synthesis and design of a one degree-of-freedom planar deployable mechanism with a large expansion ratio publication-title: ASME J. Mech. Robot. – reference: Gates, 2009. Polychain GT Carbon Belt Drive Design Manual. Technical Report. Gates Corporation. Denver. – volume: 115 start-page: 376 year: 2015 end-page: 383 ident: b0210 article-title: Performance model for space-based laser debris sweepers publication-title: Acta Astronaut. – start-page: 15 year: 2011 ident: b0145 article-title: A note on active debris removal publication-title: Orbital Debris Quart. News – volume: 48 start-page: 1890 year: 2011 end-page: 1901 ident: b0130 article-title: CubeSail: a low cost CubeSat based solar sail demonstration mission publication-title: Adv. Space Res. – reference: Arianespace, Perez, E., 2011. Ariane 5 User’s Manual. Arianespace SA., 271. – reference: Biesbroek, R., Soares, T., Hüsing, J., Innocenti, L., 2013. Deorbit CDF study: a design study for the safe removal of a large space debris. In: 64th International Astronautical Congress, Beijing, China. – reference: Futron Corporation, 2002. Space Transportation Costs: Trends in Price Per Pound to Orbit 1990–2000. Technical Report. Futron Corporation. – reference: Boccia, L., Breinbjerg, O., 2012. Antenna basics. In: Space Antenna Handbook. John Wiley & Sons, Ltd, pp. 1–35. – volume: 69 start-page: 911 year: 2011 end-page: 922 ident: b0080 article-title: Multi-layer insulation model for MASTER-2009 publication-title: Acta Astronaut. – reference: Klinkrad, H., Johnson, N., 2009. Space debris environment remediation concepts. In: International Conference on Orbital Debris Removal, Chantilly, VA. – reference: Nishida, S., Yoshikawa, T., 2003. Space debris capture by a joint compliance controlled robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, pp. 496–502. – reference: Barbee, B.W., Alfano, S., Piñon, E., Gold, K., Gaylor, D., 2012. Design of spacecraft missions to remove multiple orbital debris objects. In: 35th Annual AAS Guidance and Control Conference, Breckenridge, pp. 1–19. – year: 2017 ident: b0205 article-title: Stochastic modeling of hypervelocity impacts in attitude propagation of space debris publication-title: Adv. Space Res. – reference: Christiansen, E., 2003. Meteoroid/Debris Shielding. Technical Report August. NASA. Houston. – reference: Pellegrino, S., 2001. Deployable Structures. Springer Vienna, Vienna. – reference: Krag, H., Klinkrad, H., Oswald, M., Stabroth, S., Wiedemann, C., 2007. Analysing the risk increase in LEO due to recent major fragmentation events. European Space Agency, (Special Publication) ESA SP. – reference: Anz-Meador, P., Shoots, D., 2016. Recent NOAA-16 Satellite Breakup. Orbital Debris Quarterly News 20. – volume: 227 start-page: 1791 year: 2013 end-page: 1803 ident: b0140 article-title: Effects of damping, friction, gravity, and flexibility on the dynamic performance of a deployable mechanism with clearance publication-title: Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. – volume: 56 start-page: 436 year: 2015 end-page: 448 ident: b0165 article-title: Development of in-situ micro-debris measurement system publication-title: Adv. Space Res. – reference: NASA, 2009. Deep solar minimum. Last Checked 2016-11-29. – volume: 54 start-page: 1858 year: 2014 end-page: 1869 ident: b0025 article-title: Development of in-situ space debris detector publication-title: Adv. Space Res. – reference: , last visited on 04/01/2018. – volume: 52 start-page: 685 year: 2013 end-page: 695 ident: b0240 article-title: Value analysis for orbital debris removal publication-title: Adv. Space Res. – reference: Nock, K.T., McRonald, A.D., Maynard Aaron, Maynard, K., 2003. Balloon device for lowering space object orbits. US Patent 6830222B1. – reference: Honeywell, 2013. Honeywell Spectra ® Fiber Capability Guide. Technical Report. Honeywell. – volume: 47 start-page: 1865 year: 2011 end-page: 1876 ident: b0150 article-title: An active debris removal parametric study for LEO environment remediation publication-title: Adv. Space Res. – volume: 35 start-page: 1870 year: 2008 end-page: 1877 ident: b0245 article-title: A comparison of NASA, DoD, and hydrocode ballistic limit predictions for spherical and non-spherical shapes versus dual- and single-wall targets, and their effects on orbital debris penetration risk publication-title: Int. J. Impact Eng. – ident: 10.1016/j.asr.2017.12.026_b0120 – volume: 35 start-page: 1870 year: 2008 ident: 10.1016/j.asr.2017.12.026_b0245 article-title: A comparison of NASA, DoD, and hydrocode ballistic limit predictions for spherical and non-spherical shapes versus dual- and single-wall targets, and their effects on orbital debris penetration risk publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2008.07.076 – ident: 10.1016/j.asr.2017.12.026_b0015 – ident: 10.1016/j.asr.2017.12.026_b0005 – ident: 10.1016/j.asr.2017.12.026_b0190 doi: 10.1007/978-3-7091-2584-7 – ident: 10.1016/j.asr.2017.12.026_b0095 – volume: 18 start-page: 87 year: 2010 ident: 10.1016/j.asr.2017.12.026_b0235 article-title: Analysis of debris from the collision of the cosmos 2251 and the iridium 33 satellites publication-title: Sci. Glob. Secur. doi: 10.1080/08929882.2010.493078 – ident: 10.1016/j.asr.2017.12.026_b0185 – volume: 18 start-page: 139 year: 2004 ident: 10.1016/j.asr.2017.12.026_b0100 article-title: DLR’s robotics technologies for on-orbit servicing publication-title: Adv. Robot. doi: 10.1163/156855304322758006 – ident: 10.1016/j.asr.2017.12.026_b0020 doi: 10.1109/AERO.2011.5747303 – ident: 10.1016/j.asr.2017.12.026_b0030 – volume: 227 start-page: 1791 year: 2013 ident: 10.1016/j.asr.2017.12.026_b0140 article-title: Effects of damping, friction, gravity, and flexibility on the dynamic performance of a deployable mechanism with clearance publication-title: Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. doi: 10.1177/0954406212469563 – volume: 48 start-page: 1643 year: 2011 ident: 10.1016/j.asr.2017.12.026_b0160 article-title: Orbital debris-debris collision avoidance publication-title: Adv. Space Res. doi: 10.1016/j.asr.2011.08.005 – volume: 34 start-page: 1097 year: 2004 ident: 10.1016/j.asr.2017.12.026_b0060 article-title: Space Shuttle debris and meteoroid impacts publication-title: Adv. Space Res. doi: 10.1016/j.asr.2003.12.008 – ident: 10.1016/j.asr.2017.12.026_b0105 – volume: 54 start-page: 1858 year: 2014 ident: 10.1016/j.asr.2017.12.026_b0025 article-title: Development of in-situ space debris detector publication-title: Adv. Space Res. doi: 10.1016/j.asr.2014.07.035 – volume: 52 start-page: 685 year: 2013 ident: 10.1016/j.asr.2017.12.026_b0240 article-title: Value analysis for orbital debris removal publication-title: Adv. Space Res. doi: 10.1016/j.asr.2013.04.024 – ident: 10.1016/j.asr.2017.12.026_b0045 – start-page: 15 year: 2011 ident: 10.1016/j.asr.2017.12.026_b0145 article-title: A note on active debris removal publication-title: Orbital Debris Quart. News – volume: 8 year: 2016 ident: 10.1016/j.asr.2017.12.026_b0225 article-title: Synthesis and design of a one degree-of-freedom planar deployable mechanism with a large expansion ratio publication-title: ASME J. Mech. Robot. doi: 10.1115/1.4032101 – volume: 56 start-page: 509 year: 2015 ident: 10.1016/j.asr.2017.12.026_b0065 article-title: Harpoon technology development for the active removal of space debris publication-title: Adv. Space Res. doi: 10.1016/j.asr.2015.04.012 – ident: 10.1016/j.asr.2017.12.026_b0010 – ident: 10.1016/j.asr.2017.12.026_b0170 – ident: 10.1016/j.asr.2017.12.026_b0055 – ident: 10.1016/j.asr.2017.12.026_b0180 doi: 10.1109/AIM.2003.1225145 – volume: 69 start-page: 911 year: 2011 ident: 10.1016/j.asr.2017.12.026_b0080 article-title: Multi-layer insulation model for MASTER-2009 publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2011.06.015 – ident: 10.1016/j.asr.2017.12.026_b0250 doi: 10.1109/IHMSC.2012.71 – ident: 10.1016/j.asr.2017.12.026_b0070 – volume: 23 start-page: 89 year: 1999 ident: 10.1016/j.asr.2017.12.026_b0155 article-title: Secondary impact generated particles: implications for the orbital debris population publication-title: Adv. Space Res. doi: 10.1016/S0273-1177(98)00234-8 – volume: 73 start-page: 100 year: 2012 ident: 10.1016/j.asr.2017.12.026_b0135 article-title: Wholesale debris removal from LEO publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2011.11.014 – volume: 85 start-page: 51 year: 2013 ident: 10.1016/j.asr.2017.12.026_b0040 article-title: Active debris removal: recent progress and current trends publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2012.11.009 – ident: 10.1016/j.asr.2017.12.026_b0085 – volume: 80 start-page: 18 year: 2016 ident: 10.1016/j.asr.2017.12.026_b0215 article-title: Review and comparison of active space debris capturing and removal methods publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2015.11.001 – ident: 10.1016/j.asr.2017.12.026_b0230 – volume: 36 start-page: 404 year: 2013 ident: 10.1016/j.asr.2017.12.026_b0175 article-title: Adaptive reactionless motion and parameter identification in postcapture of space debris publication-title: J. Guid. Control Dyn. doi: 10.2514/1.57856 – ident: 10.1016/j.asr.2017.12.026_b0035 doi: 10.1002/9781119945147.ch1 – ident: 10.1016/j.asr.2017.12.026_b0220 – volume: 56 start-page: 436 year: 2015 ident: 10.1016/j.asr.2017.12.026_b0165 article-title: Development of in-situ micro-debris measurement system publication-title: Adv. Space Res. doi: 10.1016/j.asr.2015.04.009 – volume: 48 start-page: 1890 year: 2011 ident: 10.1016/j.asr.2017.12.026_b0130 article-title: CubeSail: a low cost CubeSat based solar sail demonstration mission publication-title: Adv. Space Res. doi: 10.1016/j.asr.2011.05.033 – ident: 10.1016/j.asr.2017.12.026_b0115 – volume: 5 start-page: A1 year: 2015 ident: 10.1016/j.asr.2017.12.026_b0050 article-title: The DTM-2013 thermosphere model publication-title: J. Space Weather Space Clim. doi: 10.1051/swsc/2015001 – volume: 83 start-page: 2637 year: 1978 ident: 10.1016/j.asr.2017.12.026_b0110 article-title: Collision frequency of artificial satellites: the creation of a debris belt publication-title: J. Geophys. Res. doi: 10.1029/JA083iA06p02637 – volume: 47 start-page: 1865 year: 2011 ident: 10.1016/j.asr.2017.12.026_b0150 article-title: An active debris removal parametric study for LEO environment remediation publication-title: Adv. Space Res. doi: 10.1016/j.asr.2011.02.003 – ident: 10.1016/j.asr.2017.12.026_b0075 – volume: 473 start-page: 221 year: 2011 ident: 10.1016/j.asr.2017.12.026_b0090 article-title: A concept for elimination of small orbital debris publication-title: Nature – year: 2017 ident: 10.1016/j.asr.2017.12.026_b0205 article-title: Stochastic modeling of hypervelocity impacts in attitude propagation of space debris publication-title: Adv. Space Res. doi: 10.1016/j.asr.2016.11.030 – ident: 10.1016/j.asr.2017.12.026_b0125 – volume: 69 start-page: 245 year: 2011 ident: 10.1016/j.asr.2017.12.026_b0200 article-title: A ballistic limit analysis programme for shielding against micrometeoroids and orbital debris publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2011.04.012 – volume: 115 start-page: 376 year: 2015 ident: 10.1016/j.asr.2017.12.026_b0210 article-title: Performance model for space-based laser debris sweepers publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.05.032 – volume: 33 start-page: 670 year: 2006 ident: 10.1016/j.asr.2017.12.026_b0195 article-title: Hypervelocity impact damage prediction in composites: Part II experimental investigations and simulations publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2006.09.052  | 
    
| SSID | ssj0012770 | 
    
| Score | 2.2489386 | 
    
| Snippet | Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 1286 | 
    
| SubjectTerms | Active debris removal Cupola device Deployable mechanism Small size Space debris  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5ch9D20CZuS14tewg9tGwsS6vHHk1ICIWGQOLinoT2BU4t2UQyIfn1ndHDpKUkhN6kZXal1Yx25_ktwKFFOdAuDLki4FahUYdTUjguQid15ulEaorofj-Pzibi2zSc9uC4q4WhtMp27W_W9Hq1bluG7dccLmez4SUhsVDIcYRCKj1_-gI2ohAV8j5sTM4vxj9r70occKIhsyuJJUeTPelim3WWV1YSKOgorn2ChLDw793p5apYZne32Xz-YPc5fQume-8m6eTX0apSR_r-L0jH_5zYFrxptVM2bui2oWeLAeyMS_KXL_I79pnV1407pBzA6wdwhgPYvGja38GPMTOWjhKmwiyWWyovnpU5002RJENNmaHmyUgK61ywgi0cK3OcOa8WnAL-q5yXs3vLcMXTFkejyoT3MDk9uTo-4-0JDlwHwqu4roFHszhSTnnKWd94mTA6VMYnU8qPnVAmsSOlg4ACfBS2DSxSSymi0JjgA_SLRWF3gLkoUL5KMhwMjbpISu3I9qLALFpMRuyC13Eu1S28OZ2yMU-7PLbrFJmdErPTkZ8is3fhy7rLssH2eIxYdOKQ_sHHFPeex7p9XYvO0w_Zexb1PrzCu6TJiDuAfnWzsh9RRarUp_YX-A0xYw4q priority: 102 providerName: Unpaywall  | 
    
| Title | A deployable mechanism concept for the collection of small-to-medium-size space debris | 
    
| URI | https://dx.doi.org/10.1016/j.asr.2017.12.026 https://www.sciencedirect.com/science/article/pii/S027311771730902X  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 61 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1948 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012770 issn: 0273-1177 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-1948 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012770 issn: 0273-1177 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1948 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012770 issn: 0273-1177 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-1948 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012770 issn: 0273-1177 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1948 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012770 issn: 0273-1177 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH-UjrL1MNpsI-nWosPooUOLP-SvoykLactCoM3ITsaSJUiJnVA7lO6wv33v-SO0UDroybaQLKH3kN7n7wF81cgHyngelwTcKhTKcDIShgvPRCq1VBgp8uj-nPjjmbice_MdOO9yYSissj37mzO9Pq3blmG7m8P1YjG8JiQWcjnayKSR5cwpg10EVMXg-99tmIftBEFjZwlcTr07z2Yd45WWBAlqB7VFkPAVnr-b3m6Kdfpwny6Xj-6e0QG8b4VGFjfrOoQdXfSgH5dkxl7lD-yU1e-NlaLswf4jlMEe7E2b9g_wK2aZpgq_lC_Fck1Zv4syZ6rJXWQowDIUCBkxRx2iVbCVYWWOS-LVipMffpPzcvFHMzyIlMa_UcLAR5iNftycj3lbWIErV1gVVzUeaBr40khLGu1kVioy5cnMIQ3HCYyQWahtqVyX_G7kTXU19o4i4XtZ5n6C3WJV6D4w47vSkWGKP0Ndy48iZUglIn8pKjKZGIDVbWmiWtRxKn6xTLrwstsEqZAQFRLbSZAKAzjbDlk3kBsvdRYdnZInfJPglfDSsG9bmv5_kqPXTfIZ3uFX2ESsfYHd6m6jj1GEqeRJzaMn8Ca-uBpP8DmbTOPf_wCIX_DJ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5cZVEPorMrvrcP4mGld_LoJJPjIMroqgg-mFuT7nTDyCQzmBlED_52q_IYFETBW-j0i66iup5fA-wb5ANtg4ArAm4VGnU4FQvLRWBjnTi6E2uK6F5chr1bcdYP-nNw1NTCUFplLfsrmV5K67qlXZ9mezwYtK8JiYVCji4yaex4_R-wIAIvIgvs38ssz8PFlsrREvmcujehzTLJKykIE9SNSpcgASx8fDktTvNx8vSYDIdvLp-TVViptUbWrTa2BnMmb8FGtyA_9ih7Yges_K7cFEULlt_ADLbg51XV_gvuuiw19MQvFUyxzFDZ76DImK6KFxlqsAw1QkbcUeZo5WxkWZHhlvhkxCkQP814MXg2DCWRNjgbVQz8htuT45ujHq9fVuDaF86E6xIQNIlCZZWjrPFSJxGpDlTqkYnjRVaotGNcpX2fAm8UTvUN9o5jEQZp6q_DfD7KzQYwG_rKU50EJ0NjK4xjbckmooApWjKp2ASnOVKpa9hxev1iKJv8snuJVJBEBel6EqmwCX9nQ8YV5sZnnUVDJ_mOcSTeCZ8NO5zR9OtFtr63yB9Y7N1cnMvz08v_27CEfzpV-toOzE8epmYX9ZmJ2iv59RWabfCu | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5ch9D20CZuS14tewg9tGwsS6vHHk1ICIWGQOLinoT2BU4t2UQyIfn1ndHDpKUkhN6kZXal1Yx25_ktwKFFOdAuDLki4FahUYdTUjguQid15ulEaorofj-Pzibi2zSc9uC4q4WhtMp27W_W9Hq1bluG7dccLmez4SUhsVDIcYRCKj1_-gI2ohAV8j5sTM4vxj9r70occKIhsyuJJUeTPelim3WWV1YSKOgorn2ChLDw793p5apYZne32Xz-YPc5fQume-8m6eTX0apSR_r-L0jH_5zYFrxptVM2bui2oWeLAeyMS_KXL_I79pnV1407pBzA6wdwhgPYvGja38GPMTOWjhKmwiyWWyovnpU5002RJENNmaHmyUgK61ywgi0cK3OcOa8WnAL-q5yXs3vLcMXTFkejyoT3MDk9uTo-4-0JDlwHwqu4roFHszhSTnnKWd94mTA6VMYnU8qPnVAmsSOlg4ACfBS2DSxSSymi0JjgA_SLRWF3gLkoUL5KMhwMjbpISu3I9qLALFpMRuyC13Eu1S28OZ2yMU-7PLbrFJmdErPTkZ8is3fhy7rLssH2eIxYdOKQ_sHHFPeex7p9XYvO0w_Zexb1PrzCu6TJiDuAfnWzsh9RRarUp_YX-A0xYw4q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deployable+mechanism+concept+for+the+collection+of+small-to-medium-size+space+debris&rft.jtitle=Advances+in+space+research&rft.au=St-Onge%2C+David&rft.au=Sharf%2C+Inna&rft.au=Sagni%C3%A8res%2C+Luc&rft.au=Gosselin%2C+Cl%C3%A9ment&rft.date=2018-03-01&rft.pub=Elsevier+Ltd&rft.issn=0273-1177&rft.eissn=1879-1948&rft.volume=61&rft.issue=5&rft.spage=1286&rft.epage=1297&rft_id=info:doi/10.1016%2Fj.asr.2017.12.026&rft.externalDocID=S027311771730902X | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon |