Robust Variational Physics-Informed Neural Networks

We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in terms of a Petrov–Galerkin-type variational formulation of the PDE problem: the trial space is a (Deep) Neural Network (DNN) manifold, while th...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 425; p. 116904
Main Authors Rojas, Sergio, Maczuga, Paweł, Muñoz-Matute, Judit, Pardo, David, Paszyński, Maciej
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2024
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
1879-2138
DOI10.1016/j.cma.2024.116904

Cover

Abstract We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in terms of a Petrov–Galerkin-type variational formulation of the PDE problem: the trial space is a (Deep) Neural Network (DNN) manifold, while the test space is a finite-dimensional vector space. Whereas the VPINN’s loss depends upon the selected basis functions of a given test space, herein, we minimize a loss based on the discrete dual norm of the residual. The main advantage of such a loss definition is that it provides a reliable and efficient estimator of the true error in the energy norm under the assumption of the existence of a local Fortin operator. We test the performance and robustness of our algorithm in several advection–diffusion problems. These numerical results perfectly align with our theoretical findings, showing that our estimates are sharp. •We define robust loss functionals for Variational Physics Informed Neural Networks.•We prove that the proposed loss functional is equivalent to the true error up to an oscillation term.•Unlike classical VPINNs, our approach is not sensitive to the choice of the basis functions in the test space.•We test our strategy in several 1D and 2D elliptic boundary-value problems, showing the robustness of the approach.
AbstractList We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in terms of a Petrov–Galerkin-type variational formulation of the PDE problem: the trial space is a (Deep) Neural Network (DNN) manifold, while the test space is a finite-dimensional vector space. Whereas the VPINN’s loss depends upon the selected basis functions of a given test space, herein, we minimize a loss based on the discrete dual norm of the residual. The main advantage of such a loss definition is that it provides a reliable and efficient estimator of the true error in the energy norm under the assumption of the existence of a local Fortin operator. We test the performance and robustness of our algorithm in several advection–diffusion problems. These numerical results perfectly align with our theoretical findings, showing that our estimates are sharp. •We define robust loss functionals for Variational Physics Informed Neural Networks.•We prove that the proposed loss functional is equivalent to the true error up to an oscillation term.•Unlike classical VPINNs, our approach is not sensitive to the choice of the basis functions in the test space.•We test our strategy in several 1D and 2D elliptic boundary-value problems, showing the robustness of the approach.
ArticleNumber 116904
Author Maczuga, Paweł
Pardo, David
Rojas, Sergio
Muñoz-Matute, Judit
Paszyński, Maciej
Author_xml – sequence: 1
  givenname: Sergio
  orcidid: 0000-0001-7203-7740
  surname: Rojas
  fullname: Rojas, Sergio
  email: sergio.rojas.h@pucv.cl
  organization: Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
– sequence: 2
  givenname: Paweł
  orcidid: 0000-0002-5111-6981
  surname: Maczuga
  fullname: Maczuga, Paweł
  organization: AGH University of Krakow, Poland
– sequence: 3
  givenname: Judit
  surname: Muñoz-Matute
  fullname: Muñoz-Matute, Judit
  organization: Basque Center for Applied Mathematics (BCAM), Spain
– sequence: 4
  givenname: David
  orcidid: 0000-0002-1101-2248
  surname: Pardo
  fullname: Pardo, David
  organization: Basque Center for Applied Mathematics (BCAM), Spain
– sequence: 5
  givenname: Maciej
  surname: Paszyński
  fullname: Paszyński, Maciej
  organization: AGH University of Krakow, Poland
BookMark eNqN0N9KwzAUBvAgCm7TB_BuL9CapEmb4JUM_wzGFFFvw2l6ipldM5LOsbe3s155MTw3Bw78DnzfmJy2vkVCrhhNGWX59Sq1a0g55SJlLNdUnJARU4VOOMvUKRlRKmRSKC7PyTjGFe1HMT4i2Ysvt7GbvkNw0DnfQjN9_thHZ2Myb2sf1lhNl7gN_X2J3c6Hz3hBzmpoIl7-7gl5u797nT0mi6eH-ex2kdhM0C4pVakF5VwrFFSCUpRVmGcV1wXmVOlagC3zQkghJWfWlgIkkxTQChSoIZsQPvzdthvY76BpzCa4NYS9YdQcYpuV6WObQ2wzxO4RG5ANPsaA9b9M8cdY1_200QVwzVF5M0jse_hyGEy0DluLlQtoO1N5d0R_A60ngwg
CitedBy_id crossref_primary_10_1016_j_camwa_2025_02_022
crossref_primary_10_1016_j_cma_2025_117757
crossref_primary_10_1016_j_cma_2025_117889
crossref_primary_10_1016_j_est_2025_115859
crossref_primary_10_1016_j_ijmecsci_2025_110111
crossref_primary_10_1016_j_oceaneng_2024_118678
crossref_primary_10_1109_TAP_2024_3433389
crossref_primary_10_1016_j_cma_2025_117806
crossref_primary_10_1007_s12666_024_03349_1
crossref_primary_10_1016_j_jcp_2024_113623
Cites_doi 10.1016/j.camwa.2019.06.023
10.1016/j.cma.2020.113547
10.1007/s10409-021-01148-1
10.1093/imanum/drab032
10.1016/j.cma.2023.115892
10.1016/j.camwa.2013.12.015
10.1016/j.camwa.2017.05.030
10.1090/S0002-9939-03-07004-7
10.1016/j.cma.2022.115850
10.1016/j.cma.2023.116505
10.1016/j.cma.2020.112891
10.1109/MSP.2012.2205597
10.1016/j.camwa.2020.11.013
10.1051/m2an/1977110403411
10.1145/3065386
10.1016/j.cma.2019.112789
10.1016/j.cma.2021.114502
10.1016/j.cma.2021.113686
10.1016/j.jocs.2021.101306
10.1137/20M1366587
10.1137/120862065
10.1016/j.cma.2022.115716
10.1137/S0036142994266066
10.1007/BF00252910
10.1016/j.jcp.2018.10.045
10.1016/j.crma.2016.09.013
10.1029/2021JB023120
10.1016/j.cma.2020.113539
10.1016/j.cma.2021.114027
10.1007/s11565-022-00441-6
10.1007/s10915-022-01950-4
10.1016/0045-7825(89)90111-4
10.1364/OE.384875
10.1016/j.cma.2020.113214
10.1016/j.mechrescom.2020.103602
10.1016/j.cma.2010.01.003
10.1016/j.apnum.2022.01.002
10.1002/nme.6912
10.1137/0731091
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.cma.2024.116904
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID oai:bird.bcamath.org:20.500.11824/1818
10_1016_j_cma_2024_116904
S0045782524001609
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
R2-
SBC
SET
VH1
VOH
WUQ
ZY4
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c340t-b8b9402298e405a8801de63d297e6089f4acb674545521ccb4a5150aec4e4e9a3
IEDL.DBID .~1
ISSN 0045-7825
1879-2138
IngestDate Sun Oct 26 03:34:28 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Wed Oct 01 04:46:04 EDT 2025
Sat May 04 15:45:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Variational Physics-Informed Neural Networks
Minimum residual principle
Robustness
Petrov–Galerkin formulation
A posteriori error estimation
Riesz representation
Language English
License cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-b8b9402298e405a8801de63d297e6089f4acb674545521ccb4a5150aec4e4e9a3
ORCID 0000-0002-5111-6981
0000-0001-7203-7740
0000-0002-1101-2248
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/20.500.11824/1818
ParticipantIDs unpaywall_primary_10_1016_j_cma_2024_116904
crossref_primary_10_1016_j_cma_2024_116904
crossref_citationtrail_10_1016_j_cma_2024_116904
elsevier_sciencedirect_doi_10_1016_j_cma_2024_116904
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Muñoz-Matute, Pardo, Demkowicz (b33) 2021; 373
Mishra, Molinaro (b10) 2022; 42
Kharazmi, Zhang, Karniadakis (b12) 2019
Acosta, Durán (b54) 2004; 132
Cai, Lazarov, Manteuffel, McCormick (b19) 1994; 31
Aldirany, Cottereau, Laforest, Prudhomme (b7) 2023
Calo, Łoś, Deng, Muga, Paszyński (b26) 2021; 373
Łoś, Muga, Muñoz-Matute, Paszyński (b28) 2021; 95
Uriarte, Pardo, Muga, Muñoz-Matute (b41) 2023; 405
Cai, Mao, Wang, Yin, Karniadakis (b5) 2021; 37
Calo, Ern, Muga, Rojas (b21) 2020; 363
Berrone, Canuto, Pintore (b14) 2022; 92
Payne, Weinberger (b53) 1960; 5
Berrone, Canuto, Pintore (b13) 2022; 68
Łoś, Rojas, Paszyński, Muga, Calo (b29) 2021; 50
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (b1) 2012; 29
Krishnapriyan, Gholami, Zhe, Kirby, Mahoney (b11) 2021; 34
Badia, Li, Martín (b42) 2024; 418
Demkowicz, Heuer (b31) 2013; 51
Hughes, Franca, Hulbert (b18) 1989; 73
Brevis, Muga, van der Zee (b37) 2022; 402
Cier, Rojas, Calo (b22) 2021; 385
Gheisari, Wang, Bhuiyan (b3) 2017
Taylor, Pardo, Muga (b39) 2023; 405
Saad (b47) 2003
Oden, Demkowicz (b35) 2017
Ainsworth, Dong (b38) 2021; 43
Kingma, Ba (b55) 2014
Rasht-Behesht, Huber, Shukla, Karniadakis (b8) 2022; 127
Roberts, Bui-Thanh, Demkowicz (b34) 2014; 67
Łoś, Muñoz-Matute, Muga, Paszyński (b27) 2020; 79
Cai, Chen, Liu (b36) 2022; 174
Fortin (b50) 1977; 11
Nagaraj, Petrides, Demkowicz (b49) 2017; 74
Chen, Lu, Karniadakis, Dal Negro (b9) 2020; 28
Kyburg, Rojas, Calo (b25) 2022; 123
Boffi, Brezzi, Fortin (b48) 2013
Raissi, Perdikaris, Karniadakis (b4) 2019; 378
Demkowicz, Gopalakrishnan (b32) 2014
Kharazmi, Zhang, Karniadakis (b46) 2021; 374
Ern, Guermond (b51) 2016; 354
Krizhevsky, Sutskever, Hinton (b2) 2017; 60
Di Pietro, Ern (b44) 2012
Taylor, Bastidas, Pardo, Muga (b40) 2023
Brezzi, ICES Report, 2006, pp. 06–08.
Demkowicz, Gopalakrishnan (b30) 2010; 199
Gao, Zahr, Wang (b43) 2022; 390
Cai, Manteuffel, McCormick (b20) 1997; 34
Rojas, Pardo, Behnoudfar, Calo (b24) 2021; 377
Mao, Jagtap, Karniadakis (b6) 2020; 360
Brevis, Muga, van der Zee (b52) 2022; 402
Bochev, Gunzburger (b16) 2009
Cier, Rojas, Calo (b23) 2021; 112
Kharazmi, Zhang, Karniadakis (b15) 2021; 374
L. Demkowicz, Babuška
Jiang (b17) 1998
Roberts (10.1016/j.cma.2024.116904_b34) 2014; 67
Calo (10.1016/j.cma.2024.116904_b26) 2021; 373
Demkowicz (10.1016/j.cma.2024.116904_b31) 2013; 51
Payne (10.1016/j.cma.2024.116904_b53) 1960; 5
Demkowicz (10.1016/j.cma.2024.116904_b32) 2014
Hughes (10.1016/j.cma.2024.116904_b18) 1989; 73
Nagaraj (10.1016/j.cma.2024.116904_b49) 2017; 74
Oden (10.1016/j.cma.2024.116904_b35) 2017
Rojas (10.1016/j.cma.2024.116904_b24) 2021; 377
Kyburg (10.1016/j.cma.2024.116904_b25) 2022; 123
Demkowicz (10.1016/j.cma.2024.116904_b30) 2010; 199
Muñoz-Matute (10.1016/j.cma.2024.116904_b33) 2021; 373
Rasht-Behesht (10.1016/j.cma.2024.116904_b8) 2022; 127
Kharazmi (10.1016/j.cma.2024.116904_b46) 2021; 374
Cai (10.1016/j.cma.2024.116904_b19) 1994; 31
Łoś (10.1016/j.cma.2024.116904_b28) 2021; 95
Ern (10.1016/j.cma.2024.116904_b51) 2016; 354
Ainsworth (10.1016/j.cma.2024.116904_b38) 2021; 43
Mishra (10.1016/j.cma.2024.116904_b10) 2022; 42
Hinton (10.1016/j.cma.2024.116904_b1) 2012; 29
Cai (10.1016/j.cma.2024.116904_b5) 2021; 37
Fortin (10.1016/j.cma.2024.116904_b50) 1977; 11
Krizhevsky (10.1016/j.cma.2024.116904_b2) 2017; 60
Saad (10.1016/j.cma.2024.116904_b47) 2003
Cier (10.1016/j.cma.2024.116904_b23) 2021; 112
Jiang (10.1016/j.cma.2024.116904_b17) 1998
Bochev (10.1016/j.cma.2024.116904_b16) 2009
Taylor (10.1016/j.cma.2024.116904_b39) 2023; 405
10.1016/j.cma.2024.116904_b45
Gheisari (10.1016/j.cma.2024.116904_b3) 2017
Brevis (10.1016/j.cma.2024.116904_b52) 2022; 402
Acosta (10.1016/j.cma.2024.116904_b54) 2004; 132
Badia (10.1016/j.cma.2024.116904_b42) 2024; 418
Raissi (10.1016/j.cma.2024.116904_b4) 2019; 378
Cai (10.1016/j.cma.2024.116904_b20) 1997; 34
Chen (10.1016/j.cma.2024.116904_b9) 2020; 28
Cier (10.1016/j.cma.2024.116904_b22) 2021; 385
Kingma (10.1016/j.cma.2024.116904_b55) 2014
Mao (10.1016/j.cma.2024.116904_b6) 2020; 360
Taylor (10.1016/j.cma.2024.116904_b40) 2023
Boffi (10.1016/j.cma.2024.116904_b48) 2013
Berrone (10.1016/j.cma.2024.116904_b13) 2022; 68
Cai (10.1016/j.cma.2024.116904_b36) 2022; 174
Di Pietro (10.1016/j.cma.2024.116904_b44) 2012
Łoś (10.1016/j.cma.2024.116904_b27) 2020; 79
Krishnapriyan (10.1016/j.cma.2024.116904_b11) 2021; 34
Calo (10.1016/j.cma.2024.116904_b21) 2020; 363
Gao (10.1016/j.cma.2024.116904_b43) 2022; 390
Aldirany (10.1016/j.cma.2024.116904_b7) 2023
Kharazmi (10.1016/j.cma.2024.116904_b12) 2019
Brevis (10.1016/j.cma.2024.116904_b37) 2022; 402
Uriarte (10.1016/j.cma.2024.116904_b41) 2023; 405
Kharazmi (10.1016/j.cma.2024.116904_b15) 2021; 374
Berrone (10.1016/j.cma.2024.116904_b14) 2022; 92
Łoś (10.1016/j.cma.2024.116904_b29) 2021; 50
References_xml – year: 2009
  ident: b16
  publication-title: Least-Squares Finite Element Methods
– volume: 51
  start-page: 2514
  year: 2013
  end-page: 2537
  ident: b31
  article-title: Robust DPG method for convection-dominated diffusion problems
  publication-title: SIAM J. Numer. Anal.
– volume: 67
  start-page: 966
  year: 2014
  end-page: 995
  ident: b34
  article-title: The DPG method for the Stokes problem
  publication-title: Comput. Math. Appl.
– year: 2003
  ident: b47
  article-title: Iterative Methods for Sparse Linear Systems
– volume: 374
  year: 2021
  ident: b15
  article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 74
  start-page: 1964
  year: 2017
  end-page: 1980
  ident: b49
  article-title: Construction of DPG Fortin operators for second order problems
  publication-title: Comput. Math. Appl.
– volume: 132
  start-page: 195
  year: 2004
  end-page: 202
  ident: b54
  article-title: An optimal Poincaré inequality in
  publication-title: Proc. Amer. Math. Soc.
– reference: Brezzi, ICES Report, 2006, pp. 06–08.
– volume: 127
  year: 2022
  ident: b8
  article-title: Physics-informed neural networks (PINNs) for wave propagation and full waveform inversions
  publication-title: J. Geophys. Res.
– reference: L. Demkowicz, Babuška
– volume: 199
  start-page: 1558
  year: 2010
  end-page: 1572
  ident: b30
  article-title: A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: b1
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
– volume: 373
  year: 2021
  ident: b33
  article-title: A DPG-based time-marching scheme for linear hyperbolic problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 1998
  ident: b17
  article-title: The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics
– volume: 95
  start-page: 200
  year: 2021
  end-page: 214
  ident: b28
  article-title: Isogeometric residual minimization (iGRM) for non-stationary Stokes and Navier–Stokes problems
  publication-title: Comput. Math. Appl.
– volume: 50
  year: 2021
  ident: b29
  article-title: DGIRM: Discontinuous Galerkin based isogeometric residual minimization for the Stokes problem
  publication-title: J. Comput. Sci.
– volume: 390
  year: 2022
  ident: b43
  article-title: Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 418
  year: 2024
  ident: b42
  article-title: Finite element interpolated neural networks for solving forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b4
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 405
  year: 2023
  ident: b39
  article-title: A deep Fourier residual method for solving PDEs using neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 360
  year: 2020
  ident: b6
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2012
  ident: b44
  publication-title: Mathematical Aspects of Discontinuous Galerkin Methods
– volume: 112
  year: 2021
  ident: b23
  article-title: A nonlinear weak constraint enforcement method for advection-dominated diffusion problems
  publication-title: Mech. Res. Commun.
– volume: 377
  year: 2021
  ident: b24
  article-title: Goal-oriented adaptivity for a conforming residual minimization method in a dual discontinuous Galerkin norm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 31
  start-page: 1785
  year: 1994
  end-page: 1799
  ident: b19
  article-title: First-order system least squares for second-order partial differential equations: Part I
  publication-title: SIAM J. Numer. Anal.
– year: 2023
  ident: b40
  article-title: Deep Fourier residual method for solving time-harmonic Maxwell’s equations
– volume: 42
  start-page: 981
  year: 2022
  end-page: 1022
  ident: b10
  article-title: Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs
  publication-title: IMA J. Numer. Anal.
– volume: 354
  start-page: 1092
  year: 2016
  end-page: 1095
  ident: b51
  article-title: A converse to Fortin’s Lemma in Banach spaces
  publication-title: C. R. Math.
– year: 2017
  ident: b35
  article-title: Applied Functional Analysis
– volume: 37
  start-page: 1727
  year: 2021
  end-page: 1738
  ident: b5
  article-title: Physics-informed neural networks (PINNs) for fluid mechanics: A review
  publication-title: Acta Mech. Sin.
– volume: 34
  start-page: 425
  year: 1997
  end-page: 454
  ident: b20
  article-title: First-order system least squares for second-order partial differential equations: Part II
  publication-title: SIAM J. Numer. Anal.
– volume: 123
  start-page: 1717
  year: 2022
  end-page: 1735
  ident: b25
  article-title: Incompressible flow modeling using an adaptive stabilized finite element method based on residual minimization
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 174
  start-page: 163
  year: 2022
  end-page: 176
  ident: b36
  article-title: Least-squares ReLU neural network (LSNN) method for scalar nonlinear hyperbolic conservation law
  publication-title: Appl. Numer. Math.
– volume: 402
  year: 2022
  ident: b52
  article-title: Neural control of discrete weak formulations: Galerkin, least squares & minimal-residual methods with quasi-optimal weights
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 385
  year: 2021
  ident: b22
  article-title: Automatically adaptive, stabilized finite element method via residual minimization for heterogeneous, anisotropic advection–diffusion–reaction problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 28
  start-page: 11618
  year: 2020
  end-page: 11633
  ident: b9
  article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials
  publication-title: Opt. Express
– year: 2014
  ident: b55
  article-title: Adam: A method for stochastic optimization
– volume: 79
  start-page: 213
  year: 2020
  end-page: 229
  ident: b27
  article-title: Isogeometric residual minimization method (iGRM) with direction splitting for non-stationary advection–diffusion problems
  publication-title: Comput. Math. Appl.
– year: 2013
  ident: b48
  publication-title: Mixed Finite Element Methods and Applications
– volume: 11
  start-page: 341
  year: 1977
  end-page: 354
  ident: b50
  article-title: An analysis of the convergence of mixed finite element methods
  publication-title: RAIRO. Anal. numérique
– start-page: 149
  year: 2014
  end-page: 180
  ident: b32
  article-title: An overview of the discontinuous Petrov Galerkin method
  publication-title: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations: 2012 John H Barrett Memorial Lectures
– volume: 68
  start-page: 575
  year: 2022
  end-page: 595
  ident: b13
  article-title: Solving PDEs by variational physics-informed neural networks: an a posteriori error analysis
  publication-title: Ann. Dell Univ. Ferrara
– volume: 373
  year: 2021
  ident: b26
  article-title: Isogeometric residual minimization method (iGRM) with direction splitting preconditioner for stationary advection-dominated diffusion problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 402
  year: 2022
  ident: b37
  article-title: Neural control of discrete weak formulations: Galerkin, least squares & minimal-residual methods with quasi-optimal weights
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 34
  start-page: 26548
  year: 2021
  end-page: 26560
  ident: b11
  article-title: Characterizing possible failure modes in physics-informed neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 5
  start-page: 286
  year: 1960
  end-page: 292
  ident: b53
  article-title: An optimal Poincaré inequality for convex domains
  publication-title: Arch. Ration. Mech. Anal.
– volume: 405
  year: 2023
  ident: b41
  article-title: A deep double ritz method (D2RM) for solving partial differential equations using neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 43
  start-page: A2474
  year: 2021
  end-page: A2501
  ident: b38
  article-title: Galerkin neural networks: A framework for approximating variational equations with error control
  publication-title: SIAM J. Sci. Comput.
– volume: 73
  start-page: 173
  year: 1989
  end-page: 189
  ident: b18
  article-title: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 92
  start-page: 100
  year: 2022
  ident: b14
  article-title: Variational physics informed neural networks: the role of quadratures and test functions
  publication-title: J. Sci. Comput.
– volume: 374
  year: 2021
  ident: b46
  article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 363
  year: 2020
  ident: b21
  article-title: An adaptive stabilized conforming finite element method via residual minimization on dual discontinuous Galerkin norms
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2023
  ident: b7
  article-title: Multi-level neural networks for accurate solutions of boundary-value problems
– start-page: 173
  year: 2017
  end-page: 180
  ident: b3
  article-title: A survey on deep learning in big data
  publication-title: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing, Vol. 2
– year: 2019
  ident: b12
  article-title: Variational physics-informed neural networks for solving partial differential equations
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b2
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 79
  start-page: 213
  issue: 2
  year: 2020
  ident: 10.1016/j.cma.2024.116904_b27
  article-title: Isogeometric residual minimization method (iGRM) with direction splitting for non-stationary advection–diffusion problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.06.023
– volume: 374
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b46
  article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113547
– volume: 37
  start-page: 1727
  issue: 12
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b5
  article-title: Physics-informed neural networks (PINNs) for fluid mechanics: A review
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-021-01148-1
– volume: 42
  start-page: 981
  issue: 2
  year: 2022
  ident: 10.1016/j.cma.2024.116904_b10
  article-title: Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drab032
– volume: 405
  year: 2023
  ident: 10.1016/j.cma.2024.116904_b41
  article-title: A deep double ritz method (D2RM) for solving partial differential equations using neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2023.115892
– volume: 67
  start-page: 966
  issue: 4
  year: 2014
  ident: 10.1016/j.cma.2024.116904_b34
  article-title: The DPG method for the Stokes problem
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2013.12.015
– volume: 74
  start-page: 1964
  issue: 8
  year: 2017
  ident: 10.1016/j.cma.2024.116904_b49
  article-title: Construction of DPG Fortin operators for second order problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2017.05.030
– volume: 132
  start-page: 195
  issue: 1
  year: 2004
  ident: 10.1016/j.cma.2024.116904_b54
  article-title: An optimal Poincaré inequality in L1 for convex domains
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-03-07004-7
– volume: 405
  year: 2023
  ident: 10.1016/j.cma.2024.116904_b39
  article-title: A deep Fourier residual method for solving PDEs using neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115850
– volume: 418
  year: 2024
  ident: 10.1016/j.cma.2024.116904_b42
  article-title: Finite element interpolated neural networks for solving forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2023.116505
– start-page: 173
  year: 2017
  ident: 10.1016/j.cma.2024.116904_b3
  article-title: A survey on deep learning in big data
– year: 2013
  ident: 10.1016/j.cma.2024.116904_b48
– year: 2019
  ident: 10.1016/j.cma.2024.116904_b12
– volume: 363
  year: 2020
  ident: 10.1016/j.cma.2024.116904_b21
  article-title: An adaptive stabilized conforming finite element method via residual minimization on dual discontinuous Galerkin norms
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.112891
– year: 2023
  ident: 10.1016/j.cma.2024.116904_b7
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.cma.2024.116904_b1
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 95
  start-page: 200
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b28
  article-title: Isogeometric residual minimization (iGRM) for non-stationary Stokes and Navier–Stokes problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2020.11.013
– volume: 11
  start-page: 341
  issue: 4
  year: 1977
  ident: 10.1016/j.cma.2024.116904_b50
  article-title: An analysis of the convergence of mixed finite element methods
  publication-title: RAIRO. Anal. numérique
  doi: 10.1051/m2an/1977110403411
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.cma.2024.116904_b2
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 360
  year: 2020
  ident: 10.1016/j.cma.2024.116904_b6
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112789
– volume: 390
  year: 2022
  ident: 10.1016/j.cma.2024.116904_b43
  article-title: Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114502
– year: 2014
  ident: 10.1016/j.cma.2024.116904_b55
– volume: 377
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b24
  article-title: Goal-oriented adaptivity for a conforming residual minimization method in a dual discontinuous Galerkin norm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113686
– volume: 50
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b29
  article-title: DGIRM: Discontinuous Galerkin based isogeometric residual minimization for the Stokes problem
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2021.101306
– volume: 43
  start-page: A2474
  issue: 4
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b38
  article-title: Galerkin neural networks: A framework for approximating variational equations with error control
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1366587
– volume: 51
  start-page: 2514
  issue: 5
  year: 2013
  ident: 10.1016/j.cma.2024.116904_b31
  article-title: Robust DPG method for convection-dominated diffusion problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120862065
– volume: 402
  year: 2022
  ident: 10.1016/j.cma.2024.116904_b52
  article-title: Neural control of discrete weak formulations: Galerkin, least squares & minimal-residual methods with quasi-optimal weights
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115716
– volume: 34
  start-page: 425
  issue: 2
  year: 1997
  ident: 10.1016/j.cma.2024.116904_b20
  article-title: First-order system least squares for second-order partial differential equations: Part II
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142994266066
– start-page: 149
  year: 2014
  ident: 10.1016/j.cma.2024.116904_b32
  article-title: An overview of the discontinuous Petrov Galerkin method
– volume: 5
  start-page: 286
  year: 1960
  ident: 10.1016/j.cma.2024.116904_b53
  article-title: An optimal Poincaré inequality for convex domains
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00252910
– year: 2009
  ident: 10.1016/j.cma.2024.116904_b16
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2024.116904_b4
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– year: 2017
  ident: 10.1016/j.cma.2024.116904_b35
– volume: 354
  start-page: 1092
  issue: 11
  year: 2016
  ident: 10.1016/j.cma.2024.116904_b51
  article-title: A converse to Fortin’s Lemma in Banach spaces
  publication-title: C. R. Math.
  doi: 10.1016/j.crma.2016.09.013
– year: 2023
  ident: 10.1016/j.cma.2024.116904_b40
– volume: 127
  issue: 5
  year: 2022
  ident: 10.1016/j.cma.2024.116904_b8
  article-title: Physics-informed neural networks (PINNs) for wave propagation and full waveform inversions
  publication-title: J. Geophys. Res.
  doi: 10.1029/2021JB023120
– volume: 373
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b33
  article-title: A DPG-based time-marching scheme for linear hyperbolic problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113539
– volume: 374
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b15
  article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113547
– volume: 385
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b22
  article-title: Automatically adaptive, stabilized finite element method via residual minimization for heterogeneous, anisotropic advection–diffusion–reaction problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114027
– volume: 402
  year: 2022
  ident: 10.1016/j.cma.2024.116904_b37
  article-title: Neural control of discrete weak formulations: Galerkin, least squares & minimal-residual methods with quasi-optimal weights
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115716
– volume: 68
  start-page: 575
  issue: 2
  year: 2022
  ident: 10.1016/j.cma.2024.116904_b13
  article-title: Solving PDEs by variational physics-informed neural networks: an a posteriori error analysis
  publication-title: Ann. Dell Univ. Ferrara
  doi: 10.1007/s11565-022-00441-6
– year: 1998
  ident: 10.1016/j.cma.2024.116904_b17
– volume: 92
  start-page: 100
  issue: 3
  year: 2022
  ident: 10.1016/j.cma.2024.116904_b14
  article-title: Variational physics informed neural networks: the role of quadratures and test functions
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-01950-4
– volume: 34
  start-page: 26548
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b11
  article-title: Characterizing possible failure modes in physics-informed neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 73
  start-page: 173
  issue: 2
  year: 1989
  ident: 10.1016/j.cma.2024.116904_b18
  article-title: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(89)90111-4
– year: 2012
  ident: 10.1016/j.cma.2024.116904_b44
– volume: 28
  start-page: 11618
  issue: 8
  year: 2020
  ident: 10.1016/j.cma.2024.116904_b9
  article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials
  publication-title: Opt. Express
  doi: 10.1364/OE.384875
– volume: 373
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b26
  article-title: Isogeometric residual minimization method (iGRM) with direction splitting preconditioner for stationary advection-dominated diffusion problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113214
– volume: 112
  year: 2021
  ident: 10.1016/j.cma.2024.116904_b23
  article-title: A nonlinear weak constraint enforcement method for advection-dominated diffusion problems
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2020.103602
– year: 2003
  ident: 10.1016/j.cma.2024.116904_b47
– volume: 199
  start-page: 1558
  issue: 23
  year: 2010
  ident: 10.1016/j.cma.2024.116904_b30
  article-title: A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2010.01.003
– volume: 174
  start-page: 163
  year: 2022
  ident: 10.1016/j.cma.2024.116904_b36
  article-title: Least-squares ReLU neural network (LSNN) method for scalar nonlinear hyperbolic conservation law
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2022.01.002
– volume: 123
  start-page: 1717
  issue: 8
  year: 2022
  ident: 10.1016/j.cma.2024.116904_b25
  article-title: Incompressible flow modeling using an adaptive stabilized finite element method based on residual minimization
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.6912
– volume: 31
  start-page: 1785
  issue: 6
  year: 1994
  ident: 10.1016/j.cma.2024.116904_b19
  article-title: First-order system least squares for second-order partial differential equations: Part I
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0731091
– ident: 10.1016/j.cma.2024.116904_b45
SSID ssj0000812
Score 2.5297906
Snippet We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 116904
SubjectTerms A posteriori error estimation
Minimum residual principle
Petrov–Galerkin formulation
Riesz representation
Robustness
Variational Physics-Informed Neural Networks
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB10PagHv8VvevCkZM0m0zY5iiiL4CLiip5KkmYPuuyK20X01zvZtiqKiseWTFs6GeZN8vIGYD_WRqc-zZlGaxkm3DKt8pzJnnDcyp6SJqx3XHSSdhfPb-PbD5GkL_ICgjdjHsJaCTyiXKSmYSaJCXQ3YKbbuTy-K_ePY0Z5LpAVQ-tsJlpS1fuXEyaXmwgMCaTnUC2IP2Wg2fHg0bw8m37_U4Y5W4R2fU6nJJY8NMeFbbrX77KNf338EixUKDM6LqfFMkz5wQosVogzquJ5tALzn-QIV0FeDe14VEQ3VD9Xa4TRhCHqRqw8tkTGQc2D7ndK-vhoDbpnp9cnbVY1VWBOIi-YVVZTzSi08oTVDIVvK_eJzAW5LOFK99A4m6RIyIoyu3MWDUEebrxDj14buQ6NwXDgNyAiYG51ytGh6GHihOIm4WgdSu9aaNNN4PWPzlylOB4aX_Szmlp2n5FvsuCbrPTNJhy8mzyWchu_Dcbae1mFF0ockFE6-M3s8N3Tf79k61-jt2EuXAV6QSvegUbxNPa7hFoKu1fN2Dc9BOLk
  priority: 102
  providerName: Unpaywall
Title Robust Variational Physics-Informed Neural Networks
URI https://dx.doi.org/10.1016/j.cma.2024.116904
http://hdl.handle.net/20.500.11824/1818
UnpaywallVersion submittedVersion
Volume 425
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 1879-2138
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 1879-2138
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 1879-2138
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 1879-2138
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 1879-2138
  databaseCode: AKRWK
  dateStart: 19720601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-rBj6k4P0YPnpS4tH39yHEMx1QcIk7mqSRpCpOxDbchXvzbfWnTOQ9O8FQaElJekvd-SX_vF0LOAy54pKOUcpCSQsgk5XGaUj_zFJN-FvvCnHfcd8NOD277Qb9CWmUujKFVWt9f-PTcW9uShrVmYzIYmBxfMFrsgWFBumGexAcQmVsMrj6_aR4Y8grFcAioqV3-2cw5XiqXHvIAHQfuEuG32LQxH03Ex7sYDpdiT3uXbFvQ6DSL79ojFT2qkh0LIB27PKdVsrWkLrhP_MexnE9nzjNuh-2Rn5MTPtWUFllI2NiIc2B5t2CDTw9Ir3391OpQe0cCVT6wGZWx5LgF9HisEXoJXI1uqkM_9XAEQhbzDISSYQQIlDBQKyVBIIJhQivQoLnwD8naaDzSR8RBnC15xECBl0GovJiJkIFU4GvlgoxqhJXWSZQVEDf3WAyTkin2mqBBE2PQpDBojVwsmkwK9YxVlaE0efJjCiTo3Vc1u1wMz9-dHP-vkxOyad4MbcANTsna7G2uzxCNzGQ9n251st68uet08dnrPjRfvgCjcdx1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHtCDD9SIzz140lS6u7OPHo2RoAIHA4bbpu2WBEOACMR48bc73e0iHsTE626bbqbtzDfdb74SchlwwSMdpZSDlBRCJimP05T6A08x6Q9iX5jzjnYnbPbgsR_0S-SuqIUxtErr-3Ofnnlr-6RurVmfDoemxheMFntgWJBuaIr4NiDwIpOB3Xx-8zww5uWS4RBQ07z4tZmRvFSmPeQBeg5ME-G34FRZjKfi412MRivBp7FLti1qdG7zD9sjJT2ukh2LIB27P2dVsrUiL7hP_OeJXMzmzgvmw_bMz8kYn2pG8zIk7GzUOfB5J6eDzw5Ir3HfvWtSe0kCVT6wOZWx5JgDejzWiL0Ebkc31aGfejgFIYv5AISSYQSIlDBSKyVBIIRhQivQoLnwD0l5PBnrI-Ig0JY8YqDAG0CovJiJkIFU4GvlgoxqhBXWSZRVEDcXWYySgir2mqBBE2PQJDdojVwtu0xz-Yx1jaEwefJjDSTo3td1u15Oz9-DHP9vkAtSaXbbraT10Hk6IZvmjeEQuMEpKc_fFvoMoclcnmdL7wv61txa
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB10PagHv8VvevCkZM0m0zY5iiiL4CLiip5KkmYPuuyK20X01zvZtiqKiseWTFs6GeZN8vIGYD_WRqc-zZlGaxkm3DKt8pzJnnDcyp6SJqx3XHSSdhfPb-PbD5GkL_ICgjdjHsJaCTyiXKSmYSaJCXQ3YKbbuTy-K_ePY0Z5LpAVQ-tsJlpS1fuXEyaXmwgMCaTnUC2IP2Wg2fHg0bw8m37_U4Y5W4R2fU6nJJY8NMeFbbrX77KNf338EixUKDM6LqfFMkz5wQosVogzquJ5tALzn-QIV0FeDe14VEQ3VD9Xa4TRhCHqRqw8tkTGQc2D7ndK-vhoDbpnp9cnbVY1VWBOIi-YVVZTzSi08oTVDIVvK_eJzAW5LOFK99A4m6RIyIoyu3MWDUEebrxDj14buQ6NwXDgNyAiYG51ytGh6GHihOIm4WgdSu9aaNNN4PWPzlylOB4aX_Szmlp2n5FvsuCbrPTNJhy8mzyWchu_Dcbae1mFF0ockFE6-M3s8N3Tf79k61-jt2EuXAV6QSvegUbxNPa7hFoKu1fN2Dc9BOLk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Variational+Physics-Informed+Neural+Networks&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Rojas%2C+Sergio&rft.au=Maczuga%2C+Pawe%C5%82&rft.au=Mu%C3%B1oz-Matute%2C+Judit&rft.au=Pardo%2C+David&rft.date=2024-05-15&rft.issn=0045-7825&rft.volume=425&rft.spage=116904&rft_id=info:doi/10.1016%2Fj.cma.2024.116904&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2024_116904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon