Robust Variational Physics-Informed Neural Networks
We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in terms of a Petrov–Galerkin-type variational formulation of the PDE problem: the trial space is a (Deep) Neural Network (DNN) manifold, while th...
Saved in:
| Published in | Computer methods in applied mechanics and engineering Vol. 425; p. 116904 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0045-7825 1879-2138 1879-2138 |
| DOI | 10.1016/j.cma.2024.116904 |
Cover
| Abstract | We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in terms of a Petrov–Galerkin-type variational formulation of the PDE problem: the trial space is a (Deep) Neural Network (DNN) manifold, while the test space is a finite-dimensional vector space. Whereas the VPINN’s loss depends upon the selected basis functions of a given test space, herein, we minimize a loss based on the discrete dual norm of the residual. The main advantage of such a loss definition is that it provides a reliable and efficient estimator of the true error in the energy norm under the assumption of the existence of a local Fortin operator. We test the performance and robustness of our algorithm in several advection–diffusion problems. These numerical results perfectly align with our theoretical findings, showing that our estimates are sharp.
•We define robust loss functionals for Variational Physics Informed Neural Networks.•We prove that the proposed loss functional is equivalent to the true error up to an oscillation term.•Unlike classical VPINNs, our approach is not sensitive to the choice of the basis functions in the test space.•We test our strategy in several 1D and 2D elliptic boundary-value problems, showing the robustness of the approach. |
|---|---|
| AbstractList | We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in terms of a Petrov–Galerkin-type variational formulation of the PDE problem: the trial space is a (Deep) Neural Network (DNN) manifold, while the test space is a finite-dimensional vector space. Whereas the VPINN’s loss depends upon the selected basis functions of a given test space, herein, we minimize a loss based on the discrete dual norm of the residual. The main advantage of such a loss definition is that it provides a reliable and efficient estimator of the true error in the energy norm under the assumption of the existence of a local Fortin operator. We test the performance and robustness of our algorithm in several advection–diffusion problems. These numerical results perfectly align with our theoretical findings, showing that our estimates are sharp.
•We define robust loss functionals for Variational Physics Informed Neural Networks.•We prove that the proposed loss functional is equivalent to the true error up to an oscillation term.•Unlike classical VPINNs, our approach is not sensitive to the choice of the basis functions in the test space.•We test our strategy in several 1D and 2D elliptic boundary-value problems, showing the robustness of the approach. |
| ArticleNumber | 116904 |
| Author | Maczuga, Paweł Pardo, David Rojas, Sergio Muñoz-Matute, Judit Paszyński, Maciej |
| Author_xml | – sequence: 1 givenname: Sergio orcidid: 0000-0001-7203-7740 surname: Rojas fullname: Rojas, Sergio email: sergio.rojas.h@pucv.cl organization: Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile – sequence: 2 givenname: Paweł orcidid: 0000-0002-5111-6981 surname: Maczuga fullname: Maczuga, Paweł organization: AGH University of Krakow, Poland – sequence: 3 givenname: Judit surname: Muñoz-Matute fullname: Muñoz-Matute, Judit organization: Basque Center for Applied Mathematics (BCAM), Spain – sequence: 4 givenname: David orcidid: 0000-0002-1101-2248 surname: Pardo fullname: Pardo, David organization: Basque Center for Applied Mathematics (BCAM), Spain – sequence: 5 givenname: Maciej surname: Paszyński fullname: Paszyński, Maciej organization: AGH University of Krakow, Poland |
| BookMark | eNqN0N9KwzAUBvAgCm7TB_BuL9CapEmb4JUM_wzGFFFvw2l6ipldM5LOsbe3s155MTw3Bw78DnzfmJy2vkVCrhhNGWX59Sq1a0g55SJlLNdUnJARU4VOOMvUKRlRKmRSKC7PyTjGFe1HMT4i2Ysvt7GbvkNw0DnfQjN9_thHZ2Myb2sf1lhNl7gN_X2J3c6Hz3hBzmpoIl7-7gl5u797nT0mi6eH-ex2kdhM0C4pVakF5VwrFFSCUpRVmGcV1wXmVOlagC3zQkghJWfWlgIkkxTQChSoIZsQPvzdthvY76BpzCa4NYS9YdQcYpuV6WObQ2wzxO4RG5ANPsaA9b9M8cdY1_200QVwzVF5M0jse_hyGEy0DluLlQtoO1N5d0R_A60ngwg |
| CitedBy_id | crossref_primary_10_1016_j_camwa_2025_02_022 crossref_primary_10_1016_j_cma_2025_117757 crossref_primary_10_1016_j_cma_2025_117889 crossref_primary_10_1016_j_est_2025_115859 crossref_primary_10_1016_j_ijmecsci_2025_110111 crossref_primary_10_1016_j_oceaneng_2024_118678 crossref_primary_10_1109_TAP_2024_3433389 crossref_primary_10_1016_j_cma_2025_117806 crossref_primary_10_1007_s12666_024_03349_1 crossref_primary_10_1016_j_jcp_2024_113623 |
| Cites_doi | 10.1016/j.camwa.2019.06.023 10.1016/j.cma.2020.113547 10.1007/s10409-021-01148-1 10.1093/imanum/drab032 10.1016/j.cma.2023.115892 10.1016/j.camwa.2013.12.015 10.1016/j.camwa.2017.05.030 10.1090/S0002-9939-03-07004-7 10.1016/j.cma.2022.115850 10.1016/j.cma.2023.116505 10.1016/j.cma.2020.112891 10.1109/MSP.2012.2205597 10.1016/j.camwa.2020.11.013 10.1051/m2an/1977110403411 10.1145/3065386 10.1016/j.cma.2019.112789 10.1016/j.cma.2021.114502 10.1016/j.cma.2021.113686 10.1016/j.jocs.2021.101306 10.1137/20M1366587 10.1137/120862065 10.1016/j.cma.2022.115716 10.1137/S0036142994266066 10.1007/BF00252910 10.1016/j.jcp.2018.10.045 10.1016/j.crma.2016.09.013 10.1029/2021JB023120 10.1016/j.cma.2020.113539 10.1016/j.cma.2021.114027 10.1007/s11565-022-00441-6 10.1007/s10915-022-01950-4 10.1016/0045-7825(89)90111-4 10.1364/OE.384875 10.1016/j.cma.2020.113214 10.1016/j.mechrescom.2020.103602 10.1016/j.cma.2010.01.003 10.1016/j.apnum.2022.01.002 10.1002/nme.6912 10.1137/0731091 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.cma.2024.116904 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2138 |
| ExternalDocumentID | oai:bird.bcamath.org:20.500.11824/1818 10_1016_j_cma_2024_116904 S0045782524001609 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 R2- SBC SET VH1 VOH WUQ ZY4 ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c340t-b8b9402298e405a8801de63d297e6089f4acb674545521ccb4a5150aec4e4e9a3 |
| IEDL.DBID | .~1 |
| ISSN | 0045-7825 1879-2138 |
| IngestDate | Sun Oct 26 03:34:28 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Wed Oct 01 04:46:04 EDT 2025 Sat May 04 15:45:02 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variational Physics-Informed Neural Networks Minimum residual principle Robustness Petrov–Galerkin formulation A posteriori error estimation Riesz representation |
| Language | English |
| License | cc-by-nc-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c340t-b8b9402298e405a8801de63d297e6089f4acb674545521ccb4a5150aec4e4e9a3 |
| ORCID | 0000-0002-5111-6981 0000-0001-7203-7740 0000-0002-1101-2248 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/20.500.11824/1818 |
| ParticipantIDs | unpaywall_primary_10_1016_j_cma_2024_116904 crossref_primary_10_1016_j_cma_2024_116904 crossref_citationtrail_10_1016_j_cma_2024_116904 elsevier_sciencedirect_doi_10_1016_j_cma_2024_116904 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-15 |
| PublicationDateYYYYMMDD | 2024-05-15 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Muñoz-Matute, Pardo, Demkowicz (b33) 2021; 373 Mishra, Molinaro (b10) 2022; 42 Kharazmi, Zhang, Karniadakis (b12) 2019 Acosta, Durán (b54) 2004; 132 Cai, Lazarov, Manteuffel, McCormick (b19) 1994; 31 Aldirany, Cottereau, Laforest, Prudhomme (b7) 2023 Calo, Łoś, Deng, Muga, Paszyński (b26) 2021; 373 Łoś, Muga, Muñoz-Matute, Paszyński (b28) 2021; 95 Uriarte, Pardo, Muga, Muñoz-Matute (b41) 2023; 405 Cai, Mao, Wang, Yin, Karniadakis (b5) 2021; 37 Calo, Ern, Muga, Rojas (b21) 2020; 363 Berrone, Canuto, Pintore (b14) 2022; 92 Payne, Weinberger (b53) 1960; 5 Berrone, Canuto, Pintore (b13) 2022; 68 Łoś, Rojas, Paszyński, Muga, Calo (b29) 2021; 50 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (b1) 2012; 29 Krishnapriyan, Gholami, Zhe, Kirby, Mahoney (b11) 2021; 34 Badia, Li, Martín (b42) 2024; 418 Demkowicz, Heuer (b31) 2013; 51 Hughes, Franca, Hulbert (b18) 1989; 73 Brevis, Muga, van der Zee (b37) 2022; 402 Cier, Rojas, Calo (b22) 2021; 385 Gheisari, Wang, Bhuiyan (b3) 2017 Taylor, Pardo, Muga (b39) 2023; 405 Saad (b47) 2003 Oden, Demkowicz (b35) 2017 Ainsworth, Dong (b38) 2021; 43 Kingma, Ba (b55) 2014 Rasht-Behesht, Huber, Shukla, Karniadakis (b8) 2022; 127 Roberts, Bui-Thanh, Demkowicz (b34) 2014; 67 Łoś, Muñoz-Matute, Muga, Paszyński (b27) 2020; 79 Cai, Chen, Liu (b36) 2022; 174 Fortin (b50) 1977; 11 Nagaraj, Petrides, Demkowicz (b49) 2017; 74 Chen, Lu, Karniadakis, Dal Negro (b9) 2020; 28 Kyburg, Rojas, Calo (b25) 2022; 123 Boffi, Brezzi, Fortin (b48) 2013 Raissi, Perdikaris, Karniadakis (b4) 2019; 378 Demkowicz, Gopalakrishnan (b32) 2014 Kharazmi, Zhang, Karniadakis (b46) 2021; 374 Ern, Guermond (b51) 2016; 354 Krizhevsky, Sutskever, Hinton (b2) 2017; 60 Di Pietro, Ern (b44) 2012 Taylor, Bastidas, Pardo, Muga (b40) 2023 Brezzi, ICES Report, 2006, pp. 06–08. Demkowicz, Gopalakrishnan (b30) 2010; 199 Gao, Zahr, Wang (b43) 2022; 390 Cai, Manteuffel, McCormick (b20) 1997; 34 Rojas, Pardo, Behnoudfar, Calo (b24) 2021; 377 Mao, Jagtap, Karniadakis (b6) 2020; 360 Brevis, Muga, van der Zee (b52) 2022; 402 Bochev, Gunzburger (b16) 2009 Cier, Rojas, Calo (b23) 2021; 112 Kharazmi, Zhang, Karniadakis (b15) 2021; 374 L. Demkowicz, Babuška Jiang (b17) 1998 Roberts (10.1016/j.cma.2024.116904_b34) 2014; 67 Calo (10.1016/j.cma.2024.116904_b26) 2021; 373 Demkowicz (10.1016/j.cma.2024.116904_b31) 2013; 51 Payne (10.1016/j.cma.2024.116904_b53) 1960; 5 Demkowicz (10.1016/j.cma.2024.116904_b32) 2014 Hughes (10.1016/j.cma.2024.116904_b18) 1989; 73 Nagaraj (10.1016/j.cma.2024.116904_b49) 2017; 74 Oden (10.1016/j.cma.2024.116904_b35) 2017 Rojas (10.1016/j.cma.2024.116904_b24) 2021; 377 Kyburg (10.1016/j.cma.2024.116904_b25) 2022; 123 Demkowicz (10.1016/j.cma.2024.116904_b30) 2010; 199 Muñoz-Matute (10.1016/j.cma.2024.116904_b33) 2021; 373 Rasht-Behesht (10.1016/j.cma.2024.116904_b8) 2022; 127 Kharazmi (10.1016/j.cma.2024.116904_b46) 2021; 374 Cai (10.1016/j.cma.2024.116904_b19) 1994; 31 Łoś (10.1016/j.cma.2024.116904_b28) 2021; 95 Ern (10.1016/j.cma.2024.116904_b51) 2016; 354 Ainsworth (10.1016/j.cma.2024.116904_b38) 2021; 43 Mishra (10.1016/j.cma.2024.116904_b10) 2022; 42 Hinton (10.1016/j.cma.2024.116904_b1) 2012; 29 Cai (10.1016/j.cma.2024.116904_b5) 2021; 37 Fortin (10.1016/j.cma.2024.116904_b50) 1977; 11 Krizhevsky (10.1016/j.cma.2024.116904_b2) 2017; 60 Saad (10.1016/j.cma.2024.116904_b47) 2003 Cier (10.1016/j.cma.2024.116904_b23) 2021; 112 Jiang (10.1016/j.cma.2024.116904_b17) 1998 Bochev (10.1016/j.cma.2024.116904_b16) 2009 Taylor (10.1016/j.cma.2024.116904_b39) 2023; 405 10.1016/j.cma.2024.116904_b45 Gheisari (10.1016/j.cma.2024.116904_b3) 2017 Brevis (10.1016/j.cma.2024.116904_b52) 2022; 402 Acosta (10.1016/j.cma.2024.116904_b54) 2004; 132 Badia (10.1016/j.cma.2024.116904_b42) 2024; 418 Raissi (10.1016/j.cma.2024.116904_b4) 2019; 378 Cai (10.1016/j.cma.2024.116904_b20) 1997; 34 Chen (10.1016/j.cma.2024.116904_b9) 2020; 28 Cier (10.1016/j.cma.2024.116904_b22) 2021; 385 Kingma (10.1016/j.cma.2024.116904_b55) 2014 Mao (10.1016/j.cma.2024.116904_b6) 2020; 360 Taylor (10.1016/j.cma.2024.116904_b40) 2023 Boffi (10.1016/j.cma.2024.116904_b48) 2013 Berrone (10.1016/j.cma.2024.116904_b13) 2022; 68 Cai (10.1016/j.cma.2024.116904_b36) 2022; 174 Di Pietro (10.1016/j.cma.2024.116904_b44) 2012 Łoś (10.1016/j.cma.2024.116904_b27) 2020; 79 Krishnapriyan (10.1016/j.cma.2024.116904_b11) 2021; 34 Calo (10.1016/j.cma.2024.116904_b21) 2020; 363 Gao (10.1016/j.cma.2024.116904_b43) 2022; 390 Aldirany (10.1016/j.cma.2024.116904_b7) 2023 Kharazmi (10.1016/j.cma.2024.116904_b12) 2019 Brevis (10.1016/j.cma.2024.116904_b37) 2022; 402 Uriarte (10.1016/j.cma.2024.116904_b41) 2023; 405 Kharazmi (10.1016/j.cma.2024.116904_b15) 2021; 374 Berrone (10.1016/j.cma.2024.116904_b14) 2022; 92 Łoś (10.1016/j.cma.2024.116904_b29) 2021; 50 |
| References_xml | – year: 2009 ident: b16 publication-title: Least-Squares Finite Element Methods – volume: 51 start-page: 2514 year: 2013 end-page: 2537 ident: b31 article-title: Robust DPG method for convection-dominated diffusion problems publication-title: SIAM J. Numer. Anal. – volume: 67 start-page: 966 year: 2014 end-page: 995 ident: b34 article-title: The DPG method for the Stokes problem publication-title: Comput. Math. Appl. – year: 2003 ident: b47 article-title: Iterative Methods for Sparse Linear Systems – volume: 374 year: 2021 ident: b15 article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 74 start-page: 1964 year: 2017 end-page: 1980 ident: b49 article-title: Construction of DPG Fortin operators for second order problems publication-title: Comput. Math. Appl. – volume: 132 start-page: 195 year: 2004 end-page: 202 ident: b54 article-title: An optimal Poincaré inequality in publication-title: Proc. Amer. Math. Soc. – reference: Brezzi, ICES Report, 2006, pp. 06–08. – volume: 127 year: 2022 ident: b8 article-title: Physics-informed neural networks (PINNs) for wave propagation and full waveform inversions publication-title: J. Geophys. Res. – reference: L. Demkowicz, Babuška – volume: 199 start-page: 1558 year: 2010 end-page: 1572 ident: b30 article-title: A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: b1 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Process. Mag. – volume: 373 year: 2021 ident: b33 article-title: A DPG-based time-marching scheme for linear hyperbolic problems publication-title: Comput. Methods Appl. Mech. Engrg. – year: 1998 ident: b17 article-title: The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics – volume: 95 start-page: 200 year: 2021 end-page: 214 ident: b28 article-title: Isogeometric residual minimization (iGRM) for non-stationary Stokes and Navier–Stokes problems publication-title: Comput. Math. Appl. – volume: 50 year: 2021 ident: b29 article-title: DGIRM: Discontinuous Galerkin based isogeometric residual minimization for the Stokes problem publication-title: J. Comput. Sci. – volume: 390 year: 2022 ident: b43 article-title: Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 418 year: 2024 ident: b42 article-title: Finite element interpolated neural networks for solving forward and inverse problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b4 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 405 year: 2023 ident: b39 article-title: A deep Fourier residual method for solving PDEs using neural networks publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 360 year: 2020 ident: b6 article-title: Physics-informed neural networks for high-speed flows publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2012 ident: b44 publication-title: Mathematical Aspects of Discontinuous Galerkin Methods – volume: 112 year: 2021 ident: b23 article-title: A nonlinear weak constraint enforcement method for advection-dominated diffusion problems publication-title: Mech. Res. Commun. – volume: 377 year: 2021 ident: b24 article-title: Goal-oriented adaptivity for a conforming residual minimization method in a dual discontinuous Galerkin norm publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 31 start-page: 1785 year: 1994 end-page: 1799 ident: b19 article-title: First-order system least squares for second-order partial differential equations: Part I publication-title: SIAM J. Numer. Anal. – year: 2023 ident: b40 article-title: Deep Fourier residual method for solving time-harmonic Maxwell’s equations – volume: 42 start-page: 981 year: 2022 end-page: 1022 ident: b10 article-title: Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs publication-title: IMA J. Numer. Anal. – volume: 354 start-page: 1092 year: 2016 end-page: 1095 ident: b51 article-title: A converse to Fortin’s Lemma in Banach spaces publication-title: C. R. Math. – year: 2017 ident: b35 article-title: Applied Functional Analysis – volume: 37 start-page: 1727 year: 2021 end-page: 1738 ident: b5 article-title: Physics-informed neural networks (PINNs) for fluid mechanics: A review publication-title: Acta Mech. Sin. – volume: 34 start-page: 425 year: 1997 end-page: 454 ident: b20 article-title: First-order system least squares for second-order partial differential equations: Part II publication-title: SIAM J. Numer. Anal. – volume: 123 start-page: 1717 year: 2022 end-page: 1735 ident: b25 article-title: Incompressible flow modeling using an adaptive stabilized finite element method based on residual minimization publication-title: Internat. J. Numer. Methods Engrg. – volume: 174 start-page: 163 year: 2022 end-page: 176 ident: b36 article-title: Least-squares ReLU neural network (LSNN) method for scalar nonlinear hyperbolic conservation law publication-title: Appl. Numer. Math. – volume: 402 year: 2022 ident: b52 article-title: Neural control of discrete weak formulations: Galerkin, least squares & minimal-residual methods with quasi-optimal weights publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 385 year: 2021 ident: b22 article-title: Automatically adaptive, stabilized finite element method via residual minimization for heterogeneous, anisotropic advection–diffusion–reaction problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 28 start-page: 11618 year: 2020 end-page: 11633 ident: b9 article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials publication-title: Opt. Express – year: 2014 ident: b55 article-title: Adam: A method for stochastic optimization – volume: 79 start-page: 213 year: 2020 end-page: 229 ident: b27 article-title: Isogeometric residual minimization method (iGRM) with direction splitting for non-stationary advection–diffusion problems publication-title: Comput. Math. Appl. – year: 2013 ident: b48 publication-title: Mixed Finite Element Methods and Applications – volume: 11 start-page: 341 year: 1977 end-page: 354 ident: b50 article-title: An analysis of the convergence of mixed finite element methods publication-title: RAIRO. Anal. numérique – start-page: 149 year: 2014 end-page: 180 ident: b32 article-title: An overview of the discontinuous Petrov Galerkin method publication-title: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations: 2012 John H Barrett Memorial Lectures – volume: 68 start-page: 575 year: 2022 end-page: 595 ident: b13 article-title: Solving PDEs by variational physics-informed neural networks: an a posteriori error analysis publication-title: Ann. Dell Univ. Ferrara – volume: 373 year: 2021 ident: b26 article-title: Isogeometric residual minimization method (iGRM) with direction splitting preconditioner for stationary advection-dominated diffusion problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 402 year: 2022 ident: b37 article-title: Neural control of discrete weak formulations: Galerkin, least squares & minimal-residual methods with quasi-optimal weights publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 34 start-page: 26548 year: 2021 end-page: 26560 ident: b11 article-title: Characterizing possible failure modes in physics-informed neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 5 start-page: 286 year: 1960 end-page: 292 ident: b53 article-title: An optimal Poincaré inequality for convex domains publication-title: Arch. Ration. Mech. Anal. – volume: 405 year: 2023 ident: b41 article-title: A deep double ritz method (D2RM) for solving partial differential equations using neural networks publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 43 start-page: A2474 year: 2021 end-page: A2501 ident: b38 article-title: Galerkin neural networks: A framework for approximating variational equations with error control publication-title: SIAM J. Sci. Comput. – volume: 73 start-page: 173 year: 1989 end-page: 189 ident: b18 article-title: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 92 start-page: 100 year: 2022 ident: b14 article-title: Variational physics informed neural networks: the role of quadratures and test functions publication-title: J. Sci. Comput. – volume: 374 year: 2021 ident: b46 article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 363 year: 2020 ident: b21 article-title: An adaptive stabilized conforming finite element method via residual minimization on dual discontinuous Galerkin norms publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2023 ident: b7 article-title: Multi-level neural networks for accurate solutions of boundary-value problems – start-page: 173 year: 2017 end-page: 180 ident: b3 article-title: A survey on deep learning in big data publication-title: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing, Vol. 2 – year: 2019 ident: b12 article-title: Variational physics-informed neural networks for solving partial differential equations – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: b2 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – volume: 79 start-page: 213 issue: 2 year: 2020 ident: 10.1016/j.cma.2024.116904_b27 article-title: Isogeometric residual minimization method (iGRM) with direction splitting for non-stationary advection–diffusion problems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2019.06.023 – volume: 374 year: 2021 ident: 10.1016/j.cma.2024.116904_b46 article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113547 – volume: 37 start-page: 1727 issue: 12 year: 2021 ident: 10.1016/j.cma.2024.116904_b5 article-title: Physics-informed neural networks (PINNs) for fluid mechanics: A review publication-title: Acta Mech. Sin. doi: 10.1007/s10409-021-01148-1 – volume: 42 start-page: 981 issue: 2 year: 2022 ident: 10.1016/j.cma.2024.116904_b10 article-title: Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drab032 – volume: 405 year: 2023 ident: 10.1016/j.cma.2024.116904_b41 article-title: A deep double ritz method (D2RM) for solving partial differential equations using neural networks publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2023.115892 – volume: 67 start-page: 966 issue: 4 year: 2014 ident: 10.1016/j.cma.2024.116904_b34 article-title: The DPG method for the Stokes problem publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2013.12.015 – volume: 74 start-page: 1964 issue: 8 year: 2017 ident: 10.1016/j.cma.2024.116904_b49 article-title: Construction of DPG Fortin operators for second order problems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.05.030 – volume: 132 start-page: 195 issue: 1 year: 2004 ident: 10.1016/j.cma.2024.116904_b54 article-title: An optimal Poincaré inequality in L1 for convex domains publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-03-07004-7 – volume: 405 year: 2023 ident: 10.1016/j.cma.2024.116904_b39 article-title: A deep Fourier residual method for solving PDEs using neural networks publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115850 – volume: 418 year: 2024 ident: 10.1016/j.cma.2024.116904_b42 article-title: Finite element interpolated neural networks for solving forward and inverse problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2023.116505 – start-page: 173 year: 2017 ident: 10.1016/j.cma.2024.116904_b3 article-title: A survey on deep learning in big data – year: 2013 ident: 10.1016/j.cma.2024.116904_b48 – year: 2019 ident: 10.1016/j.cma.2024.116904_b12 – volume: 363 year: 2020 ident: 10.1016/j.cma.2024.116904_b21 article-title: An adaptive stabilized conforming finite element method via residual minimization on dual discontinuous Galerkin norms publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.112891 – year: 2023 ident: 10.1016/j.cma.2024.116904_b7 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 10.1016/j.cma.2024.116904_b1 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – volume: 95 start-page: 200 year: 2021 ident: 10.1016/j.cma.2024.116904_b28 article-title: Isogeometric residual minimization (iGRM) for non-stationary Stokes and Navier–Stokes problems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2020.11.013 – volume: 11 start-page: 341 issue: 4 year: 1977 ident: 10.1016/j.cma.2024.116904_b50 article-title: An analysis of the convergence of mixed finite element methods publication-title: RAIRO. Anal. numérique doi: 10.1051/m2an/1977110403411 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.cma.2024.116904_b2 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 360 year: 2020 ident: 10.1016/j.cma.2024.116904_b6 article-title: Physics-informed neural networks for high-speed flows publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112789 – volume: 390 year: 2022 ident: 10.1016/j.cma.2024.116904_b43 article-title: Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.114502 – year: 2014 ident: 10.1016/j.cma.2024.116904_b55 – volume: 377 year: 2021 ident: 10.1016/j.cma.2024.116904_b24 article-title: Goal-oriented adaptivity for a conforming residual minimization method in a dual discontinuous Galerkin norm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113686 – volume: 50 year: 2021 ident: 10.1016/j.cma.2024.116904_b29 article-title: DGIRM: Discontinuous Galerkin based isogeometric residual minimization for the Stokes problem publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2021.101306 – volume: 43 start-page: A2474 issue: 4 year: 2021 ident: 10.1016/j.cma.2024.116904_b38 article-title: Galerkin neural networks: A framework for approximating variational equations with error control publication-title: SIAM J. Sci. Comput. doi: 10.1137/20M1366587 – volume: 51 start-page: 2514 issue: 5 year: 2013 ident: 10.1016/j.cma.2024.116904_b31 article-title: Robust DPG method for convection-dominated diffusion problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/120862065 – volume: 402 year: 2022 ident: 10.1016/j.cma.2024.116904_b52 article-title: Neural control of discrete weak formulations: Galerkin, least squares & minimal-residual methods with quasi-optimal weights publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115716 – volume: 34 start-page: 425 issue: 2 year: 1997 ident: 10.1016/j.cma.2024.116904_b20 article-title: First-order system least squares for second-order partial differential equations: Part II publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142994266066 – start-page: 149 year: 2014 ident: 10.1016/j.cma.2024.116904_b32 article-title: An overview of the discontinuous Petrov Galerkin method – volume: 5 start-page: 286 year: 1960 ident: 10.1016/j.cma.2024.116904_b53 article-title: An optimal Poincaré inequality for convex domains publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00252910 – year: 2009 ident: 10.1016/j.cma.2024.116904_b16 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2024.116904_b4 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – year: 2017 ident: 10.1016/j.cma.2024.116904_b35 – volume: 354 start-page: 1092 issue: 11 year: 2016 ident: 10.1016/j.cma.2024.116904_b51 article-title: A converse to Fortin’s Lemma in Banach spaces publication-title: C. R. Math. doi: 10.1016/j.crma.2016.09.013 – year: 2023 ident: 10.1016/j.cma.2024.116904_b40 – volume: 127 issue: 5 year: 2022 ident: 10.1016/j.cma.2024.116904_b8 article-title: Physics-informed neural networks (PINNs) for wave propagation and full waveform inversions publication-title: J. Geophys. Res. doi: 10.1029/2021JB023120 – volume: 373 year: 2021 ident: 10.1016/j.cma.2024.116904_b33 article-title: A DPG-based time-marching scheme for linear hyperbolic problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113539 – volume: 374 year: 2021 ident: 10.1016/j.cma.2024.116904_b15 article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113547 – volume: 385 year: 2021 ident: 10.1016/j.cma.2024.116904_b22 article-title: Automatically adaptive, stabilized finite element method via residual minimization for heterogeneous, anisotropic advection–diffusion–reaction problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.114027 – volume: 402 year: 2022 ident: 10.1016/j.cma.2024.116904_b37 article-title: Neural control of discrete weak formulations: Galerkin, least squares & minimal-residual methods with quasi-optimal weights publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115716 – volume: 68 start-page: 575 issue: 2 year: 2022 ident: 10.1016/j.cma.2024.116904_b13 article-title: Solving PDEs by variational physics-informed neural networks: an a posteriori error analysis publication-title: Ann. Dell Univ. Ferrara doi: 10.1007/s11565-022-00441-6 – year: 1998 ident: 10.1016/j.cma.2024.116904_b17 – volume: 92 start-page: 100 issue: 3 year: 2022 ident: 10.1016/j.cma.2024.116904_b14 article-title: Variational physics informed neural networks: the role of quadratures and test functions publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-01950-4 – volume: 34 start-page: 26548 year: 2021 ident: 10.1016/j.cma.2024.116904_b11 article-title: Characterizing possible failure modes in physics-informed neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 73 start-page: 173 issue: 2 year: 1989 ident: 10.1016/j.cma.2024.116904_b18 article-title: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(89)90111-4 – year: 2012 ident: 10.1016/j.cma.2024.116904_b44 – volume: 28 start-page: 11618 issue: 8 year: 2020 ident: 10.1016/j.cma.2024.116904_b9 article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials publication-title: Opt. Express doi: 10.1364/OE.384875 – volume: 373 year: 2021 ident: 10.1016/j.cma.2024.116904_b26 article-title: Isogeometric residual minimization method (iGRM) with direction splitting preconditioner for stationary advection-dominated diffusion problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113214 – volume: 112 year: 2021 ident: 10.1016/j.cma.2024.116904_b23 article-title: A nonlinear weak constraint enforcement method for advection-dominated diffusion problems publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2020.103602 – year: 2003 ident: 10.1016/j.cma.2024.116904_b47 – volume: 199 start-page: 1558 issue: 23 year: 2010 ident: 10.1016/j.cma.2024.116904_b30 article-title: A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2010.01.003 – volume: 174 start-page: 163 year: 2022 ident: 10.1016/j.cma.2024.116904_b36 article-title: Least-squares ReLU neural network (LSNN) method for scalar nonlinear hyperbolic conservation law publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2022.01.002 – volume: 123 start-page: 1717 issue: 8 year: 2022 ident: 10.1016/j.cma.2024.116904_b25 article-title: Incompressible flow modeling using an adaptive stabilized finite element method based on residual minimization publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.6912 – volume: 31 start-page: 1785 issue: 6 year: 1994 ident: 10.1016/j.cma.2024.116904_b19 article-title: First-order system least squares for second-order partial differential equations: Part I publication-title: SIAM J. Numer. Anal. doi: 10.1137/0731091 – ident: 10.1016/j.cma.2024.116904_b45 |
| SSID | ssj0000812 |
| Score | 2.5297906 |
| Snippet | We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 116904 |
| SubjectTerms | A posteriori error estimation Minimum residual principle Petrov–Galerkin formulation Riesz representation Robustness Variational Physics-Informed Neural Networks |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB10PagHv8VvevCkZM0m0zY5iiiL4CLiip5KkmYPuuyK20X01zvZtiqKiseWTFs6GeZN8vIGYD_WRqc-zZlGaxkm3DKt8pzJnnDcyp6SJqx3XHSSdhfPb-PbD5GkL_ICgjdjHsJaCTyiXKSmYSaJCXQ3YKbbuTy-K_ePY0Z5LpAVQ-tsJlpS1fuXEyaXmwgMCaTnUC2IP2Wg2fHg0bw8m37_U4Y5W4R2fU6nJJY8NMeFbbrX77KNf338EixUKDM6LqfFMkz5wQosVogzquJ5tALzn-QIV0FeDe14VEQ3VD9Xa4TRhCHqRqw8tkTGQc2D7ndK-vhoDbpnp9cnbVY1VWBOIi-YVVZTzSi08oTVDIVvK_eJzAW5LOFK99A4m6RIyIoyu3MWDUEebrxDj14buQ6NwXDgNyAiYG51ytGh6GHihOIm4WgdSu9aaNNN4PWPzlylOB4aX_Szmlp2n5FvsuCbrPTNJhy8mzyWchu_Dcbae1mFF0ockFE6-M3s8N3Tf79k61-jt2EuXAV6QSvegUbxNPa7hFoKu1fN2Dc9BOLk priority: 102 providerName: Unpaywall |
| Title | Robust Variational Physics-Informed Neural Networks |
| URI | https://dx.doi.org/10.1016/j.cma.2024.116904 http://hdl.handle.net/20.500.11824/1818 |
| UnpaywallVersion | submittedVersion |
| Volume | 425 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 1879-2138 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 1879-2138 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 1879-2138 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 1879-2138 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 1879-2138 databaseCode: AKRWK dateStart: 19720601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-rBj6k4P0YPnpS4tH39yHEMx1QcIk7mqSRpCpOxDbchXvzbfWnTOQ9O8FQaElJekvd-SX_vF0LOAy54pKOUcpCSQsgk5XGaUj_zFJN-FvvCnHfcd8NOD277Qb9CWmUujKFVWt9f-PTcW9uShrVmYzIYmBxfMFrsgWFBumGexAcQmVsMrj6_aR4Y8grFcAioqV3-2cw5XiqXHvIAHQfuEuG32LQxH03Ex7sYDpdiT3uXbFvQ6DSL79ojFT2qkh0LIB27PKdVsrWkLrhP_MexnE9nzjNuh-2Rn5MTPtWUFllI2NiIc2B5t2CDTw9Ir3391OpQe0cCVT6wGZWx5LgF9HisEXoJXI1uqkM_9XAEQhbzDISSYQQIlDBQKyVBIIJhQivQoLnwD8naaDzSR8RBnC15xECBl0GovJiJkIFU4GvlgoxqhJXWSZQVEDf3WAyTkin2mqBBE2PQpDBojVwsmkwK9YxVlaE0efJjCiTo3Vc1u1wMz9-dHP-vkxOyad4MbcANTsna7G2uzxCNzGQ9n251st68uet08dnrPjRfvgCjcdx1 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHtCDD9SIzz140lS6u7OPHo2RoAIHA4bbpu2WBEOACMR48bc73e0iHsTE626bbqbtzDfdb74SchlwwSMdpZSDlBRCJimP05T6A08x6Q9iX5jzjnYnbPbgsR_0S-SuqIUxtErr-3Ofnnlr-6RurVmfDoemxheMFntgWJBuaIr4NiDwIpOB3Xx-8zww5uWS4RBQ07z4tZmRvFSmPeQBeg5ME-G34FRZjKfi412MRivBp7FLti1qdG7zD9sjJT2ukh2LIB27P2dVsrUiL7hP_OeJXMzmzgvmw_bMz8kYn2pG8zIk7GzUOfB5J6eDzw5Ir3HfvWtSe0kCVT6wOZWx5JgDejzWiL0Ebkc31aGfejgFIYv5AISSYQSIlDBSKyVBIIRhQivQoLnwD0l5PBnrI-Ig0JY8YqDAG0CovJiJkIFU4GvlgoxqhBXWSZRVEDcXWYySgir2mqBBE2PQJDdojVwtu0xz-Yx1jaEwefJjDSTo3td1u15Oz9-DHP9vkAtSaXbbraT10Hk6IZvmjeEQuMEpKc_fFvoMoclcnmdL7wv61txa |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB10PagHv8VvevCkZM0m0zY5iiiL4CLiip5KkmYPuuyK20X01zvZtiqKiseWTFs6GeZN8vIGYD_WRqc-zZlGaxkm3DKt8pzJnnDcyp6SJqx3XHSSdhfPb-PbD5GkL_ICgjdjHsJaCTyiXKSmYSaJCXQ3YKbbuTy-K_ePY0Z5LpAVQ-tsJlpS1fuXEyaXmwgMCaTnUC2IP2Wg2fHg0bw8m37_U4Y5W4R2fU6nJJY8NMeFbbrX77KNf338EixUKDM6LqfFMkz5wQosVogzquJ5tALzn-QIV0FeDe14VEQ3VD9Xa4TRhCHqRqw8tkTGQc2D7ndK-vhoDbpnp9cnbVY1VWBOIi-YVVZTzSi08oTVDIVvK_eJzAW5LOFK99A4m6RIyIoyu3MWDUEebrxDj14buQ6NwXDgNyAiYG51ytGh6GHihOIm4WgdSu9aaNNN4PWPzlylOB4aX_Szmlp2n5FvsuCbrPTNJhy8mzyWchu_Dcbae1mFF0ockFE6-M3s8N3Tf79k61-jt2EuXAV6QSvegUbxNPa7hFoKu1fN2Dc9BOLk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Variational+Physics-Informed+Neural+Networks&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Rojas%2C+Sergio&rft.au=Maczuga%2C+Pawe%C5%82&rft.au=Mu%C3%B1oz-Matute%2C+Judit&rft.au=Pardo%2C+David&rft.date=2024-05-15&rft.issn=0045-7825&rft.volume=425&rft.spage=116904&rft_id=info:doi/10.1016%2Fj.cma.2024.116904&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2024_116904 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |