A deployable mechanism concept for the collection of small-to-medium-size space debris

Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a miss...

Full description

Saved in:
Bibliographic Details
Published inAdvances in space research Vol. 61; no. 5; pp. 1286 - 1297
Main Authors St-Onge, David, Sharf, Inna, Sagnières, Luc, Gosselin, Clément
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2018
Subjects
Online AccessGet full text
ISSN0273-1177
1879-1948
1879-1948
DOI10.1016/j.asr.2017.12.026

Cover

Abstract Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small-to-medium size debris removal mission, albeit finding it to not be economically viable at the present time.
AbstractList Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small-to-medium size debris removal mission, albeit finding it to not be economically viable at the present time.
Author Sharf, Inna
St-Onge, David
Sagnières, Luc
Gosselin, Clément
Author_xml – sequence: 1
  givenname: David
  surname: St-Onge
  fullname: St-Onge, David
  email: david.st-onge.2@ulaval.ca
  organization: Department of Mechanical Engineering, Laval University, 1065 Médecine Av., Québec G1V 0A6, Qc, Canada
– sequence: 2
  givenname: Inna
  surname: Sharf
  fullname: Sharf, Inna
  email: inna.sharf@mcgill.ca
  organization: Department of Mechanical Engineering, McGill University, 3480 University St., Montréal H3A 0E9, Qc, Canada
– sequence: 3
  givenname: Luc
  surname: Sagnières
  fullname: Sagnières, Luc
  email: luc.sagnieres@mail.mcgill.ca
  organization: Department of Mechanical Engineering, McGill University, 3480 University St., Montréal H3A 0E9, Qc, Canada
– sequence: 4
  givenname: Clément
  surname: Gosselin
  fullname: Gosselin, Clément
  email: gosselin@gmc.ulaval.ca
  organization: Department of Mechanical Engineering, Laval University, 1065 Médecine Av., Québec G1V 0A6, Qc, Canada
BookMark eNqN0MtKAzEUgOEgFWyrD-AuLzBjLtNJB1eleIOCG3UbcjlDUzKTIZkq9elNqSsXxVU4kP9w-GZo0oceELqlpKSE1ne7UqVYMkJFSVlJWH2BpnQpmoI21XKCpoQJXlAqxBWapbQjhDIhyBR9rLCFwYeD0h5wB2arepc6bEJvYBhxGyIet5Bn78GMLvQ4tDh1yvtiDEUH1u27IrlvwGlQBvI2HV26Rpet8gluft85en98eFs_F5vXp5f1alMYXpGxMIRT0ihR61YT3QKzRFXWLLRlZFkzJtpK2yVQbThnFeWcVAsO-XfTVPXCWj5H7LR33w_q8JWvkkN0nYoHSYk8ysidzDLyKCMpk1kmR_QUmRhSitD-qxF_GuNGdfQYo3L-bHl_KiE7fDqIMhkHWde6mEWlDe5M_QODeZE1
CitedBy_id crossref_primary_10_1186_s10033_020_00489_5
crossref_primary_10_1109_ACCESS_2020_2979505
crossref_primary_10_3390_su14031794
crossref_primary_10_1177_09544100241272826
crossref_primary_10_1515_astro_2020_0016
crossref_primary_10_1007_s11431_020_1661_7
Cites_doi 10.1016/j.ijimpeng.2008.07.076
10.1007/978-3-7091-2584-7
10.1080/08929882.2010.493078
10.1163/156855304322758006
10.1109/AERO.2011.5747303
10.1177/0954406212469563
10.1016/j.asr.2011.08.005
10.1016/j.asr.2003.12.008
10.1016/j.asr.2014.07.035
10.1016/j.asr.2013.04.024
10.1115/1.4032101
10.1016/j.asr.2015.04.012
10.1109/AIM.2003.1225145
10.1016/j.actaastro.2011.06.015
10.1109/IHMSC.2012.71
10.1016/S0273-1177(98)00234-8
10.1016/j.actaastro.2011.11.014
10.1016/j.actaastro.2012.11.009
10.1016/j.paerosci.2015.11.001
10.2514/1.57856
10.1002/9781119945147.ch1
10.1016/j.asr.2015.04.009
10.1016/j.asr.2011.05.033
10.1051/swsc/2015001
10.1029/JA083iA06p02637
10.1016/j.asr.2011.02.003
10.1016/j.asr.2016.11.030
10.1016/j.actaastro.2011.04.012
10.1016/j.actaastro.2015.05.032
10.1016/j.ijimpeng.2006.09.052
ContentType Journal Article
Copyright 2017 COSPAR
Copyright_xml – notice: 2017 COSPAR
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.asr.2017.12.026
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Astronomy & Astrophysics
Physics
EISSN 1879-1948
EndPage 1297
ExternalDocumentID 10.1016/j.asr.2017.12.026
10_1016_j_asr_2017_12_026
S027311771730902X
GroupedDBID --K
--M
-~X
.~1
0R~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SDG
SEP
SES
SPC
SPCBC
SSE
SSQ
SSZ
T5K
ZMT
~02
~G-
1B1
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMA
HME
HVGLF
HX~
HZ~
IHE
R2-
RPZ
SEW
SHN
T9H
UHS
VH1
VOH
WUQ
ZY4
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c340t-c03109a76bfb0bfe2d0a4dc5bd2086227f4bd8e1bc33241330453e6bf99465dd3
IEDL.DBID .~1
ISSN 0273-1177
1879-1948
IngestDate Tue Aug 19 22:01:46 EDT 2025
Thu Oct 09 00:39:19 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Fri Feb 23 02:46:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Small size
Active debris removal
Deployable mechanism
Space debris
Cupola device
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-c03109a76bfb0bfe2d0a4dc5bd2086227f4bd8e1bc33241330453e6bf99465dd3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S027311771730902X
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_asr_2017_12_026
crossref_primary_10_1016_j_asr_2017_12_026
crossref_citationtrail_10_1016_j_asr_2017_12_026
elsevier_sciencedirect_doi_10_1016_j_asr_2017_12_026
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Advances in space research
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gates, 2009. Polychain GT Carbon Belt Drive Design Manual. Technical Report. Gates Corporation. Denver.
Mandeville, Rival, Alby (b0155) 1999; 23
Boccia, L., Breinbjerg, O., 2012. Antenna basics. In: Space Antenna Handbook. John Wiley & Sons, Ltd, pp. 1–35.
Nakamura, Kitazawa, Matsumoto, Okudaira, Hanada, Sakurai, Funakoshi, Yasaka, Hasegawa, Kobayashi (b0165) 2015; 56
Nock, K.T., McRonald, A.D., Maynard Aaron, Maynard, K., 2003. Balloon device for lowering space object orbits. US Patent 6830222B1.
Nishida, S., Yoshikawa, T., 2003. Space debris capture by a joint compliance controlled robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, pp. 496–502.
Futron Corporation, 2002. Space Transportation Costs: Trends in Price Per Pound to Orbit 1990–2000. Technical Report. Futron Corporation.
Sagnières, Sharf (b0205) 2017
Lappas, Adeli, Visagie, Fernandez, Theodorou, Steyn, Perren (b0130) 2011; 48
Bauer, Romberg, Wiedemann, Drolshagen, Vörsmann (b0025) 2014; 54
Schmitz, Fasoulas, Utzmann (b0210) 2015; 115
Levin, Pearson, Carroll (b0135) 2012; 73
Flegel, Gelhaus, Möckel, Wiedemann, Krag, Klinkrad, Vörsmann (b0080) 2011; 69
Nguyen-Huynh, Sharf (b0175) 2013; 36
Zhai, G., Zhang, J.R., 2012. Space tether net system for debris capture and removal. In: 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, pp. 257–261.
Liou (b0145) 2011
Bruinsma (b0050) 2015; 5
Williamsen, Schonberg, Evans, Evans (b0245) 2008; 35
Pellegrino, S., 2001. Deployable Structures. Springer Vienna, Vienna.
Dunn, M.J., 2014. Space Debris Removal. US Patent 8800933 B2.
Biesbroek, R., Soares, T., Hüsing, J., Innocenti, L., 2013. Deorbit CDF study: a design study for the safe removal of a large space debris. In: 64th International Astronautical Congress, Beijing, China.
Kessler, Cour-Palais (b0110) 1978; 83
Taylor, R., Gravseth, I., Turse, D., Keller, P., Hulse, M., Richardson, D., 2013. Method for removing orbital objects from orbit using a capture net for momentum transfer. U.S. Patent 13/621,448.
Krag, H., Klinkrad, H., Oswald, M., Stabroth, S., Wiedemann, C., 2007. Analysing the risk increase in LEO due to recent major fragmentation events. European Space Agency, (Special Publication) ESA SP.
Riedel, Nahme, White, Clegg (b0195) 2006; 33
Liou (b0150) 2011; 47
Christiansen, Hyde, Bernhard (b0060) 2004; 34
Aghili, F., 2012. Active orbital debris removal using space robotics. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), pp. 1–9.
last visited on 04/01/2018.
St-Onge, Gosselin (b0225) 2016; 8
Kobayashi, M., Miyachi, T., Nakamura, M.H., 2011. Cosmic dust detector capable of measuring hypervelocity speed using piezoelectric PZT. In: 42nd Lunar and Planetary Science Conference, The Woodlands.
Vance, Mense (b0240) 2013; 52
ESA,. Hypervelocity impacts and protecting spacecraft.
Bonnal, Ruault, Desjean (b0040) 2013; 85
Klinkrad, H., Johnson, N., 2009. Space debris environment remediation concepts. In: International Conference on Orbital Debris Removal, Chantilly, VA.
Hirzinger, Landzettel, Brunner, Fischer, Preusche, Reintsema, Albu-Schäffer, Schreiber, Steinmetz (b0100) 2004; 18
Dudziak, Tuttle, Barraclough (b0065) 2015; 56
Li, Yan, Guo, Guo (b0140) 2013; 227
Ryan, Christiansen (b0200) 2011; 69
Mason, Stupl, Marshall, Levit (b0160) 2011; 48
Ganguli, Crabtree, Rudakov, Chappie (b0090) 2011; 473
Honeywell, 2013. Honeywell Spectra ® Fiber Capability Guide. Technical Report. Honeywell.
St-Onge, D., Gosselin, C., 2016a. Dynamic modelling of a four-bar free floating mechanism with passive joints and flywheel actuators. In: International Symposium on Multi-body System Dynamics, Montreal, pp. 1–10.
Wang (b0235) 2010; 18
Christiansen, E., 2003. Meteoroid/Debris Shielding. Technical Report August. NASA. Houston.
Shan, Guo, Gill (b0215) 2016; 80
Barbee, B.W., Alfano, S., Piñon, E., Gold, K., Gaylor, D., 2012. Design of spacecraft missions to remove multiple orbital debris objects. In: 35th Annual AAS Guidance and Control Conference, Breckenridge, pp. 1–19.
Anz-Meador, P., Shoots, D., 2016. Recent NOAA-16 Satellite Breakup. Orbital Debris Quarterly News 20.
Arianespace, Perez, E., 2011. Ariane 5 User’s Manual. Arianespace SA., 271.
Botta, E., Sharf, I., Misra, A., 2016. Evaluation of net capture of space debris in multiple mission scenarios. In: 26th AAS/AIAA Space Flight Mechanics Meeting, Nappa, CA.
NASA, 2009. Deep solar minimum. Last Checked 2016-11-29.
10.1016/j.asr.2017.12.026_b0115
10.1016/j.asr.2017.12.026_b0035
Flegel (10.1016/j.asr.2017.12.026_b0080) 2011; 69
Kessler (10.1016/j.asr.2017.12.026_b0110) 1978; 83
Schmitz (10.1016/j.asr.2017.12.026_b0210) 2015; 115
10.1016/j.asr.2017.12.026_b0075
Levin (10.1016/j.asr.2017.12.026_b0135) 2012; 73
10.1016/j.asr.2017.12.026_b0230
10.1016/j.asr.2017.12.026_b0030
Christiansen (10.1016/j.asr.2017.12.026_b0060) 2004; 34
Li (10.1016/j.asr.2017.12.026_b0140) 2013; 227
10.1016/j.asr.2017.12.026_b0105
Bonnal (10.1016/j.asr.2017.12.026_b0040) 2013; 85
10.1016/j.asr.2017.12.026_b0220
10.1016/j.asr.2017.12.026_b0020
10.1016/j.asr.2017.12.026_b0185
Mandeville (10.1016/j.asr.2017.12.026_b0155) 1999; 23
10.1016/j.asr.2017.12.026_b0190
10.1016/j.asr.2017.12.026_b0070
Ganguli (10.1016/j.asr.2017.12.026_b0090) 2011; 473
Liou (10.1016/j.asr.2017.12.026_b0150) 2011; 47
Hirzinger (10.1016/j.asr.2017.12.026_b0100) 2004; 18
Dudziak (10.1016/j.asr.2017.12.026_b0065) 2015; 56
10.1016/j.asr.2017.12.026_b0015
Bruinsma (10.1016/j.asr.2017.12.026_b0050) 2015; 5
Ryan (10.1016/j.asr.2017.12.026_b0200) 2011; 69
Sagnières (10.1016/j.asr.2017.12.026_b0205) 2017
10.1016/j.asr.2017.12.026_b0055
Vance (10.1016/j.asr.2017.12.026_b0240) 2013; 52
Nguyen-Huynh (10.1016/j.asr.2017.12.026_b0175) 2013; 36
10.1016/j.asr.2017.12.026_b0010
10.1016/j.asr.2017.12.026_b0095
10.1016/j.asr.2017.12.026_b0250
10.1016/j.asr.2017.12.026_b0170
St-Onge (10.1016/j.asr.2017.12.026_b0225) 2016; 8
10.1016/j.asr.2017.12.026_b0180
Liou (10.1016/j.asr.2017.12.026_b0145) 2011
Riedel (10.1016/j.asr.2017.12.026_b0195) 2006; 33
Shan (10.1016/j.asr.2017.12.026_b0215) 2016; 80
10.1016/j.asr.2017.12.026_b0125
10.1016/j.asr.2017.12.026_b0005
10.1016/j.asr.2017.12.026_b0045
Lappas (10.1016/j.asr.2017.12.026_b0130) 2011; 48
10.1016/j.asr.2017.12.026_b0120
10.1016/j.asr.2017.12.026_b0085
Mason (10.1016/j.asr.2017.12.026_b0160) 2011; 48
Wang (10.1016/j.asr.2017.12.026_b0235) 2010; 18
Nakamura (10.1016/j.asr.2017.12.026_b0165) 2015; 56
Bauer (10.1016/j.asr.2017.12.026_b0025) 2014; 54
Williamsen (10.1016/j.asr.2017.12.026_b0245) 2008; 35
References_xml – volume: 69
  start-page: 245
  year: 2011
  end-page: 257
  ident: b0200
  article-title: A ballistic limit analysis programme for shielding against micrometeoroids and orbital debris
  publication-title: Acta Astronaut.
– reference: Zhai, G., Zhang, J.R., 2012. Space tether net system for debris capture and removal. In: 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, pp. 257–261.
– reference: Dunn, M.J., 2014. Space Debris Removal. US Patent 8800933 B2.
– volume: 48
  start-page: 1643
  year: 2011
  end-page: 1655
  ident: b0160
  article-title: Orbital debris-debris collision avoidance
  publication-title: Adv. Space Res.
– volume: 36
  start-page: 404
  year: 2013
  end-page: 414
  ident: b0175
  article-title: Adaptive reactionless motion and parameter identification in postcapture of space debris
  publication-title: J. Guid. Control Dyn.
– volume: 34
  start-page: 1097
  year: 2004
  end-page: 1103
  ident: b0060
  article-title: Space Shuttle debris and meteoroid impacts
  publication-title: Adv. Space Res.
– volume: 85
  start-page: 51
  year: 2013
  end-page: 60
  ident: b0040
  article-title: Active debris removal: recent progress and current trends
  publication-title: Acta Astronaut.
– volume: 23
  start-page: 89
  year: 1999
  end-page: 94
  ident: b0155
  article-title: Secondary impact generated particles: implications for the orbital debris population
  publication-title: Adv. Space Res.
– reference: Aghili, F., 2012. Active orbital debris removal using space robotics. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), pp. 1–9.
– volume: 18
  start-page: 139
  year: 2004
  end-page: 174
  ident: b0100
  article-title: DLR’s robotics technologies for on-orbit servicing
  publication-title: Adv. Robot.
– reference: ESA,. Hypervelocity impacts and protecting spacecraft.
– reference: St-Onge, D., Gosselin, C., 2016a. Dynamic modelling of a four-bar free floating mechanism with passive joints and flywheel actuators. In: International Symposium on Multi-body System Dynamics, Montreal, pp. 1–10.
– volume: 73
  start-page: 100
  year: 2012
  end-page: 108
  ident: b0135
  article-title: Wholesale debris removal from LEO
  publication-title: Acta Astronaut.
– volume: 33
  start-page: 670
  year: 2006
  end-page: 680
  ident: b0195
  article-title: Hypervelocity impact damage prediction in composites: Part II experimental investigations and simulations
  publication-title: Int. J. Impact Eng.
– volume: 473
  start-page: 221
  year: 2011
  end-page: 225
  ident: b0090
  article-title: A concept for elimination of small orbital debris
  publication-title: Nature
– volume: 83
  start-page: 2637
  year: 1978
  end-page: 2646
  ident: b0110
  article-title: Collision frequency of artificial satellites: the creation of a debris belt
  publication-title: J. Geophys. Res.
– reference: Taylor, R., Gravseth, I., Turse, D., Keller, P., Hulse, M., Richardson, D., 2013. Method for removing orbital objects from orbit using a capture net for momentum transfer. U.S. Patent 13/621,448.
– reference: Botta, E., Sharf, I., Misra, A., 2016. Evaluation of net capture of space debris in multiple mission scenarios. In: 26th AAS/AIAA Space Flight Mechanics Meeting, Nappa, CA.
– volume: 5
  start-page: A1
  year: 2015
  ident: b0050
  article-title: The DTM-2013 thermosphere model
  publication-title: J. Space Weather Space Clim.
– volume: 80
  start-page: 18
  year: 2016
  end-page: 32
  ident: b0215
  article-title: Review and comparison of active space debris capturing and removal methods
  publication-title: Prog. Aerosp. Sci.
– reference: Kobayashi, M., Miyachi, T., Nakamura, M.H., 2011. Cosmic dust detector capable of measuring hypervelocity speed using piezoelectric PZT. In: 42nd Lunar and Planetary Science Conference, The Woodlands.
– volume: 56
  start-page: 509
  year: 2015
  end-page: 527
  ident: b0065
  article-title: Harpoon technology development for the active removal of space debris
  publication-title: Adv. Space Res.
– volume: 18
  start-page: 87
  year: 2010
  end-page: 118
  ident: b0235
  article-title: Analysis of debris from the collision of the cosmos 2251 and the iridium 33 satellites
  publication-title: Sci. Glob. Secur.
– volume: 8
  year: 2016
  ident: b0225
  article-title: Synthesis and design of a one degree-of-freedom planar deployable mechanism with a large expansion ratio
  publication-title: ASME J. Mech. Robot.
– reference: Gates, 2009. Polychain GT Carbon Belt Drive Design Manual. Technical Report. Gates Corporation. Denver.
– volume: 115
  start-page: 376
  year: 2015
  end-page: 383
  ident: b0210
  article-title: Performance model for space-based laser debris sweepers
  publication-title: Acta Astronaut.
– start-page: 15
  year: 2011
  ident: b0145
  article-title: A note on active debris removal
  publication-title: Orbital Debris Quart. News
– volume: 48
  start-page: 1890
  year: 2011
  end-page: 1901
  ident: b0130
  article-title: CubeSail: a low cost CubeSat based solar sail demonstration mission
  publication-title: Adv. Space Res.
– reference: Arianespace, Perez, E., 2011. Ariane 5 User’s Manual. Arianespace SA., 271.
– reference: Biesbroek, R., Soares, T., Hüsing, J., Innocenti, L., 2013. Deorbit CDF study: a design study for the safe removal of a large space debris. In: 64th International Astronautical Congress, Beijing, China.
– reference: Futron Corporation, 2002. Space Transportation Costs: Trends in Price Per Pound to Orbit 1990–2000. Technical Report. Futron Corporation.
– reference: Boccia, L., Breinbjerg, O., 2012. Antenna basics. In: Space Antenna Handbook. John Wiley & Sons, Ltd, pp. 1–35.
– volume: 69
  start-page: 911
  year: 2011
  end-page: 922
  ident: b0080
  article-title: Multi-layer insulation model for MASTER-2009
  publication-title: Acta Astronaut.
– reference: Klinkrad, H., Johnson, N., 2009. Space debris environment remediation concepts. In: International Conference on Orbital Debris Removal, Chantilly, VA.
– reference: Nishida, S., Yoshikawa, T., 2003. Space debris capture by a joint compliance controlled robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, pp. 496–502.
– reference: Barbee, B.W., Alfano, S., Piñon, E., Gold, K., Gaylor, D., 2012. Design of spacecraft missions to remove multiple orbital debris objects. In: 35th Annual AAS Guidance and Control Conference, Breckenridge, pp. 1–19.
– year: 2017
  ident: b0205
  article-title: Stochastic modeling of hypervelocity impacts in attitude propagation of space debris
  publication-title: Adv. Space Res.
– reference: Christiansen, E., 2003. Meteoroid/Debris Shielding. Technical Report August. NASA. Houston.
– reference: Pellegrino, S., 2001. Deployable Structures. Springer Vienna, Vienna.
– reference: Krag, H., Klinkrad, H., Oswald, M., Stabroth, S., Wiedemann, C., 2007. Analysing the risk increase in LEO due to recent major fragmentation events. European Space Agency, (Special Publication) ESA SP.
– reference: Anz-Meador, P., Shoots, D., 2016. Recent NOAA-16 Satellite Breakup. Orbital Debris Quarterly News 20.
– volume: 227
  start-page: 1791
  year: 2013
  end-page: 1803
  ident: b0140
  article-title: Effects of damping, friction, gravity, and flexibility on the dynamic performance of a deployable mechanism with clearance
  publication-title: Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci.
– volume: 56
  start-page: 436
  year: 2015
  end-page: 448
  ident: b0165
  article-title: Development of in-situ micro-debris measurement system
  publication-title: Adv. Space Res.
– reference: NASA, 2009. Deep solar minimum. Last Checked 2016-11-29.
– volume: 54
  start-page: 1858
  year: 2014
  end-page: 1869
  ident: b0025
  article-title: Development of in-situ space debris detector
  publication-title: Adv. Space Res.
– reference: , last visited on 04/01/2018.
– volume: 52
  start-page: 685
  year: 2013
  end-page: 695
  ident: b0240
  article-title: Value analysis for orbital debris removal
  publication-title: Adv. Space Res.
– reference: Nock, K.T., McRonald, A.D., Maynard Aaron, Maynard, K., 2003. Balloon device for lowering space object orbits. US Patent 6830222B1.
– reference: Honeywell, 2013. Honeywell Spectra ® Fiber Capability Guide. Technical Report. Honeywell.
– volume: 47
  start-page: 1865
  year: 2011
  end-page: 1876
  ident: b0150
  article-title: An active debris removal parametric study for LEO environment remediation
  publication-title: Adv. Space Res.
– volume: 35
  start-page: 1870
  year: 2008
  end-page: 1877
  ident: b0245
  article-title: A comparison of NASA, DoD, and hydrocode ballistic limit predictions for spherical and non-spherical shapes versus dual- and single-wall targets, and their effects on orbital debris penetration risk
  publication-title: Int. J. Impact Eng.
– ident: 10.1016/j.asr.2017.12.026_b0120
– volume: 35
  start-page: 1870
  year: 2008
  ident: 10.1016/j.asr.2017.12.026_b0245
  article-title: A comparison of NASA, DoD, and hydrocode ballistic limit predictions for spherical and non-spherical shapes versus dual- and single-wall targets, and their effects on orbital debris penetration risk
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2008.07.076
– ident: 10.1016/j.asr.2017.12.026_b0015
– ident: 10.1016/j.asr.2017.12.026_b0005
– ident: 10.1016/j.asr.2017.12.026_b0190
  doi: 10.1007/978-3-7091-2584-7
– ident: 10.1016/j.asr.2017.12.026_b0095
– volume: 18
  start-page: 87
  year: 2010
  ident: 10.1016/j.asr.2017.12.026_b0235
  article-title: Analysis of debris from the collision of the cosmos 2251 and the iridium 33 satellites
  publication-title: Sci. Glob. Secur.
  doi: 10.1080/08929882.2010.493078
– ident: 10.1016/j.asr.2017.12.026_b0185
– volume: 18
  start-page: 139
  year: 2004
  ident: 10.1016/j.asr.2017.12.026_b0100
  article-title: DLR’s robotics technologies for on-orbit servicing
  publication-title: Adv. Robot.
  doi: 10.1163/156855304322758006
– ident: 10.1016/j.asr.2017.12.026_b0020
  doi: 10.1109/AERO.2011.5747303
– ident: 10.1016/j.asr.2017.12.026_b0030
– volume: 227
  start-page: 1791
  year: 2013
  ident: 10.1016/j.asr.2017.12.026_b0140
  article-title: Effects of damping, friction, gravity, and flexibility on the dynamic performance of a deployable mechanism with clearance
  publication-title: Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci.
  doi: 10.1177/0954406212469563
– volume: 48
  start-page: 1643
  year: 2011
  ident: 10.1016/j.asr.2017.12.026_b0160
  article-title: Orbital debris-debris collision avoidance
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2011.08.005
– volume: 34
  start-page: 1097
  year: 2004
  ident: 10.1016/j.asr.2017.12.026_b0060
  article-title: Space Shuttle debris and meteoroid impacts
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2003.12.008
– ident: 10.1016/j.asr.2017.12.026_b0105
– volume: 54
  start-page: 1858
  year: 2014
  ident: 10.1016/j.asr.2017.12.026_b0025
  article-title: Development of in-situ space debris detector
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2014.07.035
– volume: 52
  start-page: 685
  year: 2013
  ident: 10.1016/j.asr.2017.12.026_b0240
  article-title: Value analysis for orbital debris removal
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2013.04.024
– ident: 10.1016/j.asr.2017.12.026_b0045
– start-page: 15
  year: 2011
  ident: 10.1016/j.asr.2017.12.026_b0145
  article-title: A note on active debris removal
  publication-title: Orbital Debris Quart. News
– volume: 8
  year: 2016
  ident: 10.1016/j.asr.2017.12.026_b0225
  article-title: Synthesis and design of a one degree-of-freedom planar deployable mechanism with a large expansion ratio
  publication-title: ASME J. Mech. Robot.
  doi: 10.1115/1.4032101
– volume: 56
  start-page: 509
  year: 2015
  ident: 10.1016/j.asr.2017.12.026_b0065
  article-title: Harpoon technology development for the active removal of space debris
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2015.04.012
– ident: 10.1016/j.asr.2017.12.026_b0010
– ident: 10.1016/j.asr.2017.12.026_b0170
– ident: 10.1016/j.asr.2017.12.026_b0055
– ident: 10.1016/j.asr.2017.12.026_b0180
  doi: 10.1109/AIM.2003.1225145
– volume: 69
  start-page: 911
  year: 2011
  ident: 10.1016/j.asr.2017.12.026_b0080
  article-title: Multi-layer insulation model for MASTER-2009
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2011.06.015
– ident: 10.1016/j.asr.2017.12.026_b0250
  doi: 10.1109/IHMSC.2012.71
– ident: 10.1016/j.asr.2017.12.026_b0070
– volume: 23
  start-page: 89
  year: 1999
  ident: 10.1016/j.asr.2017.12.026_b0155
  article-title: Secondary impact generated particles: implications for the orbital debris population
  publication-title: Adv. Space Res.
  doi: 10.1016/S0273-1177(98)00234-8
– volume: 73
  start-page: 100
  year: 2012
  ident: 10.1016/j.asr.2017.12.026_b0135
  article-title: Wholesale debris removal from LEO
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2011.11.014
– volume: 85
  start-page: 51
  year: 2013
  ident: 10.1016/j.asr.2017.12.026_b0040
  article-title: Active debris removal: recent progress and current trends
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2012.11.009
– ident: 10.1016/j.asr.2017.12.026_b0085
– volume: 80
  start-page: 18
  year: 2016
  ident: 10.1016/j.asr.2017.12.026_b0215
  article-title: Review and comparison of active space debris capturing and removal methods
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2015.11.001
– ident: 10.1016/j.asr.2017.12.026_b0230
– volume: 36
  start-page: 404
  year: 2013
  ident: 10.1016/j.asr.2017.12.026_b0175
  article-title: Adaptive reactionless motion and parameter identification in postcapture of space debris
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.57856
– ident: 10.1016/j.asr.2017.12.026_b0035
  doi: 10.1002/9781119945147.ch1
– ident: 10.1016/j.asr.2017.12.026_b0220
– volume: 56
  start-page: 436
  year: 2015
  ident: 10.1016/j.asr.2017.12.026_b0165
  article-title: Development of in-situ micro-debris measurement system
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2015.04.009
– volume: 48
  start-page: 1890
  year: 2011
  ident: 10.1016/j.asr.2017.12.026_b0130
  article-title: CubeSail: a low cost CubeSat based solar sail demonstration mission
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2011.05.033
– ident: 10.1016/j.asr.2017.12.026_b0115
– volume: 5
  start-page: A1
  year: 2015
  ident: 10.1016/j.asr.2017.12.026_b0050
  article-title: The DTM-2013 thermosphere model
  publication-title: J. Space Weather Space Clim.
  doi: 10.1051/swsc/2015001
– volume: 83
  start-page: 2637
  year: 1978
  ident: 10.1016/j.asr.2017.12.026_b0110
  article-title: Collision frequency of artificial satellites: the creation of a debris belt
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA083iA06p02637
– volume: 47
  start-page: 1865
  year: 2011
  ident: 10.1016/j.asr.2017.12.026_b0150
  article-title: An active debris removal parametric study for LEO environment remediation
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2011.02.003
– ident: 10.1016/j.asr.2017.12.026_b0075
– volume: 473
  start-page: 221
  year: 2011
  ident: 10.1016/j.asr.2017.12.026_b0090
  article-title: A concept for elimination of small orbital debris
  publication-title: Nature
– year: 2017
  ident: 10.1016/j.asr.2017.12.026_b0205
  article-title: Stochastic modeling of hypervelocity impacts in attitude propagation of space debris
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2016.11.030
– ident: 10.1016/j.asr.2017.12.026_b0125
– volume: 69
  start-page: 245
  year: 2011
  ident: 10.1016/j.asr.2017.12.026_b0200
  article-title: A ballistic limit analysis programme for shielding against micrometeoroids and orbital debris
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2011.04.012
– volume: 115
  start-page: 376
  year: 2015
  ident: 10.1016/j.asr.2017.12.026_b0210
  article-title: Performance model for space-based laser debris sweepers
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.05.032
– volume: 33
  start-page: 670
  year: 2006
  ident: 10.1016/j.asr.2017.12.026_b0195
  article-title: Hypervelocity impact damage prediction in composites: Part II experimental investigations and simulations
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2006.09.052
SSID ssj0012770
Score 2.2489386
Snippet Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1286
SubjectTerms Active debris removal
Cupola device
Deployable mechanism
Small size
Space debris
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5ch9D20CZuS14tewg9tGwsS6vHHk1ICIWGQOLinoT2BU4t2UQyIfn1ndHDpKUkhN6kZXal1Yx25_ktwKFFOdAuDLki4FahUYdTUjguQid15ulEaorofj-Pzibi2zSc9uC4q4WhtMp27W_W9Hq1bluG7dccLmez4SUhsVDIcYRCKj1_-gI2ohAV8j5sTM4vxj9r70occKIhsyuJJUeTPelim3WWV1YSKOgorn2ChLDw793p5apYZne32Xz-YPc5fQume-8m6eTX0apSR_r-L0jH_5zYFrxptVM2bui2oWeLAeyMS_KXL_I79pnV1407pBzA6wdwhgPYvGja38GPMTOWjhKmwiyWWyovnpU5002RJENNmaHmyUgK61ywgi0cK3OcOa8WnAL-q5yXs3vLcMXTFkejyoT3MDk9uTo-4-0JDlwHwqu4roFHszhSTnnKWd94mTA6VMYnU8qPnVAmsSOlg4ACfBS2DSxSSymi0JjgA_SLRWF3gLkoUL5KMhwMjbpISu3I9qLALFpMRuyC13Eu1S28OZ2yMU-7PLbrFJmdErPTkZ8is3fhy7rLssH2eIxYdOKQ_sHHFPeex7p9XYvO0w_Zexb1PrzCu6TJiDuAfnWzsh9RRarUp_YX-A0xYw4q
  priority: 102
  providerName: Unpaywall
Title A deployable mechanism concept for the collection of small-to-medium-size space debris
URI https://dx.doi.org/10.1016/j.asr.2017.12.026
https://www.sciencedirect.com/science/article/pii/S027311771730902X
UnpaywallVersion publishedVersion
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1948
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012770
  issn: 0273-1177
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-1948
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012770
  issn: 0273-1177
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1948
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012770
  issn: 0273-1177
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-1948
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012770
  issn: 0273-1177
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1948
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012770
  issn: 0273-1177
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH-UjrL1MNpsI-nWosPooUOLP-SvoykLactCoM3ITsaSJUiJnVA7lO6wv33v-SO0UDroybaQLKH3kN7n7wF81cgHyngelwTcKhTKcDIShgvPRCq1VBgp8uj-nPjjmbice_MdOO9yYSissj37mzO9Pq3blmG7m8P1YjG8JiQWcjnayKSR5cwpg10EVMXg-99tmIftBEFjZwlcTr07z2Yd45WWBAlqB7VFkPAVnr-b3m6Kdfpwny6Xj-6e0QG8b4VGFjfrOoQdXfSgH5dkxl7lD-yU1e-NlaLswf4jlMEe7E2b9g_wK2aZpgq_lC_Fck1Zv4syZ6rJXWQowDIUCBkxRx2iVbCVYWWOS-LVipMffpPzcvFHMzyIlMa_UcLAR5iNftycj3lbWIErV1gVVzUeaBr40khLGu1kVioy5cnMIQ3HCYyQWahtqVyX_G7kTXU19o4i4XtZ5n6C3WJV6D4w47vSkWGKP0Ndy48iZUglIn8pKjKZGIDVbWmiWtRxKn6xTLrwstsEqZAQFRLbSZAKAzjbDlk3kBsvdRYdnZInfJPglfDSsG9bmv5_kqPXTfIZ3uFX2ESsfYHd6m6jj1GEqeRJzaMn8Ca-uBpP8DmbTOPf_wCIX_DJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5cZVEPorMrvrcP4mGld_LoJJPjIMroqgg-mFuT7nTDyCQzmBlED_52q_IYFETBW-j0i66iup5fA-wb5ANtg4ArAm4VGnU4FQvLRWBjnTi6E2uK6F5chr1bcdYP-nNw1NTCUFplLfsrmV5K67qlXZ9mezwYtK8JiYVCji4yaex4_R-wIAIvIgvs38ssz8PFlsrREvmcujehzTLJKykIE9SNSpcgASx8fDktTvNx8vSYDIdvLp-TVViptUbWrTa2BnMmb8FGtyA_9ih7Yges_K7cFEULlt_ADLbg51XV_gvuuiw19MQvFUyxzFDZ76DImK6KFxlqsAw1QkbcUeZo5WxkWZHhlvhkxCkQP814MXg2DCWRNjgbVQz8htuT45ujHq9fVuDaF86E6xIQNIlCZZWjrPFSJxGpDlTqkYnjRVaotGNcpX2fAm8UTvUN9o5jEQZp6q_DfD7KzQYwG_rKU50EJ0NjK4xjbckmooApWjKp2ASnOVKpa9hxev1iKJv8snuJVJBEBel6EqmwCX9nQ8YV5sZnnUVDJ_mOcSTeCZ8NO5zR9OtFtr63yB9Y7N1cnMvz08v_27CEfzpV-toOzE8epmYX9ZmJ2iv59RWabfCu
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5ch9D20CZuS14tewg9tGwsS6vHHk1ICIWGQOLinoT2BU4t2UQyIfn1ndHDpKUkhN6kZXal1Yx25_ktwKFFOdAuDLki4FahUYdTUjguQid15ulEaorofj-Pzibi2zSc9uC4q4WhtMp27W_W9Hq1bluG7dccLmez4SUhsVDIcYRCKj1_-gI2ohAV8j5sTM4vxj9r70occKIhsyuJJUeTPelim3WWV1YSKOgorn2ChLDw793p5apYZne32Xz-YPc5fQume-8m6eTX0apSR_r-L0jH_5zYFrxptVM2bui2oWeLAeyMS_KXL_I79pnV1407pBzA6wdwhgPYvGja38GPMTOWjhKmwiyWWyovnpU5002RJENNmaHmyUgK61ywgi0cK3OcOa8WnAL-q5yXs3vLcMXTFkejyoT3MDk9uTo-4-0JDlwHwqu4roFHszhSTnnKWd94mTA6VMYnU8qPnVAmsSOlg4ACfBS2DSxSSymi0JjgA_SLRWF3gLkoUL5KMhwMjbpISu3I9qLALFpMRuyC13Eu1S28OZ2yMU-7PLbrFJmdErPTkZ8is3fhy7rLssH2eIxYdOKQ_sHHFPeex7p9XYvO0w_Zexb1PrzCu6TJiDuAfnWzsh9RRarUp_YX-A0xYw4q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deployable+mechanism+concept+for+the+collection+of+small-to-medium-size+space+debris&rft.jtitle=Advances+in+space+research&rft.au=St-Onge%2C+David&rft.au=Sharf%2C+Inna&rft.au=Sagni%C3%A8res%2C+Luc&rft.au=Gosselin%2C+Cl%C3%A9ment&rft.date=2018-03-01&rft.pub=Elsevier+Ltd&rft.issn=0273-1177&rft.eissn=1879-1948&rft.volume=61&rft.issue=5&rft.spage=1286&rft.epage=1297&rft_id=info:doi/10.1016%2Fj.asr.2017.12.026&rft.externalDocID=S027311771730902X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon